Dual 4-input multiplexer; 3-state Rev. 4 — 12 December 2011

Product data sheet

General description 1.

The 74HC253; 74HCT253 are high-speed Si-gate CMOS devices and are pin compatible with Low-power Schottky TTL (LSTTL).

The 74HC253; 74HCT253 provides a dual 4-input multiplexer with 3-state outputs which selects 2 bits of data from up to four sources selected by common data select inputs (S0, S1). The two 4-input multiplexer circuits have individual active LOW output enable inputs $(1\overline{OE}, 2\overline{OE}).$

The 74HC253 and 74HCT253 are the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels applied to S0 and S1. The outputs are forced to a high-impedance OFF-state when $n\overline{OE}$ is HIGH.

The logic equations for the outputs are:

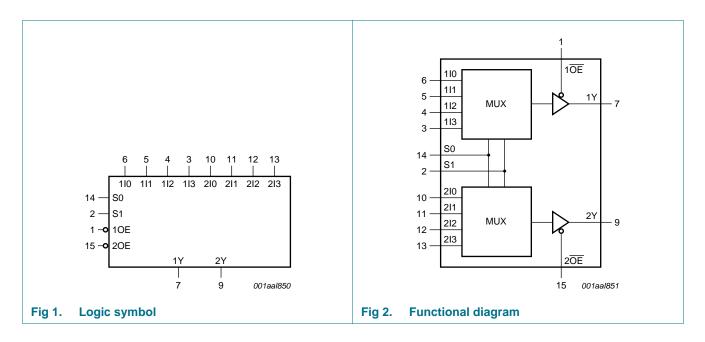
 $1Y = 1\overline{OE} \bullet (110 \bullet \overline{S1} \bullet \overline{S0} + 111 \bullet \overline{S1} \bullet S0 + 112 \bullet S1 \bullet \overline{S0} + 113 \bullet S1 \bullet S0)$ $2Y = 2\overline{OE} \bullet (2I0 \bullet \overline{S1} \bullet \overline{S0} + 2I1 \bullet \overline{S1} \bullet S0 + 2I2 \bullet S1 \bullet \overline{S0} + 2I3 \bullet S1 \bullet S0)$

2. Features and benefits

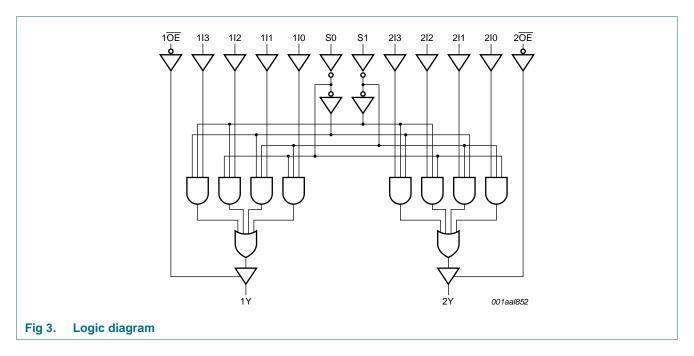
- Non-inverting data path
- 3-state outputs interface directly with system bus
- Complies with JEDEC standard no. 7A
- Common select inputs
- Separate output enable inputs
- Input levels:
 - For 74HC253: CMOS level
 - For 74HCT253: TTL level
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

Dual 4-input multiplexer; 3-state

3. Applications


- Data selectors
- Data multiplexers

4. Ordering information


Table 1.Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74HC253N	–40 °C to +125 °C	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4					
74HCT253N									
74HC253D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width	SOT109-1					
74HCT253D			3.9 mm						
74HC253DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads;	SOT338-1					
74HCT253DB			body width 5.3 mm						

5. Functional diagram

Dual 4-input multiplexer; 3-state

6. Pinning information

6.1 Pinning

Dual 4-input multiplexer; 3-state

6.2 Pin description

Symbol	Pin	Description
1 <u>0E, 20E</u>		-
•	1, 15	output enable inputs (active LOW)
S0, S1	14, 2	data select inputs
110, 111, 112, 113	6, 5, 4, 3	data inputs source 1
1Y	7	multiplexer output source 1
GND	8	ground (0 V)
2Y	9	multiplexer output source 2
210, 211, 212, 213	10, 11, 12, 13	data inputs source 2
V _{CC}	16	supply voltage

