74HC1G126; 74HCT1G126

Bus buffer/line driver; 3-state

Rev. 04 - 20 July 2007
Product data sheet

1. General description

The 74HC1G126 and 74HCT1G126 are high-speed, Si-gate CMOS devices. They provide one non-inverting buffer/line driver with 3-state output. The 3-state output is controlled by the output enable input pin (OE). A LOW at pin OE causes the output as assume a high-impedance OFF-state.

The HC device has CMOS input switching levels and supply voltage range 2 V to 6 V .
The HCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V .
The bus driver output currents are equal to those of the 74 HC 126 and 74 HCT 126 .

2. Features

- Symmetrical output impedance
- High noise immunity
- Low power dissipation
- Balanced propagation delays
- SOT353-1 and SOT753 package options

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74 HC 1 G 126 GW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1
74 HCT 1 G 126 GW			plastic surface-mounted package; 5 leads	SOT753
$74 \mathrm{HC1G126GV}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SC-74A		
74 HCT 1 G 126 GV				

4. Marking

Table 2. Marking codes

Type number	Marking
74 HC1G126GW	HN
74HCT1G126GW	TN
$74 \mathrm{HC1G126GV}$	H 26
$74 \mathrm{HCT} 1 \mathrm{G126GV}$	T 26

5. Functional diagram

Fig 1. Logic symbol

Fig 2. IEC logic symbol

Fig 3. Logic diagram

6. Pinning information

6.1 Pinning

Fig 4. Pin configuration

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
OE	1	output enable input
A	2	data input
GND	3	ground $(0 \mathrm{~V})$
Y	4	data output
$V_{C C}$	5	supply voltage

7. Functional description

Table 4. Function table
H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state

Inputs	Output	
$\mathbf{O E}$	A	Y
H	L	L
H	H	H
L	X	Z

8. Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). [1]

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
I_{KK}	input clamping current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
I_{OK}	output clamping current	$\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
I_{O}	output current	$-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 35.0	mA
I_{CC}	supply current		-	70	mA
$\mathrm{I}_{\mathrm{GND}}$	ground current	storage temperature		-70	-
$\mathrm{T}_{\text {stg }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-65	+150	mA
$\mathrm{P}_{\text {tot }} \mathrm{C}$	[2] -	200	mW		

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] Above $55^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $2.5 \mathrm{~mW} / \mathrm{K}$.

9. Recommended operating conditions

Table 6. Recommended operating conditions
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).

Symbol	Parameter	Conditions	74HC1G126			74HCT1G126			Unit
			Min	Typ	Max	Min	Typ	Max	
V_{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
V_{1}	input voltage		0	-	V_{CC}	0	-	V_{CC}	V
V_{0}	output voltage		0	-	V_{CC}	0	-	$V_{C C}$	V
Tamb	ambient temperature		-40	+25	+125	-40	+25	+125	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	625	-	-	-	ns / V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	139	-	-	139	ns / V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	83	-	-	-	ns / V

10. Static characteristics

Table 7. Static characteristics
Voltages are referenced to GND (ground $=0 \mathrm{~V}$). All typical values are measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	
For type 74HC1G126								
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	1.2	-	1.5	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	2.4	-	3.15	-	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	4.2	3.2	-	4.2	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	0.8	0.5	-	0.5	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	2.1	1.35	-	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	2.8	1.8	-	1.8	V

