General-purpose Relay
 LY

A Miniature Power Relay

- Equipped with arc barrier.
- Dielectric strength: 2,000 V.
- Built-in diode models added to the LY Series.
- Single-pole and double-pole models are applicable to operating coils with ratings of 100/110 VAC, 110/120 VAC, 200/220 VAC, 220/240 VAC, or 100/110 VDC).
- Three-pole and four-pole models are applicable to operating coils with ratings of 100/110 VAC, 200/220 VAC, or 100/110 VDC).

$C \in \mathbb{N ®}$ (f) M LR

Ordering Information

Open Relays

Type	Contact form	Plug-in/solder terminals	Plug-in/solder terminals with LED indicator	PCB terminals	Upper-mounting Plug-in/solder terminals
Standard	SPDT	LY1	LY1N	LY1-0	LY1F
	DPDT	LY2	LY2N	LY2-0	LY2F
	DPDT (bifurcated)	LY2Z	LY2ZN	LY2Z-0	LY2ZF
	3PDT	LY3	LY3N	LY3-0	LY3F
	4PDT	LY4	LY4N	LY4-0	LY4F
With built-in diode (DC only)	SPDT	LY1-D	LY1N-D2	---	---
	DPDT	LY2-D	LY2N-D2	---	---
	DPDT (bifurcated)	LY2Z-D	LY2ZN-D2	---	---
	3PDT	LY3-D	---	---	---
	4PDT	LY4-D	LY4N-D2	---	---
With built-in CR (AC only)	SPDT	---	---	---	---
	DPDT	LY2-CR	LY2N-CR	---	---
	DPDT (bifurcated)	LY2Z-CR	LY2ZN-CR	---	---

Note: 1. When ordering, add the rated coil voltage to the model number. Rated coil voltages are given in the coil ratings table.
Example: LY2, 6 VAC

- Rated coil voltage

2. Relays with \#187 quick connect terminals are also available with SPDT and DPDT contact. Ask your OMRON representative for details.
3. SEV models are standard Relays excluding DPDT (bifurcated) models.
4. VDE- or LR- qualifying Relays must be specified when ordering.

Accessories (Order Separately)

Sockets

Poles	Front-connecting Socket	Back-connecting Socket		
	DIN track/screw terminals	Plug-in/solder terminals	Wrapping terminals	PCB terminals
$\mathbf{1}$ or $\mathbf{2}$	PTF08A-E, PTF08A	PT08	PT08QN	PT08-0
$\mathbf{3}$	PTF11A	PT11	PT11QN	PT11-0
$\mathbf{4}$	PTF14A-E, PTF14A	PT14	PT14QN	PT14-0

Note: 1. For PTF08-E and PTF14A-E, see "Track Mounted Socket."
2. PTF $\square A(-E)$ Sockets have met UL and CSA standards: UL 508/CSA C22.2.

Mounting Plates for Sockets

Socket model	For 1 Socket	For 10 Sockets	For 12 Sockets	For 18 Sockets
PT08 PT08QN	PYP-1	---	--	PYP-18
PT11	PTP-1-3	---	PTP-12	--
PT11QN		PTP-10	---	-
PT14 PT14QN	PTP-1			

Socket-Hold-down Clip Pairings

Relay type	Poles	Front-connecting Sockets		Back-connecting Sockets	
		Socket model	Clip model	Socket model	Clip model
Standard, bifurcated contacts oper- ation indicator, built-in diode	1,2	PTF08A-E, PTF08A	PYC-A1	PT08(QN), PT08-0	PYC-P
	3	PTF11A		PT11(QN), PT11-0	
	4	PTF14A-E, PTF14A		PT14(QN), PT14-0	
CR circuit	2	PTF08A-E, PTF08A	Y92H-3	PT08(QN), PT08-0	PYC-1