7. Functional description

Table 3.Function table^[1]

select In	puts	data inp	uts			output enable	output
S0	S1	nl0	nl1	nl2	nl3	nOE	nY
х	Х	Х	Х	Х	Х	Н	Z
L	L	L	Х	Х	Х	L	L
L	L	Н	Х	Х	Х	L	Н
Н	L	Х	L	Х	Х	L	L
Н	L	Х	Н	Х	Х	L	Н
L	Н	Х	Х	L	Х	L	L
L	Н	Х	Х	Н	Х	L	Н
Н	Н	Х	Х	Х	L	L	L
Н	Н	Х	Х	Х	Н	L	Н

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

8. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_{\rm I}$ < –0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> _	±20	mA
Ι _{ΟΚ}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> _	±50	mA
I _O	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±35	mA
I _{CC}	supply current		-	70	mA
I _{GND}	ground current		-70	-	mA
T _{stg}	storage temperature		-65	+150	°C

Limiting values ... continued Table 4. In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Max Unit total power dissipation $T_{amb} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$ Ptot [2] _ 750 **DIP16** package mW [3] _ SO16 package 500 mW SSOP16 package [4] _ 500 mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] $~~P_{tot}$ derates linearly with 12 mW/K above 70 °C.

[3] ~~ P_{tot} derates linearly with 8 mW/K above 70 °C.

[4] P_{tot} derates linearly with 5.5 mW/K above 60 °C.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions		74HC253	3	74HCT253			Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V_{CC}	0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 V$	-	1.67	139	-	1.67	139	ns/V
		V_{CC} = 6.0 V	-	-	83	-	-	-	ns/V

10. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbo	I Parameter	Conditions		25 °C		–40 °C to	o +85 °C	–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC2	53									
V _{IH}	HIGH-level	$V_{CC} = 2.0 V$	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	$V_{CC} = 4.5 V$	3.15	2.4	-	3.15	-	3.15	-	V
		$V_{CC} = 6.0 V$	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	$V_{CC} = 2.0 V$	-	0.8	0.5	-	0.5	-	0.5	V
input voltage		$V_{CC} = 4.5 V$	-	2.1	1.35	-	1.35	-	1.35	V
		$V_{CC} = 6.0 V$	-	2.8	1.8	-	1.8	-	1.8	V

NXP Semiconductors

74HC253; 74HCT253

Dual 4-input multiplexer; 3-state

Symbol	Parameter	Conditions		25 °C		-40 °C te	o +85 °C	-40 °C to	+125 °C	Unit
-			Min	Тур	Max	Min	Max	Min	Max	-
V _{он}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_0 = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	5.9	-	5.9	-	V
		I_{O} = -6.0 mA; V_{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_0 = 20 \ \mu A; V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 20 \ \mu A; V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 20 \ \mu A; V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 6.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		$I_0 = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_1 = V_{CC}$ or GND; $V_{CC} = 6.0 V$	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL};$ $V_{O} = V_{CC} \text{ or } GND;$ $V_{CC} = 6.0 \text{ V}$	-	-	±0.5	-	±5.0	-	±10.0	μΑ
l _{cc}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 6.0 \ V \end{array}$	-	-	8.0	-	80	-	160	μA
Cı	input capacitance		-	3.5	-					pF
74HCT2	53									
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{он}	HIGH-level	$V_{I} = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -6 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 20 μA	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 6.0 \text{ mA}$	-	0.15	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	±0.1	-	±1.0	-	±1.0	μA
OZ	OFF-state output current	$V_I = V_{IH} \text{ or } V_{IL}; V_{CC} = 5.5 \text{ V};$ $V_O = V_{CC} \text{ or GND per input}$ pin; other inputs at V_{CC} or GND; $I_O = 0 \text{ A}$	-	-	±0.5	-	±5.0	-	±10	μΑ
СС	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	8.0	-	80	-	160	μA

