$\pm 270 \mathrm{~V}$ Common Mode Voltage Difference Amplifier

FEATURES

- $\pm 270 \mathrm{~V}$ Common Mode Voltage Range
- 90dB Minimum CMRR
- 0.006\% (60ppm) Maximum Gain Error
- 1ppm/ ${ }^{\circ} \mathrm{C}$ Maximum Gain Error Drift
- 2ppm Maximum Gain Nonlinearity
- Wide Supply Voltage Range: 3.3 V to 50 V
- Rail-to-Rail Output
- $350 \mu \mathrm{~A}$ Supply Current
- Selectable Internal Resistor Divider Ratio
- $450 \mu \mathrm{~V}$ Maximum Offset Voltage
- 575kHz -3dB Bandwidth (Resistor Divider = 7)
- 375kHz-3dB Bandwidth (Resistor Divider = 20)
- $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Specified Temperature Range
- Low Power Shutdown: 20нA (DFN Package Only)
- Space-Saving MSOP and DFN Packages

APPLICATIONS

- High Side or Low Side Current Sensing
- Bidirectional Wide Common Mode Range Current Sensing
- High Voltage to Low Voltage Level Translation
- Precision Difference Amplifier
- Industrial Data-Acquisition Front-Ends
- Replacement for Isolation Circuits

DESCRIPTIOn

The LT ${ }^{\oplus} 6375$ is a unity-gain difference amplifier which combines excellent DC precision, a very high inputcommon mode range and a wide supply voltage range. It includes a precision op amp and a highly-matched thin film resistor network. It features excellent CMRR, extremely low gain error and extremely low gain drift.
Comparing the LT6375 to existing difference amplifiers with high common mode voltage range, the selectable resistor divider ratios of the LT6375 offer superior system performance by allowing the user to achieve maximum SNR, precision and speed for a specific input common mode voltage range.
The op amp at the core of the LT6375 has Over-The-Top ${ }^{\circledR}$ protected inputs which allow for robust operation in environments with unpredictable voltage conditions. See the Applications Information section for more details.
The LT6375 is specified over the $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range and is available in space-saving MSOP16 and DFN14 packages
$\boldsymbol{\boxed { \top }}$, LT, LTC, LTM, Linear Technology, Over-The-Top and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

Precision Wide Voltage Range, Bidirectional Current Monitor

Typical Distribution of CMRR

LT6375

ABSOLUTG MAXIMUM RATINGS

(Note 1)
Supply Voltages
(V^{+}to V^{-}).. \qquad 60 V
+IN, -IN, (Note 2)
Each Input... $\pm 270 \mathrm{~V}$
Differential $\pm 540 \mathrm{~V}$
+REFA, -REFA, +REFB, -REFB, +REFC, -REFC,
REF, $\overline{\text { SHDN }}$ (Note 2) \qquad $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right)$

Output Short-Circuit Duration (Note 3) Thermally Limited Temperature Range (Notes 4, 5)

LT6375I \qquad $.40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6375H $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ MSOP Lead Temperature (Soldering, 10 sec)........ $300^{\circ} \mathrm{C}$

pIn CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT6375IDF\#PBF	LT6375IDF\#TRPBF	6375	$14-$ Lead (4mm $\times 4 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6375HDF\#PBF	LT6375HDF\#TRPBF	6375	$14-$ Lead ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT6375IMS\#PBF	LT6375IMS\#TRPBF	6375	16 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6375HMS\#PBF	LT6375HMS\#TRPBF	6375	16 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on nonstandard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTGRISTICS The odenotes the speciifications which apply over the full operating
temperature range, $-40^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C}$ for I-grade parts, $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$ for H -grade parts, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$. $\mathrm{V}_{\text {CMOP }}$ is the common mode voltage of the internal op amp. For Resistor Divider Ratio $=7, \pm$ REFA $= \pm$ REFC $=0$ PEN,\pm REFB $=0$ V. For Resistor Divider Ratio $=20, \pm R E F A= \pm R E F C=0 V, \pm R E F B=$ OPEN. For Resistor Divider Ratio $=25, \pm R E F A= \pm R E F B= \pm R E F C=0 V$.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
G	Gain	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$			1		V/V
$\Delta \mathrm{G}$	Gain Error	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	\bullet		± 0.001	$\begin{gathered} \pm 0.006 \\ \pm 0.0075 \end{gathered}$	$\begin{aligned} & \hline \% \\ & \% \\ & \% \end{aligned}$
$\Delta \mathrm{G} / \Delta \mathrm{T}$	Gain Drift vs Temperature (Note 6)	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	\bullet		± 0.2	± 1	ppm $/{ }^{\circ} \mathrm{C}$
GNL	Gain Nonlinearity	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	\bullet		± 1	$\begin{aligned} & \pm 2 \\ & \pm 3 \end{aligned}$	ppm ppm
$\mathrm{V}_{0 S}$	Output Offset Voltage	$\begin{gathered} \mathrm{V}^{-}<\mathrm{V}_{\text {CMOP }}<\mathrm{V}^{+}-1.75 \mathrm{~V} \\ \text { Resistor Divider Ratio }=7 \\ \text { Resistor Divider Ratio }=7 \\ \text { Resistor Divider Ratio }=20 \\ \text { Resistor Divider Ratio }=20 \\ \text { Resistor Divider Ratio }=25 \\ \text { Resistor Divider Ratio }=25 \end{gathered}$	$\bullet \bullet$		$\begin{aligned} & 120 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 450 \\ & 1500 \\ & 1200 \\ & 4000 \\ & 1500 \\ & 5000 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Output Offset Voltage Drift (Note 6)	$\begin{aligned} & \mathrm{V}^{-}<\mathrm{V}_{\text {CMOP }}<\mathrm{V}^{+}-1.75 \mathrm{~V} \text {, Resistor Divider Ratio }=7 \\ & \mathrm{~V}^{-}<\mathrm{V}_{\text {CMOP }}<\mathrm{V}^{+}-1.75 \mathrm{~V} \text {, Resistor Divider Ratio }=20 \end{aligned}$	\bullet		$\begin{gathered} 4 \\ 10 \end{gathered}$	$\begin{aligned} & 12 \\ & 30 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {IN }}$	Input Impedance (Note 8)	Common Mode Resistor Divider Ratio $=7$ Resistor Divider Ratio $=20$ Resistor Divider Ratio $=25$ Differential	$\bullet \bullet$	$\begin{gathered} 93 \\ 84 \\ 83 \\ 320 \end{gathered}$	$\begin{gathered} 111 \\ 100 \\ 99 \\ 380 \end{gathered}$	$\begin{aligned} & 129 \\ & 116 \\ & 115 \\ & 440 \end{aligned}$	$\mathrm{k} \Omega$ $\mathrm{k} \Omega$ $\mathrm{k} \Omega$ $\mathrm{k} \Omega$
CMRR	Common Mode Rejection Ratio	Resistor Divider Ratio $=7, \mathrm{~V}_{\mathrm{CM}}= \pm 28 \mathrm{~V}$ Resistor Divider Ratio $=7, \mathrm{~V}_{\mathrm{CM}}= \pm 28 \mathrm{~V}$ Resistor Divider Ratio $=20, \mathrm{~V}_{\text {CM }}= \pm 28 \mathrm{~V}$ Resistor Divider Ratio $=20, \mathrm{~V}_{\text {CM }}= \pm 28 \mathrm{~V}$ Resistor Divider Ratio $=25, \mathrm{~V}_{\text {CM }}= \pm 28 \mathrm{~V}$ Resistor Divider Ratio $=25, V_{C M}= \pm 28 \mathrm{~V}$ Resistor Divider Ratio $=25, \mathrm{~V}_{\mathrm{CM}}= \pm 270 \mathrm{~V}$ Resistor Divider Ratio $=25, \mathrm{~V}_{\mathrm{CM}}= \pm 270 \mathrm{~V}$	-	$\begin{aligned} & 89 \\ & 83 \\ & 89 \\ & 83 \\ & 89 \\ & 83 \\ & 90 \\ & 83 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$		dB $d B$
$\mathrm{V}_{\text {CM }}$	Input Voltage Range (Note 7)		\bullet	-270		270	V
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}_{S}= \pm 1.65 \mathrm{~V} \text { to } \pm 25 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=\mathrm{V}_{\text {OUT }}=\text { Mid-Supply } \\ & \text { Resistor Divider Ratio }=7 \\ & \text { Resistor Divider Ratio }=20 \\ & \text { Resistor Divider Ratio }=25 \end{aligned}$	\bullet	$\begin{aligned} & 98 \\ & 90 \\ & 88 \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \\ & 100 \end{aligned}$		dB $d B$ $d B$
$\mathrm{en}_{\text {no }}$	Output Referred Noise Voltage Density	$\begin{aligned} & f=1 \mathrm{kHz} \\ & \quad \text { Resistor Divider Ratio }=7 \\ & \text { Resistor Divider Ratio }=20 \\ & \text { Resistor Divider Ratio }=25 \end{aligned}$			$\begin{aligned} & 250 \\ & 508 \\ & 599 \end{aligned}$		$\begin{aligned} & n \mathrm{~V} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
	Output Referred Noise Voltage	$\begin{aligned} & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \quad \text { Resistor Divider Ratio }=7 \\ & \text { Resistor Divider Ratio }=20 \\ & \text { Resistor Divider Ratio }=25 \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \\ & 25 \end{aligned}$		$\begin{aligned} & \mu V_{\text {P-P }} \\ & \mu V_{\text {P-P }} \\ & \mu \mathrm{V}_{\text {P-P }} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing Low (Referred to V^{-})	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$	\bullet		$\begin{gathered} 5 \\ 280 \end{gathered}$	$\begin{gathered} 50 \\ 500 \end{gathered}$	mV mV
V_{OH}	Output Voltage Swing High (Referred to V^{+})	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$	\bullet		$\begin{gathered} 5 \\ 400 \end{gathered}$	$\begin{gathered} 20 \\ 750 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

