Octal Schmitt trigger buffer/line driver; 3-state

Rev. 3 — 25 July 2011

Product data sheet

1. General description

The 74HC7541; 74HCT7541 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard No. 7A.

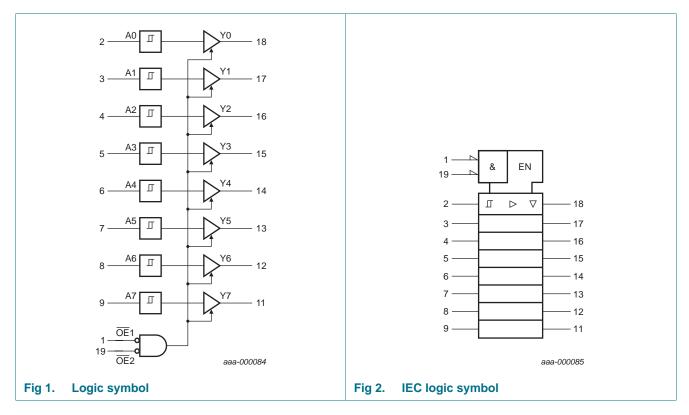
The 74HC7541; 74HCT7541 provides eight non-inverting buffer/line drivers with 3-state outputs and Schmitt-trigger action. The 3-state outputs are controlled by the output enable inputs $\overline{OE1}$ and $\overline{OE2}$. A HIGH on \overline{OEn} causes the outputs to assume a high-impedance OFF-state. Schmitt trigger action on the data inputs transforms slowly changing input signals into sharply defined, jitter-free output signals.

The 74HC7541; 74HCT7541 is identical to the 74HC541; 74HCT541 but has hysteresis on the data inputs.

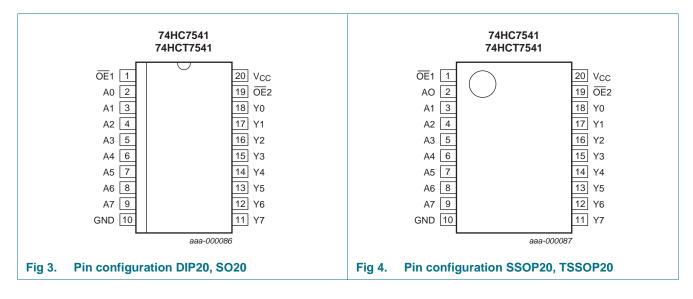
2. Features and benefits

- Non-inverting outputs
- Low-power dissipation
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3. Ordering information


Table 1.Ordering information

Type number	Package									
	Temperature range	Name	Description	Version						
74HC7541N	–40 °C to +125 °C DIP20		plastic dual in-line package; 20 leads (300 mil)	SOT146-1						
74HCT7541N										
74HC7541D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads;	SOT163-1						
74HCT7541D			body width 7.5 mm							
74HC7541DB	–40 °C to +125 °C	SSOP20	plastic shrink small outline package; 20 leads; body width 5.3 mm	SOT339-1						
74HC7541PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads;	SOT360-1						
74HCT7541PW			body width 4.4 mm							



Octal Schmitt trigger buffer/line driver; 3-state

4. Functional diagram

5. Pinning information

5.1 Pinning

Octal Schmitt trigger buffer/line driver; 3-state

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
OE1	1	output enable input (active LOW)
A0 to A7	2, 3, 4, 5, 6, 7, 8, 9	data input
GND	10	ground (0 V)
Y0 to Y7	18, 17, 16, 15, 14, 13, 12, 11	data output
OE2	19	output enable input (active LOW)
V _{CC}	20	supply voltage

6. Functional description

Table 3. Functional table^[1]

