Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/3687Group

Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series

HD64N3687G, HD6483687G, H8/3687N H8/3687F HD64F3687, HD64F3687G, H8/3687 HD6433687, HD6433687G, HD6433686, HD6433686G, H8/3686 H8/3685 HD6433685, HD6433685G, H8/3684F HD64F3684, HD64F3684G, H8/3684 HD6433684, HD6433684G, H8/3683 HD6433683, HD6433683G, H8/3682 HD6433682, HD6433682G

Rev.5.00 Nov. 02, 2005 Page ii of xxxii

- a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of an party's rights, originating in the use of any product data, diagrams, charts, programs, algorith
- circuit application examples contained in these materials.
 - 3. All information contained in these materials, including product data, diagrams, charts, progra algorithms represents information on products at the time of publication of these materials, a
 - subject to change by Renesas Technology Corp. without notice due to product improvements other reasons. It is therefore recommended that customers contact Renesas Technology Co
 - an authorized Renesas Technology Corp. product distributor for the latest product informatio before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com
 - 4. When using any or all of the information contained in these materials, including product data. diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a t system before making a final decision on the applicability of the information and products. R
 - Technology Corp. assumes no responsibility for any damage, liability or other loss resulting f information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a designed or manufac system that is used under circumstances in which human life is potentially at stake. Please of

 - Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor v considering the use of a product contained herein for any specific purposes, such as apparat systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce

7. If these products or technologies are subject to the Japanese export control restrictions, they be exported under a license from the Japanese government and cannot be imported into a c

- whole or in part these materials.
- other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the produ contained therein.

Generally, the input pins of CMOS products are high-impedance input pins. If un are in their open states, intermediate levels are induced by noise in the vicinity, a through current flows internally, and a malfunction may occur.

3. Processing before Initialization

Note: When power is first supplied, the product's state is undefined.

chip and a low level is input on the reset pin. During the period where the states a undefined, the register settings and the output state of each pin are also undefined your system so that it does not malfunction because of processing while it is in the undefined state. For those products which have a reset function, reset the LSI impafter the power supply has been turned on.

The states of internal circuits are undefined until full power is supplied throughout

4. Prohibition of Access to Undefined or Reserved Addresses

Access to undefined or reserved addresses is prohibited.

The undefined or reserved addresses may be used to expand functions, or test reg may have been be allocated to these addresses. Do not access these registers; the operation is not guaranteed if they are accessed.

Rev.5.00 Nov. 02, 2005 Page iv of xxxii

- CPU and System-Control Modules
 - On-Chip Peripheral Modules

The configuration of the functional description of each module differs according module. However, the generic style includes the following items:

- i) Feature
- ii) Input/Output Pin
- iii) Register Description
- iv) Operation
- v) Usage Note

When designing an application system that includes this LSI, take notes into account. Exincludes notes in relation to the descriptions given, and usage notes are given, as require final part of each section.

- 7. List of Registers
- 8. Electrical Characteristics
- 9. Appendix
- 10. Main Revisions and Additions in this Edition (only for revised versions)

The list of revisions is a summary of points that have been revised or added to earlier verbis does not include all of the revised contents. For details, see the actual locations in the manual.

11. Index

Rev.5.00 Nov. 02, 2005 Pa

Objective: This manual was written to explain the hardware functions and electrical characteristics of the H8/3687 Group to the target users. Refer to the H8/300H Series Software Manual for a detailed description of

Notes on reading this manual:

In order to understand the overall functions of the chip

Read the manual according to the contents. This manual can be roughly categorized in on the CPU, system control functions, peripheral functions and electrical characteristic

In order to understand the details of the CPU's functions

Read the H8/300H Series Software Manual.

instruction set.

In order to understand the details of a register when its name is known

Read the index that is the final part of the manual to find the page number of the entry

register. The addresses, bits, and initial values of the registers are summarized in section List of Registers.

Example:

Register name: The following notation is used for cases when the sa similar function, e.g. serial communication interface implemented on more than one channel: XXX_N (XXX is the register name and N is the cha number)

The MSB is on the left and the LSB is on the right.

Notes:

When using the on-chip emulator (E7, E8) for H8/3687 program development and debug following restrictions must be noted.

Rev.5.00 Nov. 02, 2005 Page vi of xxxii

Bit order:

	of the SCI3 (P21/RXD, P22/TXD) in on-board programming mode by
mode.	
Related Manuals:	The latest versions of all related manuals are available from our we
	Please ensure you have the latest versions of all documents you rec

http://www.renesas.com/

User's Manual

Manual

H8/3687 Group manuals:	
Document Title	Docume
H8/3687 Group Hardware Manual	This mar
H8/300H Series Software Manual	REJ09B0
User's manuals for development tools:	Docume
Document Title	D

Simulator/Debugger User's Manual

H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor

Microcomputer Development Environment System H8S, H8/300 Series

H8S, H8/300 Series High-Performance Embedded Workshop 3, Tutorial

H8S, H8/300 Series High-Performance Embedded Workshop 3, User's

REJ10B

ADE-702

REJ10B

REJ10B

Rev.5.00 Nov. 02, 2005 Page viii of xxxii

RENESAS

Rev.5.00 Nov. 02, 2005 Pa

	2.2.3	Condition-Code Register (CCR)
2.3	Data Fo	ormats
	2.3.1	General Register Data Formats
	2.3.2	Memory Data Formats
2.4	Instruc	tion Set
	2.4.1	Table of Instructions Classified by Function
	2.4.2	Basic Instruction Formats
2.5	Addres	sing Modes and Effective Address Calculation
	2.5.1	Addressing Modes
	2.5.2	Effective Address Calculation
2.6	Basic E	Bus Cycle
	2.6.1	Access to On-Chip Memory (RAM, ROM)
	2.6.2	On-Chip Peripheral Modules
2.7	CPU St	tates
2.8	Usage 1	Notes
	2.8.1	Notes on Data Access to Empty Areas
	2.8.2	EEPMOV Instruction
	2.8.3	Bit-Manipulation Instruction
		Exception Handling
3.1	-	ion Sources and Vector Address
3.2	-	er Descriptions
	3.2.1	Interrupt Edge Select Register 1 (IEGR1)
	3.2.2	Interrupt Edge Select Register 2 (IEGR2)
	3.2.3	Interrupt Enable Register 1 (IENR1)
	3.2.4	Interrupt Enable Register 2 (IENR2)

2.2 Register Configuration.....

General Registers....

Program Counter (PC)

2.2.1

2.2.2

RENESAS

Rev.5.00 Nov. 02, 2005 Page x of xxxii

		3.5.2	Notes on Stack Area Use
		3.5.3	Notes on Rewriting Port Mode Registers
	Secti	on 4	Address Break
	4.1	Regist	er Descriptions
		4.1.1	Address Break Control Register (ABRKCR)
		4.1.2	Address Break Status Register (ABRKSR)
		4.1.3	Break Address Registers (BARH, BARL)
		4.1.4	Break Data Registers (BDRH, BDRL)
	4.2	Opera	tion
	Secti	on 5	Clock Pulse Generators
	5.1	Syster	n Clock Generator
		5.1.1	Connecting Crystal Resonator
		5.1.2	Connecting Ceramic Resonator
		5.1.3	External Clock Input Method
	5.2	Subclo	ock Generator
		5.2.1	Connecting 32.768-kHz Crystal Resonator
		5.2.2	Pin Connection when Not Using Subclock
5.3 Prescalers		ılers	
		5.3.1	Prescaler S
		5.3.2	Prescaler W
	5.4	Usage	Notes
		5.4.1	Note on Resonators
		5.4.2	Notes on Board Design

Section 6 Power-Down Modes

Register Descriptions

6.1

Rev.5.00 Nov. 02, 2005 Pa

System Control Register 1 (SYSCR1).....

	6.4.2	Direct Transition from Subactive Mode to Active Mode
6.5	Modul	le Standby Function
		·
Sect	tion 7	ROM
7.1		Configuration
7.2	Regist	er Descriptions
	7.2.1	Flash Memory Control Register 1 (FLMCR1)
	7.2.2	Flash Memory Control Register 2 (FLMCR2)
	7.2.3	Erase Block Register 1 (EBR1)
	7.2.4	Flash Memory Power Control Register (FLPWCR)
	7.2.5	Flash Memory Enable Register (FENR)
7.3	On-Bo	pard Programming Modes
	7.3.1	Boot Mode
	7.3.2	Programming/Erasing in User Program Mode
7.4	Flash	Memory Programming/Erasing
	7.4.1	Program/Program-Verify
	7.4.2	Erase/Erase-Verify
	7.4.3	Interrupt Handling when Programming/Erasing Flash Memory
7.5	Progra	nm/Erase Protection
	7.5.1	Hardware Protection
	7.5.2	Software Protection
	7.5.3	Error Protection
7.6	Progra	nmmer Mode
7.7	Power	-Down States for Flash Memory

Section 8 RAM.....

---- - " (

	9.4.1	Port Mode Register 5 (PMR5)
	9.4.2	Port Control Register 5 (PCR5)
	9.4.3	Port Data Register 5 (PDR5)
	9.4.4	Port Pull-Up Control Register 5 (PUCR5)
	9.4.5	Pin Functions
9.5	Port 6.	
	9.5.1	Port Control Register 6 (PCR6)
	9.5.2	Port Data Register 6 (PDR6)
	9.5.3	Pin Functions
9.6	Port 7.	
	9.6.1	Port Control Register 7 (PCR7)
	9.6.2	Port Data Register 7 (PDR7)
	9.6.3	Pin Functions
9.7	Port 8.	
	9.7.1	Port Control Register 8 (PCR8)
	9.7.2	Port Data Register 8 (PDR8)
	9.7.3	Pin Functions
9.8	Port B	
	9.8.1	Port Data Register B (PDRB)
Secti	ion 10	Realtime Clock (RTC)
10.1		28
10.2	Input/C	Output Pin
10.3	_	er Descriptions
	_	Second Data Register/Free Running Counter Data Register (RSECDR)
		David on Mary on ones D
		Rev.5.00 Nov. 02, 2005 P.

Port Control Register 3 (PCR3).....

Port Data Register 3 (PDR3).....

Pin Functions

Port 5.....

9.3.1

9.3.2

9.3.3

9.4

Sect	ion 11 Timer B1		
	Features		
	Input/Output Pin		
	Register Descriptions		
11.0	11.3.1 Timer Mode Register B1 (TMB1)		
	11.3.2 Timer Counter B1 (TCB1)		
	11.3.3 Timer Load Register B1 (TLB1)		
11.4	Operation		
	11.4.1 Interval Timer Operation		
	11.4.2 Auto-Reload Timer Operation		
	11.4.3 Event Counter Operation		
11.5	Timer B1 Operating Modes		
Sect	ion 12 Timer V		
	Features		

12.3.2 Time Constant Registers A and B (TCORA, TCORB)
12.3.3 Timer Control Register V0 (TCRV0)
12.3.4 Timer Control/Status Register V (TCSRV)

Rev.5.00 Nov. 02, 2005 Page xiv of xxxii

RENESAS

Usage Notes.....

12.3.1 Timer Counter V (TCNTV).....

	13.3.9	Timer Control Register (TCR)
	13.3.10	Timer I/O Control Register (TIORA and TIORC)
	13.3.11	Timer Status Register (TSR)
	13.3.12	Timer Interrupt Enable Register (TIER)
		PWM Mode Output Level Control Register (POCR)
		Interface with CPU
13.4		on
		Counter Operation
		Waveform Output by Compare Match
		Input Capture Function
		Synchronous Operation
		PWM Mode
		Reset Synchronous PWM Mode
		Complementary PWM Mode
		Buffer Operation
		Timer Z Output Timing
13.5		ts
	_	Status Flag Set Timing
		Status Flag Clearing Timing
13.6		Notes
Secti	ion 14	Watchdog Timer
14.1	Features	S
14.2	Register	r Descriptions
		Timer Control/Status Register WD (TCSRWD)
		Timer Counter WD (TCWD)
		Timer Mode Register WD (TMWD)

14.3 Operation

RENESAS

Rev.5.00 Nov. 02, 2005 Pag

13.3.8 General Registers A, B, C, and D (GRA, GRB, GRC, and GRD).....

	16.3.6 Serial Control Register 3 (SCR3)
	16.3.7 Serial Status Register (SSR)
	16.3.8 Bit Rate Register (BRR)
16.4	Operation in Asynchronous Mode
	16.4.1 Clock
	16.4.2 SCI3 Initialization
	16.4.3 Data Transmission
	16.4.4 Serial Data Reception
16.5	Operation in Clocked Synchronous Mode
	16.5.1 Clock
	16.5.2 SCI3 Initialization
	16.5.3 Serial Data Transmission
	16.5.4 Serial Data Reception (Clocked Synchronous Mode)
	16.5.5 Simultaneous Serial Data Transmission and Reception
16.6	Multiprocessor Communication Function
	16.6.1 Multiprocessor Serial Data Transmission
	16.6.2 Multiprocessor Serial Data Reception
16.7	Interrupts
16.8	Usage Notes
	16.8.1 Break Detection and Processing
	16.8.2 Mark State and Break Sending
	16.8.3 Receive Error Flags and Transmit Operations
	(Clocked Synchronous Mode Only)
	••

Rev.5.00 Nov. 02, 2005 Page xvi of xxxii

Transmit Shift Register (TSR).....

RENESAS

	- 7 10 17 - 0 - 0 00 - 1 11 11 11 11 11 11 11 11 11 11 11 11
	17.3.8 I ² C Bus Receive Data Register (ICDRR)
	17.3.9 I ² C Bus Shift Register (ICDRS)
17.4	Operation
	17.4.1 I ² C Bus Format
	17.4.2 Master Transmit Operation
	17.4.3 Master Receive Operation
	17.4.4 Slave Transmit Operation
	17.4.5 Slave Receive Operation
	17.4.6 Clocked Synchronous Serial Format
	17.4.7 Noise Canceler
	17.4.8 Example of Use
17.5	Interrupt Request
17.6	Bit Synchronous Circuit
17.7	Usage Notes
	17.7.1 Issue (Retransmission) of Start/Stop Conditions
	17.7.2 WAIT Setting in I ² C Bus Mode Register (ICMR)
Sect	ion 18 A/D Converter
18.1	Features
18.2	Input/Output Pins
18.3	Register Descriptions
	18.3.1 A/D Data Registers A to D (ADDRA to ADDRD)
	18.3.2 A/D Control/Status Register (ADCSR)
	18.3.3 A/D Control Register (ADCR)
18.4	Operation
	18.4.1 Single Mode
	Rev.5.00 Nov. 02, 2005 Pag
	RENESAS

17.3.5 I²C Bus Status Register (ICSR)...
17.3.6 Slave Address Register (SAR)...
17.3.7 I²C Bus Transmit Data Register (ICDRT)...

	19.3.1	EEPROM Key Register (EKR)
19.4		ion
	19.4.1	EEPROM Interface
	19.4.2	Bus Format and Timing
	19.4.3	Start Condition
	19.4.4	Stop Condition
	19.4.5	Acknowledge
	19.4.6	Slave Addressing
	19.4.7	Write Operations.
	19.4.8	Acknowledge Polling
	19.4.9	Read Operation
19.5	Usage ?	Notes
	19.5.1	Data Protection at V _{cc} On/Off
	19.5.2	Write/Erase Endurance
	19.5.3	Noise Suppression Time
Secti	ion 20	Power-On Reset and Low-Voltage Detection Circuits (Option
20.1	Feature	es
20.2	Registe	er Descriptions
	20.2.1	Low-Voltage-Detection Control Register (LVDCR)
	20.2.2	Low-Voltage-Detection Status Register (LVDSR)
20.3	Operati	ion
		D 0 D (C' ')
	20.3.1	Power-On Reset Circuit

Rev.5.00 Nov. 02, 2005 Page xviii of xxxii

19.3 Register Description

RENESAS

	23.2.6 Flash Memory Characteristics
	23.2.7 EEPROM Characteristics
	23.2.8 Power-Supply-Voltage Detection Circuit Characteristics (Optional)
	23.2.9 Power-On Reset Circuit Characteristics (Optional)
23.3	Electrical Characteristics
	(Mask-ROM Version, EEPROM Stacked Mask-ROM Version)
	23.3.1 Power Supply Voltage and Operating Ranges
	23.3.2 DC Characteristics
	23.3.3 AC Characteristics
	23.3.4 A/D Converter Characteristics
	23.3.5 Watchdog Timer Characteristics
	23.3.6 EEPROM Characteristics
	23.3.7 Power-Supply-Voltage Detection Circuit Characteristics (Optional)
	23.3.8 Power-On Reset Circuit Characteristics (Optional)
23.4	Operation Timing
23.5	Output Load Condition
App	endix A Instruction Set
A.1	Instruction List
A.2	Operation Code Map
A.3	Number of Execution States
A.4	Combinations of Instructions and Addressing Modes
App	endix B I/O Port Block Diagrams
B.1	I/O Port Block Diagrams
B.2	Port States in Each Operating State
	Rev.5.00 Nov. 02, 2005 Pa
	RENESAS

23.2.3 AC Characteristics
23.2.4 A/D Converter Characteristics
23.2.5 Watchdog Timer Characteristics

Rev.5.00 Nov. 02, 2005 Page xx of xxxii

Figure 2.3	Usage of General Registers
Figure 2.4	Relationship between Stack Pointer and Stack Area
Figure 2.5	General Register Data Formats (1)
Figure 2.5	General Register Data Formats (2)
Figure 2.6	Memory Data Formats
Figure 2.7	Instruction Formats.
Figure 2.8	Branch Address Specification in Memory Indirect Mode
Figure 2.9	On-Chip Memory Access Cycle
Figure 2.10	On-Chip Peripheral Module Access Cycle (3-State Access)
Figure 2.11	CPU Operation States
Figure 2.12	2 State Transitions
Figure 2.13	B Example of Timer Configuration with Two Registers Allocated
	to Same Address
Section 3	Exception Handling
Figure 3.1	Reset Sequence
Figure 3.2	Stack Status after Exception Handling
Figure 3.3	Interrupt Sequence
Figure 3.4	Port Mode Register Setting and Interrupt Request Flag Clearing Procedure
Section 4	Address Break

Figure 4.1 Block Diagram of Address Break.... Figure 4.2 Address Break Interrupt Operation Example (1)..... Figure 4.2 Address Break Interrupt Operation Example (2).....

Figure 2.1 Memory Map (1) Figure 2.1 Memory Map (2) Figure 2.1 Memory Map (3) Figure 2.2 CPU Registers

Figure 5.11	Example of Incorrect Board Design
	Power-Down Modes Mode Transition Diagram
Section 7	ROM
Figure 7.1	Flash Memory Block Configuration
Figure 7.2	Programming/Erasing Flowchart Example in User Program Mode
Figure 7.3	Program/Program-Verify Flowchart
	Erase/Erase-Verify Flowchart
Section 9	I/O Ports
Figure 9.1	Port 1 Pin Configuration
Figure 9.2	Port 2 Pin Configuration.
	Port 3 Pin Configuration
	Port 5 Pin Configuration
Figure 9.5	Port 6 Pin Configuration
Figure 9.6	Port 7 Pin Configuration
Figure 9.7	Port 8 Pin Configuration.
Figure 9.8	Port B Pin Configuration
Section 10	Realtime Clock (RTC)
Figure 10.1	Block Diagram of RTC
Figure 10.2	Definition of Time Expression
Figure 10.3	Initial Setting Procedure
Figure 10.4	Example: Reading of Inaccurate Time Data

Figure 11.1 Block Diagram of Timer B1

Section 12 Timer V

Section 11 Timer B1

Figure 12.1 Block Diagram of Timer V

Rev.5.00 Nov. 02, 2005 Page xxii of xxxii

i Renesas

Figure 12.13	3 Internal Clock Switching and TCNTV Operation
Section 13	Timer Z
Figure 13.1	Timer Z Block Diagram
Figure 13.2	Timer Z (Channel 0) Block Diagram
_	Timer Z (Channel 1) Block Diagram
Figure 13.4	Example of Outputs in Reset Synchronous PWM Mode
_	and Complementary PWM Mode
Figure 13.5	Accessing Operation of 16-Bit Register (between CPU and TCNT (16 bits
Figure 13.6	Accessing Operation of 8-Bit Register (between CPU and TSTR (8 bits))
Figure 13.7	Example of Counter Operation Setting Procedure
Figure 13.8	Free-Running Counter Operation

Figure 13.9 Periodic Counter Operation..... Figure 13.10 Count Timing at Internal Clock Operation..... Figure 13.11 Count Timing at External Clock Operation (Both Edges Detected)...... Figure 13.12 Example of Setting Procedure for Waveform Output by Compare Match.

Figure 13.13 Example of 0 Output/1 Output Operation Figure 13.14 Example of Toggle Output Operation..... Figure 13.15 Output Compare Timing..... Figure 13.16 Example of Input Capture Operation Setting Procedure

Figure 13.17 Example of Input Capture Operation. Figure 13.18 Input Capture Signal Timing Figure 13.19 Example of Synchronous Operation Setting Procedure

Figure 13.23 Example of PWM Mode Operation (2) Figure 13.24 Example of PWM Mode Operation (3) Figure 13.25 Example of PWM Mode Operation (4) Figure 13.26 Example of Reset Synchronous PWM Mode Setting Procedure.....

