DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT112 Dual JK flip-flop with set and reset; negative-edge trigger

PHILIPS

Dual JK flip-flop with set and reset; negative-edge trigger

74HC/HCT112

FEATURES

- Asynchronous set and reset
- Output capability: standard
- ICC category: flip-flops

GENERAL DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 112$ are high-speed Si -gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT112 are dual negative-edge triggered JK-type flip-flops featuring individual $n J$, $n K$, clock ($n \overline{C P}$), set ($n \bar{S}_{D}$) and reset ($n \bar{R}_{D}$) inputs.

The set and reset inputs, when LOW, set or reset the outputs as shown in the function table regardless of the levels at the other inputs.

A HIGH level at the clock ($n \overline{C P}$) input enables the $n J$ and nK inputs and data will be accepted. The nJ and nK inputs control the state changes of the flip-flops as shown in the function table. The nJ and nK inputs must be stable one set-up time prior to the HIGH-to-LOW clock transition for predictable operation.
Output state changes are initiated by the HIGH-to-LOW transition of $n \overline{\mathrm{CP}}$.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
tPHL/ tPLH	propagation delay $n \overline{C P}$ to $n Q, n \bar{Q}$ $n \bar{S}_{D}$ to $n Q, n \bar{Q}$ $n \bar{R}_{D}$ to $n Q, n \bar{Q}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & 17 \\ & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & 19 \\ & 15 \\ & 19 \end{aligned}$	ns ns ns
$\mathrm{f}_{\text {max }}$	maximum clock frequency		66	70	MHz
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per flip-flop	notes 1 and 2	27	30	pF

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):

$$
P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}^{2} \times f_{0}\right) \text { where: }
$$

$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs
$C_{L}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

Dual JK flip-flop with set and reset; negative-edge trigger

ORDERING INFORMATION

TYPE NUMBER		PACKAGE		
	NAME	DESCRIPTION	VERSION	
74HC112D; 74HCT112D	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1	
74HC112DB; $74 H C T 112 D B$	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1	
74HC112N; 74HCT112N	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-1	
74HC112PW; 74HCT112PW	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1	

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1,13	$1 \overline{\mathrm{CP}}, 2 \overline{\mathrm{CP}}$	clock input (HIGH-to-LOW, edge triggered)
2,12	$1 \mathrm{~K}, 2 \mathrm{~K}$	data inputs; flip-flops 1 and 2
3,11	$1 \mathrm{~J}, 2 \mathrm{~J}$	data inputs; flip-flops 1 and 2
4,10	$1 \bar{S}_{\mathrm{D}}, 2 \overline{\mathrm{~S}}_{\mathrm{D}}$	set inputs (active LOW)
5,9	$1 \mathrm{Q}, 2 \mathrm{Q}$	true flip-flop outputs
6,7	$1 \overline{\mathrm{Q}}, 2 \overline{\mathrm{Q}}$	complement flip-flop outputs
8	GND	ground (0 V)
15,14	$1 \overline{\mathrm{R}}_{\mathrm{D}}, 2 \overline{\mathrm{R}}_{\mathrm{D}}$	reset inputs (active LOW)
16	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Dual JK flip-flop with set and reset; negative-edge trigger

Fig. 4 Functional diagram.

FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS	
	$\mathbf{n}_{\mathbf{S}}^{\mathbf{D}}$	$\mathbf{n} \overline{\mathbf{R}}_{\mathbf{D}}$	$\mathbf{n C P}$	$\mathbf{n J}$	$\mathbf{n K}$	$\mathbf{n Q}$	$\mathbf{n} \overline{\mathbf{Q}}$
asynchronous set	L	H	X	X	X	H	L
asynchronous reset	H	L	X	X	X	L	H
undetermined	L	L	X	X	X	H	L
toggle	H	H	\downarrow	h	h	$\overline{\mathrm{q}}$	q
load "0" (reset)	H	H	\downarrow	l	h	L	H
load "1" (set)	H	H	\downarrow	h	I	H	L
hold "no change"	H	H	\downarrow	I	I	q	q