Control		Input	Output
OE1	OE2	An	Yn
L	L	L	L
L	L	Н	Н
Х	Н	Х	Z
Н	Х	Х	Z

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	Min	Max	Unit
supply voltage		-0.5	+7	V
input clamping current	$V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{\rm CC}$ + 0.5 V	<u>[1]</u> _	±20	mA
output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> _	±20	mA
output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
supply current		-	50	mA
ground current		-50	-	mA
storage temperature		-65	+150	°C
total power dissipation		[2]		
DIP20		-	750	mW
SO20, SSOP20, TSSOP20		-	500	mW
	supply voltage input clamping current output clamping current output current supply current ground current storage temperature total power dissipation DIP20	supply voltageinput clamping current $V_1 < -0.5 V \text{ or } V_1 > V_{CC} + 0.5 V$ output clamping current $V_0 < -0.5 V \text{ or } V_0 > V_{CC} + 0.5 V$ output current $-0.5 V < V_0 < V_{CC} + 0.5 V$ supply currentground currentstorage temperaturetotal power dissipationDIP20 $DIP20$	supply voltage-0.5input clamping current $V_1 < -0.5 V \text{ or } V_1 > V_{CC} + 0.5 V$ [1] -output clamping current $V_0 < -0.5 V \text{ or } V_0 > V_{CC} + 0.5 V$ [1] -output current $-0.5 V < V_0 < V_{CC} + 0.5 V$ -supply current $-0.5 V < V_0 < V_{CC} + 0.5 V$ -ground current -50 -storage temperature-65total power dissipation[2]DIP20-	supply voltage -0.5 +7 input clamping current $V_1 < -0.5 V \text{ or } V_1 > V_{CC} + 0.5 V$ 11 - ± 20 output clamping current $V_0 < -0.5 V \text{ or } V_0 > V_{CC} + 0.5 V$ 11 - ± 20 output current $-0.5 V < V_0 < V_{CC} + 0.5 V$ 11 - ± 20 output current $-0.5 V < V_0 < V_{CC} + 0.5 V$ - ± 25 supply current $-0.5 V < V_0 < V_{CC} + 0.5 V$ - ± 25 ground current $-0.5 V < V_0 < V_{CC} + 0.5 V$ - ± 25 ground current -50 - - storage temperature -65 +150 total power dissipation [2] - 750

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For DIP20 packages: above 70 °C the value of Ptot derates linearly with 12 mW/K.

For SO20 packages: above 70 °C the value of P_{tot} derates linearly with 8 mW/K. For SSOP20 and TSSOP20 packages: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74HC7541			74HCT7541			Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	T _a	_{mb} = 2	5 °C		=	T _{amb} = −40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC75	41									
V _{OH}	HIGH-level	$V_I = V_{T+} \text{ or } V_{T-}$								
	output voltage	I_{O} = –20 $\mu A; V_{CC}$ = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		I_{O} = –20 $\mu\text{A};$ V_{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		I_{O} = –20 $\mu A; V_{CC}$ = 6.0 V	5.9	6.0	-	5.9	-	5.9	-	V
		I_{O} = -6.0 mA; V_{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
		I_{O} = -7.8 mA; V_{CC} = 6.0 V	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_I = V_{T+} \text{ or } V_{T-}$								
	output voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 20 μ A; V_{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 6.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		I_{O} = 7.8 mA; V_{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
lı	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0$ V	-	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V	-	-	8.0	-	80	-	160	μΑ
CI	input capacitance		-	3.5	-	-	-	-	-	pF
74HCT7	541									
V _{OH}	HIGH-level	$V_{I} = V_{T+} \text{ or } V_{T-}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -6.0 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_I = V_{T+} \text{ or } V_{T-}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 20 μA;	-	0	0.1	-	0.1	-	0.1	V
		l _O = 6.0 mA;	-	0.15	0.26	-	0.33	-	0.4	V

Octal Schmitt trigger buffer/line driver; 3-state

Symbol Parameter Conditions T_{amb} = 25 °C T_{amb} = −40 °C T_{amb} = -40 °C Unit to +85 °C to +125 °C Min Тур Max Min Max Min Max I_I input leakage $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 V$ ±0.1 ± 1.0 _ ± 1.0 μΑ _ _ current $V_I = V_{CC}$ or GND; $I_O = 0$ A; 80 160 supply current 8.0 Icc ---_ μΑ $V_{CC} = 5.5 V$ additional per input pin; $I_0 = 0 A$; ΔI_{CC} $V_{I} = V_{CC} - 2.1 V;$ supply current other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$ An input 20 72 90 98 μΑ ---OEn input 130 468 585 637 μΑ _ --CI pF input 3.5 _ _ -_ _ capacitance

Table 6. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

10. Dynamic characteristics

Table 7.Dynamic characteristics

GND = 0 V; $C_L = 50$ pF; for test circuit see <u>Figure 7</u>.

