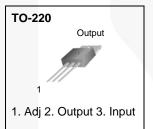


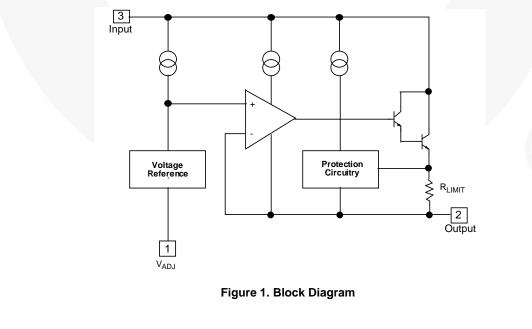
September 2014


KA317 / LM317 3-Terminal Positive Adjustable Regulator

Features

- Output-Current In Excess of 1.5 A
- Output-Adjustable Between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output-Transistor Safe Operating Area Compensation
- TO-220 Package

Description


This monolithic integrated circuit is an adjustable 3-terminal positive-voltage regulator designed to supply more than 1.5 A of load current with an output voltage adjustable over a 1.2 V to 37 V range. It employs internal current limiting, thermal shutdown, and safe area compensation.

Ordering Information

Product Number	nber Package Packing Method		Operating Temperature	
LM317T	TO-220 (Single Gauge) Rail		0°C to +125°C	
KA317TU	TO-220 (Dual Gauge)	Rail	0°C to +125°C	

Block Diagram

KA317 / LM317 — 3-Terminal Positive Adjustable Regulator

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

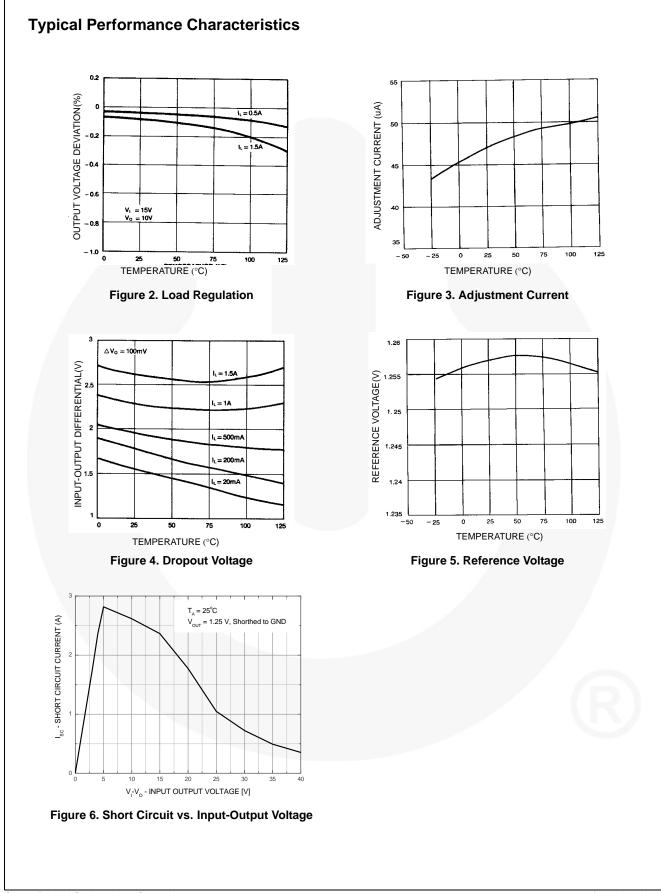
Symbol	Parameter	Value	Unit
V _I - V _O	Input-Output Voltage Differential	40	V
T _{LEAD}	Lead Temperature	230	°C
TJ	Operating Junction Temperature Range	0 to +125	°C
T _{STG}	Storage Temperature Range -65 to +125		°C
$\Delta V_O / \Delta T$	Temperature Coefficient of Output Voltage	±0.02	%/°C

Thermal Characteristics

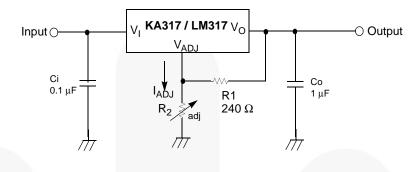
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Value	Units
PD	Power Dissipation	Internally Limited	W
R _{θJA}	Thermal Resistance, Junction to Ambient	80	°C/W
R _{θJC}	Thermal Resistance, Junction to Case	5	°C/W