Rev.5.00 Nov. 02, 2005 Page

Figure 13.20 Example of Synchronous Operation..... Figure 13.21 Example of PWM Mode Setting Procedure Figure 13.22 Example of PWM Mode Operation (1)

Figure 13.37	Example of Buffer Operation Setting Procedure
Figure 13.38	Example of Buffer Operation (1)
	(Buffer Operation for Output Compare Register)
Figure 13.39	Example of Compare Match Timing for Buffer Operation
Figure 13.40	Example of Buffer Operation (2)
	(Buffer Operation for Input Capture Register)
Figure 13.41	Input Capture Timing of Buffer Operation.
Figure 13.42	Buffer Operation (3) (Buffer Operation in Complementary
	PWM Mode $CMD1 = CMD0 = 1$)
Figure 13.43	Buffer Operation (4) (Buffer Operation in
	Complementary PWM Mode CMD1 = CMD0 = 1)
Figure 13.44	Example of Output Disable Timing of Timer Z by Writing to TOER
Figure 13.45	Example of Output Disable Timing of Timer Z by External Trigger
Figure 13.46	Example of Output Inverse Timing of Timer Z by Writing to TFCR
Figure 13.47	Example of Output Inverse Timing of Timer Z by Writing to POCR
Figure 13.48	IMF Flag Set Timing when Compare Match Occurs
Figure 13.49	IMF Flag Set Timing at Input Capture
Figure 13.50	OVF Flag Set Timing
Figure 13.51	Status Flag Clearing Timing.
Figure 13.52	Contention between TCNT Write and Clear Operations
Figure 13.53	Contention between TCNT Write and Increment Operations

Figure 13.58 Contention between GR Write and Input Capture.....

Figure 13.57 Contention between Count Clearing and Increment

Rev.5.00 Nov. 02, 2005 Page xxiv of xxxii

RENESAS

Operations by Input Capture

Figure 16.2	Data Format in Asynchronous Communication
	Relationship between Output Clock and Transfer Data Phase
	(Asynchronous Mode) (Example with 8-Bit Data, Parity, Two Stop Bits)
Figure 16.4	Sample SCI3 Initialization Flowchart
Figure 16.5	Example of SCI3 Transmission in Asynchronous Mode
	(8-Bit Data, Parity, One Stop Bit)
Figure 16.6	Sample Serial Transmission Data Flowchart (Asynchronous Mode)
Figure 16.7	Example of SCI3 Reception in Asynchronous Mode
-	(8-Bit Data, Parity, One Stop Bit)

Figure 16.15 Example of Inter-Processor Communication Using Multiprocessor Forma

Section 17 I²C Bus Interface 2 (IIC2)

Figure 16.19 Receive Data Sampling Timing in Asynchronous Mode

Figure 17.1 Block Diagram of I²C Bus Interface 2.....

RENESAS

Rev.5.00 Nov. 02, 2005 Page

(Clocked Synchronous Mode)

(Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit).....

Figure 17.14	Transmit Mode Operation Timing
Figure 17.15	Receive Mode Operation Timing
Figure 17.16	Block Diagram of Noise Conceler
Figure 17.17	Sample Flowchart for Master Transmit Mode
Figure 17.18	Sample Flowchart for Master Receive Mode
Figure 17.19	Sample Flowchart for Slave Transmit Mode
Figure 17.20	Sample Flowchart for Slave Receive Mode
Figure 17.21	The Timing of the Bit Synchronous Circuit
Section 18	A/D Converter
Figure 18.1	Block Diagram of A/D Converter
Figure 18.2	A/D Conversion Timing
	External Trigger Input Timing
Figure 18.4	A/D Conversion Accuracy Definitions (1)
Figure 18.5	A/D Conversion Accuracy Definitions (2)
Figure 18.6	Analog Input Circuit Example
Section 19	EEPROM
Figure 19.1	Block Diagram of EEPROM
Figure 19.2	EEPROM Bus Format and Bus Timing
Figure 19.3	Byte Write Operation
Figure 19.4	Page Write Operation
Figure 19.5	Current Address Read Operation.
	Figure 17.15 Figure 17.16 Figure 17.17 Figure 17.18 Figure 17.19 Figure 17.20 Figure 17.21 Section 18 Figure 18.1 Figure 18.2 Figure 18.3 Figure 18.4 Figure 18.5 Figure 18.6 Section 19 Figure 19.1 Figure 19.1 Figure 19.2 Figure 19.3 Figure 19.4

RENESAS

Rev.5.00 Nov. 02, 2005 Page xxvi of xxxii

Figure 17.13 Clocked Synchronous Serial Transfer Format.....

Figure B.1	Port 1 Block Diagram (P17)
Figure B.2	Port 1 Block Diagram (P14, P16)
Figure B.3	Port 1 Block Diagram (P15)
Figure B.4	Port 1 Block Diagram (P12)
Figure B.5	Port 2 Block Diagram (P11)
Figure B.6	Port 1 Block Diagram (P10)
Figure B.7	Port 2 Block Diagram (P24, P23)
	Port 2 Block Diagram (P22)
Figure B.9	Port 2 Block Diagram (P21)
Figure B.10	Port 2 Block Diagram (P20)
Figure B.11	Port 3 Block Diagram (P37 to P30)
Figure B.12	Port 5 Block Diagram (P57, P56)
Figure B.13	Port 5 Block Diagram (P55)
Figure B.14	Port 5 Block Diagram (P54 to P50)
Figure B.15	Port 6 Block Diagram (P67 to P60)
Figure B.16	Port 7 Block Diagram (P76)
Figure B.17	Port 7 Block Diagram (P75)
Figure B.18	Port 7 Block Diagram (P74)
Figure B.19	Port 7 Block Diagram (P72)
Figure B.20	Port 7 Block Diagram (P71)
Figure B.21	Port 7 Block Diagram (P70)
Figure B.22	Port 8 Block Diagram (P87 to P85)
	Port B Block Diagram (PB7 to PB0)

Figure 23.5 SCK3 Input Clock Timing Figure 23.6 SCI Input/Output Timing in Clocked Synchronous Mode Figure 23.7 EEPROM Bus Timing..... Figure 23.8 Output Load Circuit.

Appendix B I/O Port Block Diagrams

Rev.5.00 Nov. 02, 2005 Page xxviii of xxxii

Table 2.6	Bit Manipulation Instructions (2)
Table 2.7	Branch Instructions
Table 2.8	System Control Instructions
Table 2.9	Block Data Transfer Instructions
Table 2.10	Addressing Modes
Table 2.11	Absolute Address Access Ranges
Table 2.12	Effective Address Calculation (1)
Table 2.12	Effective Address Calculation (2)
Section 3	Exception Handling
Table 3.1	Exception Sources and Vector Address
Table 3.2	Interrupt Wait States
Section 4	Address Break
Table 4.1	Access and Data Bus Used
Section 5	Clock Pulse Generators
Table 5.1	Crystal Resonator Parameters
Section 6	Power-Down Modes
Table 6.1	Operating Frequency and Waiting Time
Table 6.2	Transition Mode after SLEEP Instruction Execution
	and Transition Mode due to Interrupt

Internal State in Each Operating Mode.....

Setting Programming Modes

Boot Mode Operation

of LSI Bit Rate is Possible....

RENESAS

Rev.5.00 Nov. 02, 2005 Page

System Clock Frequencies for which Automatic Adjustment

Table 2.5

Table 2.6

Table 6.3

Table 7.1 Table 7.2

Table 7.3

Section 7 ROM

Section 12	Timer V
Table 12.1	Pin Configuration
Table 12.2	Clock Signals to Input to TCNTV and Counting Conditions
Section 13	Timer Z
Table 13.1	Timer Z Functions
Table 13.2	Pin Configuration
Table 13.3	Initial Output Level of FTIOB0 Pin
Table 13.4	Output Pins in Reset Synchronous PWM Mode
Table 13.5	Register Settings in Reset Synchronous PWM Mode
Table 13.6	Output Pins in Complementary PWM Mode
Table 13.7	Register Settings in Complementary PWM Mode
Table 13.8	Register Combinations in Buffer Operation

Section 15 14-Bit PWM

Table 15.1 Pin Configuration....

Table 16.3

Table 16.1

Section 16 Serial Communication Interface 3 (SCI3) Channel Configuration.

Table 16.2 Pin Configuration.... **Table 16.3** Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (1)

Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (2 Table 16.3 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (3 **Table 16.4** Maximum Bit Rate for Each Frequency (Asynchronous Mode) **Table 16.5** Examples of BRR Settings for Various Bit Rates

(Clocked Synchronous Mode) (1)..... **Table 16.5** Examples of BRR Settings for Various Bit Rates (Clocked Synchronous Mode) (2)..... SSR Status Flags and Receive Data Handling Table 16.6

Table 16.7 SCI3 Interrupt Requests.....

RENESAS

Table 23.1	Absolute Maximum Ratings
Table 23.2	DC Characteristics (1)
Table 23.2	DC Characteristics (2)
Table 23.2	DC Characteristics (3)
Table 23.3	AC Characteristics
Table 23.4	I ² C Bus Interface Timing
Table 23.5	Serial Communication Interface (SCI) Timing
Table 23.6	A/D Converter Characteristics
Table 23.7	Watchdog Timer Characteristics
Table 23.8	Flash Memory Characteristics
Table 23.9	EEPROM Characteristics
Table 23.10	Power-Supply-Voltage Detection Circuit Characteristics
Table 23.11	Power-On Reset Circuit Characteristics
Table 23.12	DC Characteristics (1)
Table 23.12	DC Characteristics (2)
Table 23.12	DC Characteristics (3)
Table 23.13	AC Characteristics
Table 23.14	I ² C Bus Interface Timing
Table 23.15	Serial Communication Interface (SCI) Timing
Table 23.16	A/D Converter Characteristics
Table 23.17	Watchdog Timer Characteristics
Table 23.18	EEPROM Characteristics
Table 23.19	Power-Supply-Voltage Detection Circuit Characteristics
	Pay 5 00 Nov. 00 0005 Page
	Rev.5.00 Nov. 02, 2005 Page
	= \C.\ 4\C_J/\dagger

Table 19.1

Table 19.2

Table 20.1

Section 23 Electrical Characteristics

Pin Configuration.

Slave Addresses

LVDCR Settings and Select Functions.....

Section 20 Power-On Reset and Low-Voltage Detection Circuits (Optional)

Rev.5.00 Nov. 02, 2005 Page xxxii of xxxii

— Timer V (8-bit timer)
— Timer Z (16-bit timer)
— 14-bit PWM
— Watchdog timer
— SCI (Asynchronous or clocked synchronous serial communication interface) × 2
— I ² C Rus Interface (conforms to the I ² C hus interface format that is advocated by I

— RTC (can be used as a free running counter)

Electronics)
— 10-bit A/D converter

— Timer B1 (8-bit timer)

REJ09

EEPROM stacked version	Flash memory version	H8/3687N	_	HD64N3687G	56 kbytes	4 kbytes
(512 bytes)	Mask-ROM version	_	_	HD6483687G	56 kbytes	3 kbytes
General	I/O ports					

HD6433686

HD6433685

HD6433686G

HD6433685G

HD6433684 HD6433684G

HD6433683 HD6433683G

HD6433682 HD6433682G

48 kbytes 3 kbytes

16 kbytes 3 kbytes

3 kbytes

3 kbytes

3 kbytes

40 kbytes

32 kbytes

24 kbytes

- - I/O pins: 45 I/O pins (43 I/O pins for H8/3687N), including 8 large current ports ($mA, @V_{OL} = 1.5 V)$

H8/3686

H8/3685

H8/3684

H8/3683

H8/3682

- Input-only pins: 8 input pins (also used for analog input)
- EEPROM interface (only for H8/3687N)
- Electronics)
- Supports various power-down states

Note: F-ZTAT[™] is a trademark of Renesas Technology Corp.

Compact package

Package	Code	Body Size	Pin Pitch
LQFP-64	FP-64E	10.0 × 10.0 mm	0.5 mm
QFP-64	FP-64A	14.0 × 14.0 mm	0.8 mm

— I²C bus interface (conforms to the I²C bus interface format that is advocated by Ph

Only LQFP-64 (FP-64E) for H8/3687N package

Rev.5.00 Nov. 02, 2005 Page 2 of 500

RENESAS

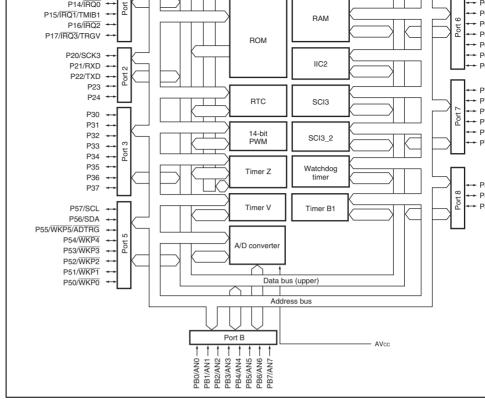


Figure 1.1 Internal Block Diagram of H8/3687 Group of F-ZTATTM and Mask-ROM Versions

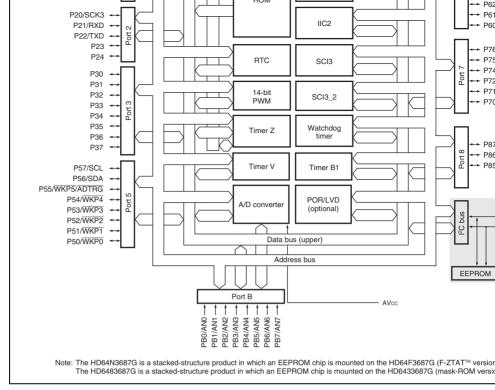


Figure 1.2 Internal Block Diagram of H8/3687N (EEPROM Stacked Versio

Rev.5.00 Nov. 02, 2005 Page 4 of 500

REJ09B0027-0500

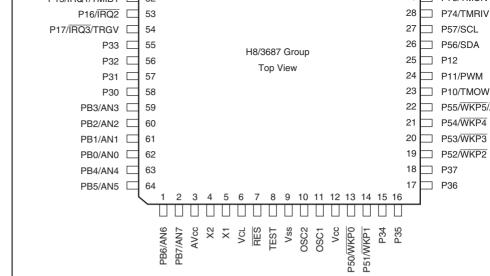


Figure 1.3 Pin Arrangement of H8/3687 Group of F-ZTAT[™] and Mask-ROM (FP-64E, FP-64A)

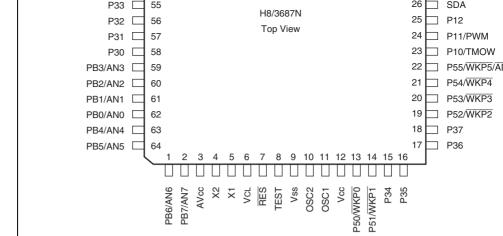


Figure 1.4 Pin Arrangement of H8/3687N (EEPROM Stacked Version)
(FP-64E)

Rev.5.00 Nov. 02, 2005 Page 6 of 500 REJ09B0027-0500

RENESAS

	X2	4	Output	Pulse Generators, for a typical connection
System control	RES	7	Input	Reset pin. The pull-up resistor (typ. 15 incorporated. When driven low, the ch
	TEST	8	Input	Test pin. Connect this pin to Vss.
Interrupt pins	NMI	35	Input	Non-maskable interrupt request input sure to pull-up by a pull-up resistor.
	IRQ0 to IRQ3	51 to 54	Input	External interrupt request input pins. 0 the rising or falling edge.
	WKP0 to WKP5	13, 14, 19 to 22	Input	External interrupt request input pins. 0 the rising or falling edge.
RTC	TMOW	23	Output	This is an output pin for divided clocks
Timer B1	TMIB1	52	Input	External event input pin.

 $\mathsf{AV}_{\mathsf{cc}}$

 V_{CL}

OSC₁

OSC₂

X1

X2

Clock pins

3

6

11

10

5

4

Input

Input

Input

Output

Input

Output

REJ09

Analog power supply pin for the A/D of When the A/D converter is not used, or this pin to the system power supply.

Internal step-down power supply pin. capacitor of around 0.1 µF between the

These pins connect with crystal or cer resonator for the system clock, or can

See section 5, Clock Pulse Generator

These pins connect with a 32.768 kHz resonator for the subclock. See section

the Vss pin for stabilization.

to input an external clock.

typical connection.

14-bit PWM	PWM	24	Output	14-bit PWM square wave output pin
I ² C bus interface (IIC)	SDA* ¹	26	I/O	IIC data I/O pin. Can directly drive a b NMOS open-drain output. When using external pull-up resistance is required
	SCL*1	27	I/O (EEPROM: Input)	IIC clock I/O pin. Can directly drive a NMOS open-drain output. When using external pull-up resistance is required
Serial com- munication	TXD, TXD_2	46, 50	Output	Transmit data output pin
interface (SCI)	RXD, RXD_2	45, 49	Input	Receive data input pin
	SCK3, SCK3_2	44, 48	I/O	Clock I/O pin
A/D converter	AN7 to AN0	1, 2, 59 to 64	Input	Analog input pin
	ADTRG	22	Input	A/D converter trigger input pin.

I/O

I/O

I/O

I/O

I/O

Output compare output/input capture

Output compare output/input capture

input/PWM sync output pin (at a reset

Output compare output/input capture

Output compare output/input capture input/PWM output pin (at a reset, complementary PWM mode)

Output compare output/input capture

complementary PWM mode)

input/PWM output pin

input/PWM output pin

input/PWM output pin

FTIOB0

FTIOC0

FTIOD0

FTIOA1

FTIOB1 to

FTIOD1

Rev.5.00 Nov. 02, 2005 Page 8 of 500

34

33

32

37

38 to 40

	P67 to P60	32 to 34, 36, 37 to 40	I/O	8-bit I/O port
	P76 to P74, P72 to P70	,	I/O	6-bit I/O port
	P87 to P85	41 to 43	I/O	3-bit I/O port.
Notes: 1.	•	•		bus interface in the H8/3687N. Since the ICE bit in ICCR1 must be set to 1

8-bit i/O port

the program.

19 to 22, 26*², 27*²

P57 to P50 13, 14,

2. The P57 and P56 pins are not available in the H8/3687N.

Rev.5.00 Nov. 02, 2005 P

Rev.5.00 Nov. 02, 2005 Page 10 of 500 REJ09B0027-0500

- General-register architecture — Sixteen 16-bit general registers also usable as sixteen 8-bit registers and eight 16 registers, or eight 32-bit registers Sixty-two basic instructions
 - 8/16/32-bit data transfer and arithmetic and logic instructions

 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
 - Eight addressing modes
 - Register direct [Rn]
 - Register indirect [@ERn]
 - Register indirect with displacement [@(d:16,ERn) or @(d:24,ERn)]
 - Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]
 - Absolute address [@aa:8, @aa:16, @aa:24]
 - Immediate [#xx:8, #xx:16, or #xx:32]
 - Program-counter relative [@(d:8,PC) or @(d:16,PC)] — Memory indirect [@@aa:8]
 - 64-kbyte address space

 - High-speed operation
 - All frequently-used instructions execute in one or two states

 - 8/16/32-bit register-register add/subtract
 - $--8 \times 8$ -bit register-register multiply : 14 states
 - 16 ÷ 8-bit register-register divide : 14 states
 - 16×16 -bit register-register multiply : 22 states
 - 32 ÷ 16-bit register-register divide : 22 states
 - Power-down state

CPU30H2C 000120030300

— Transition to power-down state by SLEEP instruction

RENESAS

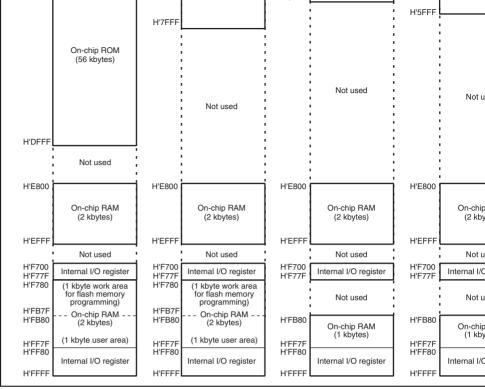


Figure 2.1 Memory Map (1)

	Not used	 	Not used	1 1 1 1 1 1	Not used		
			1 1		ı	H'DFFF	Not
H'E800	On-chip RAM (2 kbytes)	H'E800	On-chip RAM (2 kbytes)	H'E800	On-chip RAM (2 kbytes)	H'E800	On-ch (2 kt
H'EFFF_		H'EFFF		H'EFFF		H'EFFF	
H'F700	Not used Internal I/O register	H'F700	Not used Interrupt vector	H'F700	Not used Interrupt vector	H'F700	Not
H'F77F'	Not used	H'F77F	Not used	H'F77F	Not used	H'F77F	Not
H'FB80 H'FF7F	On-chip RAM (1 kbytes)	H'FB80	On-chip RAM (1 kbytes)	H'FB80	On-chip RAM (1 kbytes)	H'FB80	On-ch (1 kt
H'FF80	Internal I/O register	H'FF80 H'FFFF	Interrupt vector	H'FFFF	Interrupt vector	H'FFFF	Interrup

Figure 2.1 Memory Map (2)

Figure 2.1 Memory Map (3)

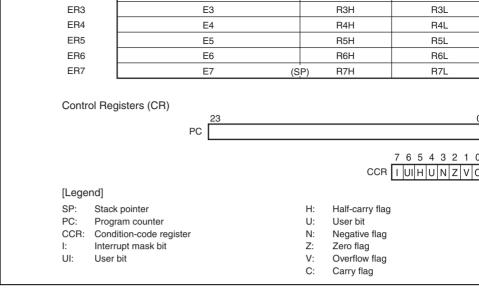


Figure 2.2 CPU Registers

The R registers divide into 8-bit registers designated by the letters RH (R0H to R7H) and to R7L). These registers are functionally equivalent, providing a maximum of sixteen 8-b registers.