Symbol	Parameter	Conditions		Tan	_{nb} = 25	°C	T _{amb} = −40 °	°C to +125 °C	Unit
				Min	Тур	Max	Max (85 °C)	Max (125 °C)	
74HC754	41								
t _{pd}	propagation delay	An to Yn; see Figure 5	[1]						
		$V_{CC} = 2.0 V$		-	39	120	150	180	ns
		$V_{CC} = 4.5 V$		-	14	24	30	36	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	10	-	-	-	ns
		$V_{CC} = 6.0 V$		-	11	20	26	32	ns
t _{en}	enable time	OEn to Yn; see Figure 6	[1]						
		$V_{CC} = 2.0 V$		-	44	160	200	240	ns
		$V_{CC} = 4.5 V$		-	16	32	40	48	ns
		$V_{CC} = 6.0 V$		-	13	27	34	41	ns
t _{dis}	disable time	OEn to Yn; see Figure 6	[1]						
		$V_{CC} = 2.0 V$		-	58	160	200	240	ns
		$V_{CC} = 4.5 V$		-	21	32	40	48	ns
		$V_{CC} = 6.0 V$		-	17	27	34	41	ns
t _t	transition time	see Figure 5	[2]						
		$V_{CC} = 2.0 V$		-	14	60	75	90	ns
		$V_{CC} = 4.5 V$		-	5	12	15	18	ns
		$V_{CC} = 6.0 V$		-	4	10	13	15	ns
C _{PD}	power dissipation capacitance	per package; V _I = GND to V _{CC}	<u>[3]</u>	-	30	-	-	-	pF

Octal Schmitt trigger buffer/line driver; 3-state

Symbol	Parameter	Conditions		T _{amb} = 25 °C			T _{amb} = −40 °C to +125 °C		
				Min	Тур	Max	Max (85 °C)	Max (125 °C)	
74HCT7	541								
t _{pd} propagation delay		An to Yn; see Figure 5	<u>[1]</u>						
		$V_{CC} = 4.5 V$		-	19	32	40	48	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	16	-	-	-	ns
t _{en}	enable time	OEn to Yn; see Figure 6	<u>[1]</u>						
		$V_{CC} = 4.5 V$		-	18	32	40	48	ns
t _{dis}	disable time	OEn to Yn; see Figure 6	<u>[1]</u>						
		$V_{CC} = 4.5 V$		-	20	32	40	48	ns
t _t	transition time	V_{CC} = 4.5 V; see <u>Figure 5</u>	[2]	-	5	12	15	18	ns
C _{PD}	power dissipation capacitance	per package; V _I = GND to V _{CC} – 1.5 V	<u>[3]</u>	-	32	-	-	-	pF

Dynamic characteristics Table 7. GND = 0 V; $C_{1} = 50 pE$; for test circuit see Figure 7.

[1] t_{pd} is the same as t_{PLH} and t_{PHL} . t_{en} is the same as t_{PZL} and t_{PZH} .

 t_{dis} is the same as t_{PLZ} and t_{PHZ} .

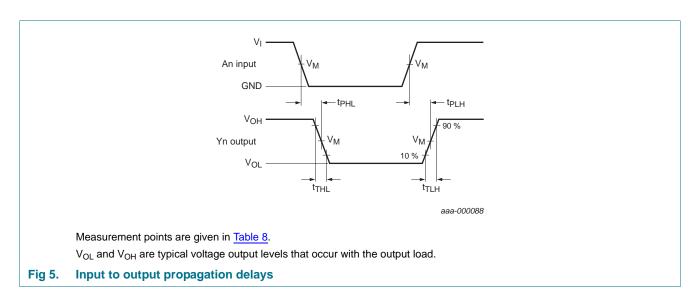
[2] t_t is the same as t_{THL} and t_{TLH} .

