## 74HC1G14-Q100; 74HCT1G14-Q100

## **Inverting Schmitt trigger**

Rev. 2 — 27 December 2012

**Product data sheet** 

### 1. General description

74HC1G14-Q100 and 74HCT1G14-Q100 are high-speed Si-gate CMOS devices. They provide an inverting buffer function with Schmitt trigger action. These devices are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

The HC device has CMOS input switching levels and supply voltage range 2 V to 6 V.

The HCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V.

The standard output currents are half of those of the 74HC14-Q100 and 74HCT14-Q100.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

#### 2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
  - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Input levels:
  - For 74HC1G14-Q100: CMOS level
  - ◆ For 74HCT1G14-Q100: TTL level
- Symmetrical output impedance
- High noise immunity
- Low power dissipation
- Balanced propagation delays
- ESD protection:
  - ◆ MIL-STD-883, method 3015 exceeds 2000 V
  - HBM JESD22-A114F exceeds 2000 V
  - ♦ MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- SOT353-1 and SOT753 package options

## 3. Applications

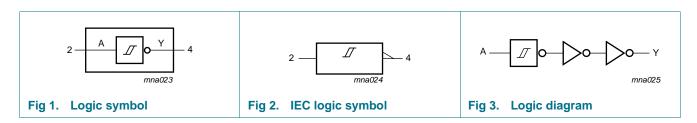
- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators



## 4. Ordering information

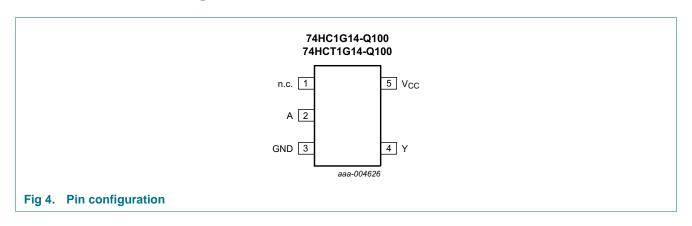
Table 1. Ordering information

| Type number      | Package                  |        |                                            |          |  |  |  |  |  |  |
|------------------|--------------------------|--------|--------------------------------------------|----------|--|--|--|--|--|--|
|                  | Temperature range        | Name   | Description                                | Version  |  |  |  |  |  |  |
| 74HC1G14GW-Q100  | -40 °C to +125 °C TSSOP5 |        | plastic thin shrink small outline package; | SOT353-1 |  |  |  |  |  |  |
| 74HCT1G14GW-Q100 |                          |        | 5 leads; body width 1.25 mm                |          |  |  |  |  |  |  |
| 74HC1G14GV-Q100  | –40 °C to +125 °C        | SC-74A | plastic surface-mounted package; 5 leads   | SOT753   |  |  |  |  |  |  |
| 74HCT1G14GV-Q100 |                          |        |                                            |          |  |  |  |  |  |  |


## 5. Marking

#### Table 2. Marking codes

| Type number      | Marking code <sup>[1]</sup> |
|------------------|-----------------------------|
| 74HC1G14GW-Q100  | HF                          |
| 74HCT1G14GW-Q100 | TF                          |
| 74HC1G14GV-Q100  | H14                         |
| 74HCT1G14GV-Q100 | T14                         |


<sup>[1]</sup> The pin 1 indicator is located on the lower left corner of the device, below the marking code.

## 6. Functional diagram



## 7. Pinning information

#### 7.1 Pinning



74HC\_HCT1G14\_Q100

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

#### 7.2 Pin description

Table 3. Pin description

| Symbol          | Pin | Description    |
|-----------------|-----|----------------|
| n.c.            | 1   | not connected  |
| A               | 2   | data input     |
| GND             | 3   | ground (0 V)   |
| Υ               | 4   | data output    |
| V <sub>CC</sub> | 5   | supply voltage |

## 8. Functional description

#### Table 4. Function table

H = HIGH voltage level; L = LOW voltage level

| Input | Output |
|-------|--------|
| A     | Υ      |
| L     | Н      |
| Н     | L      |

