74ABT125

Quad buffer; 3-state

Rev. 6 — 3 November 2011

Product data sheet

1. **General description**

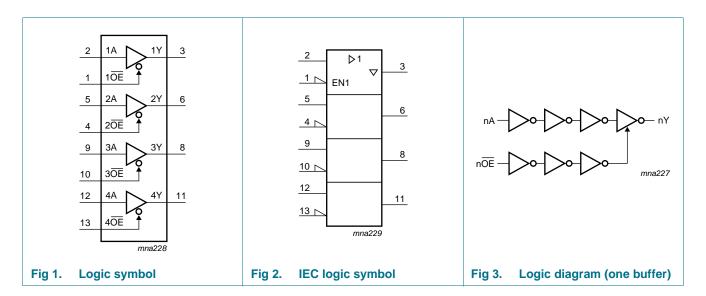
The 74ABT125 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT125 device is a quad buffer that is ideal for driving bus lines. The device features four Output Enables (1OE, 2OE, 3OE, 4OE), each controlling one of the 3-state outputs.

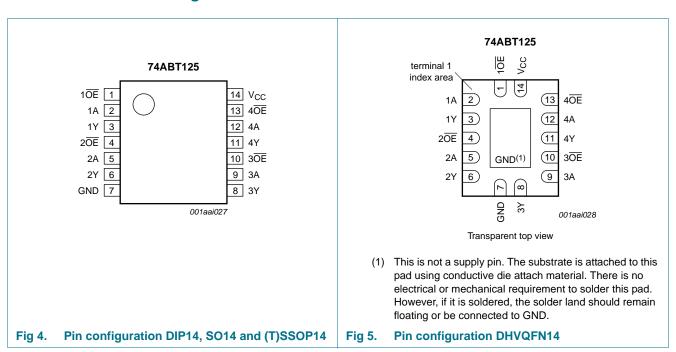
Features and benefits 2.

- Quad bus interface
- 3-state buffers
- Live insertion and extraction permitted
- Output capability: HIGH –32 mA; LOW +64 mA
- Power-up 3-state
- Inputs are disabled during 3-state mode
- Latch-up protection exceeds 500 mA per JESD78 class II level A
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - ♦ MM JESD22-A115-A exceeds 200 V

Ordering information 3.


Table 1. **Ordering information**

Type number	Package									
	Temperature range	Name	Description	Version						
74ABT125N	−40 °C to +85 °C	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1						
74ABT125D	–40 °C to +85 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1						
74ABT125DB	–40 °C to +85 °C	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1						
74ABT125PW	–40 °C to +85 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1						
74ABT125BQ	–40 °C to +85 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 \times 3 \times 0.85 mm	SOT762-1						


Quad buffer; 3-state

4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1OE to 4OE	1, 4, 10, 13	output enable input (active LOW)
1A to 4A	2, 5, 9, 12	data input
1Y to 4Y	3, 6, 8, 11	data output
GND	7	ground (0 V)
V _{CC}	14	supply voltage

6. Functional description

Table 3. Function selection[1]

Inputs nOE	Output	
nOE	nA	nY
L	L	L
L	Н	Н
Н	X	Z

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values[1]

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-1.2	+7.0	V
Vo	output voltage	output in OFF-state or HIGH-state	-0.5	+5.5	V
I _{IK}	input clamping current	V _I < 0 V	-18	-	mA
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Io	output current	output in LOW-state	-	128	mA
Tj	junction temperature		[2] _	150	°C
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$	<u>[3]</u> _	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

^[3] SO14 packages: above 70 °C P_{tot} derate linearly with 8 mW/K SSOP14 and TSSOP20 packages: above 60 °C P_{tot} derate linearly with 5.5 mW/K DHVQFN14 packages: above 60 °C P_{tot} derate linearly with 4.5 mW/K

Quad buffer; 3-state

8. Recommended operating conditions

 Table 5.
 Operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		4.5	5.5	V
VI	input voltage		0	V_{CC}	V
V_{IH}	HIGH-level input voltage		2.0	-	V
V_{IL}	LOW-level Input voltage		-	0.8	V
I _{OH}	HIGH-level output current		-32	-	mA
I _{OL}	LOW-level output current		-	64	mA
$\Delta t/\Delta V$	input transition rise and fall rate		-	10	ns/V
T _{amb}	ambient temperature	in free air	-40	+85	°C