The usage of each register can be selected independently.

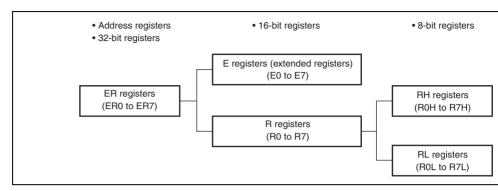


Figure 2.3 Usage of General Registers

General register ER7 has the function of stack pointer (SP) in addition to its general-regist function, and is used implicitly in exception handling and subroutine calls. Figure 2.4 shorelationship between the stack pointer and the stack area.

Figure 2.4 Relationship between Stack Pointer and Stack Area

2.2.2 Program Counter (PC)

This 24-bit counter indicates the address of the next instruction the CPU will execute. T of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (instruction is fetched, the least significant PC bit is regarded as 0). The PC is initialized start address is loaded by the vector address generated during reset exception-handling start address.

2.2.3 Condition-Code Register (CCR)

half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags. The I bit is init by reset exception-handling sequence, but other bits are not initialized.

This 8-bit register contains internal CPU status information, including an interrupt mask

Some instructions leave flag bits unchanged. Operations can be performed on the CCR LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as conditions for conditional branch (Bcc) instructions.

For the action of each instruction on the flag bits, see appendix A.1, Instruction List.

Rev.5.00 Nov. 02, 2005 Pa

2005 Pa REJ09

				NEG.W instruction is executed, the H flag is set there is a carry or borrow at bit 11, and cleared otherwise. When the ADD.L, SUB.L, CMP.L, o instruction is executed, the H flag is set to 1 if t carry or borrow at bit 27, and cleared to 0 othe
4	U	Undefined	R/W	User Bit
				Can be written and read by software using the STC, ANDC, ORC, and XORC instructions.
3	N	Undefined	R/W	Negative Flag

or NEG.B instruction is executed, this flag is set there is a carry or borrow at bit 3, and cleared otherwise. When the ADD.W, SUB.W, CMP.W

Set to 1 when a carry occurs, and cleared to 0

Add instructions, to indicate a carry

Subtract instructions, to indicate a borrow

Shift and rotate instructions, to indicate a c

				Stores the value of the most significant bit of d sign bit.
2	Z	Undefined R	R/W	Zero Flag
				Set to 1 to indicate zero data, and cleared to 0 indicate non-zero data.
1	V	Undefined R	R/W	Overflow Flag
				Set to 1 when an arithmetic overflow occurs, a cleared to 0 at other times.
0	С	Undefined R	R/W	Carry Flag

	The carry flag is also used as a bit accumulate manipulation instructions.
Rev.5.00 Nov. 02, 2005 Page 18 of 500	
REJ09B0027-0500	RENESAS

otherwise. Used by:

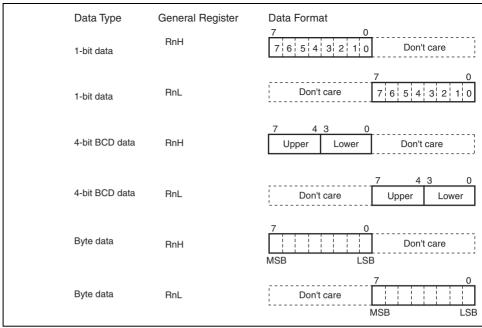


Figure 2.5 General Register Data Formats (1)

Ī				- 1	- 1	-	-	-	-	-	-	 -	-	-	-	1	-	-	-	-	-	-	-	 	1	-	
			MS	BB																							
	[Lege	nd]																									
	ERn:	General register ER																									
	En:	General register E																									
	Rn:	General register R																									
	RnH:	General register RH																									
	RnL:	General register RL																									
	MSB:	Most significant bit																									
	LSB:	Least significant bit																									
ı																											

Figure 2.5 General Register Data Formats (2)

Rev.5.00 Nov. 02, 2005 Page 20 of 500 REJ09B0027-0500

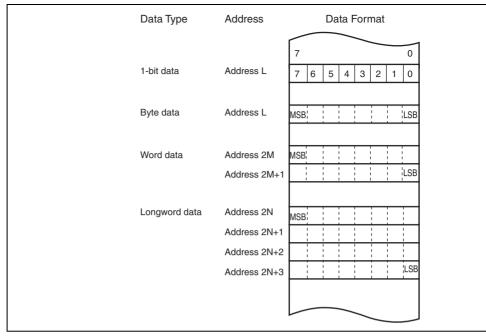


Figure 2.6 Memory Data Formats

Rn	General register*
ERn	General register (32-bit register or address register)
(EAd)	Destination operand
(EAs)	Source operand
CCR	Condition-code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
_	Subtraction
×	Multiplication
÷	Division
٨	Logical AND
V	Logical OR
\oplus	Logical XOR
\rightarrow	Move
٦	NOT (logical complement)
:3/:8/:16/:24	3-, 8-, 16-, or 24-bit length
	eral registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (ER0 to E7), and 32-bit registers/address register (ER0 to ER7).

General register (source)*

Rev.5.00 Nov. 02, 2005 Page 22 of 500

RENESAS

Rs

		MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L @SP+,
PUSH	W/L	$Rn \rightarrow @-SP$ Pushes a general register onto the stack. PUSH.W Rn is identified MOV.W Rn, @-SP. PUSH.L ERn is identical to MOV.L ERn,
Note: *	Refers to the	operand size.
	B: Byte	

W: Word

L: Longword

ADDS SUBS	L	Rd \pm 1 \rightarrow Rd, Rd \pm 2 \rightarrow Rd, Rd \pm 4 \rightarrow Rd Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit
DAA DAS	В	Rd (decimal adjust) → Rd Decimal-adjusts an addition or subtraction result in a general re referring to the CCR to produce 4-bit BCD data.
MULXU	B/W	$Rd \times Rs \rightarrow Rd$ Performs unsigned multiplication on data in two general registe 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.
MULXS	B/W	$Rd \times Rs \rightarrow Rd$ Performs signed multiplication on data in two general registers: bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.
DIVXU	B/W	$Rd \div Rs \to Rd$ Performs unsigned division on data in two general registers: eit

Increments or decrements a general register by 1 or 2. (Byte or

can be incremented or decremented by 1 only.)

bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div 16 16-bit quotient and 16-bit remainder.

Note: * efers to the operand size.
B: Byte
W: Word

L: Longword

DEC

Rev.5.00 Nov. 02, 2005 Page 24 of 500 REJ09B0027-0500

RENESAS

		3
EXTU	W/L	Rd (zero extension) → Rd Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by padding with zeros left.
EXTS	W/L	Rd (sign extension) → Rd Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by extending the sign

general register.

Takes the two's complement (arithmetic complement) of data

Note: * Refers to the operand size. B: Byte

W: Word L: Longword

RENESAS

NOT		B/W/L	\neg (Rd) \rightarrow (Rd) Takes the one's complement (logical complement) of general recontents.
Note:	*	Refers to the	operand size.
		B: Byte	
		W: Word	
		L: Longword	

Shift Instructions Table 2.5

Instruction	Size*	Function
SHAL SHAR	B/W/L	\mbox{Rd} (shift) \rightarrow \mbox{Rd} Performs an arithmetic shift on general register contents.
SHLL SHLR	B/W/L	Rd (shift) $\rightarrow Rd$ Performs a logical shift on general register contents.
ROTL ROTR	B/W/L	Rd (rotate) $\rightarrow Rd$ Rotates general register contents.
ROTXL ROTXR	B/W/L	Rd (rotate) $\rightarrow Rd$ Rotates general register contents through the carry flag.

Note: * Refers to the operand size. B: Byte

W: Word

Rev.5.00 Nov. 02, 2005 Page 26 of 500

L: Longword

BTST	В	\neg (bit-No.> of <ead>) \rightarrow Z Tests a specified bit in a general register or memory operand or clears the Z flag accordingly. The bit number is specified by immediate data or the lower three bits of a general register.</ead>
BAND	В	$C \wedge (\text{sbit-No.}) \text{ of } (\text{EAd-}) \rightarrow C$ ANDs the carry flag with a specified bit in a general register or operand and stores the result in the carry flag.
BIAND	В	$C \land \neg$ (<bit-no.> of <ead>) $\rightarrow C$ ANDs the carry flag with the inverse of a specified bit in a generalister or memory operand and stores the result in the carry to the bit number is specified by 3-bit immediate data.</ead></bit-no.>
BOR	В	C ∨ (<bit-no.> of <ead>) → C ORs the carry flag with a specified bit in a general register or r operand and stores the result in the carry flag.</ead></bit-no.>

 $C \lor \neg (<bit\text{-No.}> of <EAd>) \to C$

general register.

Inverts a specified bit in a general register or memory operand number is specified by 3-bit immediate data or the lower three

ORs the carry flag with the inverse of a specified bit in a gene or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.

Refers to the operand size.

В

B: Byte

BIOR

Note:

Rev.5.00 Nov. 02, 2005 Pa

		carry flag.
BILD	В	\neg (<bit-no.> of <ead>) \rightarrow C Transfers the inverse of a specified bit in a general register or no perand to the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
BST	В	C ightarrow (bit-No.> of <ead>) Transfers the carry flag value to a specified bit in a general regimemory operand.</ead>
BIST	В	\neg C \rightarrow (<bit-no.> of <ead>) Transfers the inverse of the carry flag value to a specified bit in general register or memory operand. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
Nata: *	Deference	

Note: * Refers to the operand size.

B: Byte

BCS(BLO)	Carry set (low)	C = 1
BNE	Not equal	Z = 0
BEQ	Equal	Z = 1
BVC	Overflow clear	V = 0
BVS	Overflow set	V = 1
BPL	Plus	N = 0
BMI	Minus	N = 1
BGE	Greater or equal	$N \oplus V = 0$
BLT	Less than	N ⊕ V = 1
BGT	Greater than	$Z\lor(N\oplus V)=0$
BLE	Less or equal	$Z\lor(N\oplus V)=1$

Carry clear

(high or same)

C = 0

JMP	_	Branches unconditionally to a specified address.
BSR — Branches to a subroutine at a specified address.		
JSR — Branches to a subroutine at a specified address.		Branches to a subroutine at a specified address.
RTS — Returns from a subroutine		Returns from a subroutine

Note: * Bcc is the general name for conditional branch instructions.

BCC(BHS)

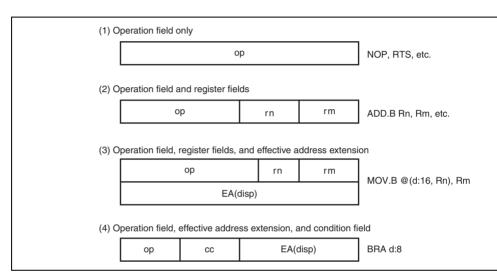
		by word access.
ANDC	В	$CCR \wedge \#IMM \rightarrow CCR$ Logically ANDs the CCR with immediate data.
ORC	В	$CCR \lor \#IMM \to CCR$ Logically ORs the CCR with immediate data.
XORC	В	$CCR \oplus \#IMM \rightarrow CCR$ Logically XORs the CCR with immediate data.
NOP	_	$PC + 2 \rightarrow PC$ Only increments the program counter.

code register size is one byte, but in transfer to memory, data is

Note: * Refers to the operand size.

B: Byte W: Word else next;

Transfers a data block. Starting from the address set in ER5, data for the number of bytes set in R4L or R4 to the address in ER6.


Execution of the next instruction begins as soon as the transfecompleted.

Some instructions have two operation fields.

- Register Field
 - Specifies a general register. Address registers are specified by 3 bits, and data register bits or 4 bits. Some instructions have two register fields. Some have no register field.
- Effective Address Extension
 - 8, 16, or 32 bits specifying immediate data, an absolute address, or a displacement. A address or displacement is treated as a 32-bit data in which the first 8 bits are 0 (H'00)
- Condition Field

Specifies the branching condition of Bcc instructions.

Figure 2.7 Instruction Formats

Rev.5.00 Nov. 02, 2005 Page 32 of 500 REJ09B0027-0500

RENESAS

Arithmetic and logic instructions can use the register direct and immediate modes. Data instructions can use all addressing modes except program-counter relative and memory Bit-manipulation instructions use register direct, register indirect, or the absolute addres (@aa:8) to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions use register direct (BSET, BCLR, BNOT, and BTST instructions).

or immediate (3-bit) addressing mode to specify a bit number in the operand.

Table 2.10 Addressing Modes

No.	Addressing Mode	Symbol
1	Register direct	Rn
2	Register indirect	@ERn
3	Register indirect with displacement	@(d:16,ERn)/@(d:24,ERn)
4	Register indirect with post-increment Register indirect with pre-decrement	@ERn+ @-ERn
5	Absolute address	@aa:8/@aa:16/@aa:24
6	Immediate	#xx:8/#xx:16/#xx:32
7	Program-counter relative	@(d:8,PC)/@(d:16,PC)
8	Memory indirect	@ @ aa:8

Register Direct—Rn

The register field of the instruction specifies an 8-, 16-, or 32-bit general register contain operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.

Register indirect with post-increment—@ERn+

The register field of the instruction code specifies an address register (ERn) the lower of which contains the address of a memory operand. After the operand is accessed, 1, added to the address register contents (32 bits) and the sum is stored in the address register value added is 1 for byte access, 2 for word access, or 4 for longword access. For or longword access, the register value should be even.

Register indirect with pre-decrement—@-ERn

The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the registion the instruction code, and the lower 24 bits of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of a memory of the result is the address of the r

The result is also stored in the address register. The value subtracted is 1 for byte access word access, or 4 for longword access. For the word or longword access, the register should be even.

Absolute Address-@aa:8, @aa:16, @aa:24

The instruction code contains the absolute address of a memory operand. The absolute admay be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24)

For an 8-bit absolute address, the upper 16 bits are all assumed to be 1 (H'FFFF). For a 1-

absolute address the upper 8 bits are a sign extension. A 24-bit absolute address can acce entire address space.

The access ranges of absolute addresses for the group of this LSI are those shown in table because the upper 8 bits are ignored.

operana.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some manipulation instructions contain 3-bit immediate data in the instruction code, specifyin number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifyin vector address.

Program-Counter Relative—@(d:8, PC) or @(d:16, PC)

This mode is used in the BSR instruction. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24-bit PC contents to generate a branch ad PC value to which the displacement is added is the address of the first byte of the next in so the possible branching range is -126 to +128 bytes (-63 to +64 words) or -32766 to bytes (-16383 to +16384 words) from the branch instruction. The resulting value should even number.

Memory Indirect—@@aa:8

address range is 0 to 255 (H'0000 to H'00FF).

This mode can be used by the JMP and JSR instructions. The instruction code contains a absolute address specifying a memory operand. This memory operand contains a branch The memory operand is accessed by longword access. The first byte of the memory operand ignored, generating a 24-bit branch address. Figure 2.8 shows how to specify branch address memory indirect mode. The upper bits of the absolute address are all assumed to be 0, so

Note that the first part of the address range is also the exception vector area.

Rev.5.00 Nov. 02, 2005 Pa

2.5.2 Effective Address Calculation

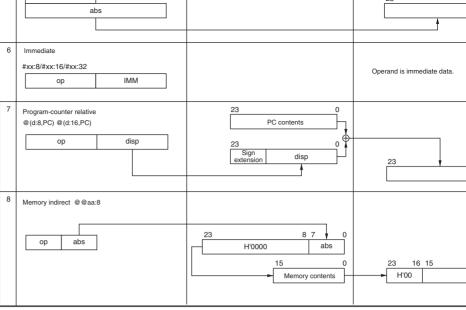

Table 2.12 indicates how effective addresses are calculated in each addressing mode. In the upper 8 bits of the effective address are ignored in order to generate a 16-bit effective

Table 2.12 Effective Address Calculation (1)

No	Addressing Mode and Instruction Format	Effective Address Calculation	Effective Address (EA)
1	Register direct(Rn) op rm m		Operand is general register conte
2	Register indirect(@ERn) op r	31 0 General register contents	23
3	Register indirect with displacement @ (d:16,ERn) or @ (d:24,ERn) op r disp	31 0 General register contents 31 0 Sign extension disp	23
4	Register indirect with post-increment or pre-decrement *Register indirect with post-increment @ERn+ op r *Register indirect with pre-decrement @-ERn op r op r	General register contents 1, 2, or 4 General register contents 1, 2, or 4 The value to be added or subtracted is 1 when the operand is byte size, 2 for word size, and 4 for longword size.	23

Rev.5.00 Nov. 02, 2005 Page 36 of 500 REJ09B0027-0500

[Legend]

r, rm,rn: Register field
op: Operation field
disp: Displacement

IMM: Immediate data
abs: Absolute address

Rev.5.00 Nov. 02, 2005 Pa

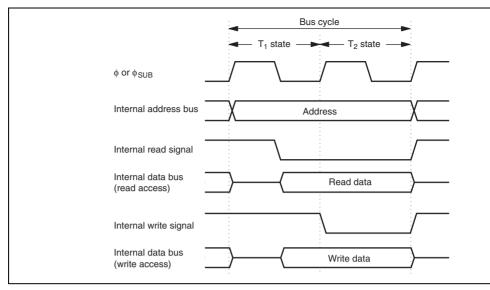


Figure 2.9 On-Chip Memory Access Cycle

module.

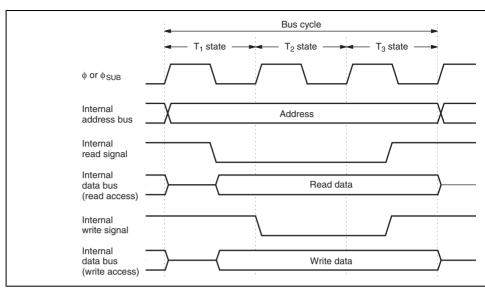


Figure 2.10 On-Chip Peripheral Module Access Cycle (3-State Access)

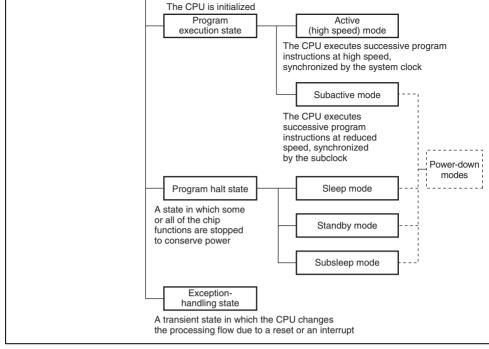


Figure 2.11 CPU Operation States

Figure 2.12 State Transitions

2.8 Usage Notes

2.8.1 Notes on Data Access to Empty Areas

The address space of this LSI includes empty areas in addition to the ROM, RAM, and I/O registers areas available to the user. When data is transferred from CPU to empty are transferred data will be lost. This action may also cause the CPU to malfunction. When transferred from an empty area to CPU, the contents of the data cannot be guaranteed.

2.8.2 EEPMOV Instruction

EEPMOV is a block-transfer instruction and transfers the byte size of data indicated by which starts from the address indicated by R5, to the address indicated by R6. Set R4L a that the end address of the destination address (value of R6 + R4L) does not exceed H'F value of R6 must not change from H'FFFF to H'0000 during execution).

2.8.3 Bit-Manipulation Instruction

The BSET, BCLR, BNOT, BST, and BIST instructions read data from the specified add byte units, manipulate the data of the target bit, and write data to the same address again units. Special care is required when using these instructions in cases where two registers assigned to the same address, or when a bit is directly manipulated for a port or a register containing a write-only bit, because this may rewrite data of a bit other than the bit to be manipulated.

Rev.5.00 Nov. 02, 2005 Pa

- 2. The CPU sets or resets the bit to be manipulated with the bit-manipulation instruction
- 3. The written data is written again in byte units to the timer load register.

The timer is counting, so the value read is not necessarily the same as the value in the timer egister. As a result, bits other than the intended bit in the timer counter may be modified modified value may be written to the timer load register.

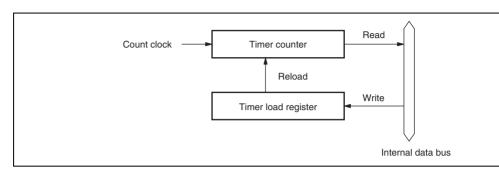


Figure 2.13 Example of Timer Configuration with Two Registers Allocated to Address

Example 2: The BSET instruction is executed for port 5.