## 9. Limiting values

#### Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). [1]

| Symbol           | Parameter               | Conditions                                                                    | Min   | Max   | Unit |
|------------------|-------------------------|-------------------------------------------------------------------------------|-------|-------|------|
| $V_{CC}$         | supply voltage          |                                                                               | -0.5  | +7.0  | V    |
| I <sub>IK</sub>  | input clamping current  | $V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$                       | -     | ±20   | mA   |
| I <sub>OK</sub>  | output clamping current | $V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$                       | -     | ±20   | mA   |
| I <sub>O</sub>   | output current          | $-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$ | -     | ±12.5 | mA   |
| I <sub>CC</sub>  | supply current          |                                                                               | -     | 25    | mA   |
| $I_{GND}$        | ground current          |                                                                               | -25   | -     | mA   |
| T <sub>stg</sub> | storage temperature     |                                                                               | -65   | +150  | °C   |
| P <sub>tot</sub> | total power dissipation | $T_{amb} = -40  ^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$                  | [2] - | 200   | mW   |

<sup>[1]</sup> The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

## 10. Recommended operating conditions

#### Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

| Symbol   | Parameter      | Conditions | 74HC1G14-Q100 |     | 74HCT1G14-Q100 |     |     | Unit |   |
|----------|----------------|------------|---------------|-----|----------------|-----|-----|------|---|
|          |                |            | Min           | Тур | Max            | Min | Тур | Max  |   |
| $V_{CC}$ | supply voltage |            | 2.0           | 5.0 | 6.0            | 4.5 | 5.0 | 5.5  | V |

74HC\_HCT1G14\_Q100

<sup>[2]</sup> Above 55  $^{\circ}$ C, the value of P<sub>tot</sub> derates linearly with 2.5 mW/K.

Table 6. Recommended operating conditions ...continued

Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter           | Conditions | 74H | C1G14-0 | 2100     | 74HCT1G14-Q100 |     |          | Unit |
|------------------|---------------------|------------|-----|---------|----------|----------------|-----|----------|------|
|                  |                     |            | Min | Тур     | Max      | Min            | Тур | Max      |      |
| $V_{I}$          | input voltage       |            | 0   | -       | $V_{CC}$ | 0              | -   | $V_{CC}$ | V    |
| Vo               | output voltage      |            | 0   | -       | $V_{CC}$ | 0              | -   | $V_{CC}$ | V    |
| T <sub>amb</sub> | ambient temperature |            | -40 | +25     | +125     | -40            | +25 | +125     | °C   |

### 11. Static characteristics

#### Table 7. Static characteristics

Voltages are referenced to GND (ground = 0 V). All typical values are measured at  $T_{amb}$  = 25 °C.