LT6375

 temperature range, $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ for I-grade parts, $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$ for H -grade parts, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {REF }}=0 \mathrm{~V} . \mathrm{V}_{\mathrm{CMOP}}$ is the common mode voltage of the internal op amp. For Resistor Divider Ratio $=7, \pm$ REFA $= \pm$ REFC $=0$ PEN, \pm REFB $=0 V$. For Resistor Divider Ratio $=20, \pm R E F A= \pm R E F C=0 V, \pm R E F B=0$ PEN. For Resistor Divider Ratio $=25, \pm$ REFA $= \pm R E F B= \pm R E F C=0 V$.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
ISC	Short-Circuit Output Current	$\begin{aligned} & 50 \Omega \text { to } \mathrm{V}^{+} \\ & 50 \Omega \text { to } \mathrm{V}^{-} \end{aligned}$	\bullet	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 28 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
SR	Slew Rate	$\Delta \mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$	\bullet	1.6	2.4		V/us
BW	Small Signal -3dB Bandwidth	$\begin{aligned} & \text { Resistor Divider Ratio }=7 \\ & \text { Resistor Divider Ratio }=20 \\ & \text { Resistor Divider Ratio }=25 \end{aligned}$			$\begin{aligned} & 575 \\ & 375 \\ & 310 \end{aligned}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
ts	Settling Time	$\begin{aligned} & \text { Resistor Divider Ratio }=7 \\ & 0.01 \%, \Delta V_{\text {OUT }}=10 \mathrm{~V} \\ & 0.1 \%, \Delta V_{\text {OUT }}=10 \mathrm{~V} \\ & 0.01 \%, \Delta V_{\text {CM }}=10 \mathrm{~V}, \Delta V_{\text {DIFF }}=0 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 41 \\ 14 \\ 100 \end{gathered}$		μs μs μs
		$\begin{aligned} & \hline \text { Resistor Divider Ratio }=20 \\ & 0.01 \%, \Delta V_{\text {OUT }}=10 \mathrm{~V} \\ & 0.1 \%, \Delta V_{\text {OUT }}=10 \mathrm{~V} \\ & 0.01 \%, \Delta V_{\text {CM }}=10 \mathrm{~V}, \Delta V_{\text {DIFF }}=0 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 31 \\ 11 \\ 100 \end{gathered}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
		$\begin{aligned} & \text { Resistor Divider Ratio }=25 \\ & 0.01 \%, \Delta V_{\text {OUT }}=10 \mathrm{~V} \\ & 0.1 \%, \Delta V_{\text {OUT }}=10 \mathrm{~V} \\ & 0.01 \%, \Delta V_{\text {CM }}=10 \mathrm{~V}, \Delta V_{\text {DIFF }}=0 \mathrm{~V} \end{aligned}$			$\begin{gathered} 26 \\ 8 \\ 20 \end{gathered}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
V_{S}	Supply Voltage		\bullet	$\begin{gathered} \hline 3 \\ 3.3 \end{gathered}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \bar{V} \\ & V \end{aligned}$
t_{ON}	Turn-On Time				16		$\mu \mathrm{s}$
VIL	$\overline{\text { SHDN }}$ Input Logic Low (Referred to V^{+})		\bullet			-2.5	V
$\mathrm{V}_{\text {IH }}$	$\overline{\text { SHDN }}$ Input Logic High (Referred to V^{+})		\bullet	-1.2			V
ISHDN	$\overline{\text { SHDN }}$ Pin Current		\bullet		-10	-15	$\mu \mathrm{A}$
Is	Supply Current	Active, $\mathrm{V}_{\overline{\mathrm{SHDN}}} \geq \mathrm{V}^{+}-1.2 \mathrm{~V}$ Active, $\mathrm{V}_{\mathrm{SHDN}} \geq \mathrm{V}^{+}-1.2 \mathrm{~V}$ Shutdown, $\mathrm{V}_{\overline{\text { SHDN }}} \leq \mathrm{V}^{+}-2.5 \mathrm{~V}$ Shutdown, $\mathrm{V}_{\overline{\text { SHDN }}} \leq \mathrm{V}^{+}-2.5 \mathrm{~V}$	\bullet		350 20	$\begin{gathered} 400 \\ 600 \\ 25 \\ 70 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS The odenotes the speciifications which apply vere the full operating temperature range, $-40^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C}$ for I-grade parts, $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$ for H -grade parts, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {REF }}=$ Mid-Supply. $\mathrm{V}_{\mathrm{CMOP}}$ is the common mode voltage of the internal op amp. For Resistor Divider Ratio $=7, \pm$ REFA $= \pm$ REFC $=0$ PEN, \pm REFB $=$ Mid-Supply. For Resistor Divider Ratio $=20, \pm R E F A= \pm R E F C=$ Mid-Supply, \pm REFB $=$ OPEN. For Resistor Divider Ratio $=25, \pm$ REFA $= \pm R E F B= \pm R E F C=$ Mid-Supply.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
G	Gain	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ to 4V			1		V/N
$\Delta \mathrm{G}$	Gain Error	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ to 4V	\bullet		± 0.001	$\begin{gathered} \pm 0.006 \\ \pm 0.0075 \end{gathered}$	\%
$\Delta \mathrm{G} / \Delta \mathrm{T}$	Gain Drift vs Temperature (Note 6)	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ to 4V	\bullet		± 0.2	± 1	ppm/ ${ }^{\circ} \mathrm{C}$
GNL	Gain Nonlinearity	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ to 4V			± 1		ppm
$\mathrm{V}_{\text {OS }}$	Output Offset Voltage	$\begin{aligned} & 0<V_{\text {CMop }}<\mathrm{V}^{+}-1.75 \mathrm{~V} \\ & \text { Resistor Divider Ratio }=7 \\ & \text { Resistor Divider Ratio }=7 \\ & \text { Resistor Divider Ratio }=20 \\ & \text { Resistor Divider Ratio }=20 \\ & \text { Resistor Divider Ratio }=25 \\ & \text { Resistor Divider Ratio }=25 \end{aligned}$			$\begin{aligned} & 120 \\ & 300 \\ & 400 \end{aligned}$	$\begin{gathered} 500 \\ 1500 \\ 1200 \\ 4000 \\ 1500 \\ 5000 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Output Offset Voltage Drift (Note 6)	$0<\mathrm{V}_{\text {CMOP }}<\mathrm{V}^{+}-1.75 \mathrm{~V}$, Resistor Divider Ratio $=7$ $0<\mathrm{V}_{\text {CMOP }}<\mathrm{V}^{+}-1.75 \mathrm{~V}$, Resistor Divider Ratio $=20$	\bullet		$\begin{gathered} 4 \\ 10 \end{gathered}$	$\begin{aligned} & 12 \\ & 30 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {IN }}$	Input Impedance (Note 8)	```Common Mode Resistor Divider Ratio = 7 Resistor Divider Ratio = 20 Resistor Divider Ratio =25 Differential```	$\begin{aligned} & \bullet \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 93 \\ 84 \\ 83 \\ 320 \end{gathered}$	$\begin{gathered} 111 \\ 100 \\ 99 \\ 380 \end{gathered}$	$\begin{aligned} & 129 \\ & 116 \\ & 115 \\ & 440 \end{aligned}$	$\mathrm{k} \Omega$ $\mathrm{k} \Omega$ $\mathrm{k} \Omega$ $\mathrm{k} \Omega$
CMRR	Common Mode Rejection Ratio	Resistor Divider Ratio $=7, \mathrm{~V}_{\mathrm{CM}}=-15 \mathrm{~V}$ to +7.75 V Resistor Divider Ratio $=7, \mathrm{~V}_{C M}=-15 \mathrm{~V}$ to +7.75 V Resistor Divider Ratio $=20, \mathrm{~V}_{\mathrm{CM}}=-25.5 \mathrm{~V}$ to +17.5 V Resistor Divider Ratio $=20, \mathrm{~V}_{\mathrm{CM}}=-25.5 \mathrm{~V}$ to +17.5 V Resistor Divider Ratio $=25, \mathrm{~V}_{\mathrm{CM}}=-25.5 \mathrm{~V}$ to +21.25 V Resistor Divider Ratio $=25, \mathrm{~V}_{\mathrm{CM}}=-25.5 \mathrm{~V}$ to +21.25 V	$\bullet \bullet$	$\begin{aligned} & 85 \\ & 83 \\ & 85 \\ & 83 \\ & 85 \\ & 83 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \\ & 95 \end{aligned}$		dB $d B$ $d B$ $d B$ $d B$ $d B$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 1.65 \mathrm{~V} \text { to } \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\text { Mid-Supply } \\ & \text { Resistor Divider Ratio }=7 \\ & \text { Resistor Divider Ratio }=20 \\ & \text { Resistor Divider Ratio }=25 \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 98 \\ & 90 \\ & 88 \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \\ & 100 \end{aligned}$		dB dB dB
$\mathrm{e}_{\text {no }}$	Output Referred Noise Voltage Density	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \quad \text { Resistor Divider Ratio }=7 \\ & \text { Resistor Divider Ratio }=20 \\ & \text { Resistor Divider Ratio }=25 \end{aligned}$			$\begin{aligned} & 250 \\ & 508 \\ & 599 \end{aligned}$		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	Output Referred Noise Voltage	$\begin{aligned} & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \quad \text { Resistor Divider Ratio }=7 \\ & \text { Resistor Divider Ratio }=20 \\ & \text { Resistor Divider Ratio }=25 \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \\ & 25 \end{aligned}$		$\begin{aligned} & \mu \mathrm{V}_{\mathrm{P}-\mathrm{P}} \\ & \mu \mathrm{~V}_{\text {p- }} \\ & \mu \mathrm{V}_{\text {P-P }} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing Low (Referred to V^{-})	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$	$\begin{array}{\|l\|} \hline \bullet \\ \hline \end{array}$		$\begin{gathered} 5 \\ 280 \end{gathered}$	$\begin{gathered} 50 \\ 500 \end{gathered}$	mV mV
V_{OH}	Output Voltage Swing High (Referred to V^{+})	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$	$\begin{array}{\|l\|} \hline \bullet \\ \bullet \end{array}$		$\begin{gathered} 5 \\ 400 \end{gathered}$	$\begin{gathered} 20 \\ 750 \end{gathered}$	mV mV
$I_{S C}$	Short-Circuit Output Current	$\begin{aligned} & 50 \Omega \text { to } \mathrm{V}^{+} \\ & 50 \Omega \text { to } \mathrm{V}^{-} \end{aligned}$	\bullet	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 27 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
SR	Slew Rate	$\Delta \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}$	\bullet	1.3	2		$\mathrm{V} / \mathrm{\mu s}$

