74HC132-Q100; 74HCT132-Q100

Quad 2-input NAND Schmitt trigger Rev. 3 — 1 December 2015

Product data sheet

General description

The 74HC132-Q100; 74HCT132-Q100 is a quad 2-input NAND gate with Schmitt-trigger inputs. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}. Schmitt trigger inputs transform slowly changing input signals into sharply defined jitter-free output signals.

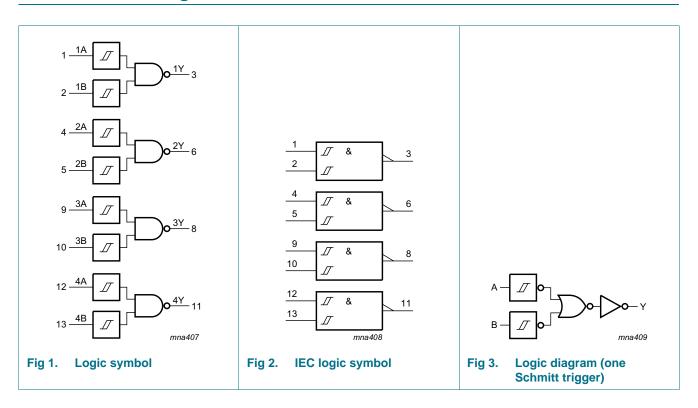
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

Features and benefits 2.

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Complies with JEDEC standard no. 7A
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options

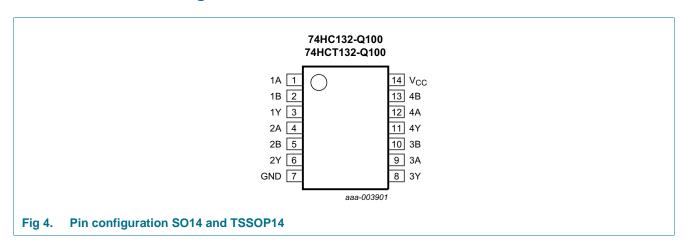
3. Applications

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators



4. Ordering information

Table 1. Ordering information


Type number	Package											
	Temperature range	Name	Description	Version								
74HC132D-Q100	-40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width	SOT108-1								
74HCT132D-Q100			3.9 mm									
74HC132PW-Q100	-40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads;	SOT402-1								
74HCT132PW-Q100			body width 4.4 mm									

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1A to 4A	1, 4, 9, 12	data input
1B to 4B	2, 5, 10, 13	data input
1Y to 4Y	3, 6, 8, 11	data output
GND	7	ground (0 V)
V _{CC}	14	supply voltage

7. Functional description

Table 3. Function table [1]

Input		Output
nA	nB	nY
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	<u>[1]</u>	-	±20	mA
I _{OK}	output clamping current	$V_{O} < -0.5 \text{ V or } V_{O} > V_{CC} + 0.5 \text{ V}$	<u>[1]</u>	-	±20	mA
Io	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$		-	±25	mA
I _{CC}	supply current			-	50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation		[2]	-	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74F	IC132-Q	100	74H	Unit		
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V_{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C

^[2] For SO14 package: P_{tot} derates linearly with 8 mW/K above 70 °C. For TSSOP14 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

10. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C t	Unit	
			Min	Тур	Max	Min	Max	Min	Max	1
74HC13	2-Q100									
V _{OH}	HIGH-level	$V_I = V_{T+}$ or V_{T-}								
	output voltage	$I_O = -20 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -20 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_O = -20 \mu A; V_{CC} = 6.0 V$	5.9	6.0	-	5.9	-	5.9	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_I = V_{T+}$ or V_{T-}								
	output voltage	$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
		$I_O = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
Icc	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	2.0	-	20	-	40	μА
Cı	input capacitance		-	3.5	-	-	-	-	-	pF
74HCT1	32-Q100							I		
V _{OH}	HIGH-level	$V_{I} = V_{T+} \text{ or } V_{T-}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -4.0 \text{ mA}$	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_{I} = V_{T+} \text{ or } V_{T-}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 20 μA;	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA};$	-	0.15	0.26	-	0.33	-	0.4	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
lcc	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	2.0	-	20	-	40	μΑ
7l ^{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}; I_O = 0 \text{ A};$ other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V	-	30	108	-	135	-	147	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

11. Dynamic characteristics

Table 7. Dynamic characteristics

 $GND = 0 \ V; \ C_L = 50 \ pF;$ for load circuit see Figure 6.