| Symbol          | Parameter             | Conditions                                                      | -40  | °C to +8 | 35 °C | –40 °C 1 | to +125 °C | Unit |
|-----------------|-----------------------|-----------------------------------------------------------------|------|----------|-------|----------|------------|------|
|                 |                       |                                                                 | Min  | Тур      | Max   | Min      | Max        |      |
| For type        | 74HC1G14-Q100         |                                                                 |      |          |       |          |            |      |
| V <sub>OH</sub> | HIGH-level output     | $V_I = V_{T+}$ or $V_{T-}$                                      |      |          |       |          |            |      |
|                 | voltage               | $I_O = -20 \mu A; V_{CC} = 2.0 V$                               | 1.9  | 2.0      | -     | 1.9      | -          | V    |
|                 |                       | $I_O = -20 \mu A; V_{CC} = 4.5 V$                               | 4.4  | 4.5      | -     | 4.4      | -          | V    |
|                 |                       | $I_O = -20 \mu A; V_{CC} = 6.0 V$                               | 5.9  | 6.0      | -     | 5.9      | -          | V    |
|                 |                       | $I_{O} = -2.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$               | 4.13 | 4.32     | -     | 3.7      | -          | V    |
|                 |                       | $I_{O} = -2.6 \text{ mA}; V_{CC} = 6.0 \text{ V}$               | 5.63 | 5.81     | -     | 5.2      | -          | V    |
| $V_{OL}$        | LOW-level output      | $V_I = V_{T+}$ or $V_{T-}$                                      |      |          |       |          |            |      |
| voltage         | voltage               | $I_O = 20 \mu A; V_{CC} = 2.0 V$                                | -    | 0        | 0.1   | -        | 0.1        | V    |
|                 |                       | $I_O = 20 \mu A$ ; $V_{CC} = 4.5 V$                             | -    | 0        | 0.1   | -        | 0.1        | V    |
|                 |                       | $I_O = 20 \mu A; V_{CC} = 6.0 V$                                | -    | 0        | 0.1   | -        | 0.1        | V    |
|                 |                       | $I_O = 2.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$                  | -    | 0.15     | 0.33  | -        | 0.4        | V    |
|                 |                       | $I_O = 2.6 \text{ mA}; V_{CC} = 6.0 \text{ V}$                  | -    | 0.16     | 0.33  | -        | 0.4        | V    |
| I <sub>I</sub>  | input leakage current | $V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$                 | -    | -        | 1.0   | -        | 1.0        | μΑ   |
| I <sub>CC</sub> | supply current        | $V_I = V_{CC}$ or GND; $I_O = 0$ A;<br>$V_{CC} = 6.0 \text{ V}$ | -    | -        | 10    | -        | 20         | μΑ   |
| Cı              | input capacitance     |                                                                 | -    | 1.5      | -     | -        | -          | pF   |
| $V_{T+}$        | positive-going        | see Figure 7 and 8                                              |      |          |       |          |            |      |
|                 | threshold voltage     | $V_{CC} = 2.0 \text{ V}$                                        | 0.7  | 1.09     | 1.5   | 0.7      | 1.5        | V    |
|                 |                       | V <sub>CC</sub> = 4.5 V                                         | 1.7  | 2.36     | 3.15  | 1.7      | 3.15       | V    |
|                 |                       | $V_{CC} = 6.0 \text{ V}$                                        | 2.1  | 3.12     | 4.2   | 2.1      | 4.2        | V    |
| $V_{T-}$        | negative-going        | see Figure 7 and 8                                              |      |          |       |          |            |      |
|                 | threshold voltage     | V <sub>CC</sub> = 2.0 V                                         | 0.3  | 0.60     | 0.9   | 0.3      | 0.9        | V    |
|                 |                       | V <sub>CC</sub> = 4.5 V                                         | 0.9  | 1.53     | 2.0   | 0.9      | 2.0        | V    |
|                 |                       | $V_{CC} = 6.0 \text{ V}$                                        | 1.2  | 2.08     | 2.6   | 1.2      | 2.6        | V    |
| V <sub>H</sub>  | hysteresis voltage    | see Figure 7 and 8                                              |      |          |       |          |            |      |
|                 |                       | $V_{CC} = 2.0 \text{ V}$                                        | 0.2  | 0.48     | 1.0   | 0.2      | 1.0        | V    |
|                 |                       | V <sub>CC</sub> = 4.5 V                                         | 0.4  | 0.83     | 1.4   | 0.4      | 1.4        | V    |
|                 |                       | $V_{CC} = 6.0 \text{ V}$                                        | 0.6  | 1.04     | 1.6   | 0.6      | 1.6        | V    |

74HC\_HCT1G14\_Q100

 Table 7.
 Static characteristics ...continued

Voltages are referenced to GND (ground = 0 V). All typical values are measured at  $T_{amb}$  = 25 °C.