ELECTRICAL CHARACTERISTICS The odenotes the specifications which apply ver the full operating temperature range, $-40^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C}$ for I-grade parts, $-40^{\circ} \mathrm{C}<\mathrm{T}_{A}<125^{\circ} \mathrm{C}$ for H -grade parts, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathbf{O V}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {REF }}=$ Mid-Supply. $\mathrm{V}_{\text {CMOP }}$ is the common mode voltage of the internal op amp. For Resistor Divider Ratio $=7, \pm$ REFA $= \pm$ REFC $=0$ PEN, \pm REFB $=$ Mid-Supply. For Resistor Divider Ratio $=20, \pm R E F A= \pm R E F C=$ Mid-Supply, \pm REFB $=$ OPEN. For Resistor Divider Ratio $=25, \pm$ REFA $= \pm$ REFB $= \pm$ REFC $=$ Mid-Supply.

SYMBOL	PARAMETER	CONDITIONS		MII	TYP	MAX	UNITS
BW	Small Signal -3dB Bandwidth	$\begin{aligned} & \text { Resistor Divider Ratio }=7 \\ & \text { Resistor Divider Ratio }=20 \\ & \text { Resistor Divider Ratio }=25 \end{aligned}$			$\begin{aligned} & 565 \\ & 380 \\ & 325 \end{aligned}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
t_{s}	Settling Time	$\begin{aligned} & \text { Resistor Divider Ratio }=7 \\ & 0.01 \%, \Delta V_{\text {OUT }}=2 \mathrm{~V} \\ & 0.1 \%, \Delta \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} \\ & 0.01 \%, \Delta \mathrm{~V}_{\text {CM }}=2 \mathrm{~V}, \Delta \mathrm{~V}_{\text {DIFF }}=0 \mathrm{~V} \end{aligned}$			18 10 64		$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
		$\begin{aligned} & \text { Resistor Divider Ratio }=20 \\ & 0.01 \%, \Delta V_{\text {OUT }}=2 \mathrm{~V} \\ & 0.1 \%, \Delta \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} \\ & 0.01 \%, \Delta \mathrm{~V}_{\text {CM }}=2 \mathrm{~V}, \Delta \mathrm{~V}_{\text {DIFF }}=0 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 24 \\ 7 \\ 48 \end{gathered}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
		$\begin{array}{\|l} \hline \text { Resistor Divider Ratio }=25 \\ 0.01 \%, \Delta V_{\text {OUT }}=2 \mathrm{~V} \\ 0.1 \%, \Delta \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} \\ 0.01 \%, \Delta \mathrm{~V}_{\text {CM }}=2 \mathrm{~V}, \Delta \mathrm{~V}_{\text {DIFF }}=0 \mathrm{~V} \\ \hline \end{array}$			27 9 20		$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
V_{S}	Supply Voltage		\bullet	3 3.3		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	V
${ }_{\text {ton }}$	Turn-On Time				22		$\mu \mathrm{S}$
$\mathrm{V}_{\text {IL }}$	$\overline{\text { SHDN }}$ Input Logic Low (Referred to V^{+})		\bullet			-2.5	V
V_{IH}	$\overline{\text { SHDN }}$ Input Logic High (Referred to V^{+})		\bullet	-1.2			V
ISHDN	$\overline{\text { SHDN Pin Current }}$		\bullet		-10	-15	$\mu \mathrm{A}$
Is	Supply Current	Active, $\mathrm{V}_{\overline{\text { SHDN }}} \geq \mathrm{V}^{+}-1.2 \mathrm{~V}$ Active, $\mathrm{V}_{\text {SHDN }} \geq \mathrm{V}^{+}-1.2 \mathrm{~V}$ Shutdown, $\mathrm{V}_{\text {SHDN }} \leq \mathrm{V}^{+}-2.5 \mathrm{~V}$ Shutdown, $\mathrm{V}_{\overline{\text { SHDN }}} \leq \mathrm{V}^{+}-2.5 \mathrm{~V}$	\bullet		330 15	$\begin{gathered} 370 \\ 525 \\ 20 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: See Common Mode Voltage Range in the Applications Information section of this data sheet for other considerations when taking $+\mathrm{IN} /-\mathrm{IN}$ pins to $\pm 270 \mathrm{~V}$. All other pins should not be taken more than 0.3 V beyond the supply rails.
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum. This depends on the power supply, input voltages and the output current.
Note 4: The LT63751 is guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LT6375H is guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Note 5: The LT6375I is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LT6375H is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 6: This parameter is not 100% tested.
Note 7: Input voltage range is guaranteed by the CMRR test at $V_{S}= \pm 15 \mathrm{~V}$ and all REF pins at ground (Resistor Divider Ratio $=25$). For the other voltages, this parameter is guaranteed by design and through correlation with the $\pm 15 \mathrm{~V}$ test. See Common Mode Voltage Range in the Applications Information section to determine the valid input voltage range under various operating conditions.
Note 8: Input impedance is tested by a combination of direct measurement and correlation to the CMRR and gain error tests.

TYPICAL PERFORMAOCE CHARACTERISTICS
 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

Typical Distribution of Gain Error

Typical Distribution of Gain

Nonlinearity

Typical Distribution of CMRR

Typical Distribution of Gain Error

CMRR vs Frequency

Typical Distribution of CMRR

Typical Distribution of Gain Error

Common Mode Voltage Range vs Power Supply Voltage

TYPICAL PGRFORMANCE CHARACTGRISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

Typical Gain Error for Low Supply Voltages (Curves Offset for Clarity)

Gain Nonlinearity

Typical Gain Error for $R_{L}=2 k \Omega$ (Curves Offset for Clarity)

Gain Error vs Temperature

TYPICAL PGRFORMANC CHARACTERISTICS $T_{A}=25^{5}$, , $V_{s}=155$, uness olierwise noted.

Frequency Response vs

Capacitive Load

Noise Density vs Frequency

6375 G23

0.1 Hz to 10 Hz Noise

Slew Rate vs Temperature

TYPICAL PGRFORMANCE CHARACTGRISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

Large-Signal Step Response

TIME ($4 \mu \mathrm{~s} / \mathrm{DIV})$

TIME ($10 \mu \mathrm{~s} / \mathrm{DIV}$)

Small-Signal Step Response

Small-Signal Step Response

TIME ($4 \mu \mathrm{~s} / \mathrm{DIV})$
6375 G32

Small-Signal Step Response vs Capacitive Load

Small-Signal Step Response vs Capacitive Load

Output Offset Voltage vs Temperature

TYPICAL PERFORMAOCE CHARACTERISTICS
 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

Shutdown Quiescent Current vs Supply Voltage

Typical Distribution of Output Offset Voltage

Thermal Shutdown Hysteresis

Quiescent Current vs SHDN Voltage

Typical Distribution of Output Offset Voltage

Quiescent Current vs Supply Voltage

6375 G39

Typical Distribution of Output Offset Voltage

TYPICAL PGRFORMANCE CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

PIn FUOCTIOीS (DFN/MSop)

V^{+}(Pin 9/Pin 10): Positive Supply Pin.
V $^{-}$(Exposed Pad Pin 15/Pin 8): Negative Supply Pin. OUT (Pin 8/Pin 9): Output Pin.
+IN (Pin 1/Pin 1): Noninverting Input Pin. Accepts input voltages from 270V to -270V.
+REFA (Pin 3/Pin 3): Reference Pin A. Sets the input common mode range and the output noise and offset.
+REFB (Pin 4/Pin 5): Reference Pin B. Sets the input common mode range and the output noise and offset.
+REFC (Pin 5/Pin 6): Reference Pin C. Sets the input common mode range and the output noise and offset.
-IN (Pin 14/Pin 16): Inverting Input Pin. Accepts input voltages from 270V to -270V.
-REFA (Pin 12/Pin 14): Reference Pin A. Sets the input common mode range and the output noise and offset.
-REFB (Pin 11/Pin 12): Reference Pin B. Sets the input common mode range and the output noise and offset.
-REFC (Pin 10/Pin 11): Reference Pin C. Sets the input common mode range and the output noise and offset.
REF (Pin 6/Pin 7): Reference Input. Sets the output level when the difference between the inputs is zero.

SHDN (Pin 7) DFN Only: Shutdown Pin. Amplifier is active when this pin is tied to V^{+}or left floating. Pulling the pin $>2.5 \mathrm{~V}$ below V^{+}causes the amplifier to enter a low power state.

BLOCK DIAGRAM

APPLICATIONS INFORMATION

TRANSFER FUNCTION

The LT6375 is a unity-gain difference amplifier with the transfer function:

$$
V_{\text {OUT }}=\left(V_{+ \text {IN }}-V_{-I N}\right)+V_{\text {REF }}
$$

The voltage on the REF pin sets the output voltage when the differential input voltage $\left(\mathrm{V}_{\text {DIFF }}=\mathrm{V}_{+ \text {IN }}-\mathrm{V}_{\text {IIN }}\right)$ is zero. This reference is used to shift the output voltage to the desired input level of the next stage of the signal chain.

