74HC4066; 74HCT4066

Quad single-pole single-throw analog switch

Rev. 7 - 2 April 2013
Product data sheet

1. General description

The $74 \mathrm{HC} 4066 ; 74 \mathrm{HCT} 4066$ is a quad single pole, single throw analog switch. Each switch features two input/output terminals (nY and nZ) and an active HIGH enable input (nE). When nE is LOW, the analog switch is turned off. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{cc}.

2. Features and benefits

- Input levels nE inputs:
- For 74HC4066: CMOS level
- For 74HCT4066: TTL level
- Low ON resistance:
- 50Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- 45Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$
- 35Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$

■ Specified in compliance with JEDEC standard no. 7A

- ESD protection:
- HBM JESD22-A114F exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

74HC4066; 74HCT4066

Quad single-pole single-throw analog switch

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC4066N	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1
74HCT4066N				
74HC4066D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1
74HCT4066D				
74HC4066DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1
74HCT4066DB				
74HC4066PW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1
74HCT4066PW				
74HC4066BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85 \mathrm{~mm}$	SOT762-1
74HCT4066BQ				

4. Functional diagram

Fig 1. Logic symbol

Fig 2. IEC logic symbol

Fig 3. Schematic diagram (one switch)

5. Pinning information

5.1 Pinning

Fig 4. Pin configuration for DIP14, SO14, SSOP14 and TSSOP14

(1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to VCC.

Fig 5. Pin configuration for DHVQFN14

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
$1 Z, 2 Z, 3 Z, 4 Z$	$2,3,9,10$	independent input or output
$1 Y, 2 Y, 3 Y, 4 Y$	$1,4,8,11$	independent input or output
GND	7	ground $(0 \mathrm{~V})$
$1 \mathrm{E}, 2 \mathrm{E}, 3 \mathrm{E}, 4 \mathrm{E}$	$13,5,6,12$	enable input (active HIGH)
V_{CC}	14	supply voltage

6. Functional description

Table 3. Function table[1]

Input nE	Switch
L	OFF
H	ON

[1] $H=$ HIGH voltage level;
$\mathrm{L}=$ LOW voltage level.

7. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{\text {cc }}$	supply voltage		-0.5	+11.0	V
I_{K}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
$\mathrm{I}_{\text {SK }}$	switch clamping current	$\mathrm{V}_{\text {SW }}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\text {SW }}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
ISw	switch current	$\mathrm{V}_{\mathrm{SW}}=-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	[1]	± 25	mA
ICC	supply current		-	50	mA
$\mathrm{I}_{\text {GND }}$	ground current		-	-50	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	[2]		
		DIP14 package		-	750
		SO14, (T)SSOP14 and DHVQFN14 packages		-	500
P	power dissipation	per switch	-	100	mW

[1] To avoid drawing V_{Cc} current out of terminal Z , when switch current flows in terminals Yn , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal Z , no V_{Cc} current will flow out of terminals Yn . In this case there is no limit for the voltage drop across the switch, but the voltages at $Y n$ and Z may not exceed $V_{C C}$ or GND.
[2] For DIP14 package: $P_{\text {tot }}$ derates linearly with $12 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$
For SO14 package: $\mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.
For (T)SSOP14 packages: $P_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$ above $60^{\circ} \mathrm{C}$.
For DHVQFN14 packages: $P_{\text {tot }}$ derates linearly with $4.5 \mathrm{~mW} / \mathrm{K}$ above $60^{\circ} \mathrm{C}$.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	74HC4066			74HCT4066			Unit
			Min	Typ	Max	Min	Typ	Max	
V_{CC}	supply voltage		2.0	5.0	10.0	4.5	5.0	5.5	V
V_{1}	input voltage		GND	-	V_{Cc}	GND	-	V_{Cc}	V
$V_{\text {SW }}$	switch voltage		GND	-	V_{Cc}	GND	-	V_{Cc}	V
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+25	+125	-40	+25	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	-	-	625	-	-	-	ns / V
		$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$	-	1.67	139	-	1.67	139	ns / V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	83	-	-	-	ns / V
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	35	-	-	-	ns / V

9. Static characteristics

Table 6. Ron resistance per switch for types 74HC4066 and 74HCT4066 $V_{I}=V_{I H}$ or $V_{I L}$; for test circuit see Figure 6.
$V_{\text {is }}$ is the input voltage at a Yn or \bar{Z} terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.
For 74HC4066: $V_{C C}-G N D=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
For 74HCT4066: VCC $-G N D=4.5 \mathrm{~V}$.