Table 7. Static characteristics ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$). All typical values are measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
			Min	Typ	Max	Min	Max	
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$						
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.9	2.0	-	1.9	-	V
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	4.4	4.5	-	4.4	-	V
		$\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	5.9	6.0	-	5.9	-	V
		$\mathrm{I}_{\mathrm{O}}=-6.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.84	4.32	-	3.7	-	V
		$\mathrm{I}_{\mathrm{O}}=-7.8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	5.34	5.81	-	5.2	-	V
V_{OL}	LOW-level output voltage	$\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$						
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	0	0.1	-	0.1	V
		$\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0	0.1	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	0	0.1	-	0.1	V
		$\mathrm{l}_{\mathrm{O}}=6.0 \mathrm{~mA} ; \mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	0.15	0.33	-	0.4	V
		$\mathrm{l}_{\mathrm{O}}=7.8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	0.16	0.33	-	0.4	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	1.0	-	1.0	$\mu \mathrm{A}$
loz	OFF-state output current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND; } \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	-	-	5	-	10	$\mu \mathrm{A}$
$I_{\text {cc }}$	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	-	-	10	-	20	$\mu \mathrm{A}$
C_{1}	input capacitance		-	1.5	-	-	-	pF
For type 74HCT1G126								
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	1.6	-	2.0	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	1.2	0.8	-	0.8	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$						
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$	4.4	4.5	-	4.4	-	V
		$\mathrm{I}_{\mathrm{O}}=-6.0 \mathrm{~mA}$	3.84	4.32	-	3.7	-	V
V_{OL}	LOW-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$						
		$\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A}$	-	0	0.1	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=6.0 \mathrm{~mA}$	-	0.16	0.33	-	0.4	V
1	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{C C}$ or GND; $\mathrm{V}_{C C}=5.5 \mathrm{~V}$	-	-	1.0	-	1.0	$\mu \mathrm{A}$
loz	OFF-state output current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	-	5	-	10	
I_{CC}	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND; } \mathrm{I}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	-	10	-	20	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional supply current	$\begin{aligned} & \text { per input; } \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	-	-	500	-	850	$\mu \mathrm{A}$
C_{1}	input capacitance		-	1.5	-	-	-	pF

11. Dynamic characteristics

Table 8. Dynamic characteristics
$G N D=0 \mathrm{~V} ; t_{r}=t_{f} \leq 6.0 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless otherwise specified. All typical values are measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$. For test circuit see Figure 7

Symbol	Parameter	Conditions		$-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
For type 74HC1G126									
t_{pd}	propagation delay	A to Y ; see Figure 5	[1]						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		-	24	125	-	150	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	10	25	-	30	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	9	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		-	9	21	-	26	ns
$\mathrm{t}_{\text {en }}$	enable time	OE to Y; see Figure 6	[1]						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		-	24	155	-	190	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	10	31	-	38	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		-	8	26	-	32	ns
$\mathrm{t}_{\text {dis }}$	disable time	OE to Y; see Figure 6	[1]						
		$\mathrm{V}_{C C}=2.0 \mathrm{~V}$		-	16	155	-	190	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	12	31	-	38	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$		-	11	26	-	32	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}	[2]	-	30	-	-	-	pF
For type 74HCT1G126									
t_{pd}	propagation delay	A to Y ; see Figure 5	[1]						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	11	30	-	36	ns
		$\mathrm{V}_{C C}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	10	-	-	-	ns
$\mathrm{t}_{\text {en }}$	enable time	OE to Y ; see Figure 6; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	[1]	-	10	35	-	42	ns
$\mathrm{t}_{\text {dis }}$	disable time	OE to Y; see Figure 6; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	[1]	-	12	31	-	38	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\text {CC }}-1.5 \mathrm{~V}$	[2]	-	27	-	-	-	pF

[1] $t_{p d}$ is the same as $t_{\text {PLH }}$ and $t_{\text {PHL }}$.
$t_{\text {en }}$ is the same as $t_{\text {PZL }}$ and $t_{\text {PZH }}$.
$t_{\text {dis }}$ is the same as $t_{\text {PLZ }}$ and $t_{P H Z}$.
[2] $C_{P D}$ is used to determine the dynamic power dissipation $P_{D}(\mu W)$.
$P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$C_{L}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts
$\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs

12. Waveforms

Measurement points are given in Table 9.
Fig 5. The input (A) to output (Y) propagation delays

Measurement points are given in Table 9.
Fig 6. The 3-state enable and disable times

Table 9. Measurement points

Type	Input		Output$\mathbf{V}_{\mathbf{M}}$
	V_{M}	V_{1}	
74HC1G126	$0.5 \times \mathrm{V}_{\text {c }}$	GND to V_{CC}	$0.5 \times \mathrm{V}_{\mathrm{CC}}$
74HCT1G126	1.3 V	GND to 3.0 V	1.3 V

Test data is given in Table 8. Definitions for test circuit:
$R_{T}=$ Termination resistance should be equal to the output impedance Z_{0} of the pulse generator
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance including jig and probe capacitance
$R_{L}=$ Load resistance
For $t_{\text {PLH }}, t_{\text {PHL }}, S_{1}=$ open
For $t_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}, \mathrm{S}_{1}=\mathrm{V}_{\mathrm{CC}}$
For $\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\mathrm{PZH}}, \mathrm{S}_{1}=\mathrm{GND}$
Fig 7. Load circuitry for switching times

13. Package outline

DIMENSIONS (mm are the original dimensions)

| UNIT | \mathbf{A} | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{m a x}$. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | \mathbf{c} | $\mathbf{D}^{(1)}$ | $\mathbf{E}^{(1)}$ | \mathbf{e} | $\mathbf{e}_{\mathbf{1}}$ | $\mathbf{H}_{\mathbf{E}}$ | \mathbf{L} | $\mathbf{L}_{\mathbf{p}}$ | \mathbf{v} | \mathbf{w} | \mathbf{y} | $\mathbf{Z}^{(1)}$ | $\boldsymbol{\theta}$ |
| mm | 1.1 | 0.1
 0 | 1.0 | | | | | | | | | | | | | | |
| 0.8 | 0.15 | 0.30 | 0.25 | 2.25 | 1.35 | 0.65 | 1.3 | 2.25 | 0.425 | 0.46 | 0.3 | 0.1 | 0.1 | 0.60 | 7° | | |
| 0.0 | 0.0 | 1.85 | 1.15 | 0.65 | 0.3 | 0.15 | 0° | | | | | | | | | | |

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT353-1		MO-203	SC-88A	$\square \oplus$	$\begin{aligned} & \text { 00-09-01 } \\ & \text { 03-02-19 } \end{aligned}$

Fig 8. Package outline SOT353-1 (TSSOP5)

detail X
DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{b} \mathbf{p}$	\mathbf{c}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}
mm	1.1	0.100	0.40	0.26	3.1	1.7	0.95	3.0	0.6	0.33	0		
	0.9	0.013	0.25	0.10	2.7	1.3		2.5	0.2	0.23	0	0.1	

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT753			SC-74A	\pm ¢	$\begin{aligned} & \hline 02-04-16 \\ & 06-03-16 \\ & \hline \end{aligned}$

Fig 9. Package outline SOT753 (SC-74A)

14. Abbreviations

Table 10. Abbreviations

Acronym	Description
DUT	Device Under Test
TTL	Transistor-Transistor Logic

15. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT1G126_4	20070720	Product data sheet	-	74HC_HCT1G126_3

16. Legal information

16.1 Data sheet status

Document status ${ }^{[1][2]}$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.
No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For additional information, please visit: http://www.nxp.com
For sales office addresses, send an email to: salesaddresses@nxp.com

18. Contents

1 General description 1
2 Features 1
3 Ordering information 1
4 Marking 1
5 Functional diagram 2
6 Pinning information 2
6.1 Pinning 2
6.2 Pin description 2
7 Functional description 2
8 Limiting values 3
9 Recommended operating conditions. 3
10 Static characteristics 3
11 Dynamic characteristics 5
12 Waveforms 6
13 Package outline 8
14 Abbreviations 10
15 Revision history. 10
16 Legal information. 11
16.1 Data sheet status 11
16.2 Definitions 11
16.3 Disclaimers 11
16.4 Trademarks 11
17 Contact information 11
18 Contents 12

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G NLX1G11AMUTCG

NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7 74LVC08ADTR2G
MC74HCT20ADTR2G NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLV74VHC1G08DTT1G