Table 6. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Dual 4-input multiplexer; 3-state

Symbol	Parameter	Conditions		25 °C		–40 °C to +85 °C		–40 °C to	o +125 ℃	Unit
			Min	Тур	Max	Min	Max	Min	Max	
∆I _{CC}	additional supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} - 2.1 \text{ V};\\ \text{other inputs at } V_{CC} \text{ or GND};\\ V_{CC} = 4.5 \text{ V to 5.5 V};\\ I_{O} = 0 \text{ A} \end{array}$	1							
		per input pin; 1In, 2In inputs	-	40	144	-	180	-	196	μΑ
		per input pin; nOE input	-	110	396	-	495	-	539	μA
		per input pin; Sn input	-	110	396	-	495	-	539	μA
CI	input capacitance		-	3.5	-					pF

Table 6. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

11. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); For test circuit see Figure 8.

Symbol	Parameter	Conditions		25	°C	–40 °C to +85 °C	–40 °C to +125 °C	Unit
				Тур	Max	Max	Max	
74HC253	3							
t _{pd}	propagation delay	1In to 1Y or 2In to 2Y; see <u>Figure 6</u>	<u>[1]</u>					
		$V_{CC} = 2.0 V$		55	175	220	265	ns
		$V_{CC} = 4.5 V$		20	35	44	53	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		17	-	-	-	ns
		$V_{CC} = 6.0 V$		16	30	37	45	ns
		Sn to nY; see Figure 6						
		$V_{CC} = 2.0 V$		58	175	220	265	ns
		$V_{CC} = 4.5 V$		21	35	44	53	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		18	-	-	-	ns
		$V_{CC} = 6.0 V$		17	30	37	45	ns
t _{en}	enable time	nOE to nY; see <u>Figure 7</u>	[2]					
		$V_{CC} = 2.0 V$		30	100	125	150	ns
		$V_{CC} = 4.5 V$		11	20	25	30	ns
		$V_{CC} = 6.0 V$		9	17	21	26	ns
t _{dis}	disable time	nOE to nY; see Figure 7	<u>[3]</u>					
		$V_{CC} = 2.0 V$		41	150	190	225	ns
		$V_{CC} = 4.5 V$		15	30	38	45	ns
		$V_{CC} = 6.0 V$		12	26	33	38	ns

Dual 4-input multiplexer; 3-state

Symbol	Parameter	Conditions		25	°C	–40 °C to +85 °C	–40 °C to +125 °C	Unit
				Тур	Max	Max	Max	
t _t	transition time	see Figure 6	[4]				'	
		$V_{CC} = 2.0 V$		14	60	75	90	ns
		$V_{CC} = 4.5 V$		5	12	15	18	ns
		$V_{CC} = 6.0 V$		4	10	13	15	ns
C _{PD}	power dissipation capacitance	per multiplexer; V _I = GND to V_{CC}	<u>[5]</u>	55	-			pF
74HCT25	53							
t _{pd}	propagation delay	1In to 1Y or 2In to 2Y; see <u>Figure 6</u>	<u>[1]</u>					
		$V_{CC} = 4.5 V$		20	38	48	57	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		17	-	-		ns
		Sn to nY; see Figure 6						
		$V_{CC} = 4.5 V$		22	40	50	60	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		19	-			ns
t _{en}	enable time	n OE to nY; V _{CC} = 4.5 V; see <u>Figure 7</u>	[2]	14	30	38	45	ns
t _{dis}	disable time	$n\overline{OE}$ to nY; V _{CC} = 4.5 V; see <u>Figure 7</u>	<u>[3]</u>	13	30	38	45	ns
t _t	transition time	V _{CC} = 4.5 V; see Figure 6		5	12	15	18	ns
C _{PD}	power dissipation capacitance	per multiplexer; V _I = GND to V _{CC}	[5]	55	-			pF

Table 7. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); For test circuit see Figure 8.