Note

1. If $n \bar{S}_{D}$ and $n \bar{R}_{D}$ simultaneously go from LOW to HIGH, the output states will be unpredictable.
H = HIGH voltage level
$h=$ HIGH voltage level one set-up time prior to the HIGH-to-LOW CP transition
L = LOW voltage level
I = LOW voltage level one set-up time prior to the HIGH-to-LOW CP transition
q = lower case letters indicate the state of the referenced output one set-up time prior to the HIGH-to-LOW CP transition
X = don't care
$\downarrow=$ HIGH-to-LOW CP transition

Fig. 5 Logic diagram (one flip-flop).

Dual JK flip-flop with set and reset; negative-edge trigger

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
ICC category: flip-flops

Dual JK flip-flop with set and reset; negative-edge trigger

AC CHARACTERISTICS FOR 74HC

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb $\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HC								V_{Cc} (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \overline{C P}$ to $n Q$		$\begin{aligned} & 55 \\ & 20 \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 175 \\ 35 \\ 30 \end{array}$		$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 37 \end{array}$		$\begin{array}{\|l\|} \hline 265 \\ 53 \\ 45 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \overline{C P}$ to $n \bar{Q}$		$\begin{aligned} & \hline 55 \\ & 20 \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 175 \\ 35 \\ 30 \end{array}$		$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 37 \end{array}$		$\begin{array}{\|l\|} \hline 265 \\ 53 \\ 45 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \bar{R}_{D}$ to $n Q, n \bar{Q}$		$\begin{aligned} & \hline 58 \\ & 21 \\ & 17 \end{aligned}$	$\begin{array}{\|l\|} \hline 180 \\ 36 \\ 31 \end{array}$		$\begin{array}{\|l\|} \hline 225 \\ 45 \\ 38 \end{array}$		$\begin{array}{\|l\|} \hline 270 \\ 54 \\ 46 \end{array}$	ns	$\begin{array}{\|l} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \bar{S}_{D}$ to $n Q, n \bar{Q}$		$\begin{aligned} & 50 \\ & 18 \\ & 14 \end{aligned}$	$\begin{aligned} & 155 \\ & 31 \\ & 26 \end{aligned}$		$\begin{array}{\|l} \hline 295 \\ 39 \\ 33 \end{array}$		$\begin{aligned} & 235 \\ & 47 \\ & 40 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 7
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		$\begin{aligned} & \hline 19 \\ & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$		$\begin{array}{\|l\|} \hline 110 \\ 22 \\ 19 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 6
tw	clock pulse width HIGH or LOW	$\begin{aligned} & 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 22 \\ & 8 \\ & 6 \end{aligned}$		$\begin{aligned} & \hline 100 \\ & 20 \\ & 17 \end{aligned}$		$\begin{aligned} & \hline 120 \\ & 24 \\ & 20 \end{aligned}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6
tw	set or reset pulse width LOW	$\begin{array}{\|l\|} \hline 80 \\ 16 \\ 14 \end{array}$	$\begin{array}{\|l\|} \hline 22 \\ 8 \\ 6 \end{array}$		$\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \end{array}$		$\begin{array}{\|l\|} \hline 120 \\ 24 \\ 20 \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 7
$\mathrm{t}_{\text {rem }}$	removal time $n \bar{R}_{D}$ to $n \overline{C P}$	$\begin{array}{\|l\|} \hline 80 \\ 16 \\ 14 \end{array}$	$\begin{aligned} & 22 \\ & 8 \\ & 6 \end{aligned}$		$\begin{aligned} & 125 \\ & 25 \\ & 21 \end{aligned}$		$\begin{array}{\|l\|} \hline 150 \\ 30 \\ 26 \end{array}$		ns	$\begin{array}{\|l} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 7
$\mathrm{t}_{\text {rem }}$	$\begin{aligned} & \text { removal time } \\ & \mathrm{n} \overline{\mathrm{~S}}_{\mathrm{D}} \text { to } \mathrm{n} \overline{\mathrm{CP}} \end{aligned}$	$\begin{aligned} & 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline-19 \\ & -7 \\ & -6 \end{aligned}$		$\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \end{array}$		$\begin{aligned} & \hline 120 \\ & 24 \\ & 20 \end{aligned}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 7
$\mathrm{t}_{\text {su }}$	set-up time $n J, n K$ to $n \overline{C P}$	$\begin{aligned} & 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 19 \\ & 7 \\ & 6 \end{aligned}$		$\begin{aligned} & 100 \\ & 20 \\ & 17 \end{aligned}$		$\begin{aligned} & \hline 120 \\ & 24 \\ & 20 \end{aligned}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 6
t_{n}	hold time $n J, n K$ to $n \overline{C P}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \hline-11 \\ & -4 \\ & -3 \end{aligned}$		0		$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \end{array}$		ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	$\begin{array}{\|l\|} \hline 6 \\ 30 \\ 35 \end{array}$	$\begin{array}{\|l\|} \hline 20 \\ 60 \\ 71 \end{array}$		$\begin{aligned} & 4.8 \\ & 24 \\ & 28 \end{aligned}$		$\begin{array}{\|l\|} \hline 4.0 \\ 20 \\ 24 \end{array}$		MHz	$\begin{array}{\|l} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 6

