## Important notice

Dear Customer,
On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,
Team Nexperia

## DATA SHEET

## 74ALVCH16821

 20-bit bus-interface D-type flip-flop; positive-edge trigger (3-State)Product specification

IC24 Data Handbook

## 20-bit bus-interface D-type flip-flop; positive-edge trigger (3-State)

## 74ALVCH16821

## FEATURES

- Wide supply voltage range of 1.2 V to 3.6 V
- Complies with JEDEC standard no. 8-1A
- Current drive $\pm 24 \mathrm{~mA}$ at 3.0 V
- CMOS low power consumption
- Direct interface with TTL levels
- MULTIBYTE ${ }^{\text {TM }}$ flow-through standard pin-out architecture
- Low inductance multiple $\mathrm{V}_{\mathrm{CC}}$ and ground pins for minimum noise and ground bounce
- All data inputs have bus hold
- Output drive capability $50 \Omega$ transmission lines @ $85^{\circ} \mathrm{C}$


## DESCRIPTION

The 74ALVCH16821 has two 10-bit, edge triggered registers, with each register coupled to a 3 -State output buffer. The two sections of each register are controlled independently by the clock (nCP) and Output Enable ( nOE ) control gates.

Each register is fully edge triggered. The state of each D input, one set-up time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.

When $n \overline{O E}$ is LOW, the data in the register appears at the outputs. When nOE is HIGH, the outputs are in high impedance OFF state. Operation of the n $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.
The 74ALVCH16821 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

QUICK REFERENCE DATA
GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$

| SYMBOL | PARAMETER | CONDITIONS |  | TYPICAL | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| tPhL/tpLH | Propagation delay $n C P$ to $n Q_{n}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$ |  | $\begin{aligned} & 2.6 \\ & 2.5 \end{aligned}$ | ns |
| $\mathrm{C}_{1}$ | Input capacitance |  |  | 5.0 | pF |
| $\mathrm{C}_{\text {PD }}$ | Power dissipation capacitance per buffer | $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\text {CC }}{ }^{1}$ | Outputs enabled | 33 | pF |
|  |  |  | Outputs disabled | 17 |  |
| $F_{\text {max }}$ | Maximum clock frequency | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$ |  | $\begin{aligned} & 250 \\ & 350 \end{aligned}$ | MHz |

## NOTE:

1. $C_{P D}$ is used to determine the dynamic power dissipation ( $P_{D}$ in $\mu \mathrm{W}$ ):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\Sigma\left(C_{L} \times V_{C C}^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in $\mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{f}_{\mathrm{O}}=$ output frequency in $\mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs.
ORDERING INFORMATION

| PACKAGES | TEMPERATURE RANGE | OUTSIDE NORTH AMERICA | NORTH AMERICA | DWG NUMBER |
| :--- | :---: | :---: | :---: | :---: |
| 56-Pin Plastic SSOP Type III | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 74 ALVCH16821 DL | ACH16821 DL | SOT371-1 |
| 56-Pin Plastic TSSOP Type II | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 74 ALVCH 16821 DGG | ACH16821 DGG | SOT364-1 |

20-bit bus-interface D-type flip-flop; positive-edge trigger (3-State)

PIN DESCRIPTION

| PIN NUMBER | SYMBOL | FUNCTION |
| :---: | :---: | :---: |
| $\begin{aligned} & 55,54,52,51,49, \\ & 48,47,45,44,43 \end{aligned}$ | 1D0-1D9 | Data inputs |
| $\begin{aligned} & 42,41,40,38,37, \\ & 36,34,33,31,30 \end{aligned}$ | 2D0-2D9 |  |
| $\begin{gathered} 2,3,5,6,8, \\ 9,10,12,13,14 \end{gathered}$ | 1Q0-1Q9 | Data outputs |
| $\begin{aligned} & 15,16,17,19,20, \\ & 21,23,24,26,27 \end{aligned}$ | 2Q0-2Q9 |  |
| 1,28 | 10E, 2OE | Output enable inputs (active-Low) |
| 56, 29 | 1CP, 2CP | Clock pulse inputs (active rising edge) |
| $\begin{gathered} \hline 4,11,18,25, \\ 32,39,46,53 \end{gathered}$ | GND | Ground (0V) |
| 7, 22, 35, 50 | $\mathrm{V}_{\mathrm{CC}}$ | Positive supply voltage |

PIN CONFIGURATION



SHOOOO1

FUNCTION TABLE

| INPUTS |  |  | OUTPUT |
| :---: | :---: | :---: | :---: |
| nOE | CP | Dx | Q |
| $L$ | $\uparrow$ | $L$ | $L$ |
| $L$ | $\uparrow$ | $H$ | $H$ |
| $L$ | $\ddagger$ | $X$ | Q0 |
| $H$ | $X$ | $X$ | $Z$ |