| Symbol          | Parameter                 | Conditions                                                                | <b>-40</b> | °C to +8 | 35 °C | –40 °C t | Unit |    |
|-----------------|---------------------------|---------------------------------------------------------------------------|------------|----------|-------|----------|------|----|
|                 |                           |                                                                           | Min        | Тур      | Max   | Min      | Max  |    |
| For type        | 74HCT1G14-Q100            |                                                                           |            | '        |       |          | •    | '  |
| $V_{OH}$        | HIGH-level output         | $V_I = V_{T+}$ or $V_{T-}$                                                |            |          |       |          |      |    |
|                 | voltage                   | $I_O = -20 \mu A; V_{CC} = 4.5 V$                                         | 4.4        | 4.5      | -     | 4.4      | -    | V  |
|                 |                           | $I_O = -2.0$ mA; $V_{CC} = 4.5$ V                                         | 4.13       | 4.32     | -     | 3.7      | -    | V  |
| $V_{OL}$        | LOW-level output          | $V_I = V_{T+}$ or $V_{T-}$                                                |            |          |       |          |      |    |
|                 | voltage                   | $I_O = 20 \mu A; V_{CC} = 4.5 V$                                          | -          | 0        | 0.1   | -        | 0.1  | V  |
|                 |                           | $I_{O} = 2.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$                          | -          | 0.15     | 0.33  | -        | 0.4  | V  |
| I <sub>I</sub>  | input leakage current     | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$                           | -          | -        | 1.0   | -        | 1.0  | μΑ |
| I <sub>CC</sub> | supply current            | $V_I = V_{CC}$ or GND; $I_O = 0$ A;<br>$V_{CC} = 5.5 \text{ V}$           | -          | -        | 10    | -        | 20   | μА |
| $\Delta I_{CC}$ | additional supply current | per input; $V_{CC}$ = 4.5 V to 5.5 V; $V_I = V_{CC} - 2.1$ V; $I_O$ = 0 A | -          | -        | 500   | -        | 850  | μА |
| Cı              | input capacitance         |                                                                           | -          | 1.5      | -     | -        | -    | pF |
| $V_{T+}$        | positive-going            | see Figure 7 and 8                                                        |            |          |       |          |      |    |
|                 | threshold voltage         | V <sub>CC</sub> = 4.5 V                                                   | 1.2        | 1.55     | 1.9   | 1.2      | 1.9  | V  |
|                 |                           | V <sub>CC</sub> = 5.5 V                                                   | 1.4        | 1.80     | 2.1   | 1.4      | 2.1  | V  |
| $V_{T-}$        | negative-going            | see Figure 7 and 8                                                        |            |          |       |          |      |    |
|                 | threshold voltage         | V <sub>CC</sub> = 4.5 V                                                   | 0.5        | 0.76     | 1.2   | 0.5      | 1.2  | V  |
|                 |                           | V <sub>CC</sub> = 5.5 V                                                   | 0.6        | 0.90     | 1.4   | 0.6      | 1.4  | V  |
| $V_{H}$         | hysteresis voltage        | see Figure 7 and 8                                                        |            |          |       |          |      |    |
|                 |                           | V <sub>CC</sub> = 4.5 V                                                   | 0.4        | 0.80     | -     | 0.4      | -    | V  |
|                 |                           | V <sub>CC</sub> = 5.5 V                                                   | 0.4        | 0.90     | -     | 0.4      | -    | V  |

## 12. Dynamic characteristics

Table 8. Dynamic characteristics

GND = 0 V;  $t_r = t_f \le 6.0$  ns; All typical values are measured at  $T_{amb} = 25$  °C. For test circuit see Figure 6

| Symbol          | Parameter                     | Conditions                                    |            | -40 °C to +85 °C |     |     | -40 °C t | o +125 °C | Unit |
|-----------------|-------------------------------|-----------------------------------------------|------------|------------------|-----|-----|----------|-----------|------|
|                 |                               |                                               |            | Min              | Тур | Max | Min      | Max       |      |
| For type        | 74HC1G14-Q100                 |                                               |            |                  |     |     |          | •         |      |
| t <sub>pd</sub> | propagation delay             | A to Y; see Figure 5                          | <u>[1]</u> |                  |     |     |          |           |      |
|                 |                               | $V_{CC} = 2.0 \text{ V}; C_L = 50 \text{ pF}$ |            | -                | 25  | 155 | -        | 190       | ns   |
|                 |                               | $V_{CC} = 4.5 \text{ V}; C_L = 50 \text{ pF}$ |            | -                | 12  | 31  | -        | 38        | ns   |
|                 |                               | $V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$ |            | -                | 10  | -   | -        | -         | ns   |
|                 |                               | $V_{CC} = 6.0 \text{ V}; C_L = 50 \text{ pF}$ |            | -                | 11  | 26  | -        | 32        | ns   |
| $C_{PD}$        | power dissipation capacitance | $V_I = GND$ to $V_{CC}$                       | [2]        | -                | 20  | -   | -        | -         | pF   |