Electrical Characteristics


 $V_I - V_O = 5 \text{ V}, \text{ I}_O = 0.5 \text{ A}, 0^{\circ}\text{C} \leq \text{T}_J \leq +125^{\circ}\text{C}, \text{ I}_{MAX} = 1.5 \text{ A}, \text{ P}_{DMAX} = 20 \text{ W}, \text{ unless otherwise specified}.$

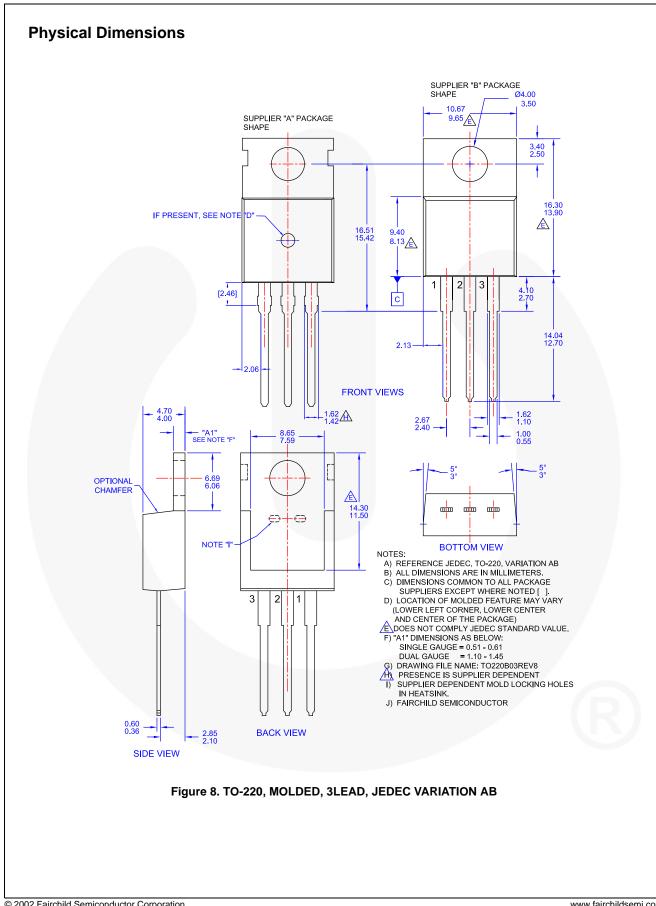
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit	
R _{LINE}	Line Regulation ⁽¹⁾	$T_A = +25^{\circ}C, 3 V \le V_I - V_O \le 40 V$			0.01	0.04	%/ V	
	Line Regulation ??	$3 V \le V_1 - V_0 \le 40 V$			0.02 0.07	- %)/ V		
R _{LOAD}	Load Regulation ⁽¹⁾	T _A = +25°C,	V _O < 5 V		18	25	mV	
		$10mA \le I_O \le I_{MAX}$	$V_{O} \ge 5 V$		0.4	0.5	%/V _C	
		$10 \text{ mA} \le I_O \le I_{MAX}$	V _O < 5 V		40	70	mV	
			$V_{O} \ge 5 V$		0.8	1.5	%/V _C	
I _{ADJ}	Adjustable Pin Current				46	100	μA	
ΔI_{ADJ}	Adjustable Pin Current Change	$\begin{array}{l} 3 \ V \leq V_{I} - V_{O} \leq 40 \ V, \\ 10 \ mA \leq I_{O} \leq I_{MAX}, P_{D} \leq P_{MAX} \end{array}$			2.0	5.0	μA	
V _{REF}	Reference Voltage	$\begin{array}{l} 3 \text{ V} \leq \text{V}_{\text{IN}} \text{ - } \text{V}_{\text{O}} \leq 40 \text{ V}, \\ 10 \text{ mA} \leq \text{I}_{\text{O}} \leq \text{I}_{\text{MAX}}, \text{P}_{\text{D}} \leq \text{P}_{\text{MAX}} \end{array}$		1.20	1.25	1.30	V	
STT	Temperature Stability				0.7		%/V _C	
I _{L(MIN)}	Minimum Load Current to Maintain Regulation	V _I - V _O = 40 V			3.5	12.0	mA	
0(11)	Maximum Output Current	Maximum Output	T 0500	$V_{I} - V_{O} \le 15 V,$ $P_{D} \le P_{MAX}$	1.5	2.2		
		T _A = 25°C	$V_{I} - V_{O} \le 40 V,$ $P_{D} \le P_{MAX}$		0.3		A	
e _N	RMS Noise,% of V _{OUT}	$T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 10 kHz			0.003	0.010	%/V _C	
RR	Ripple Rejection ⁽²⁾	V _O = 10 V,	without C _{ADJ}		60		4D	
		f = 120 Hz	$C_{ADJ} = 10 \mu F$	66	75		dB	
ST	Long-Term Stability, $T_J = T_{HIGH}$	$T_A = +25^{\circ}C$ for End Point Measurements, 1000 HR			0.3	1.0	%	