P57 and P56 are input pins, with a low-level signal input at P57 and a high-level signal in P56. P55 to P50 are output pins and output low-level signals. An example to output a hig signal at P50 with a BSET instruction is shown below.

Rev.5.00 Nov. 02, 2005 Page 42 of 500

DEE

After executing BSET instruction

	F3/	F30	Foo	F34	FOO	P3Z	FOI
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	0	1	0	0	0	0	0

DE A

D52

- Description on operation
- 1. When the BSET instruction is executed, first the CPU reads port 5.

Since P57 and P56 are input pins, the CPU reads the pin states (low-level and high-linput).

P55 to P50 are output pins, so the CPU reads the value in PDR5. In this example PD value of H'80, but the value read by the CPU is H'40.

- 2. Next, the CPU sets bit 0 of the read data to 1, changing the PDR5 data to H'41.
- 3. Finally, the CPU writes H'41 to PDR5, completing execution of BSET instruction. As a result of the BSET instruction, bit 0 in PDR5 becomes 1, and P50 outputs a hig signal. However, bits 7 and 6 of PDR5 end up with different values. To prevent this store a copy of the PDR5 data in a work area in memory. Perform the bit manipulation data in the work area, then write this data to PDR5.

REJ09

D51

DE2

PDR5	1	0	0	0	0	0	0	
RAM0	1	0	0	0	0	0	0	

• BSET instruction executed

BSET #0, @RAMO

The BSET instruction is executed designating the work area (RAM0).

• After executing BSET instruction

MOV.B	@RAMO,	R0L
MOV.B	ROL,	@PDR5

The work area (RAM0) value is written to PDR5.

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0
RAM0	1	0	0	0	0	0	0

Bit Manipulation in a Register Containing a Write-Only Bit

Example 3: BCLR instruction executed designating port 5 control register PCR5

P57 and P56 are input pins, with a low-level signal input at P57 and a high-level signal in P56. P55 to P50 are output pins that output low-level signals. An example of setting the I an input pin by the BCLR instruction is shown below. It is assumed that a high-level signingut to this input pin.

Rev.5.00 Nov. 02, 2005 Page 44 of 500

BCLR #0, @PCR5 The BCLR instruction is executed for i CR5.

After executing BCLR instruction

	P3/	P36	Poo	P34	Pos	P3Z	Pol
Input/output	Output	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	1	1	1	1	1	1	1
PDR5	1	0	0	0	0	0	0

- Description on operation
- 1. When the BCLR instruction is executed, first the CPU reads PCR5. Since PCR5 is a register, the CPU reads a value of H'FF, even though the PCR5 value is actually H'3
- 2. Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE.
- 3. Finally, H'FE is written to PCR5 and BCLR instruction execution ends.

As a result of this operation, bit 0 in PCR5 becomes 0, making P50 an input port. Ho bits 7 and 6 in PCR5 change to 1, so that P57 and P56 change from input pins to out To prevent this problem, store a copy of the PDR5 data in a work area in memory armanipulate data of the bit in the work area, then write this data to PDR5.

PDR5	1	0	0	0	0	0	0	
RAM0	0	0	1	1	1	1	1	

BCLR instruction executed

BCLR #0, @RAMO

The BCLR instructions executed for the PCR5 wo (RAM0).

• After executing BCLR instruction

MOV.B @RAMO, ROL MOV.B ROL, @PCR5

The work area (RAM0) value is written to PCR5.

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0
RAM0	0	0	1	1	1	1	1

generates a vector address corresponding to a vector number from 0 to 3, as specified in instruction code. Exception handling can be executed at all times in the program executive regardless of the setting of the I bit in CCR.

• Interrupts

External interrupts other than NMI and internal interrupts other than address break are nothe I bit in CCR, and kept masked while the I bit is set to 1. Exception handling starts we current instruction or exception handling ends, if an interrupt request has been issued.

pin	INIVII	•	TTOOOL TO TTOO
CPU	Trap instruction (#0)	8	H'0010 to H'00
	(#1)	9	H'0012 to H'00
	(#2)	10	H'0014 to H'00
	(#3)	11	H'0016 to H'00
Address break	Break conditions satisfied	12	H'0018 to H'00
CPU	Direct transition by executing the SLEEP instruction	13	H'001A to H'00
External interrupt pin	IRQ0 Low-voltage detection interrupt*	14	H'001C to H'00
	IRQ1	15	H'001E to H'00
	IRQ2	16	H'0020 to H'002
	IRQ3	17	H'0022 to H'002
	WKP	18	H'0024 to H'002
RTC	Overflow	19	H'0026 to H'002
	Reserved for system use	20	H'0028 to H'002
Timer V	Timer V compare match A Timer V compare match B Timer V overflow	22	H'002C to H'00
SCI3	SCI3 receive data full SCI3 transmit data empty SCI3 transmit end SCI3 receive error	23	H'002E to H'002

Reserved for system use

NMI

External interrupt

1 to 6

7

H'0002 to H'000D

H'000E to H'000F

	Compare match/input capture A1 to D1 Timer Z overflow Timer Z underflow	27	H'0036 to H'0037
Timer B1	Timer B1 overflow	29	H'003A to H'003B
SCI3_2	Receive data full Transmit data empty Transmit end Receive error	32	H'0040 to H'0041

Note: * A low-voltage detection interrupt is enabled only in the product with an on-chion on reset and low-voltage detection circuit.

3.2 Register Descriptions

Interrupts are controlled by the following registers.

I imer ∠ overflow

- Interrupt edge select register 1 (IEGR1)
- Interrupt edge select register 2 (IEGR2)
- Interrupt enable register 1 (IENR1)
- Interrupt enable register 2 (IENR2)
- Interrupt flag register 1 (IRR1)
- Interrupt flag register 2 (IRR2)
- Wakeup interrupt flag register (IWPR)

				These bits are always read as 1.
3	IEG3	0	R/W	IRQ3 Edge Select
				0: Falling edge of $\overline{\text{IRQ3}}$ pin input is detected
				1: Rising edge of IRQ3 pin input is detected
2	IEG2	0	R/W	IRQ2 Edge Select
				0: Falling edge of $\overline{\text{IRQ2}}$ pin input is detected
				1: Rising edge of IRQ2 pin input is detected
1	IEG1	0	R/W	IRQ1 Edge Select
				0: Falling edge of $\overline{\text{IRQ1}}$ pin input is detected
				1: Rising edge of IRQ1 pin input is detected
0	IEG0	0	R/W	IRQ0 Edge Select
				0: Falling edge of $\overline{\text{IRQ0}}$ pin input is detected
				1: Rising edge of IRQ0 pin input is detected

Reserved

Rev.5.00 Nov. 02, 2005 Page 50 of 500

6 to 4 —

All 1

RENESAS

				1: Rising edge of $\overline{\text{WKP4}}$ pin input is detected
3	WPEG3	0	R/W	WKP3 Edge Select
				0: Falling edge of $\overline{\text{WKP3}}$ pin input is detected
				1: Rising edge of $\overline{\text{WKP3}}$ pin input is detected
2	WPEG2	0	R/W	WKP2 Edge Select
				0: Falling edge of $\overline{\text{WKP2}}$ pin input is detected
				1: Rising edge of $\overline{\text{WKP2}}$ pin input is detected
1	WPEG1	0	R/W	WKP1Edge Select

R/W

R/W

4

0

WPEG4

WPEG0

0

0

0: Falling edge of WKP5(ADTRG) pin input is of 1: Rising edge of WKP5(ADTRG) pin input is d

0: Falling edge of WKP4 pin input is detected

0: Falling edge of WKP1 pin input is detected 1: Rising edge of WKP1 pin input is detected

0: Falling edge of WKP0 pin input is detected 1: Rising edge of WKP0 pin input is detected

WKP4 Edge Select

WKP0 Edge Select

REJ09

Rev.5.00 Nov. 02, 2005 Pa

5	IENWP	0	R/W	Wakeup Interrupt Enable
				This bit is an enable bit, which is common to the WKP5 to WKP0. When the bit is set to 1, interrul requests are enabled.
4	_	1	_	Reserved
				This bit is always read as 1.
3	IEN3	0	R/W	IRQ3 Interrupt Enable
				When this bit is set to 1, interrupt requests of the pin are enabled.
2	IEN2	0	R/W	IRQ2 Interrupt Enable
				When this bit is set to 1, interrupt requests of the pin are enabled.
1	IEN1	0	R/W	IRQ1 Interrupt Enable
				When this bit is set to 1, interrupt requests of the pin are enabled.

enabled.

When disabling interrupts by clearing bits in an interrupt enable register, or when clearing an interrupt flag register, always do so while interrupts are masked (I = 1). If the above cl operations are performed while I = 0, and as a result a conflict arises between the clear in and an interrupt request, exception handling for the interrupt will be executed after the clo

R/W

Rev.5.00 Nov. 02, 2005 Page 52 of 500 RENESAS REJ09B0027-0500

0

IEN0

instruction has been executed.

0

IRQ0 Interrupt Enable

pin are enabled.

When this bit is set to 1, interrupt requests of the

4 to 0 —	All 1	 Reserved
		These bits are always read as 1.

When disabling interrupts by clearing bits in an interrupt enable register, or when clearing an interrupt flag register, always do so while interrupts are masked (I=1). If the above operations are performed while I=0, and as a result a conflict arises between the clear is and an interrupt request, exception handling for the interrupt will be executed after the construction has been executed.

3.2.5 Interrupt Flag Register 1 (IRR1)

IRR1 is a status flag register for direct transition interrupts, RTC interrupts, and $\overline{IRQ3}$ to

interrupt requests.

Bit	Bit Name	Initial Value	R/W	Description
7	IRRDT	0	R/W	Direct Transfer Interrupt Request Flag
				[Setting condition]
				When a direct transfer is made by executing instruction while DTON in SYSCR2 is set to
				[Clearing condition]
				When IRRDT is cleared by writing 0
6	IRRTA	0	R/W	RTC Interrupt Request Flag
				[Setting condition]
				When the RTC counter value overflows

[Clearing condition]

When IRRTA is cleared by writing 0

a

				[Setting condition] When IRQ2 pin is designated for interrupt designated signal edge is detected.
				[Clearing condition]
				When IRRI2 is cleared by writing 0
1	IRRI1	0	R/W	IRQ1 Interrupt Request Flag
				[Setting condition]
				When IRQ1 pin is designated for interrupt designated signal edge is detected.
				[Clearing condition]
				When IRRI1 is cleared by writing 0
0	IRRI0	0	R/W	IRQ0 Interrupt Request Flag
				[Setting condition]
				When $\overline{\text{IRQ0}}$ pin is designated for interrupt designated signal edge is detected.
				[Clearing condition]

R/W

IRQ2 Interrupt Request Flag

input a

input a

input

Rev.5.00 Nov. 02, 2005 Page 54 of 500 REJ09B0027-0500

2

IRRI2

RENESAS

When IRRI0 is cleared by writing 0

when the timer by counter value overnow
[Clearing condition]
When IDDTR1 is cleared by writing 0

These bits are always read as 1.

When IRRTB1 is cleared by writing 0

4 to 0 — All 1 — Reserved

3.2.7 Wakeup Interrupt Flag Register (IWPR)

IWPR is a status flag register for $\overline{WKP5}$ to $\overline{WKP0}$ interrupt requests.

		Initial		
Bit	Bit Name	Value	R/W	Description
7, 6	_	All 1	_	Reserved
				These bits are always read as 1.
5	IWPF5	0	R/W	WKP5 Interrupt Request Flag
				[Setting condition]
				When $\overline{\text{WKP5}}$ pin is designated for interrupt inp designated signal edge is detected.
				[Clearing condition]
				When IWPF5 is cleared by writing 0.
4	IWPF4	0	R/W	WKP4 Interrupt Request Flag
				[Setting condition]
				When $\overline{\text{WKP4}}$ pin is designated for interrupt inp designated signal edge is detected.
				[Clearing condition]

REJ09

When IWPF4 is cleared by writing 0.

				When $\overline{\text{WKP2}}$ pin is designated for interrupt input designated signal edge is detected.
				[Clearing condition]
				When IWPF2 is cleared by writing 0.
1	IWPF1	0	R/W	WKP1 Interrupt Request Flag
				[Setting condition]
				When WKP1 pin is designated for interrupt input designated signal edge is detected.

[Clearing condition]

[Setting condition]

[Clearing condition]

When IWPF1 is cleared by writing 0.

designated signal edge is detected.

When IWPF0 is cleared by writing 0.

When WKP0 pin is designated for interrupt input

WKP0 Interrupt Request Flag

RENESAS

Rev.5.00 Nov. 02, 2005 Page 56 of 500

0

IWPF0

0

R/W

The reset exception handling sequence is as follows:

- 1. Set the I bit in the condition code register (CCR) to 1.
- 2. The CPU generates a reset exception handling vector address (from H'0000 to H'000 data in that address is sent to the program counter (PC) as the start address, and prog execution starts from that address.

3.4 Interrupt Exception Handling

3.4.1 External Interrupts

As the external interrupts, there are NMI, IRQ3 to IRQ0, and WKP5 to WKP0 interrupt

NMI Interrupt

NMI interrupt is requested by input signal edge to pin \(\overline{NMI} \). This interrupt is detecte rising edge sensing or falling edge sensing, depending on the setting of bit NMIEG in NMI is the highest-priority interrupt, and can always be accepted without depending bit value in CCR.

IRQ3 to **IRQ0** Interrupts

IRQ3 to IRQ0 interrupts are requested by input signals to pins IRQ3 to IRQ0. These interrupts are given different vector addresses, and are detected individually by either edge sensing or falling edge sensing, depending on the settings of bits IEG3 to IEG0. When pins $\overline{\text{IRQ3}}$ to $\overline{\text{IRQ0}}$ are designated for interrupt input in PMR1 and the designated

edge is input, the corresponding bit in IRR1 is set to 1, requesting the CPU of an interface interrupts can be masked by setting bits IEN3 to IEN0 in IENR1.

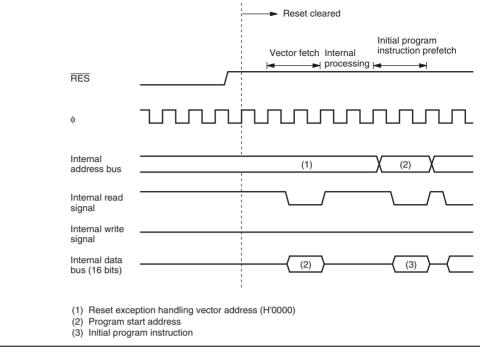


Figure 3.1 Reset Sequence

Rev.5.00 Nov. 02, 2005 Page 58 of 500 REJ09B0027-0500

RENESAS

3.4.3 Interrupt Handling Sequence

Interrupts are controlled by an interrupt controller.

Interrupt operation is described as follows.

- If an interrupt occurs while the NMI or interrupt enable bit is set to 1, an interrupt re signal is sent to the interrupt controller.
- 2. When multiple interrupt requests are generated, the interrupt controller requests to the interrupt handling with the highest priority at that time according to table 3.1. Of interrupt requests are held pending.
- 3. The CPU accepts the NMI and address break without depending on the I bit value. Continuous interrupt requests are accepted, if the I bit is cleared to 0 in CCR; if the I bit is set to interrupt request is held pending.

4. If the CPU accepts the interrupt after processing of the current instruction is completed

5. Then, the I bit of CCR is set to 1, masking further interrupts excluding the NMI and

- interrupt exception handling will begin. First, both PC and CCR are pushed onto the state of the stack at this time is shown in figure 3.2. The PC value pushed onto the staddress of the first instruction to be executed upon return from interrupt handling.
- break. Upon return from interrupt handling, the values of I bit and other bits in CCR restored and returned to the values prior to the start of interrupt exception handling.

 6. Next, the CPU generates the vector address corresponding to the accepted interrupt,
 - 6. Next, the CPU generates the vector address corresponding to the accepted interrupt, transfers the address to PC as a start address of the interrupt handling-routine. Then starts executing from the address indicated in PC.

Figure 3.3 shows a typical interrupt sequence where the program area is in the on-chip I the stack area is in the on-chip RAM.

Rev.5.00 Nov. 02, 2005 Pa

2, 2005 Pa REJ09 [Legend] PCH: Upper 8 bits of program counter (PC)

PCL: Lower 8 bits of program counter (PC) CCR: Condition code register

SP: Stack pointer

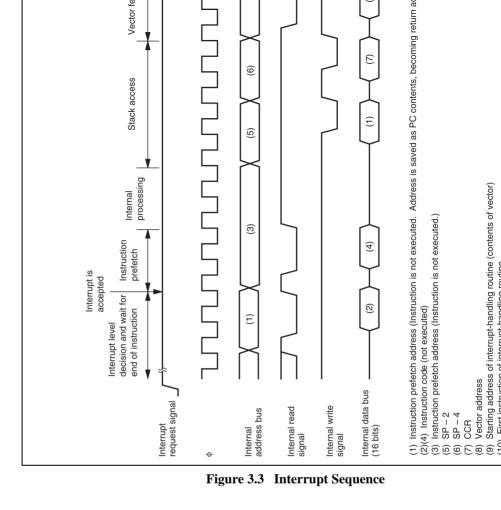
Notes: 1. PC shows the address of the first instruction to be executed upon return from the interrupt handling routine.

- 2. Register contents must always be saved and restored by word length, starting from an even-numbered address.
- 3. Ignored when returning from the interrupt handling routine.

Figure 3.2 Stack Status after Exception Handling

3.4.4 **Interrupt Response Time**

Table 3.2 shows the number of wait states after an interrupt request flag is set until the fin instruction of the interrupt handling-routine is executed.


Table 3.2 **Interrupt Wait States**

Item	States	Total
Waiting time for completion of executing instruction*	1 to 23	15 to 37
Saving of PC and CCR to stack	4	
Vector fetch	2	
Instruction fetch	4	
Internal processing	4	

Note: * Not including EEPMOV instruction.

Rev.5.00 Nov. 02, 2005 Page 60 of 500

RENESAS

Rev.5.00 Nov. 02, 2005 Pa

3.5.2 Notes on Stack Area Use

When word data is accessed, the least significant bit of the address is regarded as 0. Accestack always takes place in word size, so the stack pointer (SP: R7) should never indicate address. Use PUSH Rn (MOV.W Rn, @-SP) or POP Rn (MOV.W @SP+, Rn) to save or register values.

3.5.3 Notes on Rewriting Port Mode Registers

When a port mode register is rewritten to switch the functions of external interrupt pins, \overline{I} \overline{I} \overline{I} \overline{R} \overline{Q} 0, and \overline{W} \overline{W} \overline{W} 0, the interrupt request flag may be set to 1.

When switching a pin function, mask the interrupt before setting the bit in the port mode After accessing the port mode register, execute at least one instruction (e.g., NOP), then continuous flag from 1 to 0.

Figure 3.4 shows a port mode register setting and interrupt request flag clearing procedur

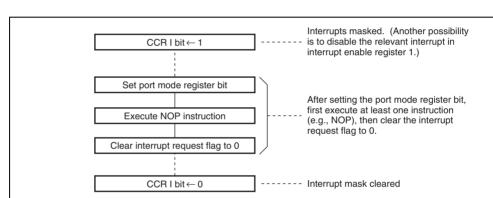


Figure 3.4 Port Mode Register Setting and Interrupt Request Flag Clearing Pro

Rev.5.00 Nov. 02, 2005 Page 62 of 500

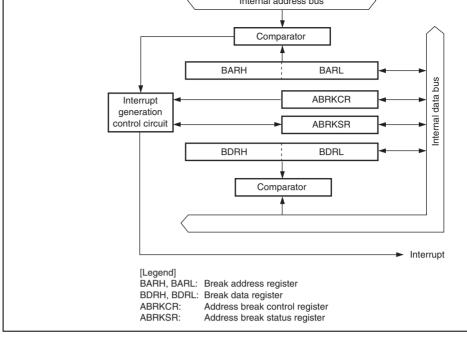


Figure 4.1 Block Diagram of Address Break

4.1 Register Descriptions

Address break has the following registers.

- Address break control register (ABRKCR)
- Address break status register (ABRKSR)
- Break address register (BARH, BARL)

RENESAS

Rev.5.00 Nov. 02, 2005 Pa

				be executed. When this bit is 1, the interrupt is n masked.
6	CSEL1	0	R/W	Condition Select 1 and 0
5	CSEL0	0	R/W	These bits set address break conditions.
				00: Instruction execution cycle
				01: CPU data read cycle
				10: CPU data write cycle
				11: CPU data read/write cycle
4	ACMP2	0	R/W	Address Compare Condition Select 2 to 0
3	ACMP1	0	R/W	These bits set the comparison condition between
2	ACMP0	0	R/W	address set in BAR and the internal address bus
				000: Compares 16-bit addresses
				001: Compares upper 12-bit addresses
				010: Compares upper 8-bit addresses
				011: Compares upper 4-bit addresses
				1XX: Reserved (setting prohibited)

bus 11: Compares 16-bit data between BDR and dat

0

0

DCMP1

DCMP0

10: Compares upper 8-bit data between BDRH a

01: Compares lower 8-bit data between BDRL a

These bits set the comparison condition between

Data Compare Condition Select 1 and 0

set in BDR and the internal data bus.