Table 8. Dynamic characteristics ...continued

GND = 0 V;  $t_r = t_f \le 6.0$  ns; All typical values are measured at  $T_{amb} = 25$  °C. For test circuit see Figure 6

| Symbol          | Parameter                     | Conditions                                     | -40 °C to +85 °C |     | -40 °C to | C to +125 °C U |     |     |    |
|-----------------|-------------------------------|------------------------------------------------|------------------|-----|-----------|----------------|-----|-----|----|
|                 |                               |                                                |                  | Min | Тур       | Max            | Min | Max |    |
| For type        | 74HCT1G14-Q100                |                                                |                  |     |           |                |     |     |    |
| t <sub>pd</sub> | propagation delay             | A to Y; see Figure 5                           | 1                |     |           |                |     |     |    |
|                 |                               | $V_{CC} = 4.5 \text{ V}; C_L = 50 \text{ pF}$  |                  | -   | 17        | 43             | -   | 51  | ns |
|                 |                               | $V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$  |                  | -   | 15        | -              | -   | -   | ns |
| $C_{PD}$        | power dissipation capacitance | $V_I = GND \text{ to } V_{CC} - 1.5 \text{ V}$ | <u>!]</u>        | -   | 22        | -              | -   | -   | pF |

<sup>[1]</sup>  $t_{pd}$  is the same as  $t_{PLH}$  and  $t_{PHL}$ .

[2]  $C_{PD}$  is used to determine the dynamic power dissipation  $P_D$  ( $\mu W$ ).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$  where:

 $f_i$  = input frequency in MHz;  $f_o$  = output frequency in MHz

 $C_L$  = output load capacitance in pF;  $V_{CC}$  = supply voltage in Volts

 $\sum (C_L \times V_{CC}^2 \times f_o)$  = sum of outputs

#### 13. Waveforms

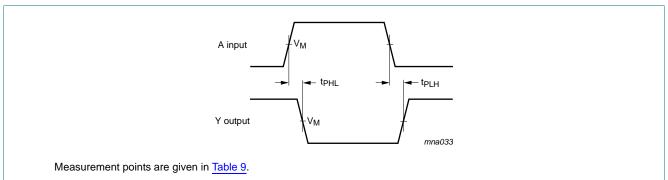
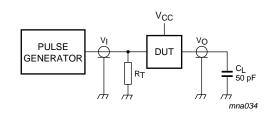




Fig 5. The input (A) to output (Y) propagation delays

Table 9. Measurement points

| Type number    | Input                  | Output              |                     |  |
|----------------|------------------------|---------------------|---------------------|--|
|                | V <sub>I</sub>         | V <sub>M</sub>      | V <sub>M</sub>      |  |
| 74HC1G14-Q100  | GND to V <sub>CC</sub> | $0.5 \times V_{CC}$ | $0.5 \times V_{CC}$ |  |
| 74HCT1G14-Q100 | GND to 3.0 V           | 1.5 V               | $0.5 \times V_{CC}$ |  |



Test data is given in Table 8. Definitions for test circuit:

 $C_L$  = Load capacitance including jig and probe capacitance.

 $R_T$  = Termination resistance should be equal to output impedance  $Z_o$  of the pulse generator.