9. Static characteristics

Table 6. Static characteristics

Symbol	Parameter	Conditions		25 °C			-40 °C t	Unit	
				Min	Тур	Max	Min	Max	
V_{IK}	input clamping voltage	$V_{CC} = 4.5 \text{ V}; I_{IK} = -18 \text{ mA}$		-	-0.9	-1.2	-	-1.2	V
V_{OH}	HIGH-level output	$V_I = V_{IL}$ or V_{IH}							
voltage		$V_{CC} = 4.5 \text{ V}; I_{OH} = -3 \text{ mA}$		2.5	2.9	-	2.5	-	V
		$V_{CC} = 5.0 \text{ V}; I_{OH} = -3 \text{ mA}$		3.0	3.4	-	3.0	-	V
		V_{CC} = 4.5 V; I_{OH} = -32 mA	$_{CC} = 4.5 \text{ V}; I_{OH} = -32 \text{ mA}$		2.4	-	2.0	-	V
V_{OL}	LOW-level output voltage	V_{CC} = 4.5 V; I_{OL} = 64 mA; V_I = V_{IL} or V_{IH}	= V _{IL} or V _{IH}		0.35	0.55	-	0.55	V
I _I	input leakage current	$V_{CC} = 5.5 \text{ V}; V_{I} = \text{GND or } 5.5 \text{ V}$	· •		±0.01	±1.0	-	±1.0	μΑ
I _{OFF}	power-off leakage current	t_{CC} = 0.0 V; V _I or V _O \leq 4.5 V		-	±5.0	±100	-	±100	μА
I _{O(pu/pd)}	power-up/power-down output current	V_{CC} = 2.1 V; V_O = 0.5 V; V_I = GND or V_{CC} ; \overline{OE} = don't care	[1]	-	±5.0	±50	-	±50	μА
l _{OZ}	OFF-state output	$V_{CC} = 5.5 \text{ V}; V_I = V_{IL} \text{ or } V_{IH}$							
	current	V _O = 2.7 V		-	1.0	50	-	50	μΑ
		V _O = 0.5 V		-	-1.0	-50	-	-50	μΑ
I _{LO}	output leakage current	HIGH-state; $V_O = 5.5 \text{ V}$; $V_{CC} = 5.5 \text{ V}$; $V_I = \text{GND or } V_{CC}$		-	5.0	50	-	50	μΑ
Io	output current	$V_{CC} = 5.5 \text{ V}; V_{O} = 2.5 \text{ V}$	[2]	-50	-100	-180	-50	-180	mΑ
I _{CC}	supply current	$V_{CC} = 5.5 \text{ V}; V_I = \text{GND or } V_{CC}$							
		outputs HIGH-state		-	65	250	-	250	μΑ
		outputs LOW-state		-	12	15	-	30	mΑ
		outputs disabled		-	65	250	-	50	μΑ

Quad buffer; 3-state

Table 6. Static characteristics ... continued

Symbol	Parameter	Conditions	Conditions				-40 °C to	o +85 °C	Unit
				Min	Тур	Max	Min	Max	
ΔI_{CC}	additional supply current	per control pin; $V_{CC} = 5.5 \text{ V}$; one control input at 3.4 V, other inputs at V_{CC} or GND outputs enabled							
				-	0.5	1.5	-	1.5	mΑ
		outputs disabled		-	50	250	-	250	mΑ
		one enable input at 3.4 V and other inputs at V_{CC} or GND; outputs disabled		-	0.5	1.5	-	1.5	mA
C _I	input capacitance	$V_I = 0 \text{ V or } V_{CC}$		-	4	-	-	-	pF
Co	output capacitance	outputs disabled; $V_0 = 0 \text{ V or } V_{CC}$		-	7	-	-	-	pF

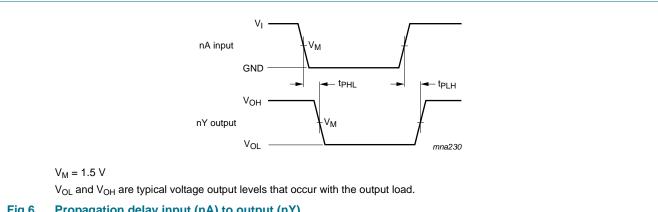
^[1] This parameter is valid for any V_{CC} between 0 V and 2.1 V, with a transition time of up to 10 ms. From V_{CC} = 2.1 V to V_{CC} = 5 V \pm 10 %, a transition time of up to 100 μ s is permitted.

