3.3 V 16-bit buffer/driver; 3-state Rev. 08 — 22 March 2010

Product data sheet

1. General description

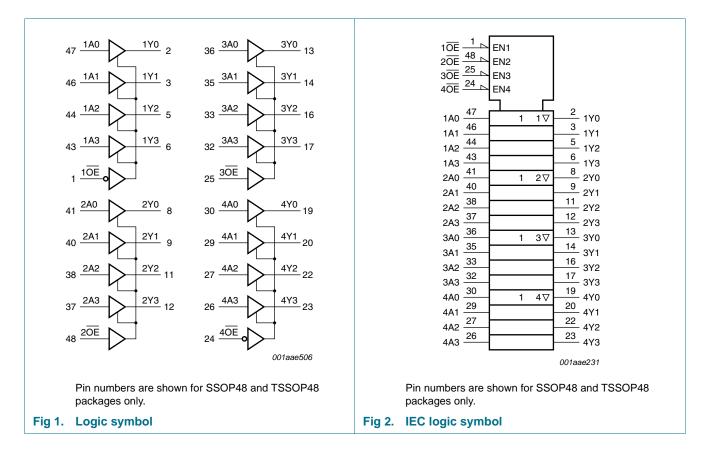
The 74LVT16244B; 74LVTH16244B is a high-performance BiCMOS product designed for V_{CC} operation at 3.3 V.

This device is a 16-bit buffer and line driver featuring non-inverting 3-state bus outputs. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer.

2. Features and benefits

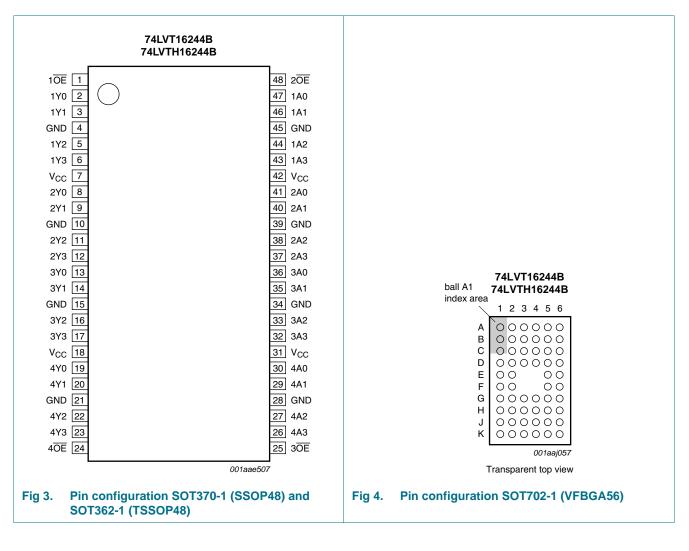
- 16-bit bus interface
- 3-state buffers
- Output capability: +64 mA and -32 mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus hold data inputs eliminate need for external pull-up resistors to hold unused inputs
- Power-up 3-state
- Live insertion and extraction permitted
- No bus current loading when output is tied to 5 V bus
- Latch-up protection
 - JESD78B Class II exceeds 500 mA
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V