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ ${ }^{[1]}$	Max	Min	Max	
$\mathrm{R}_{\mathrm{ON} \text { (peak) }}$	ON resistance (peak)	$V_{\text {is }}=V_{\text {cc }}$ to GND						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=100 \mu \mathrm{~A} \quad \underline{[2]}$	-	-	-	-	-	Ω
		$\mathrm{V}_{\text {cC }}=4.5 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	54	-	118	142	Ω
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	42	-	105	126	Ω
		$\mathrm{V}_{\text {cC }}=9.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	32	-	88	105	Ω
$\mathrm{R}_{\mathrm{ON}(\text { rail }}$	ON resistance (rail)	$V_{\text {is }}=$ GND						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A} \quad \underline{[2]}$	-	80	-	-	-	Ω
		$\mathrm{V}_{C C}=4.5 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	35	-	95	115	Ω
		$\mathrm{V}_{\mathrm{cc}}=6.0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	27	-	82	100	Ω
		$\mathrm{V}_{\text {cC }}=9.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	20	-	70	85	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {cc }}$						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=100 \mu \mathrm{~A} \quad \underline{\text { [2] }}$	-	100	-	-	-	Ω
		$\mathrm{V}_{C C}=4.5 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	42	-	106	128	Ω
		$\mathrm{V}_{C C}=6.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	35	-	94	113	Ω
		$\mathrm{V}_{C C}=9.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	20	-	78	95	Ω

74HC4066; 74HCT4066

Quad single-pole single-throw analog switch

Table 6. $\quad R_{\text {ON }}$ resistance per switch for types 74HC4066 and 74HCT4066 ...continued $V_{I}=V_{I H}$ or $V_{I L}$; for test circuit see Figure 6.
$V_{i s}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.
For 74HC4066: $V_{C C}-G N D=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
For 74HCT4066: $V_{C C}-G N D=4.5 \mathrm{~V}$.

Symbol	Parameter	Conditions		$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
				Min	Typ [1]	Max	Min	Max	
$\Delta \mathrm{R}_{\text {ON }}$	ON resistance mismatch between channels	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {cc }}$ to GND							
		$\mathrm{V}_{\text {CC }}=2.0 \mathrm{~V}$	[2]	-	-	-	-	-	Ω
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$		-	5	-	-	-	Ω
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$		-	4	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$		-	3	-	-	-	Ω

[1] Typical values are measured at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
[2] At supply voltages ($\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$) approaching 2 V , the analog switch ON resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

$$
\begin{aligned}
& \mathrm{V}_{\text {is }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
& R_{O N}=\frac{V_{S W}}{I_{S W}}
\end{aligned}
$$

Fig 6. Test circuit for measuring R_{ON}

$$
\mathrm{V}_{\text {is }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{Cc}}
$$

Fig 7. Typical R_{ON} as a function of input voltage $\mathrm{V}_{\text {is }}$

74HC4066; 74HCT4066

Quad single-pole single-throw analog switch

Table 7. Static characteristics 74HC4066
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{\text {is }}$ is the input voltage at a $Y n$ or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ ${ }^{[1]}$	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	1.2	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	2.4	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	3.2	-	V
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	6.3	4.7	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	0.8	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	2.1	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	2.8	1.80	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	-	4.3	2.70	V
1	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mid \mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \text {; see Figure } 8 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mid \mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Figure } 9 \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & V_{1}=V_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	20.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	40.0	$\mu \mathrm{A}$
C_{1}	input capacitance		-	3.5	-	pF
$\mathrm{C}_{\text {sw }}$	switch capacitance		-	8	-	pF

$T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	6.3	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.50	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	1.80	V
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	-	2.70	V
1	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & V_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Figure } 8 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Figure } 9 \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$

Table 7. Static characteristics 74HC4066 ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{i s}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ $\underline{[1]}$	Max	Unit
ICC	supply current	$V_{I}=V_{C C}$ or GND; $V_{\text {is }}=G N D$ or $V_{C C} ;$				
		$V_{O S}=V_{C C}$ or $G N D$				
	$V_{C C}=6.0 V$	-	-	40	μA	
	$V_{C C}=10.0 V$	-	-	80	μA	