Fig 6. Load circuitry for switching times

#### 14. Transfer characteristics waveforms

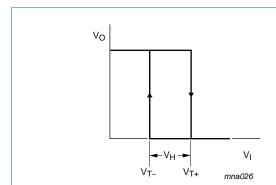



Fig 7. Transfer characteristic

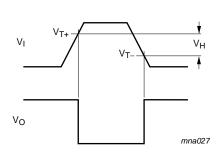



Fig 8. The definitions of  $V_{T+}$ ,  $V_{T-}$  and  $V_{H}$ ; where  $V_{T+}$  and  $V_{T-}$  are between limits of 20 % and 70 %

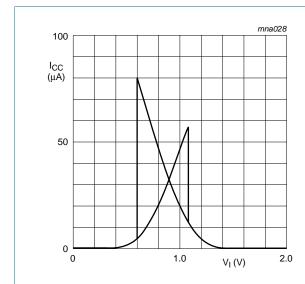



Fig 9. Typical 74HC1G14-Q100 transfer characteristics; V<sub>CC</sub> = 2.0 V

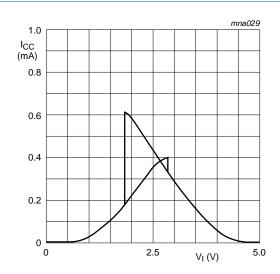



Fig 10. Typical 74HC1G14-Q100 transfer characteristics; V<sub>CC</sub> = 4.5 V

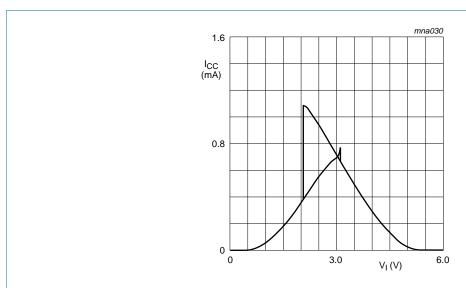



Fig 11. Typical 74HC1G14-Q100 transfer characteristics;  $V_{CC} = 6.0 \text{ V}$ 

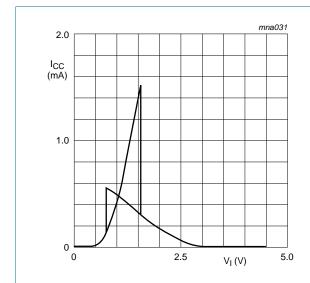



Fig 12. Typical 74HCT1G14-Q100 transfer characteristics; V<sub>CC</sub> = 4.5 V




Fig 13. Typical 74HCT1G14-Q100 transfer characteristics; V<sub>CC</sub> = 5.5 V

## 15. Application information

The slow input rise and fall times cause additional power dissipation. The additional power dissipation can be calculated using the following formula:

$$P_{add} = f_i \times (t_r \times \Delta I_{CC(AV)} + t_f \times \Delta I_{CC(AV)}) \times V_{CC}$$

Where:

 $P_{add}$  = additional power dissipation ( $\mu W$ )

 $f_i = input frequency (MHz)$ 

 $t_r$  = rise time (ns); 10 % to 90 %

74HC\_HCT1G14\_Q100

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

 $t_f$  = fall time (ns); 90 % to 10 %

 $\Delta I_{CC(AV)}$  = average additional supply current ( $\mu A$ )

Δl<sub>CC(AV)</sub> differs with positive or negative input transitions, as shown in Figure 14 and 15.

74HC1G14-Q100 and 74HCT1G14-Q100 used in relaxation oscillator circuit, see Figure 16.

Remark: All values given are typical unless otherwise specified.