3. Ordering information


Table 1. Ordering information

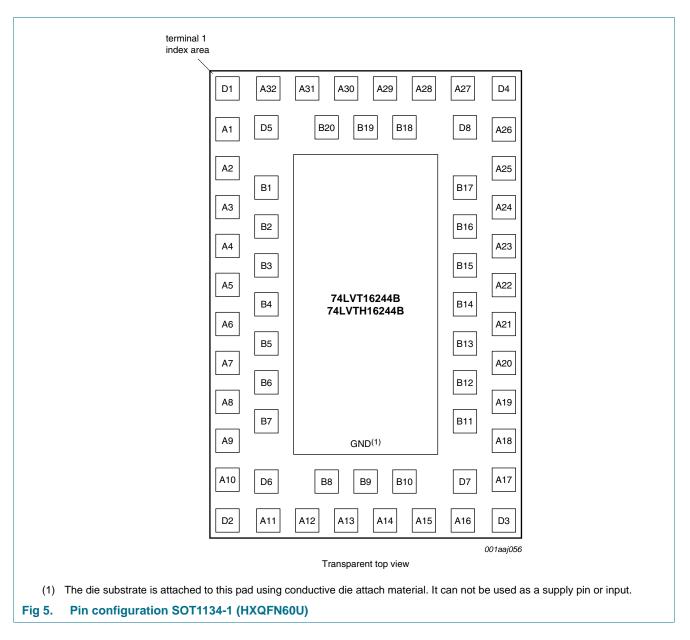
Type number	Package						
	Temperature range	Name	Description	Version			
74LVT16244BDL	–40 °C to +85 °C	SSOP48	plastic shrink small outline package; 48 leads;	SOT370-1			
74LVTH16244BDL			body width 7.5 mm				
74LVT16244BDGG	–40 °C to +85 °C	TSSOP48	plastic thin shrink small outline package;	SOT362-1			
74LVTH16244BDGG			48 leads; body width 6.1 mm				
74LVT16244BEV	–40 °C to +85 °C	VFBGA56	plastic very thin fine-pitch ball grid array package; 56 balls; body $4.5 \times 7 \times 0.65$ mm	SOT702-1			
74LVT16244BBQ	–40 °C to +85 °C	HXQFN60U	plastic thermal enhanced extremely thin quad	SOT1134-1			
74LVTH16244BBQ			flat package; no leads; 60 terminals; UTLP based; body $4 \times 6 \times 0.5$ mm				

3.3 V 16-bit buffer/driver; 3-state


4. Functional diagram

3.3 V 16-bit buffer/driver; 3-state

5. Pinning information


5.1 Pinning

NXP Semiconductors

74LVT16244B; 74LVTH16244B

3.3 V 16-bit buffer/driver; 3-state

5.2 Pin description

Symbol	Pin		Description	
	SOT370-1 and SOT362-1	SOT702-1	SOT1134-1	
1 <u>0E</u> , 2 <u>0E</u> , 30E, 40E	1, 48, 25, 24	A1, A6, K6, K1	A30, A29, A14, A13	output enable input (active LOW)
1Y0 to 1Y3	2, 3, 5, 6	B2, B1, C2, C1	B20, A31, D5, D1	data output
2Y0 to 2Y3	8, 9, 11, 12	D2, D1, E2, E1	A2, B2, B3, A5	data output
3Y0 to 3Y3	13, 14, 16, 17	F1, F2, G1, G2	A6, B5, B6, A9	data output
4Y0 to 4Y3	19, 20, 22, 23	H1, H2, J1, J2	D2, D6, A12, B8	data output

All information provided in this document is subject to legal disclaimers.

3.3 V 16-bit buffer/driver; 3-state

Symbol	Pin			Description
	SOT370-1 and SOT362-1	SOT702-1	SOT1134-1	_
GND	4, 10, 15, 21, 28, 34, 39, 45	B3, B4, D3, D4, G3, G4, J3, J4	A32, A3, A8, A11, A16, A19, A24, A27	ground (0 V)
V _{CC}	7, 18, 31, 42	C3, C4, H3, H4	A1, A10, A17, A26	supply voltage
1A0 to 1A3	47, 46, 44, 43	B5, B6, C5, C6	B18, A28, D8, D4	data input
2A0 to 2A3	41, 40, 38, 37	D5, D6, E5, E6	A25, B16, B15, A22	data input
3A0 to 3A3	36, 35, 33, 32	F6, F5, G6, G5	A21, B13, B12, A18	data input
4A0 to 4A3	30, 29, 27, 26	H6, H5, J6, J5	D3, D7, A15, B10	data input
n.c.	-	A2, A3, A4, A5, K2, K3, K4, K5	A4, A7, A20, A23, B1, B4, B7, B9, B11, B14, B17, B19	not connected

Table 2. Pin description ...continued

6. Functional description

Table 3. Function table ^[1]		
Control	Input	Output
nOE	nAn	nYn
L	L	L
L	Н	Н
Н	Х	Z

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
VI	input voltage		<u>[1]</u> –0.5	+7.0	V
Vo	output voltage	output in OFF-state or HIGH-state	<u>[1]</u> –0.5	+7.0	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
I _{ОК}	output clamping current	V _O < 0 V	-50	-	mA
lo	output current	output in LOW-state	-	128	mA
		output in HIGH-state	-64	-	mA
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		[2] _	150	°C

Table 4. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$;			
		(T)SSOP48 package	<u>[3]</u>	500	mW
		VFBGA56 package	<u>[4]</u> _	1000	mW
		HXQFN60U package	<u>[4]</u> _	1000	mW

[1] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

[3] Above 60 °C the value of Ptot derates linearly with 5.5 mW/K.