00: No data comparison

bus

Rev.5.00 Nov. 02, 2005 Page 64 of 500 RENESAS REJ09B0027-0500

R/W

R/W

Legend: X: Don't care.

1

0

I/O register with 8-bit data bus width	Upper 8 bits	Upper 8 bits	Upper 8 bits
I/O register with 16-bit data bus width	Upper 8 bits	Lower 8 bits	_

Upper 8 bits

4.1.2 Address Break Status Register (ABRKSR)

Initial

RAM space

ABRKSR consists of the address break interrupt flag and the address break interrupt ena

Lower 8 bits

Upper 8 bits

Uppe Uppe

Bit	Bit Name	Value	R/W	Description
7	ABIF	0	R/W	Address Break Interrupt Flag
				[Setting condition]
				When the condition set in ABRKCR is satisfied
				[Clearing condition]
				When 0 is written after ABIF=1 is read
6	ABIE	0	R/W	Address Break Interrupt Enable
				When this bit is 1, an address break interrupt renabled.
5 to 0	_	All 1	_	Reserved
				These bits are always read as 1.

4.1.3 Break Address Registers (BARH, BARL)

BARH and BARL are 16-bit read/write registers that set the address for generating an arbreak interrupt. When setting the address break condition to the instruction execution of the first byte address of the instruction. The initial value of this register is H'FFFF.

RENESAS

Rev.5.00 Nov. 02, 2005 Pa

When the ABIF and ABIE bits in ABRKSR are set to 1, the address break function gener interrupt request to the CPU. The ABIF bit in ABRKSR is set to 1 by the combination of address set in BAR, the data set in BDR, and the conditions set in ABRKCR. When the request is accepted, interrupt exception handling starts after the instruction being execute The address break interrupt is not masked by the I bit in CCR of the CPU.

Figures 4.2 show the operation examples of the address break interrupt setting.

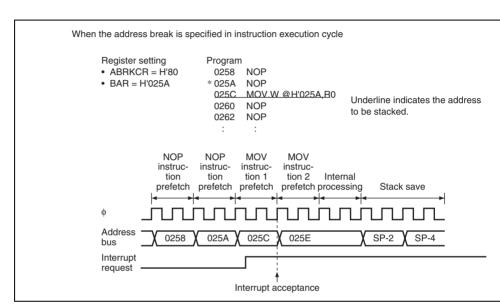


Figure 4.2 Address Break Interrupt Operation Example (1)

Rev.5.00 Nov. 02, 2005 Page 66 of 500

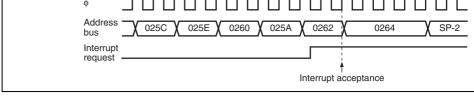


Figure 4.2 Address Break Interrupt Operation Example (2)

Rev.5.00 Nov. 02, 2005 Page 68 of 500 REJ09B0027-0500

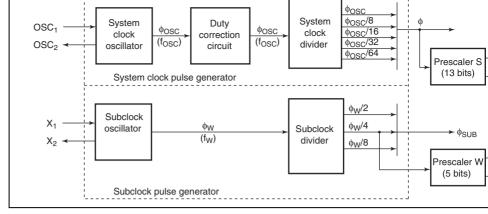


Figure 5.1 Block Diagram of Clock Pulse Generators

The basic clock signals that drive the CPU and on-chip peripheral modules are ϕ and ϕ_s system clock is divided by prescaler S to become a clock signal from $\phi/8192$ to $\phi/2$, and subclock is divided by prescaler W to become a clock signal from $\phi w/128$ to $\phi w/8$. Both system clock and subclock signals are provided to the on-chip peripheral modules.

RENESAS

LPM: Low-power mode (standby mode, subactive mode, subsleep mode)

Figure 5.2 Block Diagram of System Clock Generator

Connecting Crystal Resonator 5.1.1

Figure 5.3 shows a typical method of connecting a crystal resonator. An AT-cut parallelcrystal resonator should be used. Figure 5.4 shows the equivalent circuit of a crystal resonator resonator having the characteristics given in table 5.1 should be used.

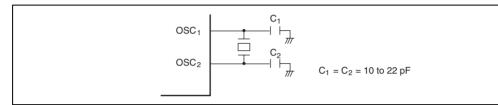


Figure 5.3 Typical Connection to Crystal Resonator

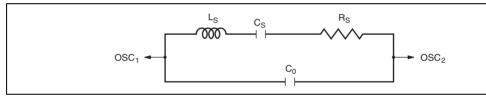


Figure 5.4 Equivalent Circuit of Crystal Resonator

Rev.5.00 Nov. 02, 2005 Page 70 of 500

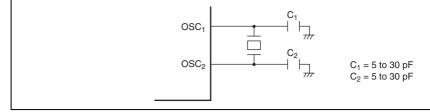


Figure 5.5 Typical Connection to Ceramic Resonator

5.1.3 External Clock Input Method

Connect an external clock signal to pin OSC_1 , and leave pin OSC_2 open. Figure 5.6 show connection. The duty cycle of the external clock signal must be 45 to 55%.

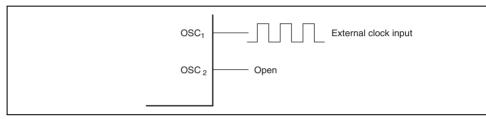


Figure 5.6 Example of External Clock Input

Rev.5.00 Nov. 02, 2005 Pa

Note : Registance is a reference value.

Figure 5.7 Block Diagram of Subclock Generator

5.2.1 Connecting 32.768-kHz Crystal Resonator

Clock pulses can be supplied to the subclock divider by connecting a 32.768-kHz crystal resonator, as shown in figure 5.8. Figure 5.9 shows the equivalent circuit of the 32.768-k resonator.

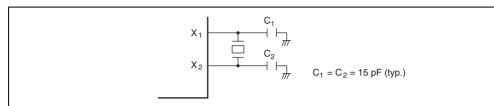


Figure 5.8 Typical Connection to 32.768-kHz Crystal Resonator

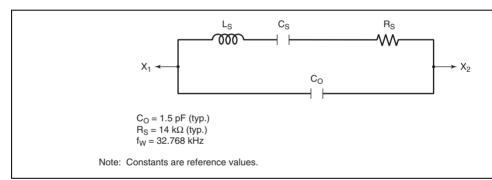


Figure 5.9 Equivalent Circuit of 32.768-kHz Crystal Resonator

Rev.5.00 Nov. 02, 2005 Page 72 of 500

Figure 5.10 Pin Connection when not Using Subclock

5.3 **Prescalers**

5.3.1 Prescaler S

per clock period. Prescaler S is initialized to H'0000 by a reset, and starts counting on ex the reset state. In standby mode, subactive mode, and subsleep mode, the system clock p generator stops. Prescaler S also stops and is initialized to H'0000. The CPU cannot read prescaler S. The output from prescaler S is shared by the on-chip peripheral modules. The ratio can be set separately for each on-chip peripheral function. In active mode and sleep the clock input to prescaler S is determined by the division factor designated by MA2 to

Prescaler S is a 13-bit counter using the system clock (\(\phi\)) as its input clock. It is increme

5.3.2 Prescaler W

SYSCR2.

Prescaler W is a 5-bit counter using a 32.768 kHz signal divided by 4 ($\phi_w/4$) as its input divided output is used for clock time base operation of timer A. Prescaler W is initialize by a reset, and starts counting on exit from the reset state. Even in standby mode, subact or subsleep mode, prescaler W continues functioning so long as clock signals are suppli X_1 and X_2 .

Rev.5.00 Nov. 02, 2005 Pa

5.4.2 Notes on Board Design

When using a crystal resonator (ceramic resonator), place the resonator and its load capac close as possible to the OSC₁ and OSC₂ pins. Other signal lines should be routed away from resonator circuit to prevent induction from interfering with correct oscillation (see figure

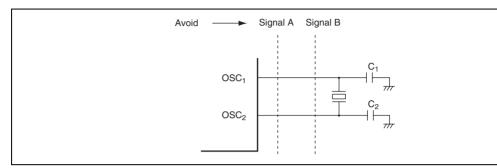


Figure 5.11 Example of Incorrect Board Design

Rev.5.00 Nov. 02, 2005 Page 74 of 500 REJ09B0027-0500

RENESAS

The CPU and all on-chip peripheral modules are operable on the subclock. The subc frequency can be selected from $\phi w/2$, $\phi w/4$, and $\phi w/8$.

Sleep mode

The CPU halts. On-chip peripheral modules are operable on the system clock.

Subsleep mode

The CPU halts. On-chip peripheral modules are operable on the subclock.

Standby mode

The CPU and all on-chip peripheral modules halt. When the clock time-base functio selected, the RTC is operable.

• Module standby mode Independent of the above modes, power consumption can be reduced by halting on-

peripheral modules that are not used in module units.

6.1 **Register Descriptions**

The registers related to power-down modes are listed below.

- System control register 1 (SYSCR1)
- System control register 2 (SYSCR2)
 - Module standby control register 1 (MSTCR1)
- Module standby control register 2 (MSTCR2)

			For details, see table 6.2.
STS2	0	R/W	Standby Timer Select 2 to 0
STS1	0	R/W	These bits designate the time the CPU and perip
STS0	0	R/W	modules wait for stable clock operation after exit standby mode, subactive mode, or subsleep module active mode or sleep mode due to an interrupt. It designation should be made according to the clock frequency so that the waiting time is at least 6.5 relationship between the specified value and the of wait states is shown in table 6.1. When an extellibration clock is to be used, the minimum value (STS2 = STS0 =1) is recommended.
NESEL	0	R/W	Noise Elimination Sampling Frequency Select
			The subclock pulse generator generates the wat signal (ϕ_w) and the system clock pulse generator generates the oscillator clock (ϕ_{osc}) . This bit sele sampling frequency of the oscillator clock when to clock signal (ϕ_w) is sampled. When ϕ_{osc} = 4 to 20 clear NESEL to 0.
			0: Sampling rate is $\phi_{osc}/16$

6 5

4

2 to 0

1. Enters standby mode.

1: Sampling rate is $\phi_{osc}/4$

These bits are always read as 0.

Reserved

RENESAS REJ09B0027-0500

All 0

Rev.5.00 Nov. 02, 2005 Page 76 of 500

1	0	128 states	0.00	0.00	0.01	0.02	0.03	0.06	0.13
	1	16 states	0.00	0.00	0.00	0.00	0.00	0.01	0.02
Noto: Time	unit in	mo							

Note: Time unit is ms.

			For details, see table 6.2.
MA2	0	R/W	Active Mode Clock Select 2 to 0
MA1	0	R/W	These bits select the operating clock frequency i
MA0	0	D/VV	and sleep modes. The operating clock frequency changes to the set frequency after the SLEEP in is executed.
			0ΧΧ: φ _{osc}
			100: $\phi_{\rm osc}/8$
	101: φ _{osc} /16		101: $\phi_{\rm osc}/16$
			110: $\phi_{\rm osc}/32$
			111: $\phi_{\rm osc}/64$
SA1	0	R/W	Subactive Mode Clock Select 1 and 0
SA0	0	R/W	These bits select the operating clock frequency i subactive and subsleep modes. The operating of frequency changes to the set frequency after the instruction is executed.

00: $\phi_{w}/8$ 01: $\phi_{w}/4$ 1X: $\phi_{w}/2$

a SLEET INSTRUCTION, as well as Dit Sobt of Sto

Legend: Don't care.

4 3

2

1

RENESAS

REJ09B0027-0500

Rev.5.00 Nov. 02, 2005 Page 78 of 500

				A/D converter enters standby mode when this to 1
3	MSTWD	0	R/W	Watchdog Timer Module Standby
				Watchdog timer enters standby mode when this to 1. When the internal oscillator is selected for watchdog timer clock, the watchdog timer operaregardless of the setting of this bit
2	_	0	_	Reserved
				This bit is always read as 0.
1	MSTTV	0	R/W	Timer V Module Standby
				Timer V enters standby mode when this bit is s
0	MSTTA	0	R/W	RTC Module Standby
				RTC enters standby mode when this bit is set to

R/W

R/W

SCI3 Module Standby

A/D Converter Module Standby

SCI3 enters standby mode when this bit is set to

5

4

MSTS3

MSTAD

0

0

RENESAS

REJ09

Rev.5.00 Nov. 02, 2005 Pa

	_	-		
				Timer B1 enters standby mode when this bit is
3, 2	_	All 0	_	Reserved
				These bits are always read as 0.
1	MSTTZ	0	R/W	Timer Z Module Standby
				Timer Z enters standby mode when this bit is s
0	MSTPWM	0	R/W	PWM Module Standby
				PWM enters standby mode when this bit is set

Timer B1 Module Standby

6.2 Mode Transitions and States of LSI

Figure 6.1 shows the possible transitions among these operating modes. A transition is m the program execution state to the program halt state by executing a SLEEP instruction. I allow for returning from the program halt state to the program execution state. A direct tr between active mode and subactive mode, which are both program execution states, can be without halting the program. The operating frequency can also be changed in the same m making a transition directly from active mode to active mode, and from subactive mode to subactive mode. $\overline{\text{RES}}$ input enables transitions from a mode to the reset state. Table 6.2 st transition conditions of each mode after the SLEEP instruction is executed and a mode to by an interrupt. Table 6.3 shows the internal states of the LSI in each mode.

4

MSTTB1

0

R/W

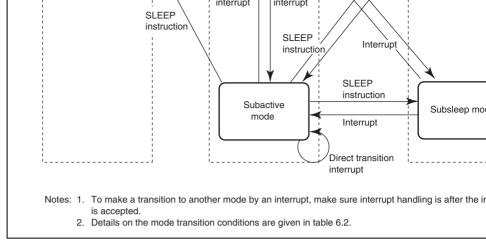


Figure 6.1 Mode Transition Diagram

Rev.5.00 Nov. 02, 2005 Pa

1	Χ	0*	0	Active mode (direct transition)	_	
	X	Х	1	Subactive mode (direct transition)	_	
Legend:	X: Don	't care.				

* When a state transition is performed while SMSEL is 1, timer V, SCI3, SCI3_2 A/D converter are reset, and all registers are set to their initial values. To use t functions after entering active mode, reset the registers.

Rev.5.00 Nov. 02, 2005 Page 82 of 500

WKP0					
RTC	Functioning	Functioning	Ū		•
Timer V	Functioning	Functioning	Reset	Reset	Re
Watchdog timer	Functioning	Functioning	`	J	ternal (
SCI3, SCI3_2	Functioning	Functioning	Reset	Reset	Re
IIC2	Functioning	Functioning	Retained*	Retained	Re
Timer B1	Functioning	Functioning	Retained*	Retained	Re
Timer Z	Functioning	Functioning	subclocks if the	e internal clock	
A/D converter	Functioning	Functioning	Reset	Reset	Re
	Timer V Watchdog timer SCI3, SCI3_2 IIC2 Timer B1 Timer Z	Timer V Functioning Watchdog timer SCI3, SCI3_2 Functioning IIC2 Functioning Timer B1 Functioning Timer Z Functioning	RTC Functioning Functioning Timer V Functioning Functioning Watchdog timer SCI3, SCI3_2 Functioning Functioning IIC2 Functioning Functioning Timer B1 Functioning Functioning Timer Z Functioning Functioning	RTC Functioning Functioning Functioning if the function is selected as a count clock* Functioning Fun	RTC Functioning Functioning Functioning if the timekeeping function is selected, and retain function is selected, and retain Functioning Functioning Reset Reset Watchdog Functioning Functioning Retained (functioning if the interpretation selected as a count clock*) SCI3, SCI3_2 Functioning Functioning Reset Reset IIC2 Functioning Functioning Retained* Retained Timer B1 Functioning Functioning Retained* Retained Timer Z Functioning Functioning Retained (the counter increments subclocks if the internal clock a count clock*)

Registers can be read or written in subactive mode.

Functioning

Functioning

Functioning

Functioning

Functioning

Functioning

External

interrupts

Note: *

IRQ3 to IRQ0

WKP5 to

COI ret out hig im sta

Fu

Fu

Functioning

Functioning

6.2.2 Standby Mode

In standby mode, the clock pulse generator stops, so the CPU and on-chip peripheral mode functioning. However, as long as the rated voltage is supplied, the contents of CPU registic chip RAM, and some on-chip peripheral module registers are retained. On-chip RAM conwill be retained as long as the voltage set by the RAM data retention voltage is provided. ports go to the high-impedance state.

Standby mode is cleared by an interrupt. When an interrupt is requested, the system clock generator starts. After the time set in bits STS2 to STS0 in SYSCR1 has elapsed, and interexception handling starts. Standby mode is not cleared if the I bit of CCR is set to 1 or the requested interrupt is disabled in the interrupt enable register.

When the \overline{RES} pin goes low, the system clock pulse generator starts. Since system clock are supplied to the entire chip as soon as the system clock pulse generator starts functioning \overline{RES} pin must be kept low until the pulse generator output stabilizes. After the pulse generator output has stabilized, the CPU starts reset exception handling if the \overline{RES} pin is driven high

6.2.3 Subsleep Mode

In subsleep mode, operation of the CPU and on-chip peripheral modules other than RTC As long as a required voltage is applied, the contents of CPU registers, the on-chip RAM some registers of the on-chip peripheral modules are retained. I/O ports keep the same stabefore the transition.

Subsleep mode is cleared by an interrupt. When an interrupt is requested, subsleep mode and interrupt exception handling starts. Subsleep mode is not cleared if the I bit of CCR is or the requested interrupt is disabled in the interrupt enable register. After subsleep mode

Rev.5.00 Nov. 02, 2005 Page 84 of 500

REJ09B0027-0500

SA0 bits in SYSCR2. After the SLEEP instruction is executed, the operating frequency the frequency which is set before the execution. When the SLEEP instruction is execute subactive mode, a transition to sleep mode, subsleep mode, standby mode, active mode, subactive mode is made, depending on the combination of SYSCR1 and SYSCR2. Whe pin goes low, the system clock pulse generator starts. Since system clock signals are supthe entire chip as soon as the system clock pulse generator starts functioning, the $\overline{\text{RES}}$ p kept low until the pulse generator output stabilizes. After the pulse generator output has the CPU starts reset exception handling if the $\overline{\text{RES}}$ pin is driven high.

The operating frequency of subactive mode is selected from $\phi_w/2$, $\phi_w/4$, and $\phi_w/8$ by the

6.3 Operating Frequency in Active Mode

Operation in active mode is clocked at the frequency designated by the MA2, MA1, and in SYSCR2. The operating frequency changes to the set frequency after SLEEP instruct execution.

by means of an interrupt.

6.4.1 Direct Transition from Active Mode to Subactive Mode

The time from the start of SLEEP instruction execution to the end of interrupt exception (the direct transition time) is calculated by equation (1).

Direct transition time = {(number of SLEEP instruction execution states) + (number of in processing states)}× (tcyc before transition) + (number of interrupt exception handling states) (tsubcyc after transition) (1)

Example

Direct transition time = $(2 + 1) \times tosc + 14 \times 8tw = 3tosc + 112tw$ (when the CPU operating clock of $\phi_{osc} \rightarrow \phi_w/8$ is selected)

Legend

tosc: OSC clock cycle time tw: Watch clock cycle time tcyc: System clock (ϕ) cycle time tsubcyc: Subclock (ϕ _{SUB}) cycle time

6.4.2 Direct Transition from Subactive Mode to Active Mode

The time from the start of SLEEP instruction execution to the end of interrupt exception (the direct transition time) is calculated by equation (2).

Direct transition time = {(number of SLEEP instruction execution states) + (number of ir processing states)} × (tsubcyc before transition) + {(waiting time set in bits STS2 to STS (number of interrupt exception handling states)} × (tcyc after transition) (2)

Rev.5.00 Nov. 02, 2005 Page 86 of 500

REJ09B0027-0500

The module-standby function can be set to any peripheral module. In module standby modules stops to enter the power-down mode. Module standby mode en on-chip peripheral module to enter the standby state by setting a bit that corresponds to a module to 1 and cancels the mode by clearing the bit to 0.

Rev.5.00 Nov. 02, 2005 Pa

Rev.5.00 Nov. 02, 2005 Page 88 of 500 REJ09B0027-0500

- Reprogramming capability
- Reprogramming capabil
 - The flash memory can be reprogrammed up to 1,000 times.
- On-board programming
 - On-board programming/erasing can be done in boot mode, in which the boot pro into the chip is started to erase or program of the entire flash memory. In normal program mode, individual blocks can be erased or programmed.
- Programmer mode
 - Flash memory can be programmed/erased in programmer mode using a PROM programmer, as well as in on-board programming mode.
- Automatic bit rate adjustment
 - For data transfer in boot mode, this LSI's bit rate can be automatically adjusted to the transfer bit rate of the host.
- Programming/erasing protection
 - Sets software protection against flash memory programming/erasing.
- Power-down mode
 - Operation of the power supply circuit can be partly halted in subactive mode. As flash memory can be read with low power consumption.