Specifications

■ Coil Ratings

Single- and Double-pole Relays

Rated voltage		Rated current		Coil resistance	Coil inductance (reference value)		Must operate	Must release	Max. voltage	Power consum. (approx.)
		50 Hz	60 Hz		Arm. OFF	Arm. ON	\% of rated voltage			
AC	6 V	214.1 mA	183 mA	12.2Ω	0.04 H	0.08 H	80\% max.	30\% min.	110\%	$\begin{aligned} & 1.0 \text { to } 1.2 \mathrm{VA} \\ & (60 \mathrm{~Hz}) \end{aligned}$
	12 V	106.5 mA	91 mA	46Ω	0.17 H	0.33 H				
	24 V	53.8 mA	46 mA	180Ω	0.69 H	1.30 H				
	50 V	25.7 mA	22 mA	788Ω	3.22 H	5.66 H				
	100/110 V	11.7/12.9 mA	10/11 mA	3,750 Ω	14.54 H	24.6 H				$\begin{aligned} & 0.9 \text { to } 1 \mathrm{VA} \\ & (60 \mathrm{~Hz}) \end{aligned}$
	110/120 V	9.9/10.8 mA	8.4/9.2 mA	4,430 Ω	19.20 H	32.1 H				
	200/220 V	6.2/6.8 mA	5.3/5.8 mA	12,950 Ω	54.75 H	94.07 H				
	220/240 V	4.8/5.3 mA	4.2/4.6 mA	18,790 Ω	83.50 H	136.40 H				
DC	6 V	150 mA		40Ω	0.16 H	0.33 H		10\% min.		0.9 W
	12 V	75 mA		160Ω	0.73 H	1.37 H				
	24 V	36.9 mA		650Ω	3.20 H	5.72 H				
	48 V	18.5 mA		2,600 Ω	10.6 H	21.0 H				
	100/110 V	9.1/10 mA		11,000 Ω	45.6 H	86.2 H				

Note: See notes on the bottom of next page.

Three-pole Relays

Rated voltage		Rated current		Coil resistance	Coil inductance (reference value)		Must operate	Must release	Max. voltage	Power consum.
		50 Hz	60 Hz		Arm. OFF	Arm. ON	\% of rated voltage			
AC	6 V	310 mA	270 mA	6.7Ω	0.03 H	0.05 H	80\% max.	30% min.	110\%	$\begin{aligned} & 1.6 \text { to } 2.0 \mathrm{VA} \\ & (60 \mathrm{~Hz}) \end{aligned}$
	12 V	159 mA	134 mA	24Ω	0.12 H	0.21 H				
	24 V	80 mA	67 mA	100Ω	0.44 H	0.79 H				
	50 V	38 mA	33 mA	410Ω	2.24 H	3.87 H				
	100/110 V	14.1/16 mA	12.4/13.7 mA	2,300 Ω	10.5 H	18.5 H				
	200/220 V	9.0/10.0 mA	7.7/8.5 mA	8,650 Ω	34.8 H	59.5 H				
DC	6 V	234 mA		25.7Ω	0.11 H	0.21 H		10\% min.		1.4 W
	12 V	112 mA		107Ω	0.45 H	0.98 H				
	24 V	58.6 mA		410Ω	1.89 H	3.87 H				
	48 V	28.2 mA		1,700 Ω	8.53 H	13.9 H				
	100/110 V	12.7/13 mA		8,500 Ω	29.6 H	54.3 H				

Note: See notes under next table.
Four-pole Relays

Rated voltage		Rated current		Coil resistance	Coil inductance (reference value)		Must operate	Must release	Max. voltage	Power consum. (approx)
		50 Hz	60 Hz		Arm. OFF	Arm. ON	\% of rated voltage			
AC	6 V	386 mA	330 mA	5Ω	0.02 H	0.04 H	80\% max.	30% min.	110\%	1.95 to 2.5 VA (60 Hz)
	12 V	199 mA	170 mA	20Ω	0.10 H	0.17 H				
	24 V	93.6 mA	80 mA	78Ω	0.38 H	0.67 H				
	50 V	46.8 mA	40 mA	350Ω	1.74 H	2.88 H				
	100/110 V	22.5/25.5 mA	19/21.8 mA	1,600 Ω	10.5 H	17.3 H				
	200/220 V	11.5/13.1 mA	9.8/11.2 mA	6,700 Ω	33.1 H	57.9 H				
DC	6 V	240 mA		25Ω	0.09 H	0.21 H		10\% min.		1.5 W
	12 V	120 mA		100Ω	0.39 H	0.84 H				
	24 V	69 mA		350Ω	1.41 H	2.91 H				
	48 V	30 mA		1,600 Ω	6.39 H	13.6 H				
	100/110 V	15/15.9 mA		6,900 Ω	32 H	63.7 H				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for rated currents and $\pm 15 \%$ for DC coil resistance.
2. Performance characteristic data are measured at a coil temperatures of $23^{\circ} \mathrm{C}$.
3. AC coil resistance and impedance are provided as reference values (at 60 Hz).
4. Power consumption drop was measured for the above data. When driving transistors, check leakage current and connect a bleeder resistor if required.