[4] Above 70 °C the value of Ptot derates linearly with 1.8 mW/K.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{CC}	supply voltage		2.7	-	3.6	V
VI	input voltage		0	-	5.5	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	LOW-level input voltage		-	-	0.8	V
I _{OH}	HIGH-level output current		-32	-	-	mA
I _{OL}	LOW-level output current	none	-	-	32	mA
		current duty cycle \leq 50 %; $f_i \geq$ 1 kHz	-	-	64	mA
T _{amb}	ambient temperature	in free-air	-40	-	+85	°C
$\Delta t / \Delta V$	input transition rise and fall rate	outputs enabled	-	-	10	ns/V

3.3 V 16-bit buffer/driver; 3-state

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = -	40 °C to +85 °C[1]					
V _{IK}	input clamping voltage	V_{CC} = 2.7 V; I_{IK} = -18 mA	-1.2	-0.85	-	V
V _{OH}	HIGH-level output voltage	I_{OH} = –100 $\mu A;$ V_{CC} = 2.7 V to 3.6 V	$V_{CC} - 0.2$	V _{CC}	-	V
		$I_{OH} = -8 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.4	2.5	-	V
		$I_{OH} = -32 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.0	2.3	-	V
V _{OL}	LOW-level output voltage	$V_{CC} = 2.7 V$				
		I _{OL} = 100 μA	-	0.07	0.2	V
		I _{OL} = 24 mA	-	0.3	0.5	V
		V _{CC} = 3.0 V				
		I _{OL} = 16 mA	-	0.25	0.4	V
		I _{OL} = 32 mA	-	0.3	0.5	V
		I _{OL} = 64 mA	-	0.4	0.55	V
l _l	input leakage current	all input pins; V_{CC} = 0 V or 3.6 V; V_{I} = 5.5 V	-	0.1	10	μA
		control pins; V_{CC} = 3.6 V; V_I = V_{CC} or GND	-	0.1	±1.0	μA
		data pins; $V_{CC} = 3.6 V$	[2]			
		$V_{I} = V_{CC}$	-	0.1	1	μA
		$V_1 = 0 V$	-5	-0.1	-	μA
I _{OFF}	power-off leakage current	V_{CC} = 0 V; V ₁ or V ₀ = 0 V to 4.5 V	-	0.1	±100	μA
I _{BHL}	bus hold LOW current	$V_{CC} = 3 \text{ V}; \text{ V}_{I} = 0.8 \text{ V}$	<u>[3]</u> 75	135	-	μA
I _{BHH}	bus hold HIGH current	$V_{CC} = 3 \text{ V}; \text{ V}_{I} = 2.0 \text{ V}$	-	-135	-75	μA
I _{BHLO}	bus hold LOW overdrive current	nAn input; V_{CC} = 0 V to 3.6 V; V_{I} = 3.6 V	500	-	-	μA
I _{BHHO}	bus hold HIGH overdrive current	nAn input; V_{CC} = 0 V to 3.6 V; V_{I} = 3.6 V	-	-	-500	μA
I _{HOLD}	bus hold current data	V _{CC} = 3 V	[3]			
	input	V ₁ = 0.8 V	75	135	-	μA
		V ₁ = 2.0 V	-	-135	-75	μA
		V _{CC} = 0 V to 3.6 V				
		V ₁ = 3.6 V	±500	-	-	μA
I _{LO}	output leakage current	output in HIGH-state when V _O > V _{CC} ; V _O = 5.5 V; V _{CC} = 3.0 V	-	50	125	μA
I _{O(pu/pd)}	power-up/power-down output current	$V_{CC} \le 1.2$ V; $V_O = 0.5$ V to V_{CC} ; $V_I = GND$ or V_{CC} ; nOE = don't care	<u>[4]</u> _	1	±100	μΑ
l _{oz}	OFF-state output current	V_{CC} = 3.6 V; V_{I} = V_{IH} or V_{IL}				
		output HIGH: V _O = 3.0 V	-	0.5	5	μA
		output LOW: $V_0 = 0.5 V$	-5	+0.5	-	μA