10. Dynamic characteristics

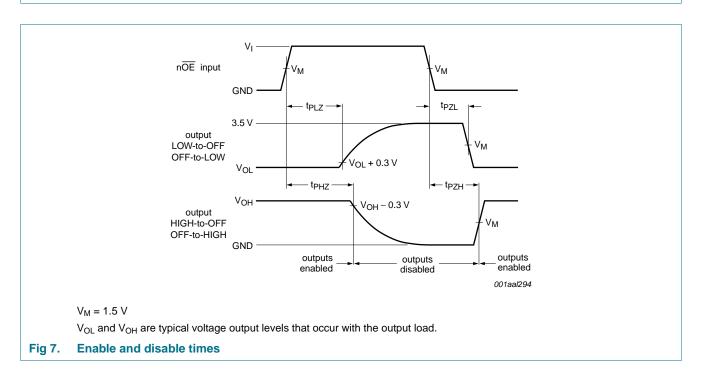
Table 7. Dynamic characteristics

GND = 0 V. Test circuit is shown in Figure 8.

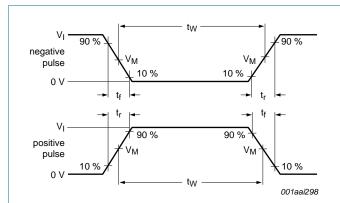
Parameter	Conditions	25 °C;	V _{CC} =	5.0 V		Unit	
		Min	Тур	Max	Min	Max	
LOW to HIGH propagation delay	nA to nY, see Figure 6	1.0	2.8	4.1	1.0	4.6	ns
HIGH to LOW propagation delay	nA to nY; see Figure 6	1.0	3.1	4.6	1.0	4.9	ns
OFF-state to HIGH propagation delay	nOE to nY; see Figure 7	1.0	3.2	5.0	1.0	5.9	ns
OFF-state to LOW propagation delay	nOE to nY; see Figure 7	1.0	4.2	6.2	1.0	6.8	ns
HIGH to OFF-state propagation delay	nOE to nY; see Figure 7	1.0	4.1	5.4	1.0	6.2	ns
LOW to OFF-state propagation delay	nOE to nY; see Figure 7	1.5	2.8	5.0	1.5	5.5	ns
	LOW to HIGH propagation delay HIGH to LOW propagation delay OFF-state to HIGH propagation delay OFF-state to LOW propagation delay HIGH to OFF-state propagation delay LOW to OFF-state	LOW to HIGH propagation delay HIGH to LOW propagation delay OFF-state to HIGH propagation delay OFF-state to LOW propagation delay OFF-state to LOW propagation delay OFF-state to LOW propagation delay HIGH to OFF-state propagation delay LOW to OFF-state noe figure 7	LOW to HIGH propagation delay HIGH to LOW propagation delay OFF-state to HIGH propagation delay OFF-state to LOW propagation delay OFF-state to LOW propagation delay OFF-state to LOW propagation delay HIGH to OFF-state propagation delay LOW to OFF-state noe figure 7 1.0	LOW to HIGH propagation delay HIGH to LOW propagation delay OFF-state to HIGH propagation delay OFF-state to LOW propagation delay HIGH to OFF-state propagation delay LOW to OFF-state no DE to nY; see Figure 7	Min Typ Max LOW to HIGH propagation delay HIGH to LOW propagation delay OFF-state to HIGH propagation delay OFF-state to LOW propagation delay HIGH to OFF-state propagation delay LOW to OFF-state nOE to nY; see Figure 7 1.0 4.1 5.4	V _{CC} = 5.0MinTypMaxMinLOW to HIGH propagation delaynA to nY; see Figure 61.02.84.11.0HIGH to LOW propagation delaynA to nY; see Figure 61.03.14.61.0OFF-state to HIGH propagation delayn \overline{OE} to nY; see Figure 71.03.25.01.0OFF-state to LOW propagation delayn \overline{OE} to nY; see Figure 71.04.26.21.0HIGH to OFF-state propagation delayn \overline{OE} to nY; see Figure 71.04.15.41.0LOW to OFF-staten \overline{OE} to nY; see Figure 71.52.85.01.5	V _{CC} = 5.0 V \pm 0.5 VMinTypMaxMinMaxLOW to HIGH propagation delaynA to nY; see Figure 61.02.84.11.04.6HIGH to LOW propagation delaynA to nY; see Figure 61.03.14.61.04.9OFF-state to HIGH propagation delayn \overline{OE} to nY; see Figure 71.03.25.01.05.9OFF-state to LOW propagation delayn \overline{OE} to nY; see Figure 71.04.26.21.06.8HIGH to OFF-state propagation delayn \overline{OE} to nY; see Figure 71.04.15.41.06.2LOW to OFF-state propagation delayn \overline{OE} to nY; see Figure 71.52.85.01.55.5