7.1 Block Configuration

Figure 7.1 shows the block configuration of flash memory. The thick lines indicate erast the narrow lines indicate programming units, and the values are addresses. The 56-kbyt memory is divided into 1 kbyte \times 4 blocks, 28 kbytes \times 1 block, 16 kbytes \times 1 block, and \times 1 block. The 32 block ground 38 blocks are \times 1 block.

 \times 1 block. The 32-kbyte flash memory is divided into 1 kbyte \times 4 blocks and 28 kbytes. Erasing is performed in these units. Programming is performed in 128-byte units starting address with lower eight bits H'00 or H'80.

Erase unit	H.0880	H'0881	H'0882	i I	; H'08FF
1 kbyte			 		1
	H'0B80	H'0B81	H'0B82	 	H'0BFF
	H'0C00	H'0C01	H'0C02	← Programming unit: 128 bytes →	H'0C7F
Erase unit	H'0C80	H'0C81	H'0C82		H'0CFF
1 kbyte			1		!
			i !		
	H'0F80	H'0F81	H'0F82	 	H'0FFF
	H'1000	H'1001	H'1002	← Programming unit: 128 bytes →	H'107F
Erase unit	H'1080	H'1081	H'1082	1 1 1	H'10FF
28 kbytes			! ! !		!
			! !		
			!		
	H'7F80	H'7F81	H'7F82		H'7FFF
	H'8000	H'8001	H'8002	← Programming unit: 128 bytes →	H'807F
Erase unit	H'8080	H'8081	H'8082	 	H'80FF
16 kbytes			! ! !		
			! ! !		
			! !		
	H'BF80	H'BF81	H'BF82		H'BFFF
	H'C000	H'C001	H'C002	← Programming unit: 128 bytes →	H'C07F
Erase unit	H'C080	H'C081	H'C082	 	H'C0FF
8 kbytes			! !	 	
			! ! !		
			! !		1
	HDF80	H'DF81	H'DF82	1 1 1	H'DFFF

Figure 7.1 Flash Memory Block Configuration

REJ09B0027-0500

7.2.1 Flash Memory Control Register 1 (FLMCR1)

Initial Value

Bit Name

Bit

3

ΕV

0

FLMCR1 is a register that makes the flash memory change to program mode, program-mode, erase mode, or erase-verify mode. For details on register setting, refer to section Memory Programming/Erasing.

Description

R/W

R/W

7	_	0	_	Reserved
				This bit is always read as 0.
6	SWE	0	R/W	Software Write Enable
				When this bit is set to 1, flash memory programming/erasing is enabled. When this bit to 0, other FLMCR1 register bits and all EBR1 lbe set.
5	ESU	0	R/W	Erase Setup
				When this bit is set to 1, the flash memory char erase setup state. When it is cleared to 0, the esetup state is cancelled. Set this bit to 1 before E bit to 1 in FLMCR1.
4	PSU	0	R/W	Program Setup

Erase-Verify

the P bit in FLMCR1.

mode is cancelled.

When this bit is set to 1, the flash memory char program setup state. When it is cleared to 0, the setup state is cancelled. Set this bit to 1 before

When this bit is set to 1, the flash memory char erase-verify mode. When it is cleared to 0, era

When this bit is set to 1 while SWE=1 and PSU= flash memory changes to program mode. When cleared to 0, program mode is cancelled.

7.2.2 Flash Memory Control Register 2 (FLMCR2)

FLMCR2 is a register that displays the state of flash memory programming/erasing. FLM read-only register, and should not be written to.

Bit	Bit Name	Initial Value	R/W	Description
7	FLER	0	R	Flash Memory Error
				Indicates that an error has occurred during an or on flash memory (programming or erasing). Wh is set to 1, flash memory goes to the error-protect state.
				See section 7.5.3, Error Protection, for details.
6 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

REJ09B0027-0500

5	EB5	0	R/W	When this bit is set to 1, 16 bytes of H'8000 to will be erased.
4	EB4	0	R/W	When this bit is set to 1, 28 kbytes of H'1000 to will be erased.
3	EB3	0	R/W	When this bit is set to 1, 1 kbyte of H'0C00 to F be erased.
2	EB2	0	R/W	When this bit is set to 1, 1 kbyte of H'0800 to H be erased.
1	EB1	0	R/W	When this bit is set to 1, 1 kbyte of H'0400 to H be erased.
0	EB0	0	R/W	When this bit is set to 1, 1 kbyte of H'0000 to H be erased.

be erased.

when this bit is set to 1, 8 bytes of a Coop to a

RENESAS

Rev.5.00 Nov. 02, 2005 Pa

			When this bit is 0 and a transition is made to sub mode, the flash memory enters the power-down When this bit is 1, the flash memory remains in t normal mode even after a transition is made to s mode.
6 to 0 —	All 0	_	Reserved
			These bits are always read as 0.

7.2.5 Flash Memory Enable Register (FENR)

Bit 7 (FLSHE) in FENR enables or disables the CPU access to the flash memory control FLMCR1, FLMCR2, EBR1, and FLPWCR.

Bit	Bit Name	Initial Value	R/W	Description
7	FLSHE	0	R/W	Flash Memory Control Register Enable
				Flash memory control registers can be accessed this bit is set to 1. Flash memory control register be accessed when this bit is set to 0.
6 to 0	_	All 0		Reserved
				These bits are always read as 0.

via SCI3. After erasing the entire flash memory, the programming control program is entire this can be used for programming initial values in the on-board state or for a forcible reprogramming/erasing can no longer be done in user program mode. In user program mode individual blocks can be erased and programmed by branching to the user program/erase program prepared by the user.

Table 7.1 Setting Programming Modes

TEST	NMI	P85	PB0	PB1	PB2	LSI State after Reset En
0	1	Х	Х	Х	Х	User Mode
0	0	1	Х	Х	Х	Boot Mode
1	Х	Х	0	0	0	Programmer Mode
			•	•	•	

Legend: X: Don't care.

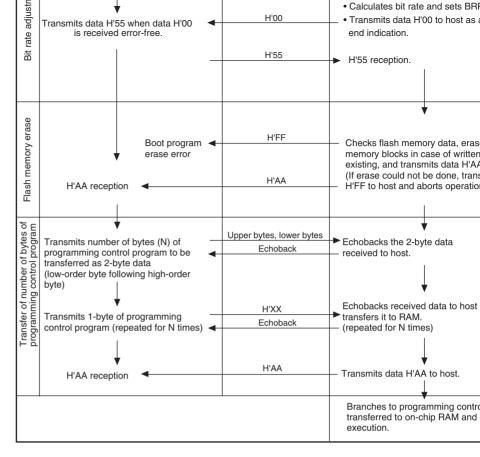
7.3.1 Boot Mode

Table 7.2 shows the boot mode operations between reset end and branching to the program.

- 1. When boot mode is used, the flash memory programming control program must be put the host beforehand. Prepare a programming control program in accordance with the description in section 7.4, Flash Memory Programming/Erasing.
- 2. SCI3 should be set to asynchronous mode, and the transfer format as follows: 8-bit obit, and no parity.
- 3. When the boot program is initiated, the chip measures the low-level period of asyncl SCI communication data (H'00) transmitted continuously from the host. The chip the calculates the bit rate of transmission from the host, and adjusts the SCI3 bit rate to a

of the host. The reset should end with the RxD pin high. The RxD and TxD pins sh

The boot program area cannot be used until the execution state in boot mode switches programming control program. 6. Before branching to the programming control program, the chip terminates transfer of


by SCI3 (by clearing the RE and TE bits in SCR to 0), however the adjusted bit rate v remains set in BRR. Therefore, the programming control program can still use it for of program data or verify data with the host. The TxD pin is high (PCR22 = 1, P22 = contents of the CPU general registers are undefined immediately after branching to the programming control program. These registers must be initialized at the beginning of programming control program, as the stack pointer (SP), in particular, is used implicit subroutine calls, etc.

7. Boot mode can be cleared by a reset. End the reset after driving the reset pin low, wa

- least 20 states, and then setting the NMI pin. Boot mode is also cleared when a WDT occurs.
- 8. Do not change the TEST pin and NMI pin input levels in boot mode.

Rev.5.00 Nov. 02, 2005 Page 96 of 500

7.0.2 110gramming 21 abrig in ober 110gram 110ac

program mode by branching to a user program/erase control program. The user must set to conditions and provide on-board means of supplying programming data. The flash memory contain the user program/erase control program or a program that provides the user program control program from external memory. As the flash memory itself cannot be read during programming/erasing, transfer the user program/erase control program to on-chip RAM, mode. Figure 7.2 shows a sample procedure for programming/erasing in user program memory a user program/erase control program in accordance with the description in section Flash Memory Programming/Erasing.

On-board programming/erasing of an individual flash memory block can also be perform

Rev.5.00 Nov. 02, 2005 Page 98 of 500

REJ09B0027-0500

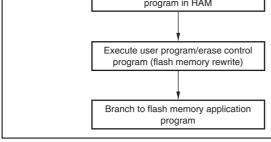


Figure 7.2 Programming/Erasing Flowchart Example in User Program Mo

Rev.5.00 Nov. 02, 2005 Pa

7.4.1 Program/Program-Verify

When writing data or programs to the flash memory, the program/program-verify flowch in figure 7.3 should be followed. Performing programming operations according to this fawill enable data or programs to be written to the flash memory without subjecting the chi voltage stress or sacrificing program data reliability.

- Programming must be done to an empty address. Do not reprogram an address to wh programming has already been performed.
- 2. Programming should be carried out 128 bytes at a time. A 128-byte data transfer must performed even if writing fewer than 128 bytes. In this case, H'FF data must be writt extra addresses.
- 3. Prepare the following data storage areas in RAM: A 128-byte programming data area byte reprogramming data area, and a 128-byte additional-programming data area. Per reprogramming data computation according to table 7.4, and additional programming computation according to table 7.5.
- 4. Consecutively transfer 128 bytes of data in byte units from the reprogramming data at additional-programming data area to the flash memory. The program address and 128 data are latched in the flash memory. The lower 8 bits of the start address in the flash destination area must be H'00 or H'80.
- 5. The time during which the P bit is set to 1 is the programming time. Table 7.6 shows allowable programming times.
- 6. The watchdog timer (WDT) is set to prevent overprogramming due to program runaw An overflow cycle of approximately 6.6 ms is allowed.
- For a dummy write to a verify address, write 1-byte data H'FF to an address whose lo
 are B'00. Verify data can be read in words or in longwords from the address to which
 dummy write was performed.

® RENESAS

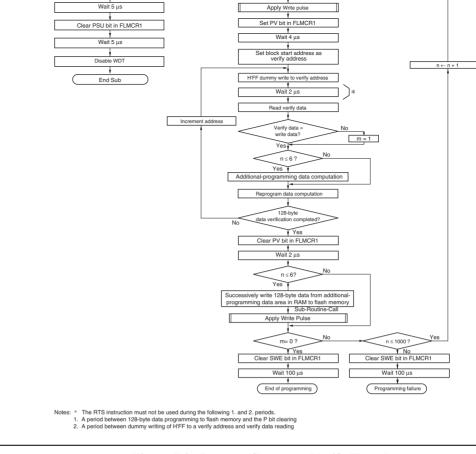


Figure 7.3 Program/Program-Verify Flowchart

RENESAS

Rev.5.00 Nov. 02, 2005 Pag

. •	•		
0	0	0	Additional-program I
0	1	1	No additional progra
1	0	1	No additional progra
1	1	1	No additional progra

Data

In Additional

Comments

Verify Data

Programming Time

n **Programming**

Reprogram Data

Table 7.6

followed.

(Number of Writes)	Time	Programming	Comments
1 to 6	30	10	
7 to 1,000	200	_	
Note: Time shown in	μ s .		

When erasing flash memory, the erase/erase-verify flowchart shown in figure 7.4 should

7.4.2 Erase/Erase-Verify

1. Prewriting (setting erase block data to all 0s) is not necessary.

- 2. Erasing is performed in block units. Make only a single-bit specification in the erase register (EBR1). To erase multiple blocks, each block must be erased in turn.
- 3. The time during which the E bit is set to 1 is the flash memory erase time.
- 4. The watchdog timer (WDT) is set to prevent overerasing due to program runaway, etc.

Rev.5.00 Nov. 02, 2005 Page 102 of 500

RENESAS REJ09B0027-0500

overflow cycle of approximately 19.8 ms is allowed.

- - 1. Interrupt during programming/erasing may cause a violation of the programming or algorithm, with the result that normal operation cannot be assured.
 - 2. If interrupt exception handling starts before the vector address is written or during
 - programming/erasing, a correct vector cannot be fetched and the CPU malfunctions. 3. If an interrupt occurs during boot program execution, normal boot mode sequence ca carried out.

Rev.5.00 Nov. 02, 2005 Pag

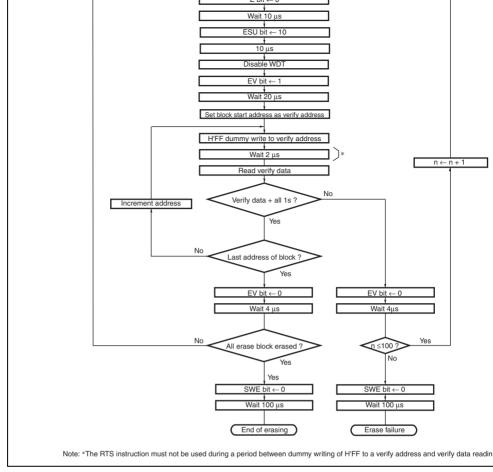


Figure 7.4 Erase/Erase-Verify Flowchart

Rev.5.00 Nov. 02, 2005 Page 104 of 500

REJ09B0027-0500

entered unless the RES pin is held low until oscillation stabilizes after powering on. In t a reset during operation, hold the RES pin low for the RES pulse width specified in the Characteristics section.

7.5.2 **Software Protection**

Software protection can be implemented against programming/erasing of all flash memory by clearing the SWE bit in FLMCR1. When software protection is in effect, setting the in FLMCR1 does not cause a transition to program mode or erase mode. By setting the block register 1 (EBR1), erase protection can be set for individual blocks. When EBR1 H'00, erase protection is set for all blocks.

7.5.3 **Error Protection**

In error protection, an error is detected when CPU runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/era algorithm, and the program/erase operation is forcibly aborted. Aborting the program/er operation prevents damage to the flash memory due to overprogramming or overerasing

bit in FLMCR2 is set to 1, and the error protection state is entered.

When the following errors are detected during programming/erasing of flash memory, the

When the flash memory of the relevant address area is read during programming/erasing (including vector read and instruction fetch)

Immediately after exception handling excluding a reset during programming/erasing

When a SLEEP instruction is executed during programming/erasing

The FLMCR1, FLMCR2, and EBR1 settings are retained, however program mode or er is aborted at the point at which the error occurred. Program mode or erase mode cannot

In user mode, the flash memory will operate in either of the following states:

- Normal operating mode
 The flash memory can be read and written to at high speed.
- Power-down operating mode
 The power supply circuit of flash memory can be partly halted. As a result, flash member read with low power consumption.
- Standby mode
 All flash memory circuits are halted.

Table 7.7 shows the correspondence between the operating modes of this LSI and the flas memory. In subactive mode, the flash memory can be set to operate in power-down mode PDWND bit in FLPWCR. When the flash memory returns to its normal operating state for power-down mode or standby mode, a period to stabilize operation of the power supply of that were stopped is needed. When the flash memory returns to its normal operating state STS2 to STS0 in SYSCR1 must be set to provide a wait time of at least 20 µs, even when external clock is being used.

Table 7.7 Flash Memory Operating States

	Flash Memory Operating State			
LSI Operating State	PDWND = 0 (Initial Value)	PDWND = 1		
Active mode	Normal operating mode	Normal operating mode		
Subactive mode	Power-down mode	Normal operating mode		
Sleep mode	Normal operating mode	Normal operating mode		
Subsleep mode	Standby mode	Standby mode		
Standby mode	Standby mode	Standby mode		

		H8/3684	3 kbytes	H'E800 to H'EFFF, H'FB80 to H'F	
		H8/3683	3 kbytes	H'E800 to H'EFFF, H'FB80 to H'F	
		H8/3682	3 kbytes	H'E800 to H'EFFF, H'FB80 to H'F	
EEPROM stacked version	Flash memory version	H8/3687N	4 kbytes	H'E800 to H'EFFF, H'F780 to H'F	
	Mask-ROM version	_	3 kbytes	H'E800 to H'EFFF, H'FB80 to H'F	
Note: * W	Note: * When the E7 or E0 is used area HE720 to HED7E must not be appeared				

H8/3685

3 kbytes H'E800 to H'EFFF, H'FB80 to H'F

Note: * When the E7 or E8 is used, area H'F780 to H'FB7F must not be accessed.

Rev.5.00 Nov. 02, 2005 Page 108 of 500 REJ09B0027-0500

storing output data and can select inputs/outputs in bit units.

For functions in each port, see appendix B.1, I/O Port Block Diagrams. For the execution manipulation instructions to the port control register and port data register, see section 2 Manipulation Instruction.

9.1 Port 1

Port 1 is a general I/O port also functioning as IRQ interrupt input pins, an RTC output pit PWM output pin, a timer B1 input pin, and a timer V input pin. Figure 9.1 shows its configuration.

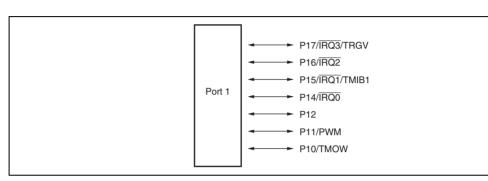


Figure 9.1 Port 1 Pin Configuration

Port 1 has the following registers.

- Port mode register 1 (PMR1)
- Port control register 1 (PCR1)
- Port data register 1 (PDR1)
- Port pull-up control register 1 (PUCR1)

Rev.5.00 Nov. 02, 2005 Pag REJ09

0: General I/O port 1: IRQ1/TMIB1 input pin 4 IRQ0 0 R/W This bit selects the function of pin P14/IRQ0 0: General I/O port 1: IRQ0 input pin 3 TXD2 0 R/W This bit selects the function of pin P72/TXD 0: General I/O port 1: TXD_2 output pin 2 PWM 0 R/W This bit selects the function of pin P11/PWM 0: General I/O port 1: PWM output pin 1 TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin					0: General I/O port
0: General I/O port 1: IRQ1/TMIB1 input pin 4 IRQ0 0 R/W This bit selects the function of pin P14/IRQ0 0: General I/O port 1: IRQ0 input pin 3 TXD2 0 R/W This bit selects the function of pin P72/TXD 0: General I/O port 1: TXD_2 output pin 2 PWM 0 R/W This bit selects the function of pin P11/PWM 0: General I/O port 1: PWM output pin 1 TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin					1: IRQ2 input pin
1: IRQ1/TMIB1 input pin 4 IRQ0 0 R/W This bit selects the function of pin P14/IRQ0 0: General I/O port 1: IRQ0 input pin 3 TXD2 0 R/W This bit selects the function of pin P72/TXD 0: General I/O port 1: TXD_2 output pin 2 PWM 0 R/W This bit selects the function of pin P11/PWM 0: General I/O port 1: PWM output pin 1 TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin	5	IRQ1	0	R/W	This bit selects the function of pin P15/IRQ1/TM
4 IRQ0 0 R/W This bit selects the function of pin P14/IRQ0 0: General I/O port 1: IRQ0 input pin 3 TXD2 0 R/W This bit selects the function of pin P72/TXD 0: General I/O port 1: TXD_2 output pin 2 PWM 0 R/W This bit selects the function of pin P11/PWN 0: General I/O port 1: PWM output pin 1 TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin					0: General I/O port
0: General I/O port 1: IRQ0 input pin 3 TXD2 0 R/W This bit selects the function of pin P72/TXD 0: General I/O port 1: TXD_2 output pin 2 PWM 0 R/W This bit selects the function of pin P11/PWM 0: General I/O port 1: PWM output pin 1 TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin					1: IRQ1/TMIB1 input pin
1: IRQ0 input pin 3 TXD2 0 R/W This bit selects the function of pin P72/TXD 0: General I/O port 1: TXD_2 output pin 2 PWM 0 R/W This bit selects the function of pin P11/PWN 0: General I/O port 1: PWM output pin 1 TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin	4	IRQ0	0	R/W	This bit selects the function of pin P14/IRQ0.
3 TXD2 0 R/W This bit selects the function of pin P72/TXD 0: General I/O port 1: TXD_2 output pin 2 PWM 0 R/W This bit selects the function of pin P11/PWM 0: General I/O port 1: PWM output pin 1 TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin					0: General I/O port
0: General I/O port 1: TXD_2 output pin 2 PWM 0 R/W This bit selects the function of pin P11/PWM 0: General I/O port 1: PWM output pin 1 TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin					1: IRQ0 input pin
1: TXD_2 output pin 2 PWM 0 R/W This bit selects the function of pin P11/PWM 0: General I/O port 1: PWM output pin 1 TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin	3	TXD2	0	R/W	This bit selects the function of pin P72/TXD_2.
PWM 0 R/W This bit selects the function of pin P11/PWM 0: General I/O port 1: PWM output pin TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin					0: General I/O port
0: General I/O port 1: PWM output pin 1 TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin					1: TXD_2 output pin
1: PWM output pin 1 TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin	2	PWM	0	R/W	This bit selects the function of pin P11/PWM.
1 TXD 0 R/W This bit selects the function of pin P22/TXD 0: General I/O port 1: TXD output pin					0: General I/O port
0: General I/O port 1: TXD output pin					1: PWM output pin
1: TXD output pin	1	TXD	0	R/W	This bit selects the function of pin P22/TXD.
					0: General I/O port
0 TMOW 0 R/W This bit selects the function of pin P10/TMC					1: TXD output pin
	0	TMOW	0	R/W	This bit selects the function of pin P10/TMOW.