74HC132 ·t _{pd}	Parameter	Conditions			25 °C		-40 °C to	o +125 °C	Unit
				Min	Тур	Max	Max (85 °C)	Max (125 °C)	_
74HC132	2-Q100								
t _{pd}	propagation delay	nA, nB to nY; see Figure 5	<u>[1]</u>						
		V _{CC} = 2.0 V		-	36	125	155	190	ns
		V _{CC} = 4.5 V		-	13	25	31	38	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	11	-	-	-	ns
		V _{CC} = 6.0 V		-	10	21	26	32	ns
t _t	transition time	see Figure 5	[2]						
		V _{CC} = 2.0 V		-	19	75	95	110	ns
		V _{CC} = 4.5 V		-	7	15	19	22	ns
		V _{CC} = 6.0 V		-	6	13	16	19	ns
C_{PD}	power dissipation capacitance	per package; $V_I = GND$ to V_{CC}	[3]	-	24	-	-	-	pF
74HCT1	32-Q100								-
t _{pd}	propagation delay	nA, nB to nY; see Figure 5	<u>[1]</u>						
		V _{CC} = 4.5 V		-	20	33	41	50	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	17	-	-	-	ns
t _t	transition time	V _{CC} = 4.5 V; see <u>Figure 5</u>	[2]	-	7	15	19	22	ns
C _{PD}	power dissipation capacitance	per package; V _I = GND to V _{CC} – 1.5 V	[3]	-	20	-	-	-	pF

^[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

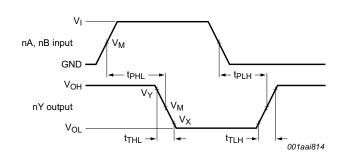
$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o) \text{ where:}$$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

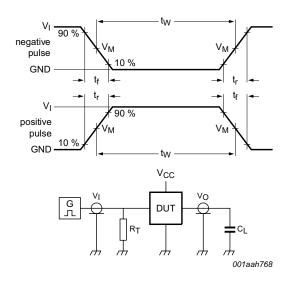

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

^[2] t_t is the same as t_{THL} and t_{TLH} .

^[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

12. Waveforms


Measurement points are given in Table 8.

 $\ensuremath{V_{OL}}$ and $\ensuremath{V_{OH}}$ are typical voltage output levels that occur with the output load.

Fig 5. Input to output propagation delays

Table 8. Measurement points

Туре	Input	Output		
	V _M	V _M	V _X	V _Y
74HC132-Q100	0.5V _{CC}	0.5V _{CC}	0.1V _{CC}	0.9V _{CC}
74HCT132-Q100	1.3 V	1.3 V	0.1V _{CC}	0.9V _{CC}

Test data is given in Table 9.

Definitions test circuit:

 R_{T} = termination resistance should be equal to output impedance Z_{o} of the pulse generator.

 C_L = load capacitance including jig and probe capacitance.

Fig 6. Test circuit for measuring switching times

Table 9. Test data

Туре	Input		Load	Test
	VI	t _r , t _f	CL	
74HC132-Q100	V _{CC}	6.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}
74HCT132-Q100	3.0 V	6.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}

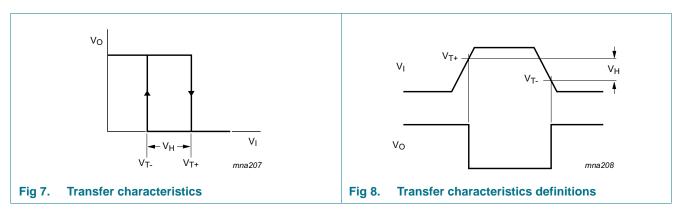
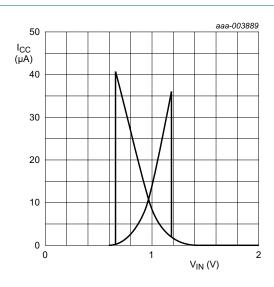
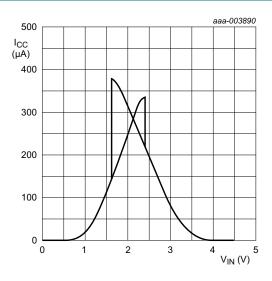

13. Transfer characteristics

Table 10. Transfer characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); see Figure 7 and Figure 8.