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Table 8. Static characteristics 74HCT4066
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{\text {is }}$ is the input voltage at a $Y n$ or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	1.6	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	1.2	0.8	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \text { see Figure 8 } \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \text { see Figure } 9 \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	supply current	$\begin{aligned} & V_{1}=V_{C C} \text { or } G N D ; V_{i s}=G N D \text { or } V_{C C} ; \\ & V_{o s}=V_{C C} \text { or } G N D ; V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-	20.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}$ CC	additional supply current	per input pin; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or GND ; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	100	450	$\mu \mathrm{A}$
C_{1}	input capacitance		-	3.5	-	pF
$\mathrm{C}_{\text {sw }}$	switch capacitance		-	8	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
$\mathrm{V}_{\text {IH }}$	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Figure } 8 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Figure 9 } \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	supply current	$\begin{aligned} & V_{1}=V_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{os}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-	40	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional supply current	per input pin; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or $\mathrm{GND} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	490	$\mu \mathrm{A}$

[^0]
$V_{\text {is }}=V_{C C}$ and $V_{\text {os }}=G N D$
$\mathrm{V}_{\text {is }}=\mathrm{GND}$ and $\mathrm{V}_{\mathrm{os}}=\mathrm{V}_{\mathrm{CC}}$
Fig 8. Test circuit for measuring OFF-state leakage current

$V_{\text {is }}=V_{C C}$ and $V_{\text {os }}=$ open
$V_{\text {is }}=G N D$ and $V_{\text {os }}=$ open
Fig 9. Test circuit for measuring ON-state leakage current

10. Dynamic characteristics

Table 9. Dynamic characteristics 74HC4066
GND $=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless specified otherwise; for test circuit see Figure 12.
$V_{i s}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
$\mathrm{t}_{\text {pd }}$	propagation delay	$n Y$ to $n Z$ or $n Z$ to $n Y ; R_{L}=\infty \Omega$; see Figure 10	[2]						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		-	8	75	-	90	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	3	15	-	18	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		-	2	13	-	15	ns
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$		-	2	10	-	12	ns
$\mathrm{t}_{\text {off }}$	turn-off time	$n E$ to nY or nZ ; see Figure 11	[4]						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		-	44	190	-	225	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	16	38	-	45	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	13	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		-	13	33	-	38	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$		-	16	26	-	30	ns
$\mathrm{t}_{\text {on }}$	turn-on time	$n \mathrm{nE}$ to nY or nZ ; see Figure 11	[3]						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		-	36	125	-	150	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	13	25	-	30	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	11	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		-	10	21	-	26	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$		-	8	16	-	20	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}	[5]	11		-	-	-	pF

[1] Typical values are measured at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
[2] $t_{p d}$ is the same as $t_{\text {PHL }}$ and $t_{\text {PLH }}$.
[3] $t_{o n}$ is the same as $t_{\text {PHZ }}$ and $t_{\text {PLZ }}$.
[4] $t_{\text {off }}$ is the same as $t_{P z H}$ and $t_{P z L}$.
[5] $\mathrm{C}_{\text {PD }}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{s w}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\sum\left\{\left(C_{L}+C_{s w}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}=$ sum of outputs;
$C_{L}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{sw}}=$ switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

Table 10. Dynamic characteristics 74HCT4066
GND $=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless specified otherwise; for test circuit see Figure 12.
$V_{\text {is }}$ is the input voltage at a $Y n$ or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions		$-40{ }^{\circ} \mathrm{C}$ to +85 ${ }^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
t_{pd}	propagation delay	$n Y$ to $n Z$ or $n Z$ to $n Y ; R_{L}=\infty \Omega$; see Figure 10	[2]						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	3	15	-	18	ns
$t_{\text {off }}$	turn-off time	$n \mathrm{nE}$ to nY or nZ ; see Figure 11	[4]						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	20	44	-	53	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	16	-	-	-	ns
$\mathrm{t}_{\text {on }}$	turn-on time	nE to nY or nZ ; see Figure 11	[3]						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	12	30	-	36	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	12	-	-	-	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\left(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$	[5]	-	12	-	-	-	pF

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] $t_{p d}$ is the same as $t_{P H L}$ and $t_{\text {PLH }}$.
[3] $t_{o n}$ is the same as $t_{P H Z}$ and $t_{P L Z}$.
[4] $t_{\text {off }}$ is the same as $t_{\text {PZH }}$ and $t_{\text {PZL }}$.
[5] $\quad C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S W}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\Sigma\left\{\left(C_{L}+C_{s w}\right) \times V_{C c}{ }^{2} \times f_{o}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{sw}}=$ switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

11. Waveforms

Fig 10. Input $\left(\mathrm{V}_{\text {is }}\right)$ to output $\left(\mathrm{V}_{\mathrm{os}}\right)$ propagation delays