$H=H I G H$ voltage level
$\mathrm{L}=\mathrm{LOW}$ voltage level
X = Don't care
$Z=$ High impedance OFF state
$\uparrow=$ LOW to HIGH clock transition
$\ddagger=$ Not a LOW-to-HIGH clock transition

## LOGIC SYMBOL



## 20-bit bus-interface D-type flip-flop; positive-edge trigger (3-State)

## LOGIC SYMBOL (IEEE/IEC)



## LOGIC DIAGRAM



## 20-bit bus-interface D-type flip-flop; positive-edge trigger (3-State)

RECOMMENDED OPERATING CONDITIONS

| SYMBOL | PARAMETER | CONDITIONS | LIMITS |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX |  |
| $\mathrm{V}_{\mathrm{Cc}}$ | DC supply voltage 2.5 V range (for max. speed performance @ 30 pF output load) |  | 2.3 | 2.7 | V |
|  | DC supply voltage 3.3 V range (for max. speed performance @ 50 pF output load) |  | 3.0 | 3.6 |  |
| $\mathrm{V}_{1}$ | DC Input voltage range |  | 0 | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{O}}$ | DC output voltage range |  | 0 | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{T}_{\text {amb }}$ | Operating free-air temperature range |  | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | Input rise and fall times | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.3 \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \text { to } 3.6 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 20 \\ & 10 \end{aligned}$ | ns/V |

## ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134)
Voltages are referenced to GND (ground $=0 \mathrm{~V}$ )

| SYMBOL | PARAMETER | CONDITIONS | RATING | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | DC supply voltage |  | -0.5 to +4.6 | V |
| $\mathrm{I}_{\mathrm{IK}}$ | DC input diode current | $\mathrm{V}_{1}<0$ | -50 | mA |
| $V_{1}$ | DC input voltage | For control pins ${ }^{1}$ | -0.5 to +4.6 | V |
|  |  | For data inputs ${ }^{1}$ | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$ |  |
| IOK | DC output diode current | $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{O}}<0$ | $\pm 50$ | mA |
| $\mathrm{V}_{\mathrm{O}}$ | DC output voltage | Note 1 | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
| 10 | DC output source or sink current | $\mathrm{V}_{\mathrm{O}}=0$ to $\mathrm{V}_{\mathrm{CC}}$ | $\pm 50$ | mA |
| $\mathrm{I}_{\mathrm{GND}}, \mathrm{I}_{\mathrm{CC}}$ | DC V ${ }_{\text {CC }}$ or GND current |  | $\pm 100$ | mA |
| $\mathrm{T}_{\text {stg }}$ | Storage temperature range |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{P}_{\text {tot }}$ | Power dissipation per package -plastic medium-shrink (SSOP) <br> -plastic thin-medium-shrink (TSSOP) | For temperature range: -40 to $+125^{\circ} \mathrm{C}$ above $+55^{\circ} \mathrm{C}$ derate linearly with $11.3 \mathrm{~mW} / \mathrm{K}$ above $+55^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$ | $\begin{aligned} & 850 \\ & 600 \end{aligned}$ | mW |

NOTE:

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

## 20-bit bus-interface D-type flip-flop; positive-edge trigger (3-State)

DC ELECTRICAL CHARACTERISTICS
Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V ).