BENEFITS OF SELECTABLE RESISTOR DIVIDER RATIOS

The LT6375 offers smaller package size, better gain accuracy and better noise performance than existing high common mode voltage range difference amplifiers. Additionally, the LT6375 allows the user to maximize system performance by selecting the resistor divider ratio (DIV) appropriate to their input common mode voltage range. A higher resistor divider ratio (DIV) enables higher common mode voltage range at the input pins, but also increases output noise, output offset/drift and decreases the -3dB bandwidth. Therefore, a trade-off exists between input range and DC, AC, and drift performance of the part. It
is recommended that the user choose the lowest resistor divider ratio that achieves the required input common mode voltage range in their application to maximize the system SNR, precision and speed.
Table 1 shows the noise, offset/drift, and -3 dB bandwidth of the LT6375 for all different reference pins configurations.

COMMON MODE VOLTAGE RANGE

The wide common mode voltage range of the LT6375 is enabled by both a resistor divider at the input of the op amp and by an internal op amp that can withstand high input voltages.

The internal resistor network of the LT6375 divides down the input common mode voltage. The resulting voltage at the op amp inputs determines the op amp's operating region. In the configuration shown in Figure 1, a resistor divider is created at both op amp inputs by the 190k input resistor and the resistance from each input to ground, which is $\sim 31.66 \mathrm{k}$. The resistance to ground is formed by the 38k (REFB resistors) in parallel with the 190k (feedback/REF resistor). The result is a divide by 7 of the input voltage. As shown in Tables 1 to 5, different connections to reference pins (i.e. pins + REFA, - REFA, + REFB, - REFB,

APPLICATIONS INFORMATION

Table 1. LT6375 Performance at Different Resistor Divider Ratios

RESISTOR DIVIDER OPTIONS				RESISTOR DIVIDER RATIO (DIV)	DIFFERENTIALGAIN	$\begin{gathered} \text { OUTPUT } \\ \text { NOISE AT } \\ 1 \mathrm{kHz}(\mathrm{nV} / \sqrt{\mathrm{Hz}}) \end{gathered}$	MAXIMUM OFFSET ($\mu \mathrm{V}$)	$\begin{aligned} & \text { MAXIMUM } \\ & \text { OFFSET DRIFT } \\ & \left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	$-3 \mathrm{~dB}$ BANDWIDTH (kHz)
+REFA AND -REFA	+REFB AND -REFB	+REFC AND -REFC	REF						
19k	38k	23.75k	190k						
OPEN	GND	OPEN	REF	7	1	250	450	12	575
OPEN	OPEN	GND	REF	10	1	307	600	16	530
GND	OPEN	OPEN	REF	12	1	346	720	19	485
OPEN	GND	GND	REF	15	1	386	900	22	445
GND	GND	OPEN	REF	17	1	445	1000	25	405
GND	OPEN	GND	REF	20	1	508	1200	30	375
GND	GND	GND	REF	25	1	599	1500	37	310

+REFC, -REFC) result in different resistor divider ratios (DIV) and different attenuation of the LT6375's input common mode voltage.

The internal op amp of LT6375 has two operating regions: a) If the common mode voltage at the inputs of the internal op amp ($\mathrm{V}_{\text {Смор }}$) is between V^{-}and $\mathrm{V}^{+}-1.75 \mathrm{~V}$, the op amp operates in its normal region; b) If $\mathrm{V}_{\text {CMOP }}$ is between V^{+} -1.75 V and $\mathrm{V}^{-}+76 \mathrm{~V}$, the op amp continues to operate, but in its Over-The-Top region with degraded performance (see Over-The-Top operation section of this data sheet for more detail).

Figure 1. Basic Connections for Dual-Supply Operation (Resistor Divider Ratio $=7$)

Table 2 lists the valid input common mode voltage range for an LT6375 with different configurations of the reference pins when used with dual power supplies. Using the voltage ranges in this table ensures that the internal op amp is operating in its normal (and best) region. The figure entitled Common Mode Voltage Range vs Power Supply Voltage, in the Typical Performance Characteristics section of this data sheet, illustrates the information in Table 2 graphically.
Table 3 lists the valid input common mode voltage range for an LT6375 that results in the internal op amp operating in its Over-The-Top region.

The reference pins can be connected to ground (as in Tables 2 and 3) or to any reference voltage. In order to achieve the specified gain accuracy and CMRR performance of the LT6375, this reference must have a very low impedance. The valid input common mode range changes depending on the voltages chosen for reference pins. One positive and one negative reference should always be connected to a low impedance voltage to ensure the stability of the amplifier. Table 4 lists the valid input common mode voltage range for an LT6375 when the part is used with a single power supply, and REF and the other reference pins are connected to mid-supply. If, as shown in Table 5, the REF pin remains connected to mid-supply, while the other reference pins are connected to ground, the result is a higher positive input range at the expense of a more restricted negative input range.

APPLICATIONS INFORMATION

Table 2. Common Mode Voltage Operating Range with Dual Power Supplies (Normal Region)

INPUT RANGE (REF = GND)									
$\begin{gathered} \hline \text { +REFA } \\ \text { AND } \\ \text {-REFA } \end{gathered}$	$\begin{aligned} & \hline \text { +REFB } \\ & \text { AND } \\ & \text {-REFB } \end{aligned}$	$\begin{gathered} \hline+ \text { REFC } \\ \text { AND } \\ \text {-REFC } \end{gathered}$	DIV	$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$		$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$		$\mathrm{V}_{\mathrm{S}}= \pm 25 \mathrm{~V}$	
				HIGH	LOW	HIGH	LOW	HIGH	LOW
OPEN	GND	OPEN	7	5.25	-17.5	92.75	-105	162.75	-175
OPEN	OPEN	GND	10	7.5	-25	132.5	-150	232.5	-250
GND	OPEN	OPEN	12	9	-30	159	-180	270	-270
OPEN	GND	GND	15	11.25	-37.5	198.75	-225	270	-270
GND	GND	OPEN	17	12.75	-42.5	225.25	-255	270	-270
GND	OPEN	GND	20	15	-50	265	-270	270	-270
GND	GND	GND	25	18.75	-62.5	270	-270	270	-270

Table 3. Common Mode Voltage Operating Range with Dual Power Supplies (Over-The-Top Region)

$\begin{aligned} & \hline \text { +REFA } \\ & \text { AND } \\ & \text {-REFA } \end{aligned}$	$\begin{array}{\|c\|} \hline+ \text { REFB } \\ \text { AND } \\ - \text { REFB } \end{array}$	$\begin{gathered} \hline+ \text { REFC } \\ \text { AND } \\ \text {-REFC } \end{gathered}$	DIV	$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		$\mathrm{V}_{\mathrm{S}}= \pm 25 \mathrm{~V}$	
				HIGH	LOW	HIGH	LOW	HIGH	LOW
OPEN	GND	OPEN	7	270	-17.5	270	-105	270	-175
OPEN	OPEN	GND	10	270	-25	270	-150	270	-250
GND	OPEN	OPEN	12	270	-30	270	-180	270	-270
OPEN	GND	GND	15	270	-37.5	270	-225	270	-270
GND	GND	OPEN	17	270	-42.5	270	-255	270	-270
GND	OPEN	GND	20	270	-50	270	-270	270	-270
GND	GND	GND	25	270	-62.5	270	-270	270	-270

Table 4. Common Mode Voltage Operating Range with a Single Power Supply, References to Mid-Supply (Normal Region)

INPUT RANGE (REF = $\mathrm{V}_{\mathrm{S}} / \mathbf{2}$)									
+REFA AND -REFA	$\begin{aligned} & + \text { REFB } \\ & \text { AND } \\ & \text {-REFB } \end{aligned}$	$\begin{gathered} + \text { REFC } \\ \text { AND } \\ \text {-REFC } \end{gathered}$	DIV	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}$		$\mathrm{V}_{\mathrm{S}}=50 \mathrm{~V}$	
				HIGH	LOW	HIGH	LOW	HIGH	LOW
OPEN	$V_{S} / 2$	OPEN	7	7.75	-15	107.75	-90	187.75	-150
OPEN	OPEN	$\mathrm{V}_{\mathrm{S}} / 2$	10	10	-22.5	147.5	-135	257.5	-225
$\mathrm{V}_{\mathrm{S}} / 2$	OPEN	OPEN	12	11.5	-27.5	174	-165	270	-270
OPEN	$V_{\text {S }} / 2$	$\mathrm{V}_{\mathrm{S}} / 2$	15	13.75	-35	213.75	-210	270	-270
$\mathrm{V}_{\mathrm{S}} / 2$	$V_{S} / 2$	OPEN	17	15.25	-40	240.25	-240	270	-270
$\mathrm{V}_{\mathrm{S}} / 2$	OPEN	$\mathrm{V}_{\mathrm{S}} / 2$	20	17.5	-47.5	270	-270	270	-270
$\mathrm{V}_{\mathrm{S}} / 2$	$\mathrm{V}_{\mathrm{S}} / 2$	$\mathrm{V}_{\mathrm{S}} / 2$	25	21.25	-60	270	-270	270	-270

Table 5. Common Mode Voltage Operating Range with a Single Power Supply, References to GND (Normal Region)

$\begin{gathered} \hline \text { +REFA } \\ \text { AND } \\ \text {-REFA } \end{gathered}$	+REFB AND -REFB	$\begin{gathered} \hline+ \text { REFC } \\ \text { AND } \\ \text {-REFC } \end{gathered}$	DIV	$\mathrm{V}_{S}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}$		$\mathrm{V}_{S}=50 \mathrm{~V}$	
				HIGH	LOW	HIGH	LOW	HIGH	LOW
OPEN	GND	OPEN	7	20.25	-2.5	182.75	-15	270	-25
OPEN	OPEN	GND	10	30	-2.5	267.5	-15	270	-25
GND	OPEN	OPEN	12	36.5	-2.5	270	-15	270	-25
OPEN	GND	GND	15	46.25	-2.5	270	-15	270	-25
GND	GND	OPEN	17	52.75	-2.5	270	-15	270	-25
GND	OPEN	GND	20	62.5	-2.5	270	-15	270	-25
GND	GND	GND	25	78.75	-2.5	270	-15	270	-25

The LT6375 will not operate correctly if the common mode voltage at its input pins goes below the range specified in above tables, but the part will not be damaged as long as the lowest common mode voltage at the inputs of the internal op amp ($\mathrm{V}_{\mathrm{CMOP}}$) remains between $\mathrm{V}^{-}-25 \mathrm{~V}$ and V^{-}. Also, the voltage at LT6375 input pins should never be higher than 270 V or lower than -270V under any circumstances.