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

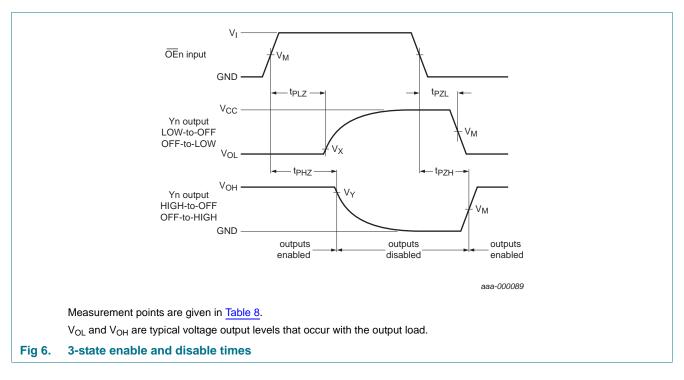
fo = output frequency in MHz;


 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

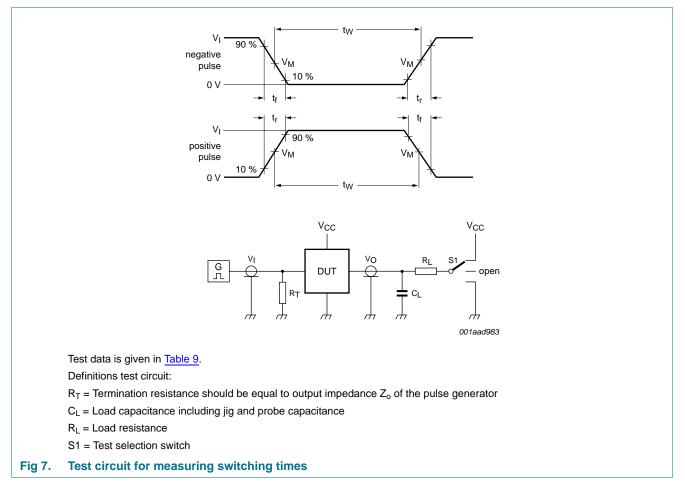
 $\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.


11. Waveforms

NXP Semiconductors

74HC7541; 74HCT7541

Octal Schmitt trigger buffer/line driver; 3-state


Table 8.Measurement points

Туре	Input	Output			
	V _M	V _M	V _X	V _Y	
74HC7541	0.5V _{CC}	0.5V _{CC}	0.1V _{CC}	0.9V _{CC}	
74HCT7541	1.3 V	1.3 V	0.1V _{CC}	0.9V _{CC}	

NXP Semiconductors

74HC7541; 74HCT7541

Octal Schmitt trigger buffer/line driver; 3-state

Table 9. Test data

Туре	Input		Load	Load		S1 position		
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
74HC7541	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}	
74HCT7541	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}	