Rev.5.00 Nov. 02, 2005 Page 110 of 500 REJ09B0027-0500

RENESAS

0: General I/O port1: TMOW output pin

_	_	_
PCR12	0	W
PCR11	0	W
PCR10	0	W

Port Data Register 1 (PDR1) 9.1.3

PDR1 is a general I/O port data register of port 1.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	P17	0	R/W	PDR1 stores output data for port 1 pins.
6	P16	0	R/W	If PDR1 is read while PCR1 bits are set to 1, th
5	P15	0	R/W	stored in PDR1 are read. If PDR1 is read while
4	P14	0	R/W	are cleared to 0, the pin states are read regardl value stored in PDR1.
3	_	1	_	Bit 3 is a reserved bit. This bit is always read as
2	P12	0	R/W	·
1	P11	0	R/W	
0	P10	0	R/W	

_	1	_
PUCR12	0	R/W
PUCR11	0	R/W
PUCR10	0	R/W

9.1.5 **Pin Functions**

3 2

0

The correspondence between the register specification and the port functions is shown be

P17/IRQ3/TRGV pin

Register	PMR1	PCR1	
Bit Name	IRQ3	PCR17	Pin Function
Setting value	0	0	P17 input pin
		1	P17 output pin
	1	Χ	IRQ3 input/TRGV input pin

Legend: X: Don't care.

Register	PMR1	PCR1	
Bit Name	IRQ1	PCR15	Pin Function
Setting value	0	0	P15 input pin
		1	P15 output pin
	1	Х	IRQ1 input/TMIB1 input pin

Legend: X: Don't care.

P14/IRQ0 pin

Register	PMR1	PCR1	
Bit Name	IRQ0	PCR14	Pin Function
Setting value	0	0	P14 input pin
		1	P14 output pin
	1	Х	ĪRQ0 input pin

Legend: X: Don't care.

P12 pin

Register	PCR1	
Bit Name	PCR12	Pin Function
Setting value	0	P12 input pin
	1	P12 output pin

Register	PMR1	PCR1	
Bit Name	TMOW	PCR10	Pin Function
Setting value	0	0	P10 input pin
		1	P10 output pin
	1	Х	TMOW output pin

Legend: X: Don't care.

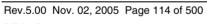


Figure 9.2 Port 2 Pin Configuration

Port 2 has the following registers.

- Port control register 2 (PCR2)
- Port data register 2 (PDR2)
- Port mode register 3 (PMR3)

9.2.1 Port Control Register 2 (PCR2)

PCR2 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 2

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 5	_	_	_	Reserved
4	PCR24	0	W	When each of the port 2 pins P24 to P20 function
3	PCR23	0	W	general I/O port, setting a PCR2 bit to 1 makes corresponding pin an output port, while clearing
2	PCR22	0	W	0 makes the pin an input port.
1	PCR21	0	W	· · ·
0	PCR20	0	W	

2 1	P22 P21	0 0	R/W R/W	are cleared to 0, the pin states are read regardle value stored in PDR2.
0	P20	0	R/W	

9.2.3 Port Mode Register 3 (PMR3)

PMR3 selects the CMOS output or NMOS open-drain output for port 2.

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	_	All 0	_	Reserved
				These bits are always read as 0.
4	POF24	0	R/W	When the bit is set to 1, the corresponding pin is
3	POF23	0	R/W	by PMOS and it functions as the NMOS open-dr output. When cleared to 0, the pin functions as t output.
2 to 0		All 1	_	Reserved
				These bits are always read as 1.

Rev.5.00 Nov. 02, 2005 Page 116 of 500

P23 pin

Register	PCR2	
Bit Name	PCR23	Pin Function
Setting Value	0	P23 input pin
	1	P23 output pin

P22/TXD pin

Register	PMR1	PCR2	
Bit Name	TXD	PCR22	Pin Function
Setting Value	0	0	P22 input pin
		1	P22 output pin
	1	Х	TXD output pin

Legend: X: Don't care.

P21/RXD pin

Register	SCR3	PCR2	_	
Bit Name	RE	PCR21	Pin Function	
Setting Value	0	0	P21 input pin	
		1	P21 output pin	
	1	Χ	RXD input pin	

Legend: X: Don't care.

Rev.5.00 Nov. 02, 2005 Pag REJ09

Rev.5.00 Nov. 02, 2005 Page 118 of 500

Figure 9.3 Port 3 Pin Configuration

Port 3 has the following registers.

- Port control register 3 (PCR3)
- Port data register 3 (PDR3)

9.3.1 Port Control Register 3 (PCR3)

PCR3 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 3

D:4	Dit Name	Initial	D 044	Description
Bit	Bit Name	Value	R/W	Description
7	PCR37	0	W	Setting a PCR3 bit to 1 makes the correspondir
6	PCR36	0	W	output port, while clearing the bit to 0 makes the input port.
5	PCR35	0	W	iliput port.
4	PCR34	0	W	
3	PCR33	0	W	
2	PCR32 0 W			
1	PCR31	0	W	
0	PCR30	0	W	

Rev.5.00 Nov. 02, 2005 Pag

P33	0	R/W
P32	0	R/W
P31	0	R/W
P30	0	R/W

9.3.3 Pin Functions

The correspondence between the register specification and the port functions is shown be

P37 pin

3 2

0

Register	PCR3		
Bit Name	PCR37	Pin Function	
Setting Value	0	P37 input pin	
	1	P37 output pin	

P36 pin

Register	PCR3		
Bit Name	PCR36	Pin Function	
Setting Value	0	P36 input pin	
	1	P36 output pin	

P33 pin			
Register	PCR3		
Bit Name	PCR33	Pin Function	
Setting Value	0	P33 input pin	
	1	P33 output pin	
P32 pin			
_			
Register	PCR3	<u> </u>	
_	PCR3	 Pin Function	
Register		Pin Function P32 input pin	
Register Bit Name	PCR32		

Bit Name

Register

Bit Name

Setting Value

PCR3

PCR31

1

Setting Value

PCR34

1

Pin Function

P34 input pin

P34 output pin

Pin Function

P31 input pin

P31 output pin

Rev.5.00 Nov. 02, 2005 Pag

pin, and wakeup interrupt input pin. Each pin of the port 5 is shown in figure 9.4. The reg setting of the I²C bus interface register has priority for functions of the pins P57/SCL and P56/SDA. Since the output buffer for pins P56 and P57 has the NMOS push-pull structur differs from an output buffer with the CMOS structure in the high-level output characterisection 23, Electrical Characteristics).

Figure 9.4 Port 5 Pin Configuration

Port 5 has the following registers.

- Port mode register 5 (PMR5)
- Port control register 5 (PCR5)
- Port data register 5 (PDR5)
- Port pull-up control register 5 (PUCR5)

Rev.5.00 Nov. 02, 2005 Page 122 of 500

				1: WKP5/ADTRG input pin
4	WKP4	0	R/W	This bit selects the function of pin P54/WKP4.
				0: General I/O port
				1: WKP4 input pin
3	WKP3	0	R/W	This bit selects the function of pin P53/WKP3.
				0: General I/O port

R/W

R/W

R/W

2

1

0

WKP2

WKP1

WKP0

0

0

0

0: General I/O port

1: WKP3 input pin

0: General I/O port1: WKP2 input pin

0: General I/O port1: WKP1 input pin

0: General I/O port1: WKPO input pin

This bit selects the function of pin P52/WKP2.

This bit selects the function of pin P51/WKP1.

This bit selects the function of pin P50/WKP0.

Rev.5.00 Nov. 02, 2005 Pag

PCR53	0	W	in the H8/3687N.
PCR52	0	W	
PCR51	0	W	
PCR50	0	W	

Port Data Register 5 (PDR5) 9.4.3

3

2 1 0

PDR5 is a general I/O port data register of port 5.

		1.24.1		
Bit	Bit Name	Initial Value	R/W	Description
7	P57	0	R/W	Stores output data for port 5 pins.
6	P56	0	R/W	stored in PDR5 are read. If PDR5 is read while
5	P55	0	R/W	
4	P54	0	R/W	are cleared to 0, the pin states are read regardle value stored in PDR5.
3	P53	0	R/W	Note: The P57 and P56 bits should not be set to
2	P52	0	R/W	H8/3687N.
1	P51	0	R/W	
0	P50	0	R/W	

these bits are cleared to 0.	R/W	0	PUCR53
	R/W	0	PUCR52
	R/W	0	PUCR51
	R/W	0	PUCR50

9.4.5 **Pin Functions**

The correspondence between the register specification and the port functions is shown be

P57/SCL pin

3

2 1 0

Register	ICCR1	PCR5	
Bit Name	ICE	PCR57	Pin Function
Setting Value	0	0	P57 input pin
		1	P57 output pin
	1	Х	SCL I/O pin
Legend: X: Do	nn't care		

SCL performs the NMOS open-drain output, that enables a direct bus drive.

P55/WKP5/ADTRG pin

Register	PMR5	PCR5				
Bit Name	WKP5	PCR55	Pin Function			
Setting Value	Value 0 0		P55 input pin			
		1	P55 output pin			
	1	Х	WKP5/ADTRG input pin			

Legend: X: Don't care.

P54/WKP4 pin

Register	PMR5	PCR5	
Bit Name	WKP4	PCR54	Pin Function
Setting Value	0	0	P54 input pin
		1	P54 output pin
	1	Х	WKP4 input pin

Legend: X: Don't care.

Register	PIVIKS	PCRO	
Bit Name	WKP2	PCR52	Pin Function
Setting Value	0	0	P52 input pin
		1	P52 output pin
	1	Χ	WKP2 input pin
Legend: X: Do	on't care.		

P51/WKP1 pin

Register	PMR5	PCR5	
Bit Name	WKP1	PCR51	Pin Function
Setting Value	0	0	P51 input pin
		1	P51 output pin
	1	Χ	WKP1 input pin

Legend: X: Don't care.

$P50/\overline{WKP0}$ pin

Register	PMR5	PCR5	
Bit Name	WKP0	PCR50	Pin Function
Setting Value	0	0	P50 input pin
		1	P50 output pin
	1	Х	WKP0 input pin

Legend: X: Don't care.

Rev.5.00 Nov. 02, 2005 Pag REJ09

Figure 9.5 Port 6 Pin Configuration

Port 6 has the following registers.

- Port control register 6 (PCR6)
- Port data register 6 (PDR6)

9.5.1 Port Control Register 6 (PCR6)

PCR6 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 6.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	PCR67	0	W	When each of the port 6 pins P67 to P60 function
6	PCR66	0	W	general I/O port, setting a PCR6 bit to 1 makes t
5	PCR65	0	W	corresponding pin an output port, while clearing 0 makes the pin an input port.
4	PCR64	0	W	
3	PCR63	0	W	
2	PCR62	0	W	
1	PCR61	0	W	
0	PCR60	0	W	

Rev.5.00 Nov. 02, 2005 Page 128 of 500

P63	0	R/W
P62	0	R/W
P61	0	R/W
P60	0	R/W
	-	

9.5.3 Pin Functions

The correspondence between the register specification and the port functions is shown by

P67/FTIOD1 pin

3 2

0

Register	TOER	TFCR	TPMR	TIORC1	PCR6	_
Bit Name	ED1	CMD1 and CMD0	PWMD1	IOD2 to IOD0	PCR67	Pin Function
Setting Value	1	00	0	000 or 1XX	0	P67 input/FTIOD1 in
					1	P67 output pin
	0	00	0	001 or 01X	Х	FTIOD1 output pin
			1	XXX	_	
		Other than 00	Х	XXX	_	

Legend: X: Don't care.

	•	,,,,,
Other than	Х	XXX
00		

Legend: X: Don't care.

P65/FTIOB1 pin

Register	TOER	TFCR	TPMR	TIORA1	PCR6	
Bit Name	EB1	CMD1 to CMD0	PWMB1	IOB2 to IOB0	PCR65	Pin Function
Setting Value	1	00	0	000 or 1XX	0	P65 input/FTIOB1 inp
					1	P65 output pin
	0	00	0	001 or 01X	Х	FTIOB1 output pin
			1	XXX	_	
		Other than 00	Х	XXX	_	

Legend: X: Don't care.

Rev.5.00 Nov. 02, 2005 Page 130 of 500

P63/FTIOD0 pin

Register	TOER	TFCR	TPMR	TIORC0	PCR6	
Bit Name	ED0	CMD1 to CMD0	PWMD0	IOD2 to IOD0	PCR63	Pin Function
Setting Value	1	00	0	000 or 1XX	0	P63 input/FTIOD0 in
					1	P63 output pin
	0	00	0	001 or 01X	Х	FTIOD0 output pin
			1	XXX	=	
		Other than 00	Х	XXX	_	

Legend: X: Don't care.

Rev.5.00 Nov. 02, 2005 Pag

	•	,,,,,
Other than	Χ	XXX
00		

Legend: X: Don't care.

P61/FTIOB0 pin

Register	TOER	TFCR	TPMR	TIORA0	PCR6	
Bit Name	EB0	CMD1 to CMD0	PWMB0	IOB2 to IOB0	PCR61	Pin Function
Setting Value	1	00	0	000 or 1XX	0	P61 input/FTIOB0 inp
					1	P61 output pin
	0	00	0	001 or 01X	X	FTIOB0 output pin
			1	XXX	=	
		Other than 00	Х	XXX	_	

Legend: X: Don't care.

Rev.5.00 Nov. 02, 2005 Page 132 of 500

RENESAS

Rev.5.00 Nov. 02, 2005 Pag

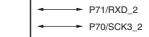


Figure 9.6 Port 7 Pin Configuration

Port 7 has the following registers.

- Port control register 7 (PCR7)
- Port data register 7 (PDR7)

9.6.1 Port Control Register 7 (PCR7)

PCR7 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 7.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	_	_	_	When each of the port 7 pins P76 to P74 and P7
6	PCR76	0	W	functions as a general I/O port, setting a PCR7 be makes the corresponding pin an output port, whi
5	PCR75	0	W	clearing the bit to 0 makes the pin an input port.
4	PCR74	0	W	Bits 7 and 3 are reserved bits.
3	_	_	_	
2	PCR72	0	W	
1	PCR71	0	W	
0	PCR70	0	W	

Rev.5.00 Nov. 02, 2005 Page 134 of 500

063	Din Fu	nations		
0	P70	0	R/W	
1	P71	0	R/W	
2	P72	0	R/W	as 1.
U		•		Bits / and 3 are reserved bits. These bits are a

Pin Functions

The correspondence between the register specification and the port functions is shown be

P76/TMOV pin

Register	TCSRV	PCR7	
Bit Name	OS3 to OS0	PCR76	Pin Function
Setting Value	0000	0	P76 input pin
		1	P76 output pin
	Other than the above values	X	TMOV output pin
Legend: X: Do	on't care.		

P75/TMCIV pin

Register	PCR7	
Bit Name	PCR75	Pin Function
Setting Value	0	P75 input/TMCIV input pin
	1	P75 output/TMCIV input pin

	1	X	TXD_2 output pin
Legend: X: D	on't care.		
P71/RXD_2 p	in		
_			
Register	SCR3_2	PCR7	_
Register Bit Name	SCR3_2 RE	PCR7	_ Pin Function
	RE		Pin Function P71 input pin

Pin Function

P72 input pin

P72 output pin

RXD_2 input pin

Legend: X: Don't care.

P

Bit Name

Setting Value

TXD2

PCR72

1

Χ

Register	SCR3_	2	SMR2	PCR7	
Bit Name	CKE1	CKE0	COM	PCR70	Pin Function
Setting Value	0	0	0	0	P70 input pin
				1	P70 output pin
	0	0	1	Х	SCK3_2 output pin
	0	1	Х	Х	SCK3_2 output pin
	1	Х	Χ	Х	SCK3_2 input pin

Legend: X: Don't care.

RENESAS

Port 8 has the following registers.

- Port control register 8 (PCR8)
- Port data register 8 (PDR8)

9.7.1 Port Control Register 8 (PCR8)

PCR8 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 8

Bit	Bit Name	Value	R/W	Description
7	PCR87	0	W	When each of the port 8 pins P87 to P85 function
6	PCR86	0	W	general I/O port, setting a PCR8 bit to 1 makes
5	PCR85	0	W	corresponding pin an output port, while clearing 0 makes the pin an input port.
4 to 0	_	_	_	Reserved

9.7.2 Port Data Register 8 (PDR8)

PDR8 is a general I/O port data register of port 8.

Bit	Bit Name	Initial Value	R/W	Description
7	P87	0	R/W	PDR8 stores output data for port 8 pins.
6	P86	0	R/W	If PDR8 is read while PCR8 bits are set to 1, the
5	P85	0	R/W	stored in PDR8 is read. If PDR8 is read while I are cleared to 0, the pin states are read regard value stored in PDR8.
4 to 0	_	All 1	_	Reserved
				These bits are always read as 1.

P86 pin

Register	PCR8	
Bit Name	PCR86	Pin Function
Setting Va	lue 0	P86 input pin
	1	P86 output pin

P85 pin

Register	PCR8	
Bit Name	PCR85	Pin Function
Setting Value	0	P85 input pin
	1	P85 output pin

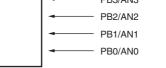


Figure 9.8 Port B Pin Configuration

Port B has the following register.

• Port data register B (PDRB)

9.8.1 Port Data Register B (PDRB)

PDRB is a general input-only port data register of port B.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	PB7	_	R	The input value of each pin is read by reading t
6	PB6	_	R	register.
5	PB5	_	R	However, if a port B pin is designated as an
4	PB4	_	R	channel by ADCSR in A/D converter, 0 is read.
3	PB3	_	R	
2	PB2	_	R	
1	PB1	_	R	
0	PB0	_	R	

Rev.5.00 Nov. 02, 2005 Page 140 of 500

- Readable/writable counter of seconds, minutes, hours, and day-of-week with BCD c
 - Periodic (seconds, minutes, hours, days, and weeks) interrupts
 - 8-bit free running counter
 - Selection of clock source

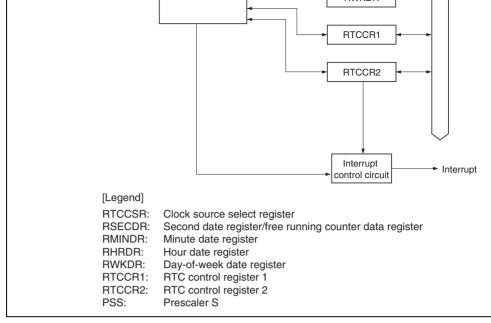


Figure 10.1 Block Diagram of RTC

10.2 Input/Output Pin

Table 10.1 shows the RTC input/output pin.