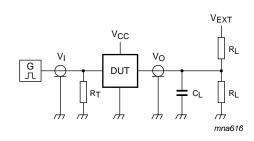

^[2] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

^[3] This is the increase in supply current for each input at 3.4 V.


74ABT125 **NXP Semiconductors**

Quad buffer; 3-state


11. Waveforms



Propagation delay input (nA) to output (nY) Fig 6.

Quad buffer; 3-state

b. Test circuit

a. Input pulse definition

Test data is given in Table 8.

Test circuit definitions:

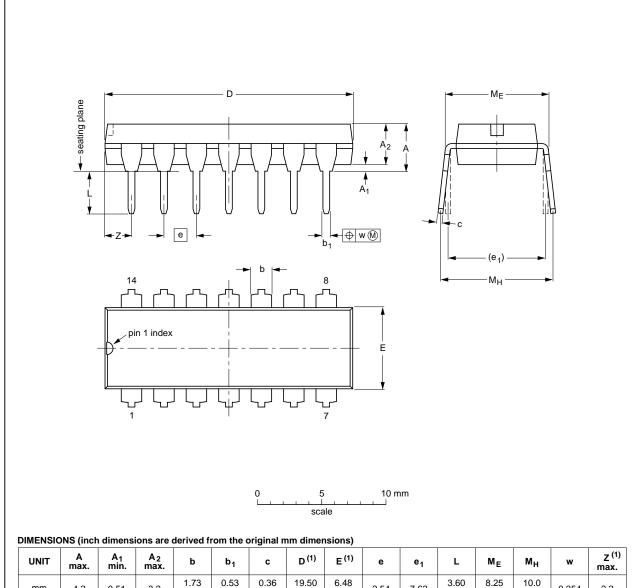
 R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

V_{EXT} = Test voltage for switching times.

Fig 8. Load circuitry for switching times


Table 8. Test data

Input	Load		V _{EXT}					
V_{I}	f _l	t _W	t _r , t _f	CL	C _L R _L t		t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
3.0 V	1 MHz	500 ns	≤ 2.5 ns	50 pF	500Ω	open	open	7.0 V

12. Package outline

DIP14: plastic dual in-line package; 14 leads (300 mil)