Contact Ratings

Relay	Single contact				Bifurcated contacts	
	1-pole		2-, 3- or 4-pole			ole
Load	Resistive load $(\cos \phi=1)$	Inductive load $(\cos \phi=0.4$, $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)	Resistive load $(\cos \phi=1)$	$\begin{gathered} \text { Inductive load } \\ \text { (} \cos \phi=0.4, \\ L / R=7 \mathrm{~ms} \text {) } \\ \hline \end{gathered}$	Resistive load $(\cos \phi=1)$	Inductive load $(\cos \phi=0.4$, $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)
Rated load	110 VAC 15 A 24 VDC 15 A	110 VAC 10 A 24 VDC 7 A	110 VAC 10 A 24 VDC 10 A	110 VAC 7.5 A 24 VDC 5 A	110 VAC 5A 24 VDC 5 A	$\begin{aligned} & 110 \text { VAC } 4 \mathrm{~A} \\ & 24 \mathrm{VDC} 4 \mathrm{~A} \end{aligned}$
Rated carry current	15 A		10 A		7 A	
Max. switching voltage	$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$		$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$		$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$	
Max. switching current	15 A		10 A		7 A	
Max. switching power	$\begin{aligned} & 1,700 \mathrm{VA} \\ & 360 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,100 \mathrm{VA} \\ & 170 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,100 \mathrm{VA} \\ & 240 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 825 \text { VA } \\ & 120 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 550 \mathrm{VA} \\ & 120 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 440 \mathrm{VA} \\ & 100 \mathrm{~W} \end{aligned}$
Failure rate (reference value)*	$100 \mathrm{~mA}, 5 \mathrm{VDC}$		$100 \mathrm{~mA}, 5 \mathrm{VDC}$		$10 \mathrm{~mA}, 5 \mathrm{VDC}$	

*Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation, reference value

Characteristics

Item	All except Relays with bifurcated contacts	Relays with bifurcated contacts
Contact resistance	$50 \mathrm{~m} \Omega$ max.	
Operate time	25 ms max.	
Release time	25 ms max.	
Max. operating frequency	Mechanical: 18,000 operations $/ \mathrm{hr}$ Electrical: 1,800 operations $/ \mathrm{hr}$ (under rated load)	
Insulation resistance	$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)	
Dielectric strength	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity 2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity	
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.5 \mathrm{~mm}$ single amplitude (1.0 mm double amplitude)Malfunction:10 to 55 to $10 \mathrm{~Hz}, 0.5 \mathrm{~mm}$ single amplitude (1.0 mm double amplitude)	
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}$	
Endurance	Mechanical: AC: $50,000,000$ operations \min. (at 18,000 operations $/ \mathrm{hr}$) Electrical: DC: $1,00,000,000$ operations \min. (at 18,000 operations $/ \mathrm{hr}$) Single-, three-, and four-pole: 200,000 operations min. (at 1,800 operations $/ \mathrm{hr}$ under rated load) Double-pole: 500,000 operations min. (at 1,800 operations $/ \mathrm{hr}$ under rated load) 	
Ambient temperature*	Operating: Single- and double-pole standard, bifurcated-contact Relays: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) $\left(-25^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ if carry current is 4 A or less) All other Relays: $-25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (with no icing) $\left(-25^{\circ} \mathrm{C}\right.$ to $55^{\circ} \mathrm{C}$ if carry current is 4 A or less)	
Ambient humidity	Operating: 5\% to 85\%	
Weight	Single- and double-pole: approx. 40 g , three-pole: approx. 50 g , four-pole: approx. 70 g	

Note: 1. The values given above are initial values.
2. The upper limit of $40^{\circ} \mathrm{C}$ for some Relays is because of the relationship between diode junction temperature and the element used.

Endurance Under Real Loads (reference only)

LY1

Rated voltage	Load type	Conditions	Operating frequency	Electrical life
100 VAC	AC motor	400 W, 100 VAC single-phase with 35-A inrush current, 7-A current flow	ON for 10 s , OFF for 50 s	50,000 operations
	AC lamp	300 W, 100 VAC with 51-A inrush current, 3-A current flow	ON for 5 s , OFF for 55 s	100,000 operations
		500 W, 100 VAC with 78-A inrush current, 5-A current flow		25,000 operations
	Capacitor (2,000 $\mu \mathrm{F}$)	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s , OFF for 6 s	100,000 operations
	AC solenoid	50 VA with $2.5-\mathrm{A}$ inrush current, $0.25-\mathrm{A}$ current flow	ON for 1 s , OFF for 2 s	1,500,000 operations
		100 VA with 5-A inrush current, 0.5-A current flow		800,000 operations

LY2

Rated voltage	Load type	Conditions	Operating frequency	Electrical life
100 VAC	AC motor	200 W, 100 VAC single-phase with $25-A$ inrush current, 5 -A current flow	ON for 10 s , OFF for 50 s	200,000 operations
	AC lamp	300 W, 100 VAC with 51-A inrush current, 3-A current flow	ON for 5 s , OFF for 55 s	80,000 operations
	Capacitor (2,000 $\mu \mathrm{F}$)	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s , OFF for 15 s	10,000 operations
		24 VDC with 20-A inrush current, 1-A current flow		150,000 operations
	AC solenoid	50 VA with $2.5-\mathrm{A}$ inrush current, $0.25-\mathrm{A}$ current flow	ON for 1 s , OFF for 2 s	1,000,000 operations
		100 VA with 5-A inrush current, 0.5-A current flow		500,000 operations

LY4

Rated voltage	Load type	Conditions	Operating frequency	Electrical life
100 VAC	AC motor	200 W, 200 VAC triple-phase with 5-A inrush current, 1-A current flow	ON for 10 s , OFF for 50 s	500,000 operations
		750 W, 200 VAC triple-phase with 18-A inrush current, 3.5 A current flow		70,000 operations
	AC lamp	300 W, 100 VAC with 51-A inrush current, 3-A current flow	ON for 5 s , OFF for 55 s	50,000 operations
	Capacitor$(2,000 \mu \mathrm{~F})$	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s, OFF for 15 s	5,000 operations
		24 VDC with 20-A inrush current, 1-A current flow	ON for 1 s , OFF for 2 s	200,000 operations
	AC solenoid	50 VA with 2.5-A inrush current, $0.25-\mathrm{A}$ current flow	ON for 1 s , OFF for 2 s	1,000,000 operations
		100 VA with 5-A inrush current, $0.5-\mathrm{A}$ current flow		500,000 operations

Approved Standards

UL 508 Recognitions (File No. 41643)

No. of poles	Coil ratings	Contact ratings	Operations
1	6 to 240 VAC 6 to 125 VDC	$\begin{array}{\|l} \hline 15 \mathrm{~A}, 30 \text { VDC (Resistive) } \\ 15 \mathrm{~A}, 240 \text { VAC (General use) } \\ \text { TV-5, } 120 \text { VAC } \\ 1 / 2 \mathrm{HP}, 120 \text { VAC } \\ \hline \end{array}$	6×10^{3}
			25×10^{3}
2		15 A, 28 VDC (Resistive) 15 A, 120 VAC (Resistive) 12 A, 240 VAC (General use) 1/2 HP, 120 VAC	6×10^{3}
			25×10^{3}
3 and 4		10 A, 30 VDC (Resistive) 10 A, 240 VAC (General use) 1/3 HP, 240 VAC	6×10^{3}

CSA 22.2 No. 14 Listings (File No. LR31928)

No. of poles	Coil ratings	Contact ratings	Operations
1	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	15 A, 30 VDC (Resistive) 15 A 120 VAC (General use)	6×10^{3}
		$\begin{aligned} & \text { 1/2 HP, } 120 \text { VAC } \\ & \text { TV-5, } 120 \text { VAC } \\ & \hline \end{aligned}$	25×10^{3}
2		$\begin{aligned} & 15 \text { A, } 30 \text { VDC (Resistive) } \\ & 15 \text { A, } 120 \text { VAC (Resistive) } \\ & 1 / 2 \mathrm{HP}, 120 \text { VAC } \\ & \text { TV-3, } 120 \text { VAC } \end{aligned}$	6×10^{3}
3 and 4		10 A, 30 VDC (Resistive) 10 A, 240 VAC (General use)	

SEV Listings (File No. D3,31/137)

No. of poles	Coil ratings	Contact ratings	Operations	
1	6 6 to 240 VAC 2 to 125 VDC	$15 \mathrm{~A}, 24 \mathrm{VDC}$ $15 \mathrm{~A}, 220 \mathrm{VAC}$	6×10^{3}	
		$10 \mathrm{~A}, 24 \mathrm{VDC}$ $10 \mathrm{~A}, 220 \mathrm{VAC}$		

TÜV (File No. R9251226) (IEC255)

No. of poles	Coil ratings	Contact ratings	Operations
1 to 4	6 to 125 VDC	LY1, LY1-FD	15 A, 110 VAC $(\cos \phi=1)$
	6 to 240 VAC	10 A, 110 VAC $(\cos \phi=0.4)$	100×10^{3}
		LY2, LY2-FD, LY3, LY3-FD, LY4,	
		LY4-FD	
		$70 \mathrm{~A}, 110$ VAC $(\cos \phi=1)$	

VDE Recognitions (No. 9903UG and 9947UG)

No. of poles	Coil ratings	Contact ratings	Operations
1	6, 12, 24, 50, 110, 220 VAC 6, 12, 24, 48, 110 VDC	10 A, 220 VAC $(\cos \phi=1)$ 7 A, 220 VAC $(\cos \phi=0.4)$ $10 \mathrm{~A}, 28 \mathrm{VDC}$ (L/R=0 ms) $7 \mathrm{~A}, 28 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	200×10^{3}
2		7 A, 220 VAC $(\cos \phi=1)$ 4 A, 220 VAC $(\cos \phi=0.4)$ $7 \mathrm{~A}, 28 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=0 \mathrm{~ms})$ $4 \mathrm{~A}, 28 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	

LR Recognitions (No. 563KOB-204523)

No. of poles	Coil ratings	Contact ratings
2,4	6 to 240 VAC	$7.5 \mathrm{~A}, 230 \mathrm{VAC}(\mathrm{PFO} .4)$
	6 to 110 VDC	$5 \mathrm{~A}, 24 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$

Engineering Data

LY1

Maximum Switching Power

LY2

LY3 and LY4

Endurance

Endurance

Endurance

LY2Z

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Relays with Solder/Plug-in Terminals

LY1
LY1N (-D2)
LY1-D

Terminal Arrangement/Internal Connections (Bottom View)

LY1

LY1N-D2

Note: The DC models have polarity.
 Connections (Bottom View)

LY2(Z)

LY2(Z)-D

LY2(Z)N-D2

Note: The DC models have polarity.

LY3-D

Terminal Arrangement/Internal Connections (Bottom View)

Note: The DC models have polarity.

Terminal Arrangement/Internal Connections
(Bottom View)

LY4N

AC Model

LY4N-D2

Note: The DC models have polarity.

LY2-CR
LY2Z-CR
LY2N-CR
LY2ZN-CR

Terminal Arrangement/Internal Connections

(Bottom View)

M-
CR Element
C: $0.033 \mu \mathrm{~F}$

Relays with PCB Terminals

PC Board Holes (Bottom View)

Note: 1. The above model is the LY2-0.
2. This figure is 6.4 for the LY1-0

Note: 1. The tolerance for the above figures is 0.1 mm .
2. Besides the terminals, some part of the LY1-0 carries current. Due attention should be paid when mounting the LY1-0 to a double-sided PC board.

Upper-mounting Relays

Mounting Holes

Note: 1. Eight 3-dia. holes should apply to the LY2F model.
LY3F

LY4F

Mounting Height with Socket

The following Socket heights should be maintained.

Front-connecting

PTF $\square \mathrm{A}(-\mathrm{E})$

Back-connecting

PT \square

Note: 1. The PTF \square A (-E) can be track-mounted or screw-mounted.
2. For the LY \square-CR (CR circuit built-in type) model, this figure should be 88.

Sockets
PTF08A-E
PTF11A
PTF14A-E
PT08
PT11
PT14
PT08QN

Mounting Plates for Back-connecting

PTP-10

PTP-12

Hold-down Clips
Hold-down clips are used to hold Relays to Sockets and prevent them from coming loose due to vibration or shock.

| Used with Socket | | Used with Socket
 mounting plate | For CR circuit built-in Relay |
| :--- | :--- | :--- | :--- | :--- | :--- |
| PYC-A1 | PYC-P | PYC | PYC-3 |

Precautions

Refer to page A-72 for general precautions.

\square Connections

Do not reverse polarity when connecting DC-operated Relays with built-in diodes or indicators.

[^0]To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. J002-E1-10
In the interest of product improvement, specifications are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:

Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-3 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 6-1393843-7 6-1415012-1 6-1419102-2 6-
1423698-4 6-1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1617802-2 6-1618107-9 6-1618248-4 M83536/1-027M CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7
7-1393144-5 7-1393767-8
```


[^0]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