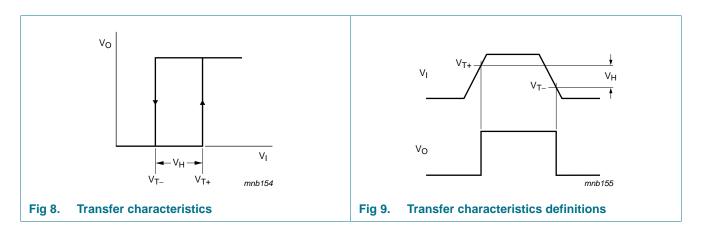
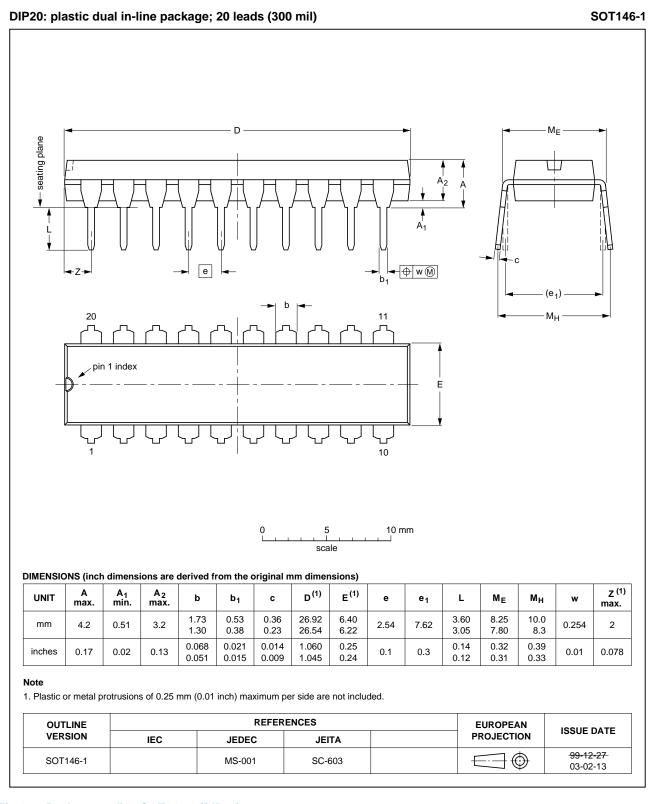

12. Transfer characteristics

Table 10. Transfer characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); see Figure 8 and Figure 9.

Symbol	Parameter	Conditions	T _{ar}	_{nb} = 25	°C		:	T _{amb} = −40 °C to +125 °C		Unit
			Min	Тур	Мах	Min	Max	Min	Max	
74HC754	41									
V _{T+}	positive-going	$V_{CC} = 2.0 V$	-	-	1.5	-	1.5	-	1.5	V
	threshold voltage	$V_{CC} = 4.5 V$	-	-	3.15	-	3.15	-	3.15	V
	voltage	$V_{CC} = 6.0 V$	-	-	4.2	-	4.2	-	4.2	V
V _{T-}	negative-going	$V_{CC} = 2.0 V$	0.3	-	-	0.3	-	0.3	-	V
	threshold voltage	$V_{CC} = 4.5 V$	1.35	-	-	1.35	-	1.35	-	V
	voltage	$V_{CC} = 6.0 V$	1.8	-	-	1.8	-	1.8	-	V
V _H	hysteresis	$V_{CC} = 2.0 V$	0.1	0.20	-	0.1	-	0.1	-	V
	voltage	$V_{CC} = 4.5 V$	0.25	0.40	-	0.25	-	0.25	-	V
		$V_{CC} = 6.0 V$	0.3	0.5	-	0.3	-	0.3	-	V
74HCT7	541									
V _{T+}	positive-going	$V_{CC} = 4.5 V$	-	-	2.0	-	2.0	-	2.0	V
	threshold voltage	$V_{CC} = 5.5 V$	-	-	2.1	-	2.1	-	2.1	V
V _{T-}	negative-going	$V_{CC} = 4.5 V$	0.7	-	-	0.64	-	0.6	-	V
	threshold voltage	$V_{CC} = 5.5 V$	0.8	-	-	0.74	-	0.7	-	V
V _H	hysteresis	$V_{CC} = 4.5 V$	0.17	0.23	-	-	-	-	-	V
	voltage	V _{CC} = 5.5 V	0.17	0.23	-	-	-	-	-	V