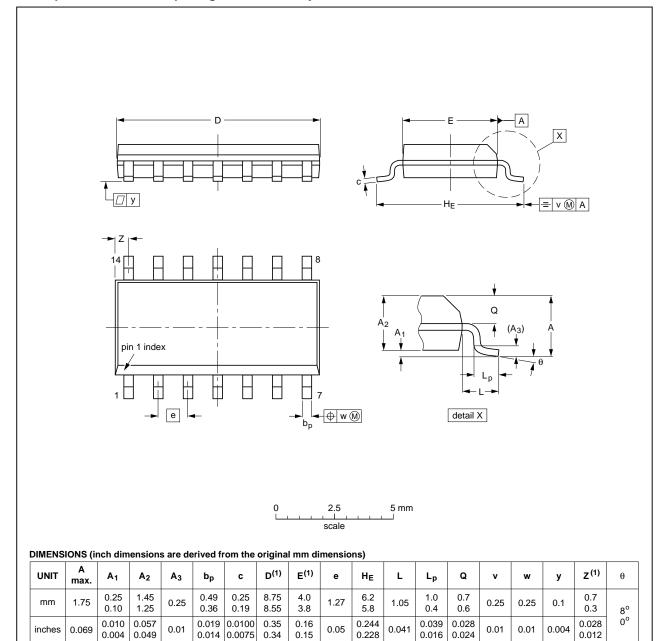
SOT27-1

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.02	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001	SC-501-14		99-12-27 03-02-13	


Package outline SOT27-1 (DIP14) Fig 9.

74ABT125

Product data sheet

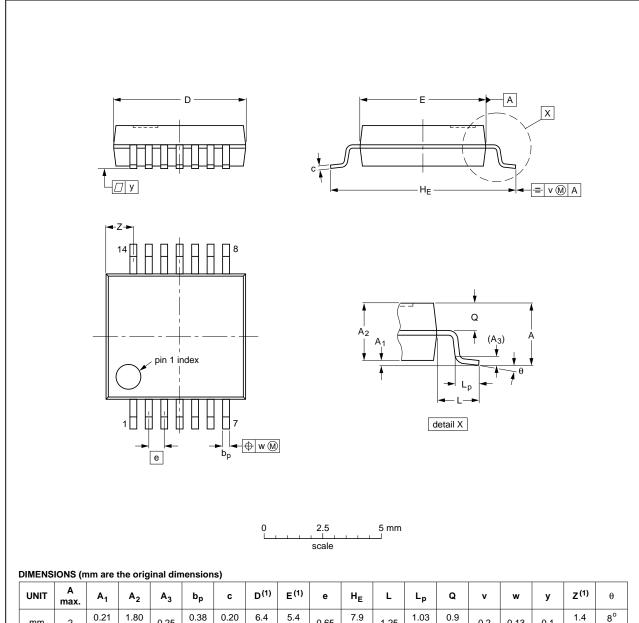
SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION		REFER	EUROPEAN	ISSUE DATE		
	IEC	JEDEC	JEITA		PROJECTION	1330E DATE
SOT108-1	076E06	MS-012				99-12-27 03-02-19


Fig 10. Package outline SOT108-1 (SO14)

74ABT12

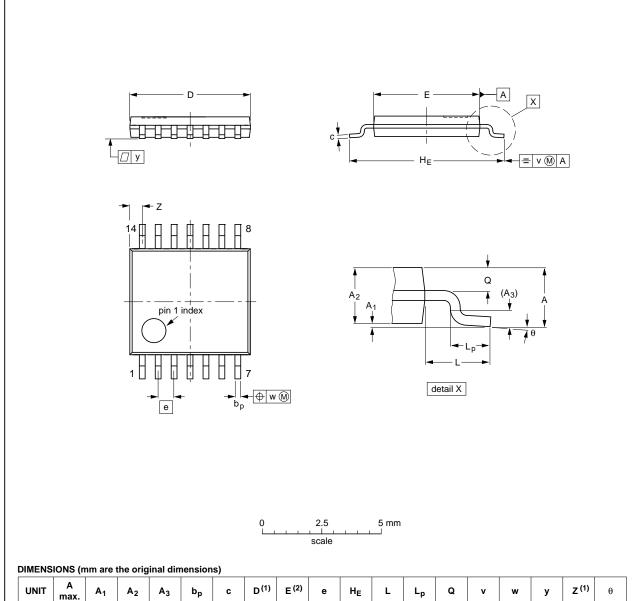
All information provided in this document is subject to legal disclaimers.

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

SOT337-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	8° 0°

Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT337-1		MO-150				99-12-27 03-02-19	

Fig 11. Package outline SOT337-1 (SSOP14)

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	e	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT402-1		MO-153				99-12-27 03-02-18	

Fig 12. Package outline SOT402-1 (TSSOP14)

74ABT12

All information provided in this document is subject to legal disclaimers.