Notes:

 Load and line regulation are specified at constant junction temperature. Change in V_D due to heating effects must be taken into account separately. Pulse testing with low duty is used (P_{MAX} = 20 W).

2. C_{ADJ}, when used, is connected between the adjustment pin and ground.

Typical Application⁽³⁾



 $V_0 = 1.25 V (1 + R_2 / R_1) + I_{ADJ}R_2$

Figure 7. Typical Application

Note:

 C_I is required when the regulator is located an appreciable distance from power supply filter. C_O is not needed for stability; however, it does improve transient response. Since I_{ADJ} is controlled to less than 100 μA, the error associated with this term is negligible in most applications.

KA317 / LM317

I

3-Terminal Positive Adjustable Regulator

FAIRCHILD. TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. F-PFS™ AccuPower™ Awinda[®] AX-CAP[®]* FRFET® Global Power ResourceSM TinyBoost[®] PowerTrench[®] GreenBridge™ BitSiC™ TinyBuck® PowerXS™ Build it Now™ TinyCalc™ Green FPS™ Programmable Active Droop™ TinyLogic® CorePLUS™ Green FPS™ e-Series™ **QFET**[®] CorePOWER™ Gmax™ QS™ **TINYOPTO™** CROSSVOLT™ GTO™ TinyPower™ Quiet Series™ TinyPWM™ CTL™ IntelliMAX™ RapidConfigure™ TinyWire™ Current Transfer Logic™ ISOPLANAR™ TranSiC™ DEUXPEED® Making Small Speakers Sound Louder Saving our world, 1mW/W/kW at a time™ Dual Cool™ and Better[™] TriFault Detect™ SignalWise™ **EcoSPARK**[®] TRUECURRENT®* MegaBuck™ SmartMax™ EfficientMax™ MICROCOUPLER™ µSerDes™ SMART START™ ESBC™ MicroFET™ F® Solutions for Your Success™ MicroPak™ SPM[®] MicroPak2™ LIHC Fairchild® STEALTH™ MillerDrive™ Ultra FRFET™ Fairchild Semiconductor® SuperFFT[®] MotionMax™ UniFET™ FACT Quiet Series™ SuperSOT™-3 MotionGrid® VCX™ FACT[®] FAST[®] SuperSOT™-6 MTi[®] VisualMax™ SuperSOT™-8 MTx® VoltagePlus™ FastvCore™ SupreMOS[®] MVN[®] XS™ FETBench™ SyncFET™ mWSaver® Xsens™ Sync-Lock™ **FPS™** OptoHiT™ 仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. I71 www.fairchildsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MAX202ECWE-LF MCDTSA6-2R L4953G L7815ACV-DG PQ3DZ53U LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E L78MR05-E 033150D 033151B 090756R 636416C NCV78M15BDTG 702482B 714954EB TLE42794GM TLE42994GM ZMR500QFTA BA033LBSG2-TR NCV78M05ABDTRKG NCV78M08BDTRKG NCP7808TG NCV571SN12T1G LV5680P-E CAJ24C256YI-GT3 L78M15CV-DG L9474N TLS202B1MBV33HTSA1 L79M05T-E NCP571SN09T1G MAX15006AASA/V+ MIC5283-5.0YML-T5 L4969URTR-E L78LR05D-MA-E NCV7808BDTRKG L9466N NCP7805ETG SC7812CTG NCV7809BTG NCV571SN09T1G NCV317MBTG MC78M15CDTT5G MC78M12CDTT5G L9468N