 $\label{eq:tpd} [1] \quad t_{pd} \mbox{ is the same as } t_{PHL}, \mbox{ } t_{PLH}.$

[2] t_{en} is the same as t_{PZH} , t_{PZL} .

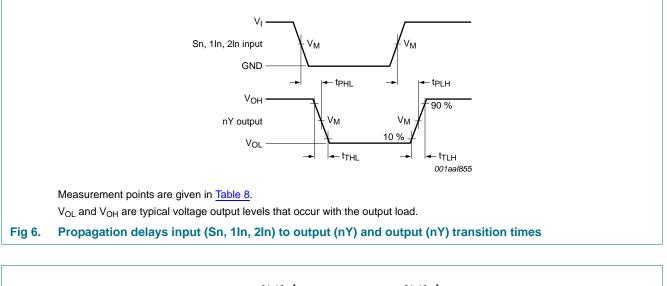
 $[3] \quad t_{dis} \text{ is the same as } t_{PHZ}, t_{PLZ}.$

[4] t_t is the same as t_{THL} , t_{TLH} .

[5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where: $f_i = \text{input frequency in MHz};$

 $f_o =$ output frequency in MHz;

 C_L = output load capacitance in pF;


 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

Dual 4-input multiplexer; 3-state

12. Waveforms

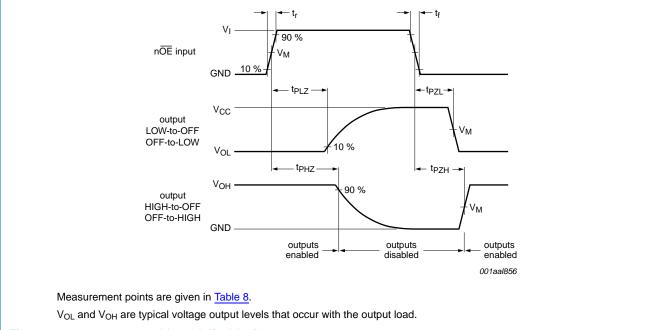
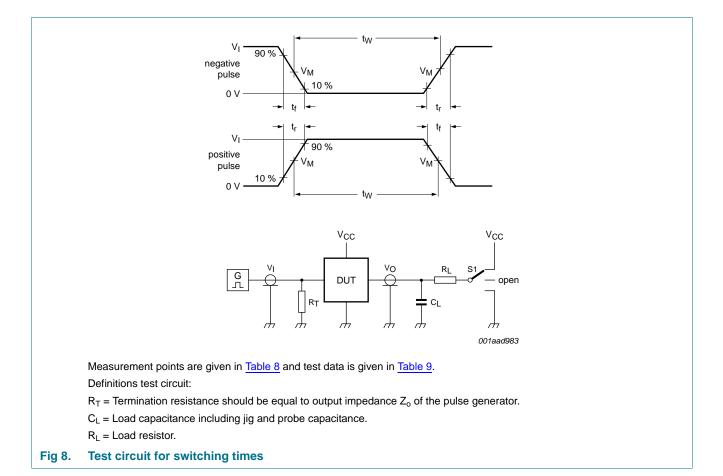