SHUTDOWN

The LT6375 in the DFN14 package has a shutdown pin ($\overline{\mathrm{SHDN}}$). Under normal operation this pin should be tied to V^{+}or allowed to float. Tying this pin to 2.5 V below V^{+} will cause the part to enter a low power state. The supply current is reduced to less than $25 \mu \mathrm{~A}$ and the op amp output becomes high impedance.

SUPPLY VOLTAGE

The positive supply pin of the LT6375 should be bypassed with asmall capacitor (typically $0.1 \mu \mathrm{~F}$) as close to the supply pin as possible. When driving heavy loads an additional $4.7 \mu \mathrm{~F}$ electrolytic capacitor should be added. When using split supplies, the same is true for the V^{-}supply pin.

APPLICATIONS INFORMATION

ACCURATE CURRENT MEASUREMENTS

The LT6375 can be used in high side, low side and bidirectional wide common mode range current sensing. Figure 2 shows the LT6375 sensing current by measuring the voltage across R RENSE. The added sense resistors create a CMRR error and a gain error. For RSENSE greater than 2Ω the source resistance mismatch degrades the CMRR. Adding a resistor equal in value to RSENSE in series with the +IN terminal $\left(\mathrm{R}_{\mathrm{C}}\right)$ eliminates this mismatch.
Using an $\mathrm{R}_{\text {SENSE }}$ greater than 10Ω will cause the gain error to exceed the 0.006% specification of LT6375. This is due to the loading effects of the LT6375.

$$
V_{\text {OUT }}=I_{\text {LOAD }} \bullet R_{\text {SENSE }} \cdot 190 \mathrm{k} /\left(190 \mathrm{k}+\mathrm{R}_{\text {SENSE }}\right)
$$

Increasing $\mathrm{R}_{\text {SENSE }}$ and R_{C} slightly to $\mathrm{R}_{\text {SENSE }}$ ' removes the gain error.

$$
\mathrm{R}_{\text {SENSE }}=\mathrm{R}_{\text {SENSE }} \bullet 190 \mathrm{~K} /\left(190 \mathrm{k}-\mathrm{R}_{\text {SENSE }}\right) .
$$

NOISE AND FILTERING

The noise performance of the LT6375 can be optimized both by appropriate choice of its internal attenuation setting and by the addition of a filter to the amplifier output (Figure 3). For applications that do not require the full bandwidth of the LT6375, the addition of an output filter will lower system noise. Table 6 shows the output noise for different internal resistor divider ratios and output filter bandwidths.

Figure 2. Wide Voltage Range Current Sensing

APPLICATIONS INFORMATION

Figure 3. Output Filtering with 2-Pole Butterworth Filter

Table 6. Output Noise (VP-p) for 2-Pole Butterworth Filter for Different Internal Resistor Divider Ratios

Corner Frequency	$\mathbf{7}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{1 7}$	$\mathbf{2 0}$	$\mathbf{2 5}$
No Filter	$1705 \mu \mathrm{~V}$	$1831 \mu \mathrm{~V}$	$1901 \mu \mathrm{~V}$	$2008 \mu \mathrm{~V}$	$2073 \mu \mathrm{~V}$	$2177 \mu \mathrm{~V}$	$2330 \mu \mathrm{~V}$
100 kHz	$537 \mu \mathrm{~V}$	$662 \mu \mathrm{~V}$	$740 \mu \mathrm{~V}$	$853 \mu \mathrm{~V}$	$925 \mu \mathrm{~V}$	$1030 \mu \mathrm{~V}$	$1197 \mu \mathrm{~V}$
10 kHz	$169 \mu \mathrm{~V}$	$210 \mu \mathrm{~V}$	$236 \mu \mathrm{~V}$	$274 \mu \mathrm{~V}$	$298 \mu \mathrm{~V}$	$334 \mu \mathrm{~V}$	$393 \mu \mathrm{~V}$
1 kHz	$54 \mu \mathrm{~V}$	$67 \mu \mathrm{~V}$	$75 \mu \mathrm{~V}$	$87 \mu \mathrm{~V}$	$95 \mu \mathrm{~V}$	$107 \mu \mathrm{~V}$	$126 \mu \mathrm{~V}$
100 Hz	$18 \mu \mathrm{~V}$	$22 \mu \mathrm{~V}$	$25 \mu \mathrm{~V}$	$29 \mu \mathrm{~V}$	$32 \mu \mathrm{~V}$	$36 \mu \mathrm{~V}$	$43 \mu \mathrm{~V}$

Table 7. Component Values for Different 2-Pole Butterworth Filter Bandwidths

Corner Frequency	R1	R2	$\mathbf{C 1}$	$\mathbf{C 2}$
100 kHz	$11 \mathrm{k} \Omega$	$11.3 \mathrm{k} \Omega$	100 pF	200 pF
10 kHz	$11 \mathrm{k} \Omega$	$11.3 \mathrm{k} \Omega$	1 nF	2 nF
1 kHz	$11 \mathrm{k} \Omega$	$11.3 \mathrm{k} \Omega$	10 nF	20 nF
100 Hz	$11 \mathrm{k} \Omega$	$11.3 \mathrm{k} \Omega$	$0.1 \mu \mathrm{~F}$	$0.2 \mu \mathrm{~F}$

Figure 4. Current Measurement Application

APPLICATIONS INFORMATION

ERROR BUDGET ANALYSIS

Figure 4 shows the LT6375 in a current measurement application. The error budget for this application is shown in Table 8. The resistor divider ratio is set to 15 to divide the 195 V input common mode voltage down to 13 V at the op amp inputs. The 1 A current and 10Ω sense resistor produce an output full-scale voltage of 10 V . Table 8 shows the error sources in parts per million (ppm) of the full-scale voltage across the temperature range of $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Different sources of error contribute to the maximum accuracy that can be achieved in an application. Gain error, offset voltage and common mode rejection error combine to set the initial error. Additionally, the gain error and offset voltage drift across the temperature range. The excellent gain accuracy, low offset voltage, high CMRR, low offset voltage drift and low gain error drift of the LT6375 all combine to enable extremely accurate measurements.

Over-The-Top OPERATION

When the input common mode voltage of the internal op amp ($\mathrm{V}_{\text {CMOP }}$) in the LT6375 is biased near or above the V^{+} supply, the op amp is operating in the Over-The-Top region. The op amp continues to operate with an input common mode voltage of up to 76 V above V^{-}(regardless of the positive power supply voltage V^{+}), but its performance is
degraded. The op amp's input bias currents change from under $\pm 2 n A$ to $14 \mu A$. The op amp's input offset currentrises to $\pm 50 \mathrm{nA}$ which adds $\pm 9.5 \mathrm{mV}$ to the output offset voltage.

In addition, when operating in the Over-The-Top region, the differential input impedance decreases from $1 \mathrm{M} \Omega$ in normal operation to approximately $3.7 \mathrm{k} \Omega$ in Over-The-Top operation. This resistance appears across the summing nodes of the internal op amp and boosts noise and offset while decreasing speed. Noise and offset will increase by between 66% and 83% depending on the resistor divider ratio setting. The bandwidth will be reduced by 40% to 45%. For more detail on Over-The-Top operation, consult the LT6015 data sheet.

OUTPUT

The output of the LT6375 can typically swing to within 5 mV of either rail with no load and is capable of sourcing and sinking approximately 25 mA . The LT6375 is internally compensated to drive at least 1 nF of capacitance under any output loading conditions. For larger capacitive loads, a $0.22 \mu \mathrm{~F}$ capacitor in series with a 150Ω resistor between the output and ground will compensate the amplifier to drive capacitive loads greater than 1nF. Additionally, the LT6375 has more gain and phase margin as the resistor divider ratio is increased.

Table 8. Error Budget Analysis

ERROR SOURCE	LT6375	COMPETITOR 1	COMPETITOR 2	ERROR, ppm of FS		
				LT6375	COMPETITOR 1	COMPETITOR 2
Accuracy, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Initial Gain Error	0.006\% FS	0.02\% FS	0.03\% FS	60	200	300
Offset Voltage	$900 \mu \mathrm{~V}$	$1100 \mu \mathrm{~V}$	$500 \mu \mathrm{~V}$	90	110	50
Common Mode	$195 \mathrm{~V} / 89 \mathrm{~dB}=6920 \mu \mathrm{~V}$	195V/90dB $=6166 \mu \mathrm{~V}$	$195 \mathrm{~V} / 86 \mathrm{~dB}=9770 \mu \mathrm{~V}$	692	617	977
	Total Accuracy Error			842	927	1327
Temperature Drift						
Gain	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 60^{\circ} \mathrm{C}$	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 60^{\circ} \mathrm{C}$	10ppm $/{ }^{\circ} \mathrm{C} \times 60^{\circ} \mathrm{C}$	60	600	600
Offset Voltage	$22 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \times 60^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \times 60^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \times 60^{\circ} \mathrm{C}$	132	90	60
		Total Drift Error		192	690	660
		Total Error		1034	1617	1987

APPLICATIONS INFORMATION

DISTORTION

The LT6375 features excellent distortion performance when the internal op amp is operating within the supply rails. Operating the LT6375 with input common mode voltages that go from normal to Over-The-Top operation will significantly degrade the LT6375's linearity as the op amp must transition between two different input stages.