3.3 V 16-bit buffer/driver; 3-state

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC}	supply current	V_{CC} = 3.6 V; V_{I} = GND or $V_{CC}; \ I_{O}$ = 0 A				
		output HIGH	-	0.07	0.12	mA
		output LOW	-	4.0	6.0	mA
		outputs disabled	<u>[5]</u>	0.07	0.12	mA
ΔI_{CC}	additional supply current	per input pin; V_{CC} = 3.0 V to 3.6 V; one input at V_{CC} - 0.6 V other inputs at V_{CC} or GND	<u>[6]</u>	0.1	0.2	mA
CI	input capacitance	V _I = 0 V or 3.0 V	-	3	-	pF
Co	output capacitance	outputs disabled; $V_{\Omega} = 0 V \text{ or } 3.0 V$	-	9	-	pF

Table 6. Static characteristics ... continued

[1] Typical values are measured at V_{CC} = 3.3 V and at T_{amb} = 25 °C.

[2] Unused pins at V_{CC} or GND.

This is the bus hold overdrive current required to force the input to the opposite logic state. [3]

This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 ms. From V_{CC} = 1.2 V to V_{CC} = $3.3 \text{ V} \pm 0.3 \text{ V}$ [4] a transition time of 100 μ s is permitted. This parameter is valid for T_{amb} = 25 °C only.

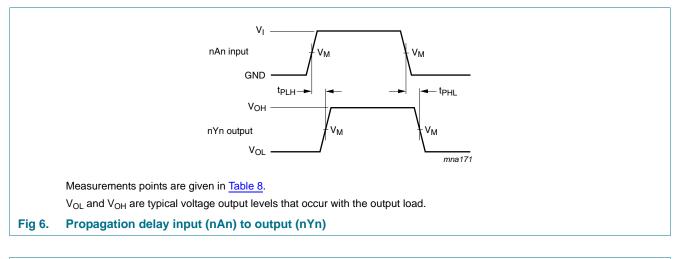
[5] I_{CC} is measured with outputs pulled to V_{CC} or GND.

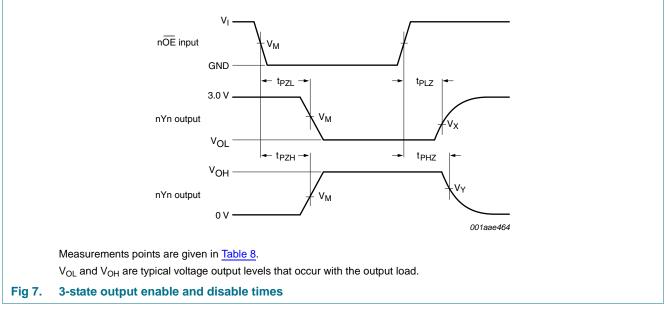
[6] This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.

10. Dynamic characteristics

Table 7. **Dynamic characteristics**

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8.