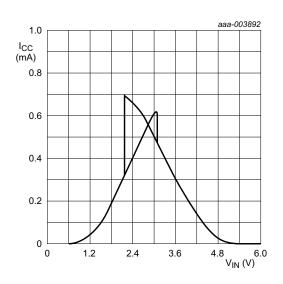
Symbol	Parameter	Conditions	T _{amb} = 25 °C				: –40 °C 85 °C	T _{amb} =	Unit	
			Min	Тур	Max	Min	Max	Min	Max	
74HC132	2-Q100									
V _{T+}	positive-going	V _{CC} = 2.0 V	0.7	1.18	1.5	0.7	1.5	0.7	1.5	V
	threshold	V _{CC} = 4.5 V	1.7	2.38	3.15	1.7	3.15	1.7	3.15	V
	voltage negative-going threshold voltage	V _{CC} = 6.0 V	2.1	3.14	4.2	2.1	4.2	2.1	4.2	V
V_{T-}	negative-going	V _{CC} = 2.0 V	0.3	0.63	1.0	0.3	1.0	0.3	1.0	V
		V _{CC} = 4.5 V	0.9	1.67	2.2	0.9	2.2	0.9	2.2	V
	voltage	V _{CC} = 6.0 V	1.2	2.26	3.0	1.2	3.0	1.2	3.0	V
V _H k	hysteresis	V _{CC} = 2.0 V	0.2	0.55	1.0	0.2	1.0	0.2	1.0	V
	voltage	V _{CC} = 4.5 V	0.4	0.71	1.4	0.4	1.4	0.4	1.4	V
		V _{CC} = 6.0 V	0.6	0.88	1.6	0.6	1.6	0.6	1.6	V
74HCT13	32-Q100		1							
V _{T+}	positive-going	V _{CC} = 4.5 V	1.2	1.41	1.9	1.2	1.9	1.2	1.9	V
	threshold voltage	V _{CC} = 5.5 V	1.4	1.59	2.1	1.4	2.1	1.4	2.1	V
V_{T-}	negative-going	V _{CC} = 4.5 V	0.5	0.85	1.2	0.5	1.2	0.5	1.2	V
	threshold voltage	V _{CC} = 5.5 V	0.6	0.99	1.4	0.6	1.4	0.6	1.4	V
V _H	hysteresis	V _{CC} = 4.5 V	0.4	0.56	-	0.4	-	0.4	-	V
	voltage	V _{CC} = 5.5 V	0.4	0.60	-	0.4	-	0.4	-	V

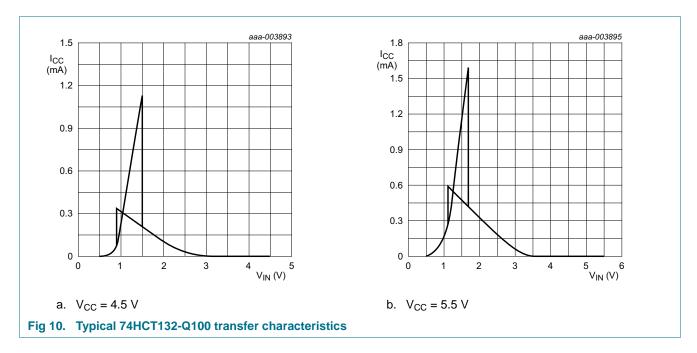

14. Transfer characteristics waveforms



74HC_HCT132_Q100

All information provided in this document is subject to legal disclaimers.


© NXP Semiconductors N.V. 2015. All rights reserved.


a. $V_{CC} = 2.0 \text{ V}$

c. $V_{CC} = 6.0 \text{ V}$

Fig 9. Typical 74HC132-Q100 transfer characteristics

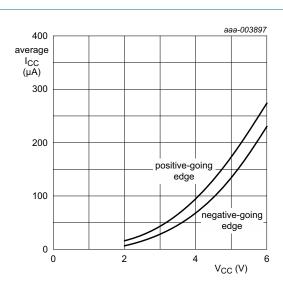
15. Application information

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

 $P_{add} = f_i \times (t_r \times \Delta I_{CC(AV)} + t_f \times \Delta I_{CC(AV)}) \times V_{CC}$ where:

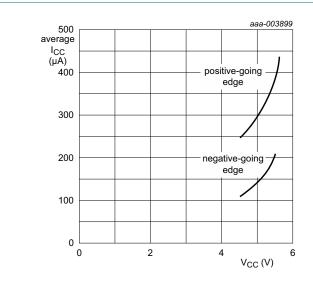
 P_{add} = additional power dissipation (μ W);

 $f_i = input frequency (MHz);$


 t_r = rise time (ns); 10 % to 90 %;

 t_f = fall time (ns); 90 % to 10 %;

 $\Delta I_{CC(AV)}$ = average additional supply current (μA).


Average $\Delta I_{CC(AV)}$ differs with positive or negative input transitions, as shown in <u>Figure 11</u> and <u>Figure 12</u>.