POWER DISSIPATION CONSIDERATIONS

Because of the ability of the LT6375 to operate on power supplies up to $\pm 25 \mathrm{~V}$, to withstand very high input voltages and to drive heavy loads, there is a need to ensure the die junction temperature does not exceed $150^{\circ} \mathrm{C}$. The LT6375 is housed in DF14 $\left(\theta_{\mathrm{JA}}=43^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{Jc}}=4^{\circ} \mathrm{C} / \mathrm{W}\right)$ and MS16 $\left(\theta_{\mathrm{JA}}=130^{\circ} \mathrm{C} / \mathrm{W}\right)$ packages.
In general, the die junction temperature (T_{J}) can be estimated from the ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$, and the device power dissipation (P_{D}):

$$
T_{J}=T_{A}+P_{D} \cdot \theta_{J A}
$$

Power is dissipated by the amplifier's quiescent current, by the output current driving a resistive load and by the inputcurrent driving the LT6375's internal resistor network.

$$
P_{D}=\left(\left(V_{S^{+}}-V_{S^{-}}\right) \cdot I_{S}\right)+P_{O D}+P_{R E S D}
$$

For a given supply voltage, the worst-case output power dissipation $\mathrm{P}_{\mathrm{OD}(\mathrm{MAX})}$ Occurs with the output voltage at half of either supply voltage. $\mathrm{P}_{\mathrm{OD}(\mathrm{MAX})}$ is given by:

The power dissipated in the internal resistors (PRESD) depends on the input voltage, the resistor divider ratio (DIV), the output voltage and the voltage on REF and the other reference pins. The following equations and Figure 5 show different components of $\mathrm{P}_{\text {RESD }}$ corresponding to different groups of LT6375's internal resistors (assuming that LT6375 is used with a dual supply configuration with REF and all reference pins at ground).

$$
\begin{aligned}
& \left.P_{\text {RESDA }}=\left(V_{+1 I}\right)^{2 /(190 k}+190 \mathrm{~K}(\text { DIV }-1)\right) \\
& P_{\text {RESDB }}=\left(V_{-I N}-V_{+ \text {IN }} / D I V\right)^{2} /(190 k) \\
& P_{\text {RESDC }}=\left(V_{+I N} / D I V\right)^{2} /(190 K /(\text { DIV - } 2)) \\
& P_{\text {RESDD }}=\left(V_{+ \text {IN }} / \text { DIV }-V_{\text {OUT }}\right)^{2} /(190 \mathrm{k}) \\
& P_{\text {RESD }}=P_{\text {RESDA }}+P_{\text {RESDB }}+P_{\text {RESDC }}+P_{\text {RESDD }}
\end{aligned}
$$

$P_{\text {RESD }}$ simplifies to:

$$
P_{\text {RESD }}=2\left(V_{+1 N^{2}}^{2}\left((D I V-1) / D I V-V_{O U T} N_{+1 N}\right)+V_{\text {OUT }}{ }^{2}\right) / 190 \mathrm{k}
$$

In general, $\mathrm{P}_{\text {RESD }}$ increases with higher input voltage, higher resistor divider ratio (DIV), and lower output, REF and reference pin voltages.
Example: An LT6375 in a DFN package mounted on a PC board has a thermal resistance of $43^{\circ} \mathrm{C} / \mathrm{W}$. Operating on $\pm 25 \mathrm{~V}$ supplies and driving a $2.5 \mathrm{k} \Omega$ load to 12.5 V with $\mathrm{V}_{+I N}=270 \mathrm{~V}$ and $\mathrm{DIV}=25$, the total power dissipation is given by:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{D}}=(50 \bullet & 0.6 \mathrm{~mA})+12.5^{2} / 2.5 \mathrm{k}+2702 / 197.92 \mathrm{k} \\
& +(257.5-270 / 25)^{2} / 190 \mathrm{k} \\
& +(270 / 255)^{2} / 8.26 \mathrm{k}+(270 / 25 \\
& -12.5)^{2} / 190 \mathrm{k}=0.795 \mathrm{~W}
\end{aligned}
$$

$$
P_{O D(M A X)}=\left(V_{S} / 2\right)^{2} / R_{L O A D}
$$

Figure 5. Power Dissipation Example

APPLICATIONS InFORMATION

Assuming a thermal resistance of $43^{\circ} \mathrm{C} / \mathrm{W}$, the die temperature will experience a $34^{\circ} \mathrm{C}$ rise above ambient. This implies thatthe maximumambienttemperature the LT6375 should operate under the above conditions is:

$$
\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}-34^{\circ} \mathrm{C}=116^{\circ} \mathrm{C}
$$

Keep in mind that the DFN package has an exposed pad which can be used to lower the θ_{JA} of the package. The more PCB metal connected to the exposed pad, the lower the thermal resistance.

The MSOP package has no exposed pad and a higher thermal resistance $\left(\theta_{\mathrm{JA}}=130^{\circ} \mathrm{C} / \mathrm{W}\right)$. It should not be used in applications which have a high ambient temperature, require driving a heavy load, or require an extreme input voltage.

THERMAL SHUTDOWN

For safety, the LT6375 will enter shutdown mode when the die temperature rises to approximately $163^{\circ} \mathrm{C}$. This thermal shutdown has approximately $9^{\circ} \mathrm{C}$ of hysteresis requiring the die temperature to $\operatorname{cool} 9^{\circ} \mathrm{C}$ before enabling the amplifier again.

USE AT OTHER PRECISION DC GAINS

The array of resistors within the LT6375 provides numerous configurable connections that provide precision gains other than the unity differential gain options described previously. Note that only the +IN and -IN pins can operate outside of the supply window. Since most of these alternate configurations involve driving the REFx pins, as well as the +IN and -IN pins, the input signals must be less than the supply voltages. Fully differential gains are available as shown in Table 9, and may be output-shifted with a REF offset signal. These configurations allow the LT6375 to be used as a versatile precision gain block with essentially no external components besides the supply decoupling. In most cases, only a single positive supply will be required. In Table 9, connections are identified as NC (no connect), INPUT (refers to both inputs driven, +signal to + pins,--signal to -pins), CROSS (refers to inputs cross-coupled, +signal to -pins, -signal to +pins), OUT (refers to the output fed back to -pins), or REF (refers to
connecting the REF pin to +pins). The same configurations provide inverting gains by grounding any pins intended for the +signal source. The differential input resistance is also tabulated as well as the amplification factor of the internal gain section involved (noise-gain, which helps to estimate the error-budget of the configuration).
Single-ended noninverting gains are also available as shown in Table 10, including many that operate as buffers (loaded only by the op amp input bias). A rich option set exists by using the REF pin as an additional variable. Two attenuation options exist that can accept signals outside the power supply range since they only drive the +IN pin. In Table 10, connections are identified as NC (no connect), INPUT (driven by the input), OUT (fed back from the output), or GROUND (grounded). Table 10 also includes tabulations of the internal resistor divider (DIV), noise gain (re-amplification), and the input loading presented by the circuit.

USE AS PRECISION AC GAIN BLOCK

In AC-coupled applications operating from a single power supply, it is useful to set the output voltage at mid-supply to maximize dynamic range. The LT6375 readily supports this with no additional biasing components by connecting specific pins to the V^{+}and V^{-}potentials and AC -coupling the signal paths. Table 11 shows the available inverting gains and also tabulates the load resistances presented at the input. In Table 11, connections are identified as NC (no connect), AC IN (AC-coupled to the input) OUT (fed back from the output), tied to V^{+}, tied to V^{-}, or AC GND (ACgrounded). All pins that require an AC ground can share a single bypass capacitor. Likewise, all pins driven from the source signal may share a coupling capacitor as well. The output should also connect to the load circuitry using a coupling capacitor to block the mid-supply DC voltage.

The LT6375 may also be used for single-supply noninverting AC gains by employing a combination of input attenuation and re-amplification. With numerous choices of attenuation and re-amplification, several hundred overall gain combinations are possible, ranging from 0.167 to 23. The combinations are more plentiful than the DC configurations because there is no constraint on matching internal source resistances to minimize offset.

APPLICATIONS INFORMATION

The input attenuator section dedicates some pins to establishing a mid-supply bias point and with the remaining pins, provides several choices of input signal division factors as shown in Table 12. The high attenuations that only use +IN for the signal path can accept waveform peaks that significantly exceed the supply range. Table 12 also includes tabulations of the resulting AC load resistance presented to the signal source. Here again, all pins that require an AC-ground connection may share a single bypass capacitor, and all AC signal connections may share
a coupling capacitor. Note that configurations with +IN to V^{+}will bias at 50% of supply, while the others shown will bias at 38% of supply.

The single-supply AC-coupled noninverting circuit is completed by configuring the post-attenuator amplification factor. Table 13 shows the available re-amplification factors. Once again, all pins that require an AC-ground connection may share a single bypass capacitor, and the output should use a coupling capacitor to its Ioad destination as well.