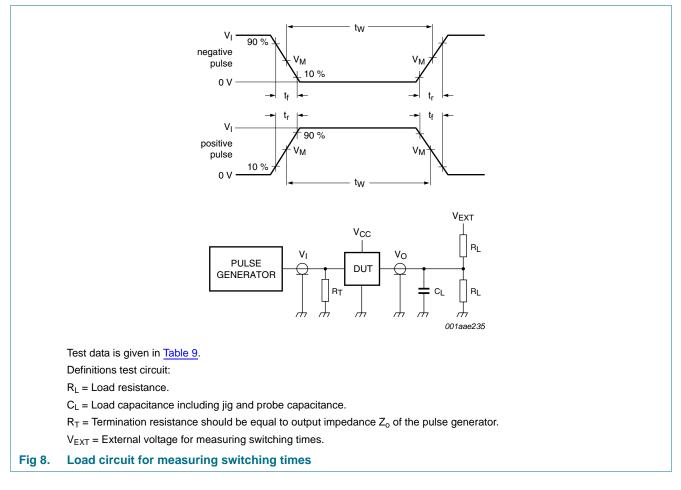

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = -40	°C to +85 °C <u>[1]</u>					
t _{PLH}	LOW to HIGH	nAn to nYn; see <u>Figure 6</u>				
	propagation delay	$V_{CC} = 2.7 V$	-	-	4.0	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0.5	1.8	3.2	ns
t _{PHL}	HIGH to LOW	nAn to nYn; see <u>Figure 6</u>				
	propagation delay	$V_{CC} = 2.7 V$	-	-	4.0	ns
		V_{CC} = 3.0 V to 3.6 V	0.5	1.7	3.2	ns
t _{PZH}	OFF-state to HIGH propagation delay	nOE to nYn; see <u>Figure 7</u>				
		$V_{CC} = 2.7 V$	-	-	5.0	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.0	2.3	4.0	ns
t _{PZL}	OFF-state to LOW	nOE to nYn; see <u>Figure 7</u>				
	propagation delay	$V_{CC} = 2.7 V$	-	-	5.3	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.0	2.1	4.0	ns
t _{PHZ}	HIGH to OFF-state	nOE to nYn; see Figure 7				
	propagation delay	$V_{CC} = 2.7 V$	-	-	5.0	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.0	3.2	4.5	ns
t _{PLZ}	LOW to OFF-state	nOE to nYn; see <u>Figure 7</u>				
	propagation delay	$V_{CC} = 2.7 V$	-	-	4.4	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.0	2.9	4.0	ns


[1] Typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

74LVT LVTH16244B 8

3.3 V 16-bit buffer/driver; 3-state

11. Waveforms


Table 8. Measurement points

Input	Output		
V _M	V _M	V _X	V _Y
1.5 V	1.5 V	V _{OL} + 0.3 V	$V_{OH} - 0.3 V$

NXP Semiconductors

74LVT16244B; 74LVTH16244B

3.3 V 16-bit buffer/driver; 3-state

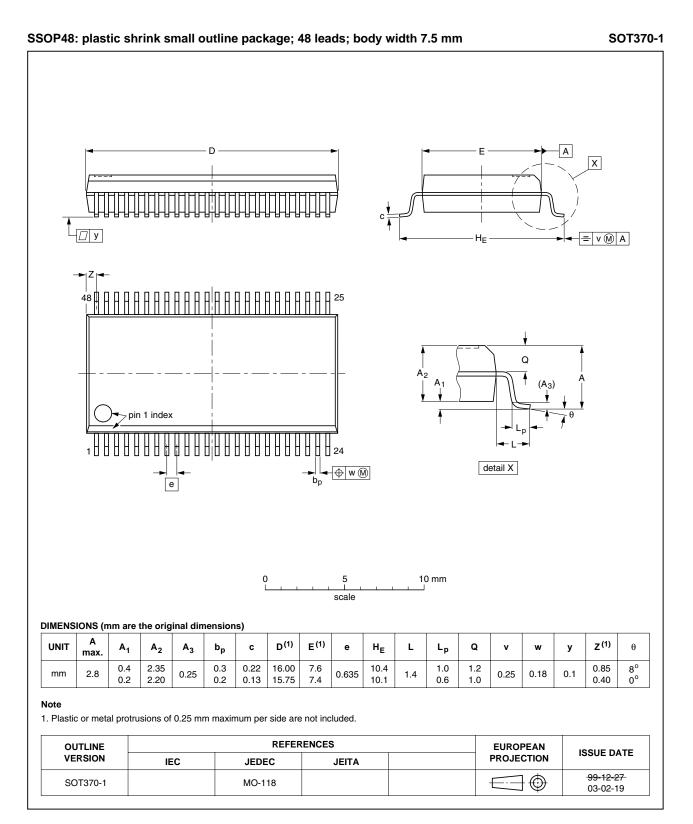


Table 9. Test data

Input			Load		V _{EXT}			
VI	f _i	tw	t _r , t _f	CL	RL	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}
2.7 V	\leq 10 MHz	500 ns	\leq 2.5 ns	50 pF	500 Ω	GND	6 V	open