Fig 7. 3-state output enable and disable times


Table 8.Measurement points

Туре	Input	Output
	V _M	V _M
74HC253	0.5V _{CC}	0.5V _{CC}
74HCT253	1.3 V	1.3 V

NXP Semiconductors

74HC253; 74HCT253

Dual 4-input multiplexer; 3-state

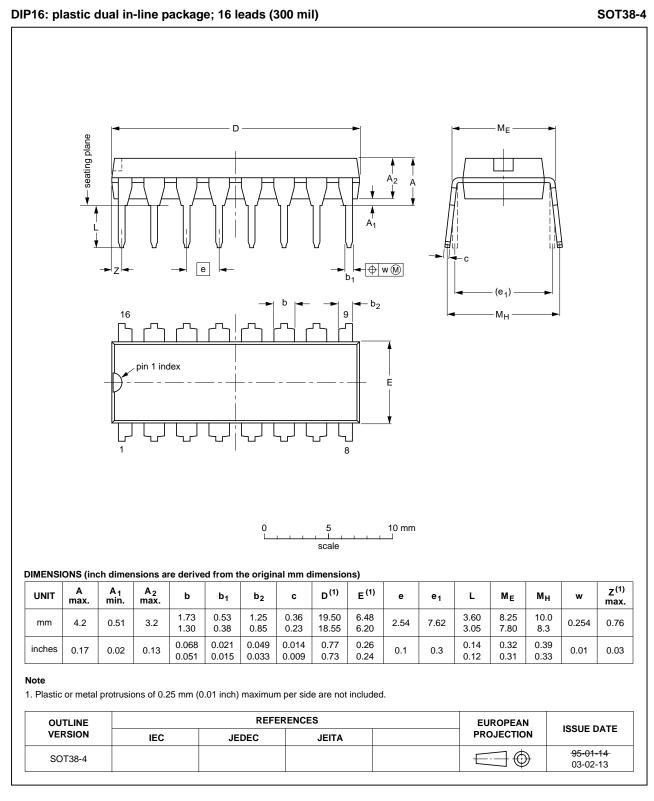


Table 9. Test data

Туре	Input		Load	Load		Switch position		
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
74HC253	V _{CC}	6 ns	50 pF	1 kΩ	open	GND	V _{CC}	
74HCT253	3 V	6 ns	50 pF	1 kΩ	open	GND	V _{CC}	

Dual 4-input multiplexer; 3-state

13. Package outline

Fig 9. Package outline SOT38-4 (DIP16)

All information provided in this document is subject to legal disclaimers.

Dual 4-input multiplexer; 3-state

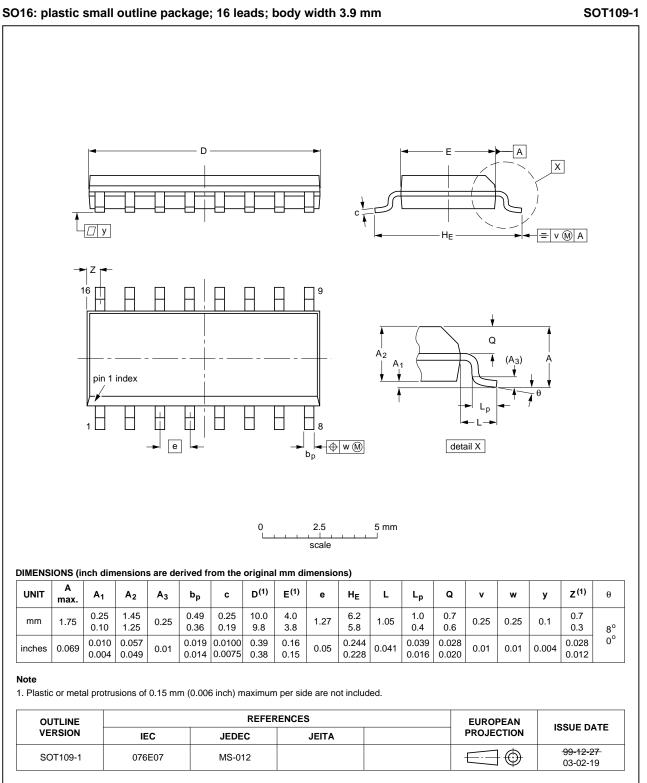


Fig 10. Package outline SOT109-1 (SO16)

All information provided in this document is subject to legal disclaimers.