Dual JK flip-flop with set and reset; negative-edge trigger

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
ICC category: flip-flops

Note to HCT types

The value of additional quiescent supply current ($\Delta \mathrm{I}_{\mathrm{CC}}$) for a unit load of 1 is given in the family specifications.
To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$1 \overline{\mathrm{~S}}_{\mathrm{D}}, 2 \overline{\mathrm{~S}}_{\mathrm{D}}$	0.5
$1 \mathrm{~K}, 2 \mathrm{~K}$	0.6
$1 \overline{\mathrm{R}}_{\mathrm{D}}, 2 \overline{\mathrm{R}}_{\mathrm{D}}$	0.65
$1 \mathrm{~J}, 2 \mathrm{~J}$	1
$1 \overline{\mathrm{CP}}, 2 \overline{\mathrm{CP}}$	1

Dual JK flip-flop with set and reset;

 negative-edge trigger
AC CHARACTERISTICS FOR 74HCT

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HCT								$V_{c c}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{n} \overline{\mathrm{CP}}$ to nQ		21	35		44		53	ns	4.5	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \overline{C P}$ to $n \bar{Q}$		23	40		50		60	ns	4.5	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \bar{R}_{D}$ to $n Q, n \bar{Q}$		22	37		46		56	ns	4.5	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \bar{S}_{D}$ to $n Q, n \bar{Q}$		18	32		40		48	ns	4.5	Fig. 7
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		7	15		19		22	ns	4.5	Fig. 6
tw	clock pulse width HIGH or LOW	16	8		20		24		ns	4.5	Fig. 6
tw	set or reset pulse width LOW	18	10		23		27		ns	4.5	Fig. 7
$\mathrm{t}_{\text {rem }}$	removal time $n \bar{R}_{D}$ to $n \overline{C P}$	20	11		25		30		ns	4.5	Fig. 7
$\mathrm{t}_{\text {rem }}$	$\begin{aligned} \text { removal time } \\ \mathrm{n} \overline{\mathrm{~S}}_{\mathrm{D}} \text { to } \overline{\mathrm{CP}} \end{aligned}$	20	-8		25		30		ns	4.5	Fig. 7
$\mathrm{t}_{\text {su }}$	set-up time $n J, n K$ to $n \overline{C P}$	16	7		20		24		ns	4.5	Fig. 6
t_{n}	hold time $n J, n K$ to $n \overline{C P}$	0	-7		0		0		ns	4.5	Fig. 6
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	30	64		24		20		MHz	4.5	Fig. 6

Dual JK flip-flop with set and reset; negative-edge trigger

AC WAVEFORMS

Dual JK flip-flop with set and reset; negative-edge trigger

PACKAGE OUTLINES

SO16: plastic small outline package; 16 leads; body width 3.9 mm
SOT109-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECCTION	ISSUE DATE
	IEC	JEDEC	EIAJ			