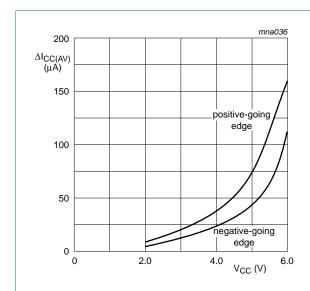



Fig 14.  $\Delta I_{CC(AV)}$  for 74HC1G14-Q100 devices; linear change of V<sub>I</sub> between 0.1  $\times$  V<sub>CC</sub> to 0.9  $\times$  V<sub>CC</sub>

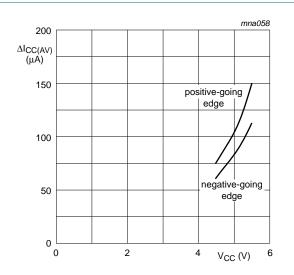
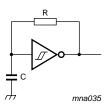




Fig 15.  $\Delta I_{CC(AV)}$  for 74HCT1G14-Q100 devices; linear change of V<sub>I</sub> between 0.1 × V<sub>CC</sub> to 0.9 × V<sub>CC</sub>



For 74HC1G14-Q100 and 74HCT1G14-Q100:  $f = \frac{1}{T} \approx \frac{1}{K \times RC}$ 

For K-factor, see Figure 17

Fig 16. Relaxation oscillator

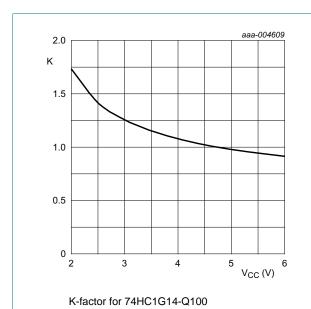
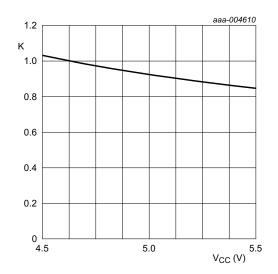
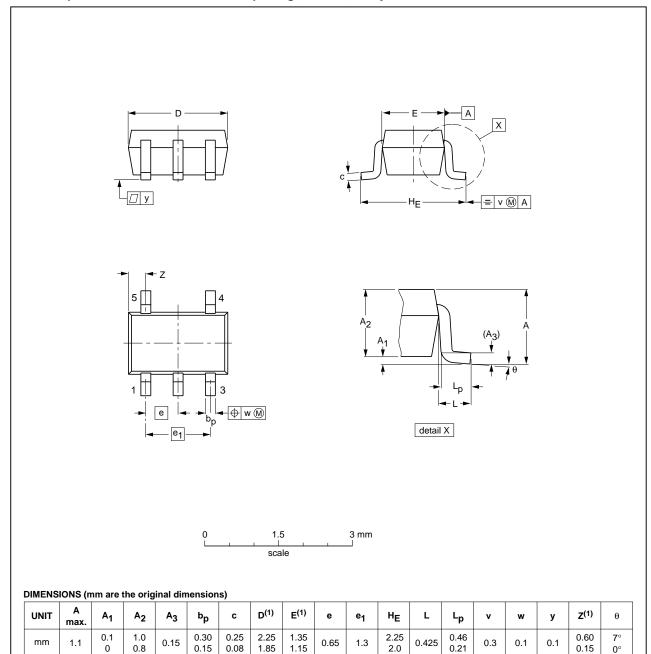




Fig 17. Typical K-factor for relaxation oscillator




K-factor for 74HCT1G14-Q100

## 16. Package outline

TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm

SOT353-1



#### Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

|   | OUTLINE<br>VERSION | REFERENCES |        |        |  | EUROPEAN   | ISSUE DATE                       |
|---|--------------------|------------|--------|--------|--|------------|----------------------------------|
| ' |                    | IEC        | JEDEC  | JEITA  |  | PROJECTION | ISSUE DATE                       |
| ; | SOT353-1           |            | MO-203 | SC-88A |  |            | <del>-00-09-01</del><br>03-02-19 |

Fig 18. Package outline SOT353-1 (TSSOP5)