Measurement points are shown in Table 11.
Fig 11. Turn-on and turn-off times

Table 11. Measurement points

Type	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{V}_{\mathbf{M}}$
74 HC 4066	$\mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$
74 HCT 4066	3.0 V	1.3 V

Test data is given in Table 12.
Definitions test circuit:
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$\mathrm{R}_{\mathrm{L}}=$ Load resistor.
S1 = Test selection switch.
Fig 12. Load circuitry for measuring switching times

Table 12. Test data

Test	Input			Output		S1 position
	Control E	Switch Yn (Z)	$\mathbf{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Switch Z (Yn)		
	V_{1} [1]	$V_{\text {is }}$		C_{L}	$\mathbf{R}_{\mathbf{L}}$	
$t_{\text {PHL }}, t_{\text {PLH }}$	GND	GND to V_{CC}	6 ns	50 pF	-	open
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}$	GND to V_{CC}	V_{CC}	6 ns	$50 \mathrm{pF}, 15 \mathrm{pF}$	$1 \mathrm{k} \Omega$	GND
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	GND to V_{CC}	GND	6 ns	$50 \mathrm{pF}, 15 \mathrm{pF}$	$1 \mathrm{k} \Omega$	V_{CC}

[1] For 74HCT4066: maximum input voltage $\mathrm{V}_{1}=3.0 \mathrm{~V}$.

12. Additional dynamic characteristics

Table 13. Additional dynamic characteristics
Recommended conditions and typical values; GND $=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ;$ see Figure 13				\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=4.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.04	-	\%
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=8.0 \mathrm{~V}$ (p-p)	-	0.02	-	\%
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ;$ see Figure 13				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=4.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.12	-	\%
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=8.0 \mathrm{~V}$ (p-p)	-	0.06	-	\%
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$; see Figure 15	[2]			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	180	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	200	-	MHz
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \text { see Figure } 14 \end{aligned}$	[1]			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-50	-	dB
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	-50	-	dB
V_{ct}	crosstalk voltage	between digital input and switch (peak to peak value); $\mathrm{R}_{\mathrm{L}}=600 \Omega$; $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; $\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 16				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	110	-	mV
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	220	-	mV
Xtalk	crosstalk	between switches; $\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; $f_{i}=1 \mathrm{MHz}$; see Figure 17				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-60	-	dB
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	-60	-	dB

[1] Adjust input voltage $V_{\text {is }}$ to 0 dBm level ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600Ω).
[2] Adjust input voltage $V_{\text {is }}$ to 0 dBm level at $V_{\text {os }}$ for $f_{i}=1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$. After set-up, f_{i} is increased to obtain a reading of -3 dB at $\mathrm{V}_{\text {os }}$.

Fig 13. Test circuit for measuring total harmonic distortion

74 HC _HCT4066	All information provided in this document is subject to legal disclaimers.	© NXP B.V. 2013. All rights reserved.
Product data sheet	Rev. $7-2$ April 2013	13 of 25

a. Isolation (OFF-state)

b. Test circuit

$$
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega \text {. }
$$

Fig 14. Isolation (OFF-state) as a function of frequency
(dB)

a. Typical -3 dB frequency response

b. Test circuit

$$
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega
$$

Fig 15. -3 dB frequency response

a. Circuit

b. Crosstalk voltage

Fig 16. Test circuit for measuring crosstalk voltage (between the digital input and the switch)

Fig 17. Test circuit for measuring crosstalk (between the switches)

13. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	$\begin{gathered} \mathbf{A}_{\mathbf{1}} \\ \text { min. } \end{gathered}$	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	M_{H}	w	$\underset{\max }{\mathbf{Z}^{(1)}}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.13 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.2
inches	0.17	0.02	0.13	$\begin{aligned} & 0.068 \\ & 0.044 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \\ & \hline \end{aligned}$	0.1	0.3	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \\ & \hline \end{aligned}$	0.01	0.087

Note

1. Plastic or metal protrusions of $0.25 \mathrm{~mm}(0.01 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT27-1	050G04	MO-001	SC-501-14	- ¢	$\begin{aligned} & -9-12-27 \\ & 03-02-13 \end{aligned}$

Fig 18. Package outline SOT27-1 (DIP14)
DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	C	$D^{(1)}$	$E^{(1)}$	e	HE_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 8.55 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.35 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	IEC	REFERENCES	EUROPEAN	JEDEC	JEITA