Dual JK flip-flop with set and reset; negative-edge trigger

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}																	
$\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$	
mm	2.0	0.21	1.80	0.25	0.38	0.20	6.4	5.4	0.65	7.9	1.25	1.03	0.9	0.2	0.13	0.1	1.00	8°
	0.05	1.65			0.09	6.0	5.2	0.6	7.6			0.7				0°		

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT338-1		MO-150AC		\square ¢	$\begin{aligned} & 94-01-14 \\ & 95-02-04 \end{aligned}$

Dual JK flip-flop with set and reset; negative-edge trigger

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m i n}$.	$\mathbf{A}_{\mathbf{2}}$ $\mathbf{m a x}$.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}	$\mathbf{Z}^{(\mathbf{1)}}$ $\mathbf{m a x}$.
mm	4.7	0.51	3.7	1.40 1.14	0.53 0.38	0.32 0.23	21.8 21.4	6.48 6.20	2.54	7.62	3.9 3.4	8.25 7.80	9.5 8.3	0.254	2.2
inches	0.19	0.020	0.15	0.055 0.045	0.021 0.015	0.013 0.009	0.86 0.84	0.26 0.24	0.10	0.30	0.15 0.13	0.32 0.31	0.37 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT38-1	050G09	MO-001AE		\square ¢	$\begin{aligned} & 92-10-02 \\ & 95-01-19 \end{aligned}$

Dual JK flip-flop with set and reset; negative-edge trigger

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.10	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & \hline 6.6 \\ & 6.2 \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.40 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT403-1		MO-153			-	$94-07-12$

Dual JK flip-flop with set and reset; negative-edge trigger

74HC/HCT112

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (order code 9398652 90011).

DIP

Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

SO, SSOP and TSSOP

Reflow soldering

Reflow soldering techniques are suitable for all SO, SSOP and TSSOP packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating method.

Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering can be used for all SO packages. Wave soldering is not recommended for SSOP and TSSOP packages, because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.
If wave soldering is used - and cannot be avoided for SSOP and TSSOP packages - the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow and must incorporate solder thieves at the downstream end.

Even with these conditions:

- Only consider wave soldering SSOP packages that have a body width of 4.4 mm , that is SSOP16 (SOT369-1) or SSOP20 (SOT266-1).
- Do not consider wave soldering TSSOP packages with 48 leads or more, that is TSSOP48 (SOT362-1) and TSSOP56 (SOT364-1).
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within
6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in

Dual JK flip-flop with set and reset; negative-edge trigger

one operation within 2 to 5 seconds between
270 and $320^{\circ} \mathrm{C}$.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by NXP manufacturer:
Other Similar products are found below :
NLV74HC74ADTR2G NLV74HC11ADR2G NTE74LS76A 74LCX16374MTDX MM74HC74AMX 74LVX74MTCX SN74HC273DWR SN74LVC74ADR SN74HC574PWR SN74HC273NSR 74AHC74D. 112 74AUP1G74DC.125 74HC112D.652 74HC574D.652 74HCT173D.652 74HCT174D.652 74HCT374D.652 74AHC574D.118 74HC174D.652 74HC273D.652 74HC374D.652 74HC74D.653 74HC74PW. 112 74HC107D.652 74HC574D.653 HEF4013BT. 653 HEF4027BT. 652 74HC107PW. 112 74HC73PW.112 74HCT74PW. 112 74LV74PW. 112 74HC173PW. 112 74HC174PW. 112 74HC175PW. 112 74HC377DB. 118 74HC574PW. 112 74HC73D.652 74HCT175D.652 74LVC1G74DP. 125 74LVC74APW. 112 74VHC174FT(BJ) 74VHC273FT(BJ) 74VHCT574AFT(BJ) 74HCT273DB.118 $\underline{74 H C 107 D B .112}$ 74HC112PW. 112 74HCT74DB. 112 74LVC1G80GV. 125 74LVC1G175GV. 125 74LVC1G79GV. 125