An example of a relaxation circuit using the 74HC132-Q100; 74HCT132-Q100 is shown in Figure 13.

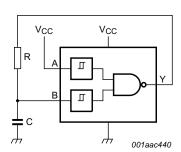

- (1) Positive-going edge.
- (2) Negative-going edge.

Fig 11. Average additional supply current as a function of V_{CC} for 74HC132-Q100; linear change of VI between 0.1VCC to 0.9VCC.

- (1) Positive-going edge.
- (2) Negative-going edge.


Fig 12. Average additional supply current as a function of V_{CC} for 74HCT132-Q100; linear change of VI between 0.1VCC to 0.9VCC.

For 74HC132-Q100 and 74HCT132-Q100: $f = \frac{1}{T} \approx \frac{1}{K \times RC}$

For K-factor see Figure 14

Fig 13. Relaxation oscillator

16. Package outline

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

0.014 0.0075

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC		PROJECTION	ISSUE DATE	
SOT108-1	076E06	MS-012				99-12-27 03-02-19

0.228

0.016

0.024

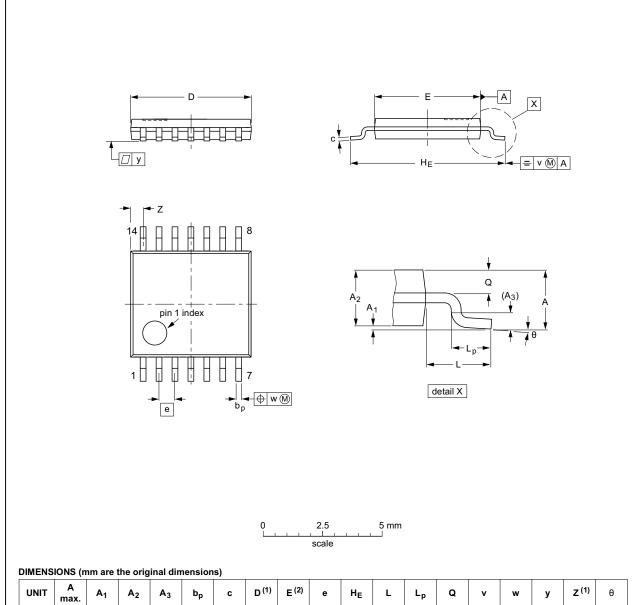
Fig 15. Package outline SOT108-1 (SO14)

0.004

0.049

74HC_HCT132_Q100

All information provided in this document is subject to legal disclaimers.


© NXP Semiconductors N.V. 2015. All rights reserved.

0.34

0.15

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	e	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT402-1		MO-153				99-12-27 03-02-18

Fig 16. Package outline SOT402-1 (TSSOP14)

74HC_HCT132_Q100

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2015. All rights reserved.

17. Abbreviations

Table 11. Abbreviations

Acronym	Description	
CMOS	Complementary Metal-Oxide Semiconductor	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
НВМ	Human Body Model	
MM	Machine Model	
MIL	Military	

18. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT132_Q100 v.3	20151201	Product data sheet	-	74HC_HCT132_Q100 v.2
Modifications:	General description changed.			
74HC_HCT132_Q100 v.2	20120813	Product data sheet	-	74HC_HCT132_Q100 v.1
Modifications:	Figure 14 added (typical K-factor for relaxation oscillator).			
74HC_HCT132_Q100 v.1	20120712	Product data sheet	-	-

19. Legal information

19.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

Suitability for use in automotive applications — This NXP

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the

specified use without further testing or modification.

inclusion and/or use of NXP Semiconductors products in such equipment or

applications and therefore such inclusion and/or use is at the customer's own

damage. NXP Semiconductors and its suppliers accept no liability for

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

74HC_HCT132_Q100

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

20. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74HC132-Q100; 74HCT132-Q100

NXP Semiconductors

Quad 2-input NAND Schmitt trigger

21. Contents

1	General description
2	Features and benefits
3	Applications
4	Ordering information 2
5	Functional diagram
6	Pinning information 3
6.1	Pinning
6.2	Pin description 3
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics 6
12	Waveforms
13	Transfer characteristics 8
14	Transfer characteristics waveforms 8
15	Application information 10
16	Package outline
17	Abbreviations
18	Revision history
19	Legal information
19.1	Data sheet status
19.2	Definitions
19.3	Disclaimers
19.4	Trademarks17
20	Contact information 17
24	Contonto

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7 74LVC08ADTR2G MC74HCT20ADTR2G NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLV74VHC1G08DTT1G