Fig 19. Package outline SOT108-1 (SO14)
DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & \hline 6.4 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	0.65	7.9 7.6	1.25	$\begin{aligned} & \hline 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	1.4 0.9	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT337-1		MO-150			-	

Fig 20. Package outline SOT337-1 (SSOP14)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.1	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & 6.6 \\ & 6.2 \end{aligned}$	1	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.72 \\ & 0.38 \end{aligned}$	8° 0°

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT402-1		MO-153			-	$-9-22-27$

Fig 21. Package outline SOT402-1 (TSSOP14)

74HC4066; 74HCT4066

Quad single-pole single-throw analog switch

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;
14 terminals; body $2.5 \times 3 \times 0.85 \mathrm{~mm}$
DIMENSIONS (mm are the original dimensions)

UNIT	$\mathbf{A}^{(1)}$ $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	\mathbf{b}	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{D}_{\mathbf{h}}$	$\mathbf{E}^{(\mathbf{1})}$	$\mathbf{E}_{\mathbf{h}}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{y}_{\mathbf{1}}$
mm	1	0.05	0.30	0.2	3.1	1.65	2.6	1.15	0.5	2	0.5	0.1	0.05	0.05	0.1

Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT762-1	---	MO-241	---		$\begin{aligned} & 02-10-17 \\ & 03-01-27 \end{aligned}$

Fig 22. Package outline SOT762-1 (DHVQFN14)

14. Abbreviations

Table 14. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

15. Revision history

Table 15. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT4066 v. 7	20130402	Product data sheet	-	74HC_HCT4066 v. 6
Modifications:	- Descriptive title corrected (errata). - New general description (errata).			
74HC_HCT4066 v. 6	20120718	Product data sheet	-	74HC_HCT4066 v. 5
Modifications:	- The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. - Legal texts have been adapted to the new company name where appropriate.			
74HC_HCT4066 v. 5	20041111	Product data sheet	-	74HC_HCT4066 v. 4
74HC_HCT4066 v. 4	20030617	Product data sheet	-	74HC_HCT4066_CNV v. 3
74HC_HCT4067_CNV v. 3	19981110	Product data sheet	-	74HC_HCT4066_CNV v. 2
74HC_HCT4066_CNV v. 2	19981002	Product specification	-	-

16. Legal information

16.1 Data sheet status

Document status $[1][2]$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.
Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.
No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74HC4066; 74HCT4066

Quad single-pole single-throw analog switch

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products - Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

18. Contents

1 General description 1
2 Features and benefits 1
3 Ordering information 2
4 Functional diagram 2
5 Pinning information 3
5.1 Pinning 3
5.2 Pin description 3
6 Functional description 4
7 Limiting values 4
8 Recommended operating conditions. 5
9 Static characteristics. 5
10 Dynamic characteristics 9
11 Waveforms 11
12 Additional dynamic characteristics 13
13 Package outline 17
14 Abbreviations. 22
15 Revision history. 22
16 Legal information. 23
16.1 Data sheet status 23
16.2 Definitions 23
16.3 Disclaimers 23
16.4 Trademarks. 24
17 Contact information 24
18 Contents 25

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by NXP manufacturer:
Other Similar products are found below :
M38510/01406BEA MC74HC163ADTG 74HC253N HMC854LC5TR NLV74VHC1G01DFT1G NLVHC4851ADTR2G
NLVHCT4851ADTR2G PI3B33X257BE M74HCT4052ADTR2G M74VHC1GT04DFT3G TC74AC138P(F) MC74LVX4051MNTWG HMC855LC5TR NLV14028BDR2G NLV14051BDR2G NLV74HC238ADTR2G 715428X COMX-CAR-210 5962-8607001EA 59628756601EA MAX3783UCM+D PI5C3253QEX 8CA3052APGGI8 TC74HC4051AF(EL,F) TC74VHC138F(EL,K,F PI3B3251LE PI5C3309UEX PI5C3251QEX PI3B3251QE 74VHC4052AFT(BJ) PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG M74HC151YRM13TR M74HC151YTTR PI5USB31213XEAEX M74HCT4851ADWR2G XD74LS154 AP4373AW5-7-01 QS3VH251QG8 QS4A201QG HCS301T-ISN HCS500-I/SM MC74HC151ADTG TC4066BP(N,F) 74ACT11139PWR HMC728LC3CTR 74VHC238FT(BJ) 74VHC4066AFT(BJ) 74VHCT138AFT(BJ)

[^0]: [1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