3.3 V 16-bit buffer/driver; 3-state

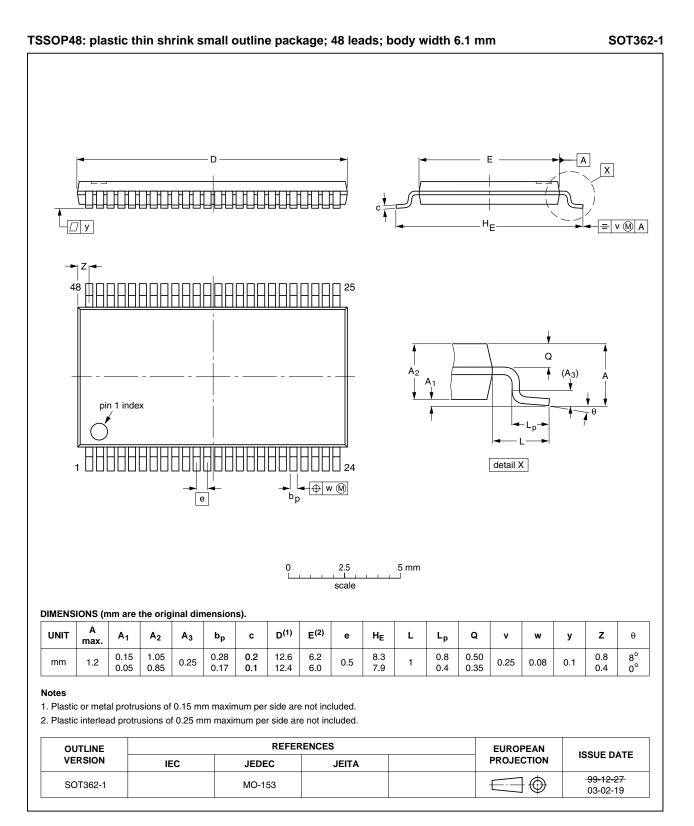

12. Package outline

Fig 9. Package outline SOT370-1 (SSOP48)

All information provided in this document is subject to legal disclaimers.

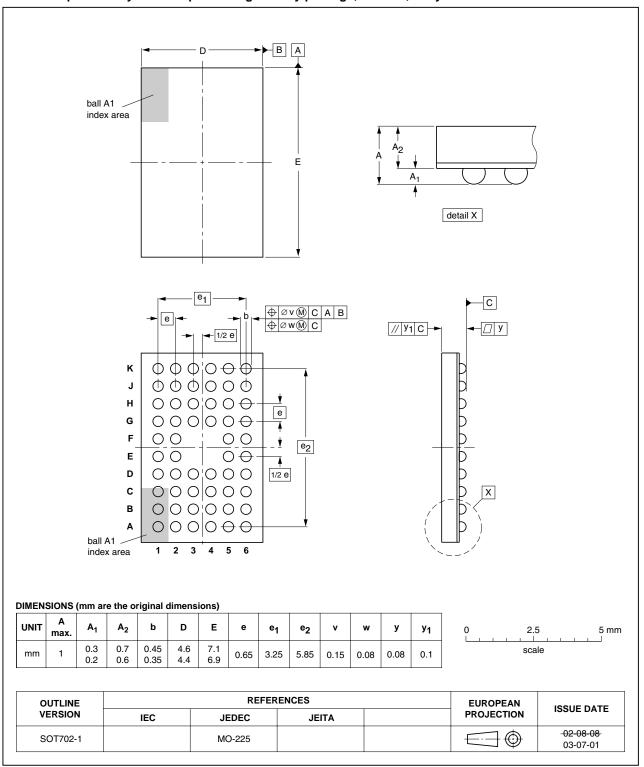
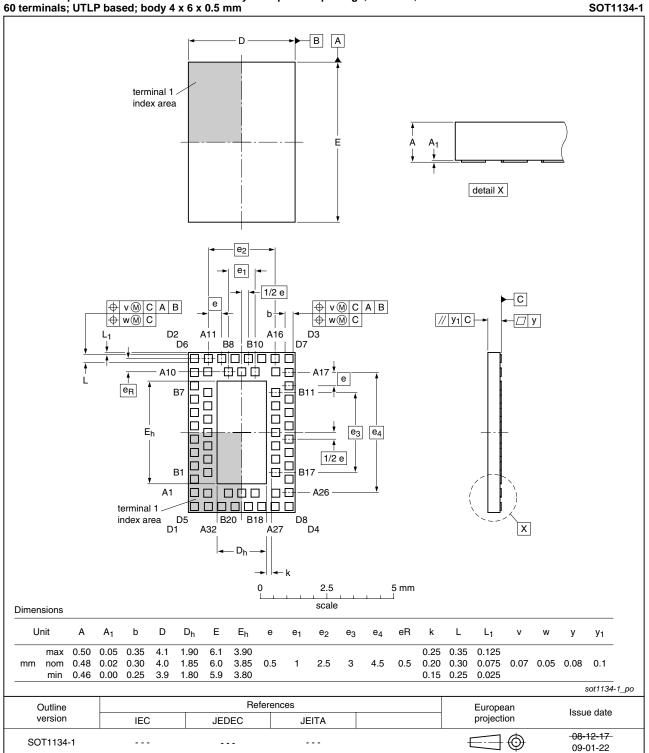