Dual 4-input multiplexer; 3-state

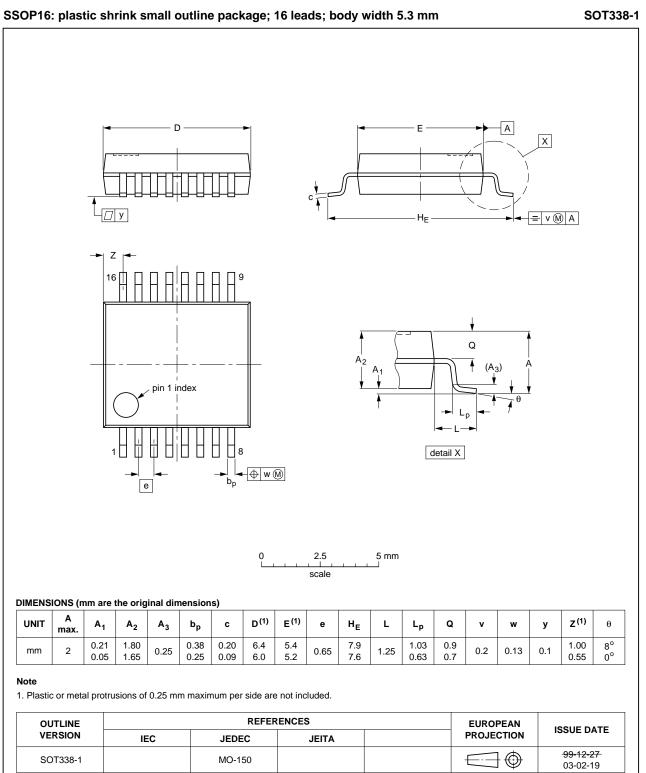


Fig 11. Package outline SOT338-1 (SSOP16)

Dual 4-input multiplexer; 3-state

14. Abbreviations

Table 10. Abbreviations				
Acronym	Description			
CMOS	Complementary Metal Oxide Semiconductor			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
HBM	Human Body Model			
MM	Machine Model			
TTL	Transistor-Transistor Logic			

15. Revision history

Table 11. Revision history							
Document ID	Release date	Data sheet status	Change notice	Supersedes			
74HC_HCT253 v.4	20111212	Product data sheet	-	74HC_HCT253 v.3			
Modifications:	 Legal pages upd 	ated.					
74HC_HCT253 v.3	20100422	Product data sheet	-	74HC_HCT253_CNV v.2			
74HC_HCT253_CNV v.2	970828	Product specification	-	-			

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

74HC_HCT253
Product data sheet

All information provided in this document is subject to legal disclaimers.

Dual 4-input multiplexer; 3-state

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

17. Contact information

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Dual 4-input multiplexer; 3-state

18. Contents

1	General description 1
2	Features and benefits 1
3	Applications 2
4	Ordering information 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning 3
6.2	Pin description 4
7	Functional description 4
8	Limiting values 4
9	Recommended operating conditions 5
10	Static characteristics 5
11	Dynamic characteristics 7
12	Waveforms
13	Package outline 11
14	Abbreviations 14
15	Revision history 14
16	Legal information 15
16.1	Data sheet status 15
16.2	Definitions 15
16.3	Disclaimers
16.4	Trademarks 16
17	Contact information 16
18	Contents 17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2011.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 12 December 2011 Document identifier: 74HC_HCT253

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

M38510/01406BEA MC74HC163ADTG 74HC253N HMC854LC5TR NLV74VHC1G01DFT1G NLVHC4851ADTR2G NLVHCT4851ADTR2G PI3B33X257BE M74HCT4052ADTR2G M74VHC1GT04DFT3G TC74AC138P(F) MC74LVX4051MNTWG HMC855LC5TR NLV14028BDR2G NLV14051BDR2G NLV74HC238ADTR2G 715428X COMX-CAR-210 5962-8607001EA 5962-8756601EA MAX3783UCM+D PI5C3253QEX 8CA3052APGGI8 TC74HC4051AF(EL,F) TC74VHC138F(EL,K,F PI3B3251LE PI5C3309UEX PI5C3251QEX PI3B3251QE 74VHC4052AFT(BJ) PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG M74HC151YRM13TR M74HC151YTTR PI5USB31213XEAEX M74HCT4851ADWR2G XD74LS154 AP4373AW5-7-01 QS3VH251QG8 QS4A201QG HCS301T-ISN HCS500-I/SM MC74HC151ADTG TC4066BP(N,F) 74ACT11139PWR HMC728LC3CTR 74VHC238FT(BJ) 74VHC4066AFT(BJ) 74VHCT138AFT(BJ)