13. Transfer characteristics waveforms



NXP Semiconductors

74HC7541; 74HCT7541

Octal Schmitt trigger buffer/line driver; 3-state

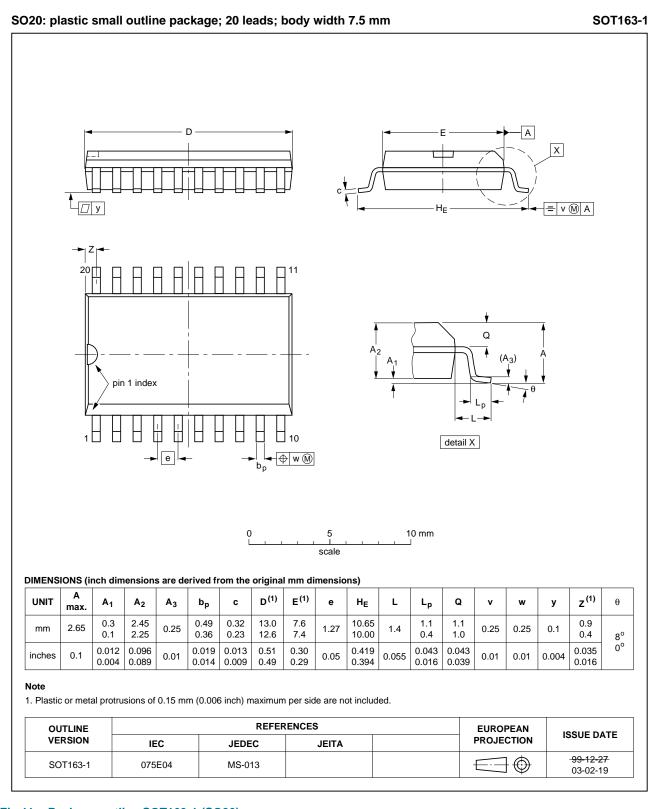

14. Package outline

Fig 10. Package outline SOT146-1 (DIP20)

All information provided in this document is subject to legal disclaimers.

Octal Schmitt trigger buffer/line driver; 3-state

Fig 11. Package outline SOT163-1 (SO20)

All information provided in this document is subject to legal disclaimers.

Octal Schmitt trigger buffer/line driver; 3-state

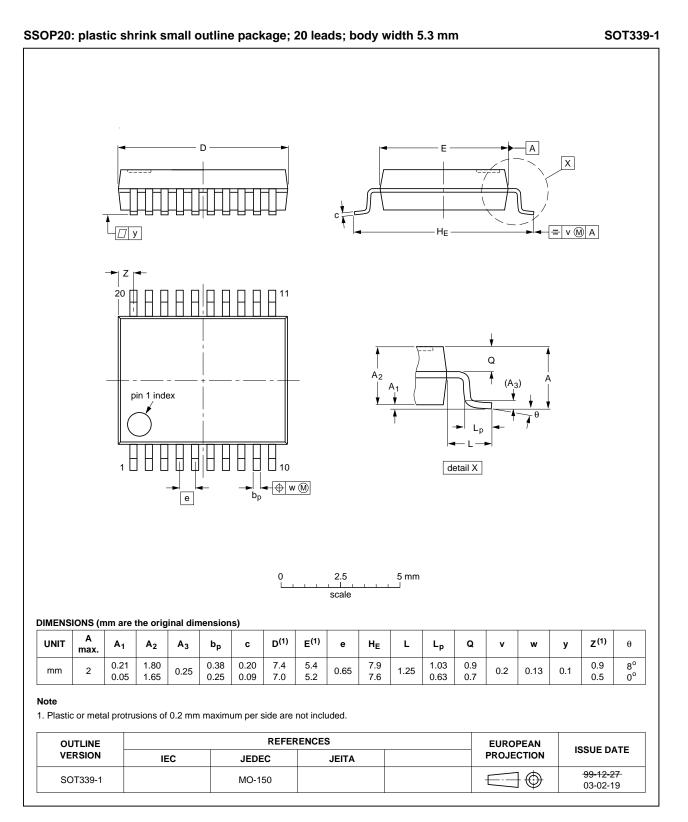


Fig 12. Package outline SOT339-1 (SSOP20)