3.3 V 16-bit buffer/driver; 3-state

Fig 10. Package outline SOT362-1 (TSSOP48)

All information provided in this document is subject to legal disclaimers.

3.3 V 16-bit buffer/driver; 3-state



VFBGA56: plastic very thin fine-pitch ball grid array package; 56 balls; body 4.5 x 7 x 0.65 mm SOT702-1

Fig 11. Package outline SOT702-1 (VFBGA56)

All information provided in this document is subject to legal disclaimers.

3.3 V 16-bit buffer/driver; 3-state

HXQFN60U: plastic thermal enhanced extremely thin quad flat package; no leads; 60 terminals; UTLP based; body 4 x 6 x 0.5 mm

Fig 12. Package outline SOT1134-1 (HXQFN60U)

All information provided in this document is subject to legal disclaimers.

3.3 V 16-bit buffer/driver; 3-state

13. Abbreviations

Acronym BiCMOS	Description Bipolar Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes	
74LVT_LVTH16244B_8	20100322	Product data sheet	-	74LVT_LVTH16244B_7	
Modifications:		BBQ and 74LVTH16244BBQ ((SOT1134-1) package.	changed from HUQF	N60U (SOT1025-1) to	
74LVT_LVTH16244B_7	20090326	Product data sheet	-	74LVT_LVTH16244B_6	
74LVT_LVTH16244B_6	20081113	Product data sheet	-	74LVT_LVTH16244B_5	
74LVT_LVTH16244B_5	20060321	Product data sheet	-	74LVT16244B_4	
74LVT16244B_4	20021031	Product specification	-	74LVT16244B_3	
74LVT16244B_3	19981007	Product specification	-	74LVT16244B_2	
74LVT16244B_2	19980219	Product specification	-	-	

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74LVT_LVTH16244B_8
Product data sheet

All information provided in this document is subject to legal disclaimers.

16 of 18

3.3 V 16-bit buffer/driver; 3-state

16. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

3.3 V 16-bit buffer/driver; 3-state

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning 3
5.2	Pin description 4
6	Functional description 5
7	Limiting values 5
8	Recommended operating conditions 6
9	Static characteristics 7
10	Dynamic characteristics 8
11	Waveforms 9
12	Package outline 11
13	Abbreviations 15
14	Revision history 15
15	Legal information 16
15.1	Data sheet status 16
15.2	Definitions 16
15.3	Disclaimers
15.4	Trademarks 16
16	Contact information 17
17	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 March 2010 Document identifier: 74LVT_LVTH16244B_8

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7