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

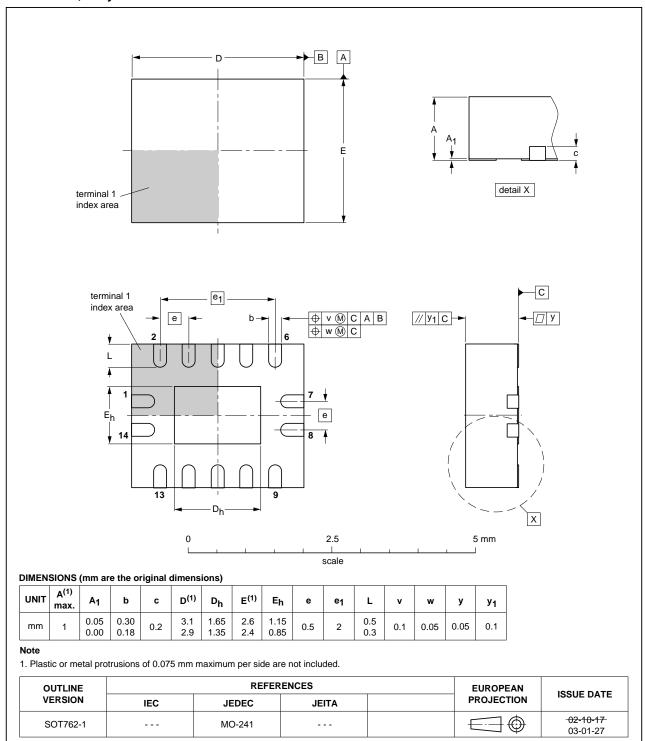


Fig 13. Package outline SOT762-1 (DHVQFN14)

74ABT125 All information provided in this document is subject to legal disclaimers.

NXP Semiconductors 74ABT125

Quad buffer; 3-state

13. Abbreviations

Table 9. Abbreviations

Acronym	Description
BiCMOS	BipolarCMOS
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model

14. Revision history

Table 10. Revision history

	•			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74ABT125 v.6	20111103	Product data sheet	-	74ABT125 v.5
Modifications:	 Legal pages 	s updated		
74ABT125 v.5	20101124	Product data sheet	-	74ABT125 v.4
74ABT125 v.4	20100427	Product data sheet	-	74ABT125 v.3
74ABT125 v.3	20080429	Product data sheet	-	74ABT125 v.2
74ABT125 v.2	19980116	Product specification	-	74ABT125 v.1
74ABT125 v.1	19960305	-	-	-

Quad buffer; 3-state

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

74ABT125

All information provided in this document is subject to legal disclaimers.

Quad buffer; 3-state

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74ABT125 **NXP Semiconductors** Quad buffer; 3-state

17. Contents

1	General description
2	Features and benefits
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 2
5.1	Pinning
5.2	Pin description
6	Functional description 3
7	Limiting values
8	Recommended operating conditions 4
9	Static characteristics 4
10	Dynamic characteristics 5
11	Waveforms
12	Package outline 8
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks15
16	Contact information
17	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Transmitters category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

NLV7SB3257DTT1G 7SB3257DTT2G 7SB3257DTT1G 7SB385DTT1G 74HC1G125GW 74AHC125D.112 74AHC244D.112
74AHC245D.112 74AHC541D.112 74HC245D.652 74HCT365D.652 74ABT125D.602 74ABT16245BDGG.112 74AHCT245D.112
74HC245PW.112 74HC367D.652 74HC541D.652 74HC541D.653 74HC7541D.112 74HCT367D.652 74HCT541D.653 74LVC244AD.112
74LVC4245AD.112 74LVC541AD.112 74HC240D.652 74HC4049D.653 74HC540D.652 74HCT125D.652 74HCT244D.652
74HCT245PW.112 74HCT367N.652 74HC125D.652 74HC244D.652 74HC245DB.118 HEF4050BT.652 74HC05PW.112 74HC125PW.112
74HC2G16GVH 74LVC06AD.112 74LVC06APW.112 74LVC125APW.112 74LVC126APW.112 74VHC126FT(BE) 7SB3257MUTCG
7SB384MUTCG 7SB384DTT1G 74AHCT245PW.118 74HC126DB.118 74HC240PW.112 74HC241DB.118