Octal Schmitt trigger buffer/line driver; 3-state

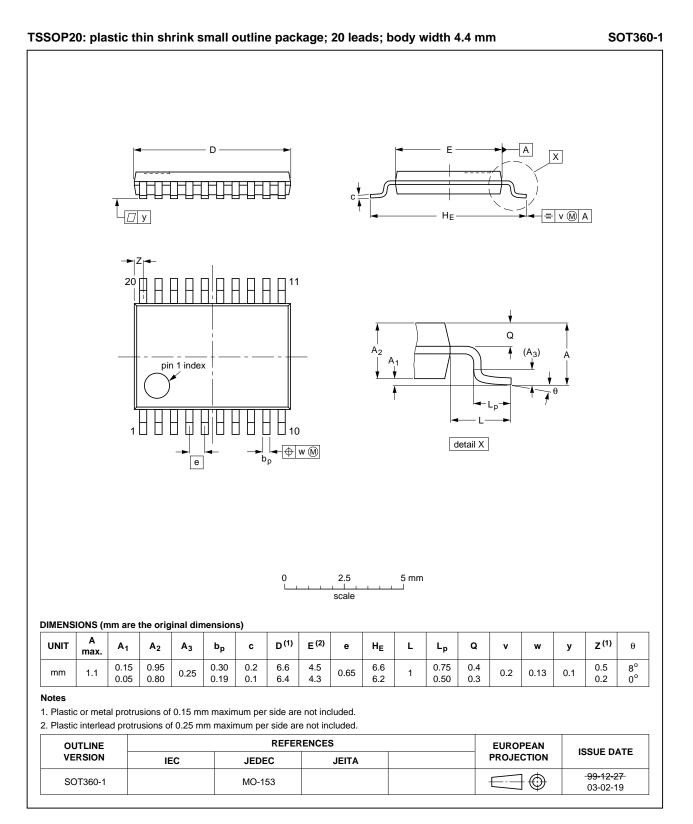


Fig 13. Package outline SOT360-1 (TSSOP20)

All information provided in this document is subject to legal disclaimers.

15. Abbreviations

	Abbreviations
Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
LSTTL	Low-power Schottky Transistor-Transistor Logic
MM	Machine Model

16. Revision history

Table 12. Revision histo	ory				
Document ID	Release date	Data sheet status	Change notice	Supersedes	
74HC_HCT7541 v.3	20110725	Product data sheet	-	74HC_HCT7541_CNV v.2	
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 				
	 Legal texts have been adapted to the new company name where appropriate. 				
	 Added type numbers 74HC7541PW and 74HCT7541PW (TSSOP20 package). 				
74HC_HCT7541_CNV v.2	19970917	Product specification	-	-	

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Octal Schmitt trigger buffer/line driver; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Octal Schmitt trigger buffer/line driver; 3-state

19. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 2
5.1	Pinning 2
5.2	Pin description 3
6	Functional description 3
7	Limiting values 3
8	Recommended operating conditions 4
9	Static characteristics 4
10	Dynamic characteristics 5
11	Waveforms 6
12	Transfer characteristics 9
13	Transfer characteristics waveforms
14	Package outline 10
15	Abbreviations 14
16	Revision history14
17	Legal information
17.1	Data sheet status 15
17.2	Definitions 15
17.3	Disclaimers 15
17.4	Trademarks 16
18	Contact information 16
19	Contents 17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2011.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 July 2011 Document identifier: 74HC_HCT7541

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Transmitters category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

NLV7SB3257DTT1G 7SB3257DTT2G 7SB3257DTT1G 7SB385DTT1G 74HC1G125GW 74AHC125D.112 74AHC244D.112 74AHC245D.112 74AHC541D.112 74HC245D.652 74HCT365D.652 74ABT125D.602 74ABT16245BDGG.112 74AHC7245D.112 74HC245PW.112 74HC367D.652 74HC541D.652 74HC541D.653 74HC7541D.112 74HCT367D.652 74HCT541D.653 74LVC244AD.112 74LVC4245AD.112 74LVC541AD.112 74HC240D.652 74HC4049D.653 74HC540D.652 74HCT125D.652 74HCT244D.652 74HC7245PW.112 74HCT367N.652 74HC125D.652 74HC244D.652 74HC245DB.118 HEF4050BT.652 74HC05PW.112 74HC125PW.112 74HC2G16GVH 74LVC06AD.112 74LVC06APW.112 74LVC125APW.112 74LVC126APW.112 74VHC126FT(BE) 7SB3257MUTCG 7SB384MUTCG 7SB384DTT1G 74AHCT245PW.118 74HC126DB.118 74HC240PW.112 74HC241DB.118