| SYMBOL | PARAMETER | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Temp $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  |
|  |  |  | MIN | TYP1 | MAX |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH level Input voltage | $\mathrm{V}_{\text {CC }}=2.3$ to 2.7 V | 1.7 | 1.2 |  | V |
|  |  | $\mathrm{V}_{\text {CC }}=2.7$ to 3.6 V | 2.0 | 1.5 |  |  |
| $\mathrm{V}_{\text {IL }}$ | LOW level Input voltage | $\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V |  | 1.2 | 0.7 | V |
|  |  | $\mathrm{V}_{\text {CC }}=2.7$ to 3.6 V |  | 1.5 | 0.8 |  |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH level output voltage | $\mathrm{V}_{\text {CC }}=2.3$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }} ; \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$ | $\mathrm{V}_{\mathrm{CC}}-0.2$ | $\mathrm{V}_{C C}$ |  | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-6 \mathrm{~mA}$ | $\mathrm{V}_{\text {CC }-0.3}$ | $V_{\text {CC-0.08 }}$ |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }} ; \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$ | $\mathrm{V}_{\text {CC }-0.6}$ | $\mathrm{V}_{\text {CC- }-0.26}$ |  |  |
|  |  | $\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }} ; \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$ | $\mathrm{V}_{\text {CC }-0.5}$ | $V_{\text {CC- }-0.14}$ |  |  |
|  |  | $\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }} ; \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$ | $\mathrm{V}_{\mathrm{Cc}}-0.6$ | $\mathrm{V}_{\mathrm{CC}}-0.09$ |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ I $\mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$ | $\mathrm{V}_{\mathrm{CC}}-1.0$ | $\mathrm{V}_{\text {CC- }-0.28 ~}$ |  |  |
| $\mathrm{V}_{\text {OL }}$ | LOW level output voltage | $\mathrm{V}_{\mathrm{CC}}=2.3$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$ |  | GND | 0.20 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{0}=6 \mathrm{~mA}$ |  | 0.07 | 0.40 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$ |  | 0.15 | 0.70 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$ |  | 0.14 | 0.40 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL} ;} \mathrm{l} \mathrm{l}^{2}=24 \mathrm{~mA}$ |  | 0.27 | 0.55 |  |
| 1 | Input leakage current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.3 \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$ |  | 0.1 | 5 | $\mu \mathrm{A}$ |
| loz | 3-State output OFF-state current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \text { to } 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$ |  | 0.1 | 10 | $\mu \mathrm{A}$ |
| ICC | Quiescent supply current | $\mathrm{V}_{\text {CC }}=2.3$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND; $\mathrm{I}_{0}=0$ |  | 0.2 | 40 | $\mu \mathrm{A}$ |
| $\Delta_{\text {l }}$ | Additional quiescent supply current | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=0$ |  | 150 | 750 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {BHL }}$ | Bus hold LOW sustaining current | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.7 \mathrm{~V}^{2}$ | 45 | - |  | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}^{2}$ | 75 | 150 |  |  |
| ІВНн | Bus hold HIGH sustaining current | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}^{2}$ | -45 |  |  | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}^{2}$ | -75 | -175 |  |  |
| $\mathrm{I}_{\text {BhLO }}$ | Bus hold LOW overdrive current | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}^{2}$ | 500 |  |  | $\mu \mathrm{A}$ |
| І ${ }_{\text {BHHO }}$ | Bus hold HIGH overdrive current | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}^{2}$ | -500 |  |  | $\mu \mathrm{A}$ |

## NOTES:

1. All typical values are at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. Valid for data inputs of bus hold parts.

20-bit bus-interface D-type flip-flop; positive-edge trigger (3-State)

AC CHARACTERISTICS FOR $\mathrm{V}_{\mathrm{C}}=2.3 \mathrm{~V}$ TO 2.7V RANGE
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.0 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$

| SYMBOL | PARAMETER | WAVEFORM | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{V}_{\mathrm{Cc}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ |  |  |  |
|  |  |  | MIN | TYP ${ }^{1}$ | MAX |  |
| $\mathrm{tPLH} / \mathrm{t}_{\text {PHL }}$ | Propagation delay nCP to $\mathrm{nQ}_{\mathrm{n}}$ | 1,4 | 1.0 | 2.6 | 5.8 | ns |
| $\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$ | 3-State output enable time $n \overline{O E}_{n}$ to $n Q_{n}$ | 2, 4 | 1.0 | 2.8 | 6.6 | ns |
| $t_{\text {PHZ }} / t_{\text {PLZ }}$ | 3-State output disable time $n \overline{O E}_{n}$ to $n Q_{n}$ | 2, 4 | 1.0 | 2.2 | 5.7 | ns |
| tw | nCP pulse width HIGH or LOW | 3, 4 | 3.0 | 1.8 |  | ns |
| tsu | Set up time $\mathrm{nD}_{\mathrm{n}}$ to nCP | 3, 4 | 1.4 | 0.3 |  | ns |
| $t_{\text {h }}$ | Hold time $\mathrm{nD}_{\mathrm{n}}$ to nCP | 3, 4 | 0.4 | 0.0 |  | ns |
| $F_{\text {max }}$ | Maximum clock pulse frequency | 1, 4 | 150 | 250 |  | MHz |