74HC\_HCT1G14\_Q100

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

#### Plastic surface-mounted package; 5 leads

**SOT753** 

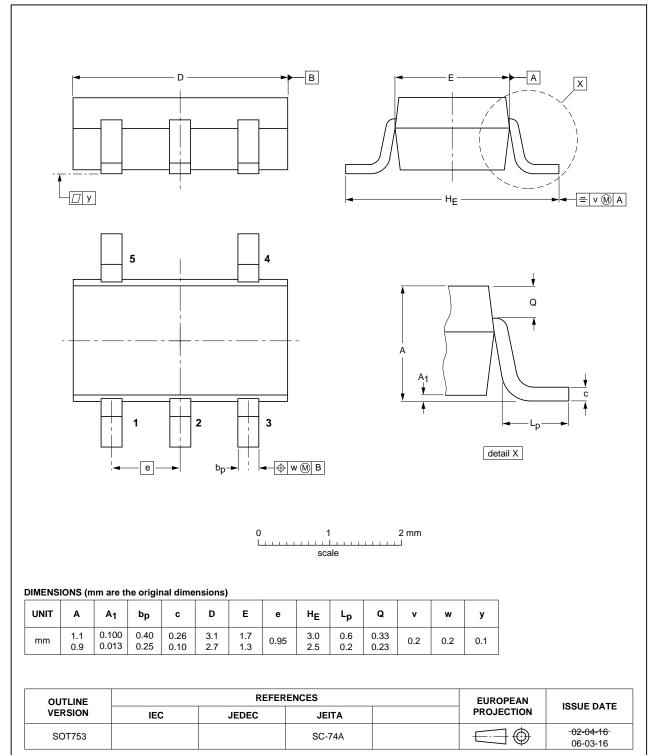



Fig 19. Package outline SOT753 (SC-74A)

## 17. Abbreviations

#### Table 10. Abbreviations

| Acronym | Description                 |
|---------|-----------------------------|
| DUT     | Device Under Test           |
| TTL     | Transistor-Transistor Logic |

## 18. Revision history

#### Table 11. Revision history

| Document ID                                                                  | Release date | Data sheet status  | Change notice | Supersedes            |
|------------------------------------------------------------------------------|--------------|--------------------|---------------|-----------------------|
| 74HC_HCT1G14_Q100 v.2                                                        | 20121227     | Product data sheet | -             | 74HC_HCT1G14_Q100 v.1 |
| Modifications:  • Table 3: Pin number Y output changed from 5 to 4 (errata). |              |                    |               |                       |
| 74HC_HCT1G14_Q100 v.1                                                        | 20120820     | Product data sheet | -             | -                     |

### 19. Legal information

#### 19.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

#### 19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or

applications and therefore such inclusion and/or use is at the customer's own

Suitability for use in automotive applications — This NXP

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

74HC\_HCT1G14\_Q100

## 74HC1G14-Q100; 74HCT1G14-Q100

**NXP Semiconductors** 

**Inverting Schmitt trigger** 

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### 19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

#### 20. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

# 74HC1G14-Q100; 74HCT1G14-Q100

**Inverting Schmitt trigger** 

#### 21. Contents

| 1    | General description                  |
|------|--------------------------------------|
| 2    | Features and benefits                |
| 3    | Applications                         |
| 4    | Ordering information 2               |
| 5    | Marking 2                            |
| 6    | Functional diagram 2                 |
| 7    | Pinning information 2                |
| 7.1  | Pinning                              |
| 7.2  | Pin description                      |
| 8    | Functional description 3             |
| 9    | Limiting values 3                    |
| 10   | Recommended operating conditions 3   |
| 11   | Static characteristics 4             |
| 12   | Dynamic characteristics 5            |
| 13   | Waveforms 6                          |
| 14   | Transfer characteristics waveforms 7 |
| 15   | Application information 8            |
| 16   | Package outline                      |
| 17   | Abbreviations                        |
| 18   | Revision history                     |
| 19   | Legal information 14                 |
| 19.1 | Data sheet status                    |
| 19.2 | Definitions                          |
| 19.3 | Disclaimers                          |
| 19.4 | Trademarks15                         |
| 20   | Contact information                  |
| 24   | Contents 16                          |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G
NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A
NL17SG32P5T5G NL17SG86DFT2G NLU1G32CMUTCG NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G
NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7
74LVC08ADTR2G MC74HCT20ADTR2G NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G
NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7
M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G
NLV74HC20ADR2G