Table 9. Configurations for Precision Differential Gains Other Than Unity LT6375 DIFFERENTIAL AND INVERTING PRECISION DC GAINS

GAIN	$\pm \mathrm{IN}$	\pm REFA	\pm REFB	\pm REFC	REF	DIFF $\mathrm{R}_{\text {IN }}(\mathbf{k})$	NOISE GAIN
0.167	CROSS	INPUT	OUT/REF	CROSS	REF	20	4.2
0.333	NC	INPUT	OUT/REF	CROSS	REF	21	4.0
0.5	INPUT	INPUT	OUT/REF	CROSS	REF	20	4.2
1.5	OUT/REF	NC	CROSS	INPUT	REF	29	7.5
2	CROSS	NC	CROSS	INPUT	REF	27	15.0
2.5	OUT/REF	INPUT	CROSS	NC	REF	25	8.5
2.833	CROSS	INPUT	OUT/REF	INPUT	REF	20	4.2
3	NC	INPUT	OUT/REF	INPUT	REF	21	4.0
3.167	INPUT	INPUT	OUT/REF	INPUT	REF	20	4.2
3.5	OUT/REF	INPUT	INPUT	CROSS	REF	17	12.5
4	CROSS	NC	INPUT	NC	REF	63	7.0
5	NC	NC	INPUT	NC	REF	76	6.0
6	INPUT	NC	INPUT	NC	REF	63	7.0
7	CROSS	NC	NC	INPUT	REF	42	10.0
8	NC	NC	NC	INPUT	REF	48	9.0
9	INPUT	NC	NC	INPUT	REF	42	10.0
10	NC	INPUT	NC	NC	REF	38	11.0
11	INPUT	INPUT	NC	NC	REF	35	12.0
12	CROSS	NC	INPUT	INPUT	REF	27	15.0
13	NC	NC	INPUT	INPUT	REF	29	14.0
14	INPUT	NC	INPUT	INPUT	REF	27	15.0
15	NC	INPUT	INPUT	NC	REF	25	16.0
16	INPUT	INPUT	INPUT	NC	REF	24	17.0
17	CROSS	INPUT	NC	INPUT	REF	20	20.0
18	NC	INPUT	NC	INPUT	REF	21	19.0
19	INPUT	INPUT	NC	INPUT	REF	20	20.0
22	CROSS	INPUT	INPUT	INPUT	REF	16	25.0
23	NC	INPUT	INPUT	INPUT	REF	17	24.0
24	INPUT	INPUT	INPUT	INPUT	REF	16	25.0

APPLICATIONS INFORMATION

Table 10. Configurations for Precision Noninverting Gains

LT6375 NONINVERTING PRECISION DC GAINS

GAIN	FEATURE	+IN	+REFA	+REFB	+REFC	REF	-IN	-REFA	-REFB	-REFC	NOISE GAIN	DIV	$\mathrm{R}_{\text {IN }}(\mathrm{k})$
0.167	Wide Input	INPUT	GROUND	GROUND	GROUND	GROUND	GROUND	GROUND	OUT	GROUND	4.167	25	198
0.333		INPUT	GROUND	GROUND	GROUND	INPUT	GROUND	GROUND	OUT	GROUND	4.167	12.5	103
0.5	Wide Input	INPUT	NC	NC	GROUND	GROUND	OUT	NC	NC	GROUND	5	10	302
0.833		NC	GROUND	INPUT	GROUND	GROUND	NC	GROUND	OUT	GROUND	4	4.8	48
1		INPUT	NC	NC	GROUND	INPUT	OUT	NC	NC	GROUND	5	5	170
1.167		INPUT	GROUND	INPUT	GROUND	INPUT	GROUND	GROUND	OUT	GROUND	4.167	3.571	38
1.333		GROUND	GROUND	GROUND	INPUT	NC	NC	GROUND	OUT	GROUND	4	3	36
1.5		NC	GROUND	GROUND	INPUT	INPUT	NC	GROUND	OUT	GROUND	4	2.667	34
1.667		NC	INPUT	GROUND	GROUND	GROUND	NC	GROUND	OUT	GROUND	4	2.400	33
1.833		INPUT	INPUT	GROUND	GROUND	NC	NC	GROUND	OUT	GROUND	4	2.182	32
2		INPUT	NC	GROUND	NC	INPUT	GROUND	NC	GROUND	NC	7	3.500	37
2.167		GROUND	GROUND	INPUT	INPUT	NC	NC	GROUND	OUT	GROUND	4	1.846	32
2.333		INPUT	GROUND	INPUT	INPUT	NC	NC	GROUND	OUT	GROUND	4	1.714	33
2.5		NC	GROUND	INPUT	NC	NC	OUT	NC	GROUND	GROUND	7.5	3	57
2.667		INPUT	INPUT	INPUT	GROUND	NC	NC	GROUND	OUT	GROUND	4	1.500	36
2.833		INPUT	INPUT	INPUT	GROUND	INPUT	GROUND	GROUND	OUT	GROUND	4.167	1.471	35
3		INPUT	NC	INPUT	GROUND	GROUND	OUT	NC	GROUND	GROUND	7.5	2.500	53
3.167		INPUT	INPUT	GROUND	INPUT	NC	NC	GROUND	OUT	GROUND	4	1.263	48
3.333		INPUT	INPUT	GROUND	INPUT	INPUT	GROUND	GROUND	OUT	GROUND	4.167	1.250	47
3.5		INPUT	NC	INPUT	GROUND	INPUT	OUT	NC	GROUND	GROUND	7.5	2.143	51
3.833		GROUND	INPUT	INPUT	INPUT	GROUND	GROUND	GROUND	OUT	GROUND	4.167	1.087	103
4	Buffer	INPUT	INPUT	INPUT	INPUT	NC	NC	GROUND	OUT	GROUND	4	1	Hi-Z
4.167	Buffer	INPUT	INPUT	INPUT	INPUT	INPUT	GROUND	GROUND	OUT	GROUND	4.167	1	$\mathrm{Hi}-\mathrm{Z}$
4.5		INPUT	NC	NC	INPUT	GROUND	OUT	NC	NC	GROUND	5	1.111	302
5	Buffer	NC	INPUT	NC	NC	NC	OUT	NC	NC	GROUND	5	1	Hi-Z
5.5		INPUT	INPUT	NC	NC	GROUND	OUT	GROUND	NC	NC	6	1.091	226
6	Buffer	INPUT	NC	INPUT	NC	NC	NC	NC	GROUND	NC	6	1	Hi-Z
6.5		GROUND	NC	INPUT	INPUT	GROUND	OUT	NC	GROUND	GROUND	7.5	1.154	110
7	Buffer	INPUT	NC	INPUT	NC	INPUT	GROUND	NC	GROUND	NC	7	1	Hi-Z
7.5	Buffer	NC	INPUT	INPUT	NC	NC	OUT	NC	GROUND	GROUND	7.5	1	Hi-Z
8		NC	NC	NC	INPUT	GROUND	NC	NC	NC	GROUND	9	1.125	321
8.5	Buffer	NC	NC	NC	INPUT	GROUND	OUT	GROUND	GROUND	NC	8.5	1	Hi-Z
9	Buffer	INPUT	NC	NC	INPUT	NC	NC	NC	NC	GROUND	9	1	Hi-Z
9.5		INPUT	INPUT	NC	INPUT	GROUND	OUT	GROUND	NC	GROUND	10	1.053	200
10	Buffer	NC	INPUT	NC	NC	NC	GROUND	NC	NC	GROUND	10	1	$\mathrm{Hi}-\mathrm{Z}$
11	Buffer	INPUT	INPUT	NC	NC	NC	NC	GROUND	NC	NC	11	1	Hi-Z
11.5		GROUND	INPUT	INPUT	INPUT	GROUND	OUT	GROUND	GROUND	GROUND	12.5	1.087	103

APPLICATIONS INFORMATION

Table 10. Configurations for Precision Noninverting Gains

GAIN	FEATURE	+IN	+ +REFA	+REFB	+REFC	REF	-IN	-REFA	-REFB	-REFC	NOISE GAIN	DIV	RIN (k)
12	Buffer	INPUT	INPUT	NC	NC	INPUT	GROUND	GROUND	NC	NC	12	1	Hi-Z
12.5	Buffer	INPUT	INPUT	INPUT	INPUT	INPUT	OUT	GROUND	GROUND	GROUND	12.5	1	Hi-Z
13		NC	NC	INPUT	INPUT	GROUND	NC	NC	GROUND	GROUND	14	1.077	205
14	Buffer	INPUT	NC	INPUT	INPUT	NC	NC	NC	GROUND	GROUND	14	1	Hi-Z
15	Buffer	NC	INPUT	INPUT	NC	NC	GROUND	NC	GROUND	GROUND	15	1	Hi-Z
16	Buffer	INPUT	INPUT	INPUT	NC	NC	NC	GROUND	GROUND	NC	16	1	Hi-Z
17	Buffer	NC	NC	NC	INPUT	GROUND	GROUND	GROUND	GROUND	NC	17	1	Hi-Z
18		NC	INPUT	NC	INPUT	GROUND	NC	GROUND	NC	GROUND	19	1.056	201
19	Buffer	INPUT	INPUT	NC	INPUT	NC	NC	GROUND	NC	GROUND	19	1	Hi-Z
20	Buffer	INPUT	INPUT	NC	INPUT	INPUT	GROUND	GROUND	NC	GROUND	20	1	Hi-Z
23		NC	INPUT	INPUT	INPUT	GROUND	NC	GROUND	GROUND	GROUND	24	1.043	198
24	Buffer	INPUT	INPUT	INPUT	INPUT	NC	NC	GROUND	GROUND	GROUND	24	1	Hi-Z
25	Buffer	INPUT	INPUT	INPUT	INPUT	INPUT	GROUND	GROUND	GROUND	GROUND	25	1	Hi-Z

Table 11. Configurations for Single-Supply AC-Coupled Inverting Gains
LT6375 SINGLE-SUPPLY INVERTING AC GAINS

GAIN	-IN	-REFA	-REFB	-REFC	+IN	+REFA	+REFB	+REFC	REF	AC $\mathrm{R}_{\text {IN }}(\mathrm{k})$
-3	NC	AC IN	OUT	AC IN	V^{+}	AC GND	AC GND	AC GND	V^{-}	11
-3.167	AC IN	AC IN	OUT	AC IN	V^{+}	AC GND	AC GND	AC GND	V^{-}	10
-5	NC	NC	AC IN	NC	V^{+}	AC GND	AC GND	AC GND	V^{-}	38
-6	AC IN	NC	AC IN	NC	V^{+}	AC GND	AC GND	AC GND	V^{-}	32
-8	NC	NC	NC	AC IN	V^{+}	AC GND	AC GND	AC GND	V^{-}	24
-9	AC IN	NC	NC	AC IN	V^{+}	AC GND	AC GND	AC GND	V^{-}	21
-10	NC	AC IN	NC	NC	V^{+}	AC GND	AC GND	AC GND	V^{-}	19
-11	AC IN	AC IN	NC	NC	V^{+}	AC GND	AC GND	AC GND	V^{-}	17
-13	NC	NC	AC IN	AC IN	V^{+}	AC GND	AC GND	AC GND	V^{-}	15
-14	AC IN	NC	AC IN	AC IN	V^{+}	AC GND	AC GND	AC GND	V^{-}	14
-15	NC	AC IN	AC IN	NC	V^{+}	AC GND	AC GND	AC GND	V^{-}	13
-16	AC IN	AC IN	AC IN	NC	V^{+}	AC GND	AC GND	AC GND	V^{-}	12
-18	NC	AC IN	NC	AC IN	V^{+}	AC GND	AC GND	AC GND	V^{-}	11
-19	AC IN	AC IN	NC	AC IN	V^{+}	AC GND	AC GND	AC GND	V^{-}	10
-23	NC	AC IN	AC IN	AC IN	V^{+}	AC GND	AC GND	AC GND	V^{-}	8
-24	AC IN	AC IN	AC IN	AC IN	V^{+}	AC GND	AC GND	AC GND	V^{-}	8

LT6375

APPLICATIONS INFORMATION

Table 12. Configurations for Single-Supply AC-Coupled Input Attenuations
LT6375 SINGLE-SUPPLY AC ATTENUATOR CONFIGURATIONS

DIV	+IN	+REFA	+REFB	+REFC	REF	AC $\mathrm{R}_{\text {IN }}(\mathrm{k})$
1.087	V^{+}	AC IN	AC IN	AC IN	V^{-}	103
1.111	V^{+}	AC IN	NC	AC IN	V-	106
1.133	V^{+}	AC IN	AC IN	NC	V-	108
1.154	V^{+}	NC	AC IN	AC IN	V^{-}	110
1.2	V^{+}	AC IN	NC	NC	V^{-}	114
1.25	V^{+}	NC	NC	AC IN	V^{-}	119
1.389	V^{+}	AC IN	AC GND	AC IN	V^{-}	38
1.4	V^{+}	NC	AC IN	NC	V^{-}	133
1.7	V^{+}	AC IN	AC GND	NC	V-	46
1.875	V^{+}	NC	AC GND	AC IN	V^{-}	51
1.923	V^{+}	AC GND	AC IN	AC IN	V^{-}	30
2.083	AC IN	AC IN	V^{+}	V^{-}	AC IN	30
2.182	AC IN	AC IN	V^{+}	V^{-}	NC	32
2.273	AC IN	AC IN	V^{+}	V^{-}	AC GND	31
2.3	NC	AC IN	V^{+}	V^{-}	NC	34
2.4	NC	AC IN	V^{+}	V-	AC GND	33
2.5	V^{+}	AC IN	AC GND	AC GND	V^{-}	32
3.125	V^{+}	AC GND	AC GND	AC IN	V^{-}	35
3.4	V^{+}	AC GND	AC IN	NC	V^{-}	54
5	V^{+}	AC GND	AC IN	AC GND	V^{-}	47
7.5	AC IN	NC	V^{+}	V^{-}	AC IN	110
12	AC IN	AC GND	V^{+}	V^{-}	AC IN	103
14	AC IN	NC	V^{+}	V^{-}	NC	205
15	AC IN	NC	V^{+}	V^{-}	AC GND	204
24	AC IN	AC GND	V^{+}	V^{-}	NC	198
25	AC IN	AC GND	V^{+}	V^{-}	AC GND	198

APPLICATIONS INFORMATION

Table 13. Configurations for Single-Supply AC-Coupled Re-Amplications

LT6375 NONINVERTING AC RE-AMPLIFICATIONS	-IN	-REFB	-REFC	
GAIN	NC	AC GND	OUT	AC GND
4	AC GND	AC GND	OUT	AC GND
4.167	OUT	NC	NC	AC GND
5	NC	NC	AC GND	NC
6	AC GND	NC	AC GND	NC
7	OUT	NC	AC GND	AC GND
7.5	OUT	AC GND	AC GND	NC
8.5	NC	NC	NC	AC GND
9	AC GND	NC	NC	AC GND
10	AC GND	AC GND	NC	
11	OUT	AC GND	NC	NC
12.5	NC	AC GND	AC GND	AC GND
14	NCD	NC	AC GND	AC GND
15	AC GND	AC GND	AC GND	NC
16	NC	AC GND	AC GND	NC
17	AC GND	AC GND	NC	AC GND
19	AC GND	AC GND	NC	AC GND
20	AC GND	AC GND	AC GND	
24	AC GND	AC GND	AC GND	

TYPICAL APPLICATIONS

Telecom Supply Monitor

27dB Audio Gain Stage

TYPICAL APPLICATIONS

$\pm 5 \mathrm{~mA}$ Howland Current Source

Precision Reference Divider/Buffer

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

DF Package
 14(12)-Lead Plastic DFN ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$)

(Reference LTC DWG \# 05-08-1963 Rev Ø)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

TYPICAL APPLICATION

Bidirectional Full Range Current Monitor

NOTE: OPERATES OVER FULL RANGE OF LOAD VOLTAGE

reLated paris

PART NUMBER	DESCRIPTION	COMMENTS
LT1990	$\pm 250 \mathrm{~V}$ Input Range Difference Amplifier	2.7 V to 36V Operation, CMRR > 70dB, Input Voltage $= \pm 250 \mathrm{~V}$
LT1991	Precision, 100 A A Gain Selectable Amplifier	2.7V to 36V Operation, $50 \mu \mathrm{~V}$ Offset, CMRR $>75 \mathrm{~B}$, Input Voltage $= \pm 60 \mathrm{~V}$
LT1996	Precision, 100 A A Gain Selectable Amplifier	Micropower, Pin Selectable Up to Gain = 118
LT1999	High Voltage, Bidirectional Current Sense Amplifier	-5V to 80V, $750 \mu \mathrm{~V}$, CMRR 80dB 100kHz Gain: 10V/V, 20V/V, 50V/V
$\begin{aligned} & \text { LT6015/LT6016/ } \\ & \text { LT6017 } \end{aligned}$	Single, Dual, and Quad, Over-The-Top Precision Op Amp	$3.2 \mathrm{MHz}, 0.8 \mathrm{~V} / \mu \mathrm{s}, 50 \mu \mathrm{~V} \mathrm{~V}_{0 \mathrm{~S}}, 3 \mathrm{~V}$ to $50 \mathrm{~V} \mathrm{~V}_{\mathrm{S}}, 0.335 \mathrm{~mA} \mathrm{I}_{\mathrm{S}}$, RRIO
LTC6090	140V Operational Amplifier	$50 \mathrm{pA} \mathrm{I}_{\mathrm{B}}, 1.6 \mathrm{mV} \mathrm{V}_{\text {OS }}, 9.5 \mathrm{~V}$ to $140 \mathrm{~V} \mathrm{~V}_{\mathrm{S}}, 4.5 \mathrm{~mA} \mathrm{I}_{\text {S }}$, RR Output
LT6108	High Side Current Sense Amplifier with Reference and Comparator with Shutdown	2.7 V to $60 \mathrm{~V}, 125 \mu \mathrm{~V}$, Resistor Set Gain, $\pm 1.25 \%$ Threshold Error
LT1787/ LT1787HV	Precision, Bidirectional High Side Current Sense Amplifier	2.7V to 60V Operation, $75 \mu \mathrm{~V}$ Offset, $60 \mu \mathrm{~A}$ Current Draw
$\begin{aligned} & \text { LTC6101/ } \\ & \text { LTC6101HV } \end{aligned}$	High Voltage High Side Current Sense Amplifier	4 V to 60V/5V to 100V Operation, External Resistor Set Gain, SOT23
$\begin{aligned} & \text { LTC6102/ } \\ & \text { LTC6102HV } \end{aligned}$	Zero Drift High Side Current Sense Amplifier	4 V to $60 \mathrm{~V} / 5 \mathrm{~V}$ to 100 V Operation, $\pm 10 \mu \mathrm{~V}$ Offset, 1μ s Step Response, MSOP8/DFN Packages
$\underline{\text { LTC6104 }}$	Bidirectional, High Side Current Sense	4V to 60V, Gain Configurable, 8-Pin MSOP Package

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Differential Amplifiers category:
Click to view products by Linear Technology manufacturer:
Other Similar products are found below :
AD8206WHRZ LT6604IUFF-2.5\#PBF LTC6419IV\#PBF AD8479TRZ-EP INA149AMDREP INA146UA/2K5 MAX9626ATC+ MAX4199ESA+ INA132U/2K5 INA105KU/2K5 EL5375IUZ ADM1272-1ACPZ DC1538A LTC1992-10CMS8\#PBF LTC1992CMS8\#PBF LT6375HMS\#PBF LTC1992-2HMS8\#PBF LTC1992-5HMS8\#PBF LT6604IUFF-15\#PBF AD8270ACPZ-R7 LT6350IDD\#PBF AD8475ACPZ-R7 LTC1992-1IMS8\#PBF AD8476BRMZ-R7 MAX9626ATC+T AD8132ARZ-RL LTC1992IMS8\#PBF INA2132U/2K5 LT6600CS8-2.5\#PBF LTC1992-10IMS8\#PBF LTC1992-1HMS8\#PBF LTC6605CDJC-7\#PBF TDA8579T/N1SJ LTC1992-2CMS8\#PBF LT6604CUFF-5\#PBF LTC6403CUD-1\#PBF LT6350IMS8\#PBF THS4552IRTWT LTC1992-2IMS8\#PBF LTC1992HMS8\#PBF LT6350CMS8\#PBF THS4551IRGTT AD8138SRMZ-EP-R7 AD8138ARMZ-REEL AD8138ARZ-RL LT6350HMS8\#PBF LTC6363IMS80.5\#PBF THS4551IRGTR LT1990IS8\#PBF LT1995IDD\#PBF