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS FOR $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ TO 3.6V RANGE AND $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

| SYMBOL | PARAMETER | WAVEFORM | LIMITS |  |  |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ |  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ |  |  |  |
|  |  |  | MIN | TYP ${ }^{1}$ | MAX | MIN | TYP ${ }^{1}$ | MAX |  |
| $\mathrm{tPHL}^{\text {/ }}$ PLH | Propagation delay nCP to $\mathrm{nQ}_{\mathrm{n}}$ | 1, 4 | 1.0 | 2.5 | 4.5 | 1.0 | 2.8 | 5.3 | ns |
| $\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$ | 3-State output enable time $n \overline{O E}_{n}$ to $n Q_{n}$ | 2, 4 | 1.0 | 2.3 | 5.1 | 1.0 | 3.2 | 6.2 | ns |
| $t_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$ | 3-State output disable time $n \overline{O E}_{n}$ to $n Q_{n}$ | 2, 4 | 1.0 | 2.8 | 4.6 | 1.0 | 3.1 | 5.0 | ns |
| tw | nCP pulse width HIGH or LOW | 3, 4 | 3.3 | 0.2 |  | 3.3 | 1.7 |  | ns |
| $\mathrm{t}_{\text {SU }}$ | Set up time $n D_{n}$ to $n C P$ | 3, 4 | 1.0 | 0.2 |  | 1.2 | 0.3 |  | ns |
| $\mathrm{th}^{\text {}}$ | Hold time $\mathrm{nD}_{\mathrm{n}}$ to nCP | 3, 4 | 0.8 | 0.4 |  | 0.6 | -0.3 |  | ns |
| $F_{\text {max }}$ | Maximum clock pulse frequency | 1, 4 | 150 | 350 |  | 150 | 300 |  | MHz |

## NOTES:

1. All typical values are at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

## 20-bit bus-interface D-type flip-flop;

 positive-edge trigger (3-State)
## AC WAVEFORMS

$\mathrm{V}_{\mathrm{CC}}=2.3$ TO 2.7 V RANGE

1. $\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V}$
2. $V_{X}=V_{O L}+0.15 \mathrm{~V}$
3. $\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.15 \mathrm{~V}$
4. $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$
5. $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are the typical output voltage drop that occur with the output load.
$\mathrm{V}_{\mathrm{CC}}=3.0$ TO 3.6 V RANGE AND $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
6. $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
7. $\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$
8. $\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
9. $\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$
10. $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are the typical output voltage drop that occur with the output load.


Waveform 1. The input (nCP) to output propagation delays.


Waveform 2. The 3-State enable and disable times.

## 20-bit bus-interface D-type flip-flop; positive-edge trigger (3-State)



DIMENSIONS ( mm are the original dimensions)

| UNIT | $\mathbf{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| max. |  | $\mathbf{A}_{\mathbf{1}}$

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJJECTION | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |  |
| SOT371-1 |  | MO-118AB |  |  | $-93-11-02$ |  |

20-bit bus-interface D-type flip-flop; positive-edge trigger (3-State)


DIMENSIONS ( mm are the original dimensions).

| UNIT | $\mathbf{A}$ <br> max. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | $\mathbf{c}$ | $\mathbf{D}^{(1)}$ | $\mathbf{E}^{(2)}$ | $\mathbf{e}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{Q}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ | $\mathbf{Z}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.2 | 0.15 | 1.05 | 0.25 | 0.28 <br> 0.17 | 0.2 <br> 0.1 | 14.1 <br> 13.9 | 6.2 <br> 6.0 | 0.5 | 8.3 <br> 7.9 | 1.0 | 0.8 <br> 0.4 | 0.50 <br> 0.35 | 0.25 | 0.08 | 0.1 | 0.5 <br> 0.1 | $8^{0}$ |
| $0^{0}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
 positive-edge trigger (3-State)

## NOTES

## 20-bit bus-interface D-type flip-flop; positive-edge trigger (3-State)

## Data sheet status

| Data sheet <br> status | Product <br> status | Definition [1] |
| :--- | :--- | :--- |
| Objective <br> specification | Development | This data sheet contains the design target or goal specifications for product development. <br> Specification may change in any manner without notice. |
| Preliminary <br> specification | Qualification | This data sheet contains preliminary data, and supplementary data will be published at a later date. <br> Philips Semiconductors reserves the right to make chages at any time without notice in order to <br> improve design and supply the best possible product. |
| Product <br> specification | Production | This data sheet contains final specifications. Philips Semiconductors reserves the right to make <br> changes at any time without notice in order to improve design and supply the best possible product. |

[1] Please consult the most recently issued datasheet before initiating or completing a design.

## Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

## Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

## Philips Semiconductors

## 811 East Arques Avenue

P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381
© Copyright Philips Electronics North America Corporation 1998
All rights reserved. Printed in U.S.A.
print code
Date of release: 05-96
Document order number:

## Let's make things beter.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip Flops category:

## Click to view products by NXP manufacturer:

Other Similar products are found below :
5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG

