DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT368 Hex buffer/line driver; 3-state; inverting

File under Integrated Circuits, IC06

FEATURES

- Inverting outputs
- Output capability: bus driver
- I ICC category: MSI

GENERAL DESCRIPTION

The 74HC/HCT368 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} / \mathrm{HCT} 368$ are hex inverting buffer/line drivers with 3-state outputs. The 3-state outputs ($\mathrm{n} \overline{\mathrm{Y}}$) are controlled by the output enable inputs (1 $\overline{\mathrm{OE}}, 2 \overline{\mathrm{OE}}$).
A HIGH on n $\overline{\mathrm{OE}}$ causes the outputs to assume a high impedance OFF-state.

The " 368 " is identical to the " 367 " but has inverting outputs.

QUICK REFERENCE DATA

$G N D=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$t_{\text {PHL }} / t_{\text {PLH }}$	propagation delay nA to $\mathrm{n} \overline{\mathrm{Y}}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	9	11	ns
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per buffer	notes 1 and 2	30	30	pF

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):

$$
P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}^{2} \times f_{0}\right) \text { where: }
$$

$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{O}}=$ output frequency in MHz
$\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)=$ sum of outputs
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{Cc}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Hex buffer/line driver; 3-state; inverting

74HC/HCT368

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1,15	$1 \overline{\mathrm{OE}}, 2 \overline{\mathrm{OE}}$	output enable inputs (active LOW)
$2,4,6,10,12,14$	1 A to 6 A	data inputs
$3,5,7,9,11,13$	$1 \overline{\mathrm{Y}}$ to $6 \overline{\mathrm{Y}}$	data outputs
8	GND	ground (0 V)
16	V $_{\mathrm{CC}}$	positive supply voltage

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

Fig. 3 IEC logic symbol.

Fig. 4 Functional diagram.

FUNCTION TABLE

INPUTS		OUTPUTS
$\mathbf{n} \overline{\mathbf{O E}}$	$\mathbf{n A}$	$\mathbf{n} \overline{\mathbf{Y}}$
L	L	H
L	H	L
H	X	Z

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
X = don't care
$\mathrm{Z}=$ high impedance OFF-state

Fig. 5 Logic diagram.

Hex buffer/line driver; 3-state; inverting

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: bus driver
$I_{\text {CC }}$ category: MSI

AC CHARACTERISTICS FOR 74HC

$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb ${ }^{\circ} \mathrm{C}$)							UNIT	TEST CONDITIONS	
		74HC								$\begin{array}{\|l} \mathrm{V}_{\mathrm{cc}} \\ (\mathrm{~V}) \end{array}$	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n A$ to $n \bar{Y}$		$\begin{array}{\|l\|} \hline 30 \\ 11 \\ 9 \end{array}$	$\begin{array}{\|l\|} \hline 95 \\ 19 \\ 16 \end{array}$		$\begin{aligned} & \hline 120 \\ & 24 \\ & 20 \end{aligned}$		$\begin{array}{\|l\|} \hline 145 \\ 29 \\ 25 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6
tpzH/ tpzL	3-state output enable time $n \overline{O E}$ to $n \bar{Y}$		$\begin{aligned} & \hline 41 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \end{aligned}$		$\begin{aligned} & 190 \\ & 38 \\ & 33 \end{aligned}$		$\begin{array}{\|l\|} \hline 225 \\ 45 \\ 38 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7
tPHZ/ tpLZ	3-state output disable time $n \overline{O E}$ to $n \bar{Y}$		$\begin{aligned} & 55 \\ & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \end{aligned}$		$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 33 \end{array}$		$\begin{array}{\|l\|} \hline 225 \\ 45 \\ 38 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		14 5 4	$\begin{array}{\|l\|} \hline 60 \\ 12 \\ 10 \end{array}$		$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6

Hex buffer/line driver; 3-state; inverting

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: bus driver
$I_{C C}$ category: MSI

Note to HCT types

The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$1 \overline{\mathrm{OE}}$	1.00
$2 \overline{\mathrm{OE}}$	0.90
nA	1.00

AC CHARACTERISTICS FOR 74HCT

$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb $\left(^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HCT								$V_{c c}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n A$ to $n \bar{Y}$		13	24		30		36	ns	4.5	Fig. 6
tpzH/ tpZL	3-state output enable time $n \overline{O E}$ to $n \bar{Y}$		17	35		44		53	ns	4.5	Fig. 7
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time $n \overline{O E}$ to $n \bar{Y}$		20	35		44		53	ns	4.5	Fig. 7
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		5	12		15		18	ns	4.5	Fig. 6

AC WAVEFORMS

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 6 Waveforms showing the input $(n A)$ to output $(n \bar{Y})$ propagation delays and the output transition times.

Fig. 7 Waveforms showing the 3-state enable and disable times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A NL17SG32P5T5G NL17SG86DFT2G NLU1G32CMUTCG NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7 74LVC08ADTR2G MC74HCT20ADTR2G NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G