Table 10.1 Pin Configuration

Name	Abbreviati	on I/O	Function	
Clock output	TMOW	Output	RTC divided clock output	

Rev.5.00 Nov. 02, 2005 Page 142 of 500

Clock source select register (RTCCSR)

10.3.1 **Second Data Register/Free Running Counter Data Register (RSECDR)**

RSECDR counts the BCD-coded second value. The setting range is decimal 00 to 59. It read register used as a counter, when it operates as a free running counter. For more info on reading seconds, minutes, hours, and day-of-week, see section 10.4.3, Data Reading

		Initial		
Bit	Bit Name	Value	R/W	Description
7	BSY	_	R	RTC busy
				This bit is set to 1 when the RTC is updating (o the values of second, minute, hour, and day-of-registers. When this bit is 0, the values of secondour, and day-of-week data registers must be a
6	SC12	_	R/W	Counting ten's position of seconds
5	SC11	_	R/W	Counts on 0 to 5 for 60-second counting.
4	SC10	_	R/W	
3	SC03	_	R/W	Counting one's position of seconds
2	SC02	_	R/W	Counts on 0 to 9 once per second. When a car
1	SC01	_	R/W	generated, 1 is added to the ten's position.
0	SC00	_	R/W	

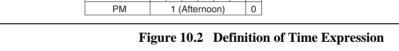
				hour, and day-of-week data registers must be ac
6	MN12	_	R/W	Counting ten's position of minutes
5	MN11	_	R/W	Counts on 0 to 5 for 60-minute counting.
4	MN10	_	R/W	
3	MN03	_	R/W	Counting one's position of minutes
2	MN02	_	R/W	Counts on 0 to 9 once per minute. When a carry
1	MN01	_	R/W	generated, 1 is added to the ten's position.
0	MN00	_	R/W	

REJ09B0027-0500

Rev.5.00 Nov. 02, 2005 Page 144 of 500

RENESAS

				hour, and day-of-week data registers must be
6	_	0	_	Reserved
				This bit is always read as 0.
5	HR11	_	R/W	Counting ten's position of hours
4	HR10	_	R/W	Counts on 0 to 2 for ten's position of hours.
3	HR03	_	R/W	Counting one's position of hours
2	HR02	_	R/W	Counts on 0 to 9 once per hour. When a carry
1	HR01	_	R/W	generated, 1 is added to the ten's position.
0	HR00	_	R/W	


registers. When this bit is 0, the values of seco

				nour, and day-of-week data registers must be ad
6 to 3	_	All 0	_	Reserved
				These bits are always read as 0.
2	WK2	_	R/W	Day-of-week counting
1	WK1	_	R/W	Day-of-week is indicated with a binary code
0	WK0	_	R/W	000: Sunday
				001: Monday
				010: Tuesday
				011: Wednesday
				100: Thursday
				101: Friday
				110: Saturday
				111: Reserved (setting prohibited)

Rev.5.00 Nov. 02, 2005 Page 146 of 500 REJ09B0027-0500

6	12/24	_	H/W	Operating mode
				0: RTC operates in 12-hour mode. RHRDR co to 11.
				1: RTC operates in 24-hour mode. RHRDR conto 23.
5	PM	_	R/W	A.m./p.m.
				0: Indicates a.m. when RTC is in the 12-hour m
				1: Indicates p.m. when RTC is in the 12-hour m
4	RST	0	R/W	Reset
				0: Normal operation
				 Resets registers and control circuits except F and this bit. Clear this bit to 0 after having be 1.
3 to 0	_	All 0	_	Reserved
				These bits are always read as 0.
				Noon
		24-hour count	0 1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 16 17
		12-hour count	0 1 2 3	4 5 6 7 8 9 10 11 0 1 2 3 4 5
		PM		0 (Morning) 1 (Afternoon)
		24-hour count	18 19 20 21	22 23 0
		12-hour count	6 7 8 9	10 11 0
				. I = I

Rev.5.00 Nov. 02, 2005 Pag

				1: Enables an overflow interrupt
4	WKIE	_	R/W	Week Periodic Interrupt Enable
				0: Disables a week periodic interrupt
				1: Enables a week periodic interrupt
3	DYIE	_	R/W	Day Periodic Interrupt Enable
				0: Disables a day periodic interrupt
				1: Enables a day periodic interrupt
2	HRIE	_	R/W	Hour Periodic Interrupt Enable
				0: Disables an hour periodic interrupt
				1: Enables an hour periodic interrupt
1	MNIE	_	R/W	Minute Periodic Interrupt Enable
				0: Disables a minute periodic interrupt

Free Running Counter Overflow Interrupt Enable

0: Disables an overflow interrupt

1: Enables a minute periodic interrupt

Second Periodic Interrupt Enable
0: Disables a second periodic interrupt
1: Enables a second periodic interrupt

R/W

R/W

Rev.5.00 Nov. 02, 2005 Page 148 of 500

SEIE

5

0

FOIE

REJ09B0027-0500

6	RCS6	0	R/W	Clock output selection
5	RCS5	0	R/W	Selects a clock output from the TMOW pin whe TMOW in PMR1 to 1.
				00: φ/4
				01: _φ /8
				10: φ/16
				11:
4	_	0	_	Reserved
				This bit is always read as 0.
3	RCS3	1	R/W	Clock source selection
2	RCS2	0	R/W	0000: φ/8····· Free running counter opera
1	RCS1	0	R/W	0001: $\phi/32$ Free running counter opera
0	RCS0	0	R/W	0010:
				0011: φ/256····· Free running counter opera
				0100:
				0101: φ/2048······· Free running counter opera
				0110: φ/4096······ Free running counter opera

Reserved

This bit is always read as 0.

Legend: X: Don't care.

0

7

Rev.5.00 Nov. 02, 2005 Pag

REJ09

0111: φ/8192······ Free running counter operation

1XXX: 32.768 kHz·····RTC operation

Figure 10.3 shows the procedure for the initial setting of the RTC. To set the RTC again, follow this procedure.

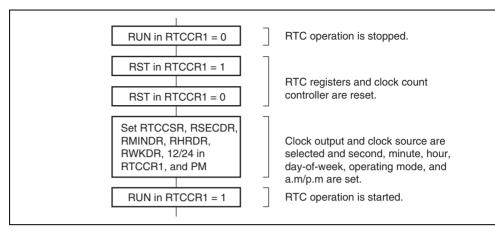


Figure 10.3 Initial Setting Procedure

REJ09B0027-0500

bit is set to 1, the registers are updated, and the BSY bit is cleared to 0.

- 2. Making use of interrupts, read from the second, minute, hour, and day-of week regis the IRRTA flag in IRR1 is set to 1 and the BSY bit is confirmed to be 0.
 - Read from the second, minute, hour, and day-of week registers twice in a row, and in no change in the read data, the read data is used.

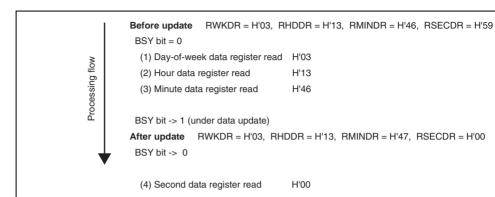


Figure 10.4 Example: Reading of Inaccurate Time Data

Rev.5.00 Nov. 02, 2005 Pag

Table 10.2 Interrupt Source

Interrupt Name	Interrupt Source	Interrupt En
Overflow interrupt	Occurs when the free running counter is overflown.	FOIE
Week periodic interrupt	Occurs every week when the day-of-week date register value becomes 0.	WKIE
Day periodic interrupt	Occurs every day when the day-of-week date register is counted.	DYIE
Hour periodic interrupt	Occurs every hour when the hour date register is counted.	HRIE
Minute periodic interrupt	Occurs every minute when the minute date register is counted.	MNIE
Second periodic interrupt	Occurs every second when the second date register is counted.	SCIE

Rev.5.00 Nov. 02, 2005 Page 152 of 500

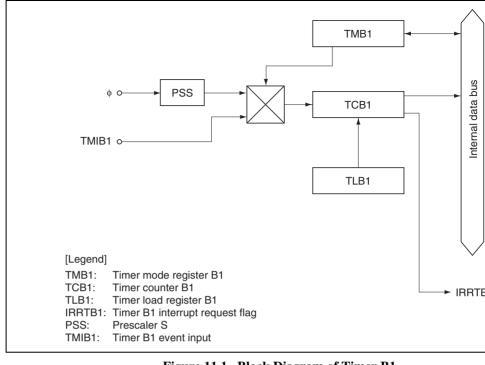


Figure 11.1 Block Diagram of Timer B1

Rev.5.00 Nov. 02, 2005 Pag

The timer B1 has the following registers.

- Timer mode register B1 (TMB1)
- Timer counter B1 (TCB1)
- Timer load register B1 (TLB1)

Rev.5.00 Nov. 02, 2005 Page 154 of 500

REJ09B0027-0500

2	TMB12	0	R/W	Clock select
	TMB11	0	R/W	000: Internal clock: φ/8192
)	TMB10	0	R/W	001: Internal clock: φ/2048
				010: Internal clock: φ/512
				011: Internal clock: φ/256
				100: Internal clock: φ/64
				101: Internal clock: φ/16
				110: Internal clock: φ/4
				111: External event (TMIB1): rising or falling ed

2

1

0

11.3.2 **Timer Counter B1 (TCB1)**

is initialized to H'00.

TCB1 is an 8-bit read-only up-counter, which is incremented by internal clock input. T source for input to this counter is selected by bits TMB12 to TMB10 in TMB1. TCB1 v be read by the CPU at any time. When TCB1 overflows from H'FF to H'00 or to the val-TLB1, the IRRTB1 flag in IRR2 is set to 1. TCB1 is allocated to the same address as TI

These bits are always read as 1.

Note: * The edge of the external event signal

by bit IEG1 in the interrupt edge selec (IEGR1). See section 3.2.1, Interrupt I Select Register 1 (IEGR1), for details. setting TMB12 to TMB10 to 1, IRQ1 ir mode register 1 (PMR1) should be set

11.4.1 **Interval Timer Operation**

reset, TCB1 is cleared to H'00 and bit TMB17 is cleared to 0, so up-counting and interval resume immediately. The operating clock of timer B1 is selected from seven internal clo output by prescaler S, or an external clock input at pin TMB1. The selection is made by TMB12 to TMB10 in TMB1.

When bit TMB17 in TMB1 is cleared to 0, timer B1 functions as an 8-bit interval timer.

After the count value in TMB1 reaches H'FF, the next clock signal input causes timer B1 overflow, setting flag IRRTB1 in IRR2 to 1. If IENTB1 in IENR2 is 1, an interrupt is req

At overflow, TCB1 returns to H'00 and starts counting up again. During interval timer op (TMB17 = 0), when a value is set in TLB1, the same value is set in TCB1.

11.4.2 **Auto-Reload Timer Operation**

Setting bit TMB17 in TMB1 to 1 causes timer B1 to function as an 8-bit auto-reload time a reload value is set in TLB1, the same value is loaded into TCB1, becoming the value fr TCB1 starts its count. After the count value in TCB1 reaches H'FF, the next clock signal causes timer B1 to overflow. The TLB1 value is then loaded into TCB1, and the count of

from that value. The overflow period can be set within a range from 1 to 256 input clock depending on the TLB1 value.

The clock sources and interrupts in auto-reload mode are the same as in interval mode. In reload mode (TMB17 = 1), when a new value is set in TLB1, the TLB1 value is also load TCB1.

the CPU.

Table 11.2 shows the timer B1 operating modes.

Table 11.2 Timer B1 Operating Modes

Operatir	ng Mode	Reset	Active	Sleep	Subactive	Subsleep	S
TCB1	Interval	Reset	Functions	Functions	Halted	Halted	Н
	Auto-reload	Reset	Functions	Functions	Halted	Halted	Н
TMB1		Reset	Functions	Retained	Retained	Retained	R
' <u>-</u>							

REJ09

Rev.5.00 Nov. 02, 2005 Page 158 of 500

REJ09B0027-0500

- Choice of seven clock signals is available.
 - Choice of six internal clock sources (φ/128, φ/64, φ/32, φ/16, φ/8, φ/4) or an external
 Counter can be cleared by compare match A or B, or by an external reset signal. If the counter can be cleared by compare match A or B, or by an external reset signal.
 - stop function is selected, the counter can be halted when cleared.
 Timer output is controlled by two independent compare match signals, enabling puls
 - with an arbitrary duty cycle, PWM output, and other applications.
 - Three interrupt sources: compare match A, compare match B, timer overflow
 - Counting can be initiated by trigger input at the TRGV pin. The rising edge, falling both edges of the TRGV input can be selected.

RENESAS

TIM08V0A_000120030300

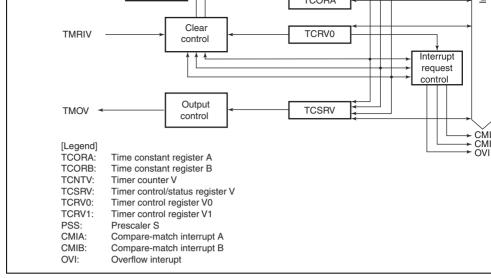


Figure 12.1 Block Diagram of Timer V

Rev.5.00 Nov. 02, 2005 Page 160 of 500

REJ09B0027-0500

12.3 Register Descriptions

Time V has the following registers.

- Timer counter V (TCNTV)
- Timer constant register A (TCORA)
- Timer constant register B (TCORB)
- Timer control register V0 (TCRV0)
- Timer control/status register V (TCSRV)
- Timer control register V1 (TCRV1)

12.3.1 Timer Counter V (TCNTV)

TCNTV is an 8-bit up-counter. The clock source is selected by bits CKS2 to CKS0 in ti control register V0 (TCRV0). The TCNTV value can be read and written by the CPU at TCNTV can be cleared by an external reset input signal, or by compare match A or B. T clearing signal is selected by bits CCLR1 and CCLR0 in TCRV0.

When TCNTV overflows, OVF is set to 1 in timer control/status register V (TCSRV).

TCNTV is initialized to H'00.

12.3.2 Time Constant Registers A and B (TCORA, TCORB)

TCORA and TCORB have the same function.

TCORA and TCORB are 8-bit read/write registers.

Rev.5.00 Nov. 02, 2005 Pag

TCRV0 selects the input clock signals of TCNTV, specifies the clearing conditions of TC and controls each interrupt request.

R/W

Initial Value

Bit Name

Bit

7	CMIEB	0	R/W	Compare Match Interrupt Enable B
				When this bit is set to 1, interrupt request from the bit in TCSRV is enabled.
6	CMIEA	0	R/W	Compare Match Interrupt Enable A
				When this bit is set to 1, interrupt request from the bit in TCSRV is enabled.
5	OVIE	0	R/W	Timer Overflow Interrupt Enable
				When this bit is set to 1, interrupt request from the bit in TCSRV is enabled.
4	CCLR1	0	R/W	Counter Clear 1 and 0
3	CCLR0	0	R/W	These bits specify the clearing conditions of TCN
				00: Clearing is disabled
				01: Cleared by compare match A
				10: Cleared by compare match B

Description

Rev.5.00 Nov. 02, 2005 Page 162 of 500	
REJ09B0027-0500	RENESAS

R/W

R/W

R/W

in TCRV1.

Clock Select 2 to 0

Refer to table 12.2.

11: Cleared on the rising edge of the TMRIV pin operation of TCNTV after clearing depends of the transfer of t

These bits select clock signals to input to TCNT

counting condition in combination with ICKS0 in

CKS2

CKS1

CKS0

0

0

0

2

1

0

	-	1	Internal clock: counts on \$\phi\$/128, falling
0	0	_	Clock input prohibited
	1	_	External clock: counts on rising edge
1	0	_	External clock: counts on falling edge
	1	_	External clock: counts on rising and f edge

Internal clock: counts on φ/64, falling

Rev.5.00 Nov. 02, 2005 Pag

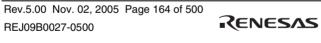
REJ09

0

1

-		-		
				Setting condition:
				When the TCNTV value matches the TCORA va
				Clearing condition:
				After reading CMFA = 1, cleared by writing 0 to
5	OVF	0	R/W	Timer Overflow Flag
				Setting condition:
				When TCNTV overflows from H'FF to H'00
				Clearing condition:
				After reading OVF = 1, cleared by writing 0 to O
4	_	1	_	Reserved
				This bit is always read as 1.
3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits select an output method for the TMC the compare match of TCORB and TCNTV.
				00: No change
				01: 0 output
				10: 1 output
				11: Output toggles
1	OS1	0	R/W	Output Select 1 and 0
0	OS0	0	R/W	These bits select an output method for the TMC the compare match of TCORA and TCNTV.
				00: No change
				01: 0 output
				10: 1 output
				11: Output toggles

R/W


6


CMFA

0

Alter reading Own B = 1, cleared by writing 0 to

Compare Match Flag A

				00: TRGV trigger input is prohibited	
			01: Rising edge is selected		
				10: Falling edge is selected	
				11: Rising and falling edges are both selected	
2	TRGE	0	R/W	TCNT starts counting up by the input of the edg selected by TVEG1 and TVEG0.	
				0: Disables starting counting-up TCNTV by the the TRGV pin and halting counting-up TCNT TCNTV is cleared by a compare match.	
				Enables starting counting-up TCNTV by the the TRGV pin and halting counting-up TCNT TCNTV is cleared by a compare match.	
1	_	1	_	Reserved	
				This bit is always read as 1.	
0	ICKS0	0	R/W	Internal Clock Select 0	

Reserved

These bits are always read as 1.

These bits select the TRGV input edge.

This bit selects clock signals to input to TCNTV combination with CKS2 to CKS0 in TCRV0.

Rev.5.00 Nov. 02, 2005 Pag

REJ09

TRGV Input Edge Select

All 1

0

0

R/W

R/W

7 to 5

TVEG1

TVEG0

4

3

Refer to table 12.2.

- will be set. The timing at this time is shown in figure 12.4. An interrupt request is sen CPU when OVIE in TCRV0 is 1.

 3. TCNTV is constantly compared with TCORA and TCORB. Compare match flag A or CONTA or CONTA and CONTA or CONTA or CONTA propositive.
 - (CMFA or CMFB) is set to 1 when TCNTV matches TCORA or TCORB, respectively compare-match signal is generated in the last state in which the values match. Figure shows the timing. An interrupt request is generated for the CPU when CMIEA or CM TCRV0 is 1.
 4. When a compare match A or B is generated, the TMOV responds with the output value selected by hits OS3 to OS0 in TCSRV. Figure 12 6 shows the timing when the output
 - 4. When a compare match A of B is generated, the TMOV responds with the output value selected by bits OS3 to OS0 in TCSRV. Figure 12.6 shows the timing when the output toggled by compare match A.
 5. When CCLR1 or CCLR0 in TCRV0 is 01 or 10, TCNTV can be cleared by the correspondent of the compare match. Figure 12.7 shows the timing.
 - compare match. Figure 12.7 shows the timing.6. When CCLR1 or CCLR0 in TCRV0 is 11, TCNTV can be cleared by the rising edge input of TMRIV pin. A TMRIV input pulse-width of at least 1.5 system clocks is nec Figure 12.8 shows the timing.
 - Figure 12.8 shows the timing.7. When a counter-clearing source is generated with TRGE in TCRV1 set to 1, the coun halted as soon as TCNTV is cleared. TCNTV resumes counting-up when the edge sel TVEG1 or TVEG0 in TCRV1 is input from the TGRV pin.

REJ09B0027-0500

Rev.5.00 Nov. 02, 2005 Page 166 of 500

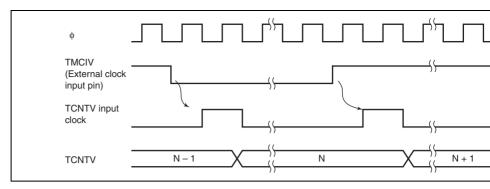


Figure 12.3 Increment Timing with External Clock

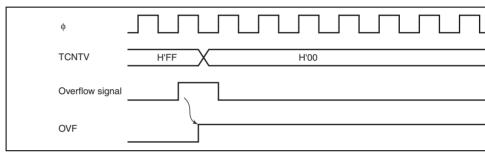


Figure 12.4 OVF Set Timing

Figure 12.5 CMFA and CMFB Set Timing

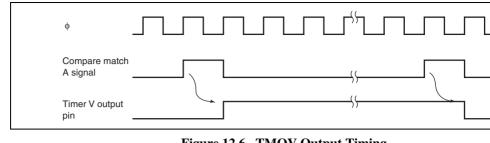


Figure 12.6 TMOV Output Timing

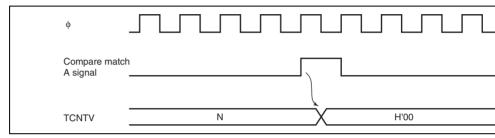


Figure 12.7 Clear Timing by Compare Match

Rev.5.00 Nov. 02, 2005 Page 168 of 500

REJ09B0027-0500

RENESAS

Rev.5.00 Nov. 02, 2005 Pag

- 3. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired close
 - 4. With these settings, a waveform is output without further software intervention, with determined by TCORA and a pulse width determined by TCORB.

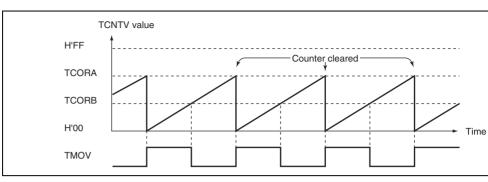


Figure 12.9 Pulse Output Example

- 4. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clo
 - 5. After these settings, a pulse waveform will be output without further software interv with a delay determined by TCORA from the TRGV input, and a pulse width determ (TCORB TCORA).

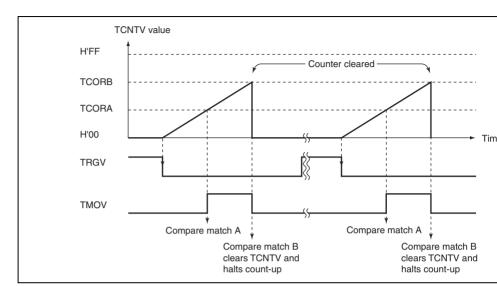


Figure 12.10 Example of Pulse Output Synchronized to TRGV Input

- If compare matches A and B occur simultaneously, any conflict between the output s for compare match A and compare match B is resolved by the following priority: tog output > output 1 > output 0.
 - Depending on the timing, TCNTV may be incremented by a switch between different clock sources. When TCNTV is internally clocked, an increment pulse is generated f falling edge of an internal clock signal, that is divided system clock (\$\phi\$). Therefore, a in figure 12.3 the switch is from a high clock signal to a low clock signal, the switch seen as a falling edge, causing TCNTV to increment. TCNTV can also be increment switch between internal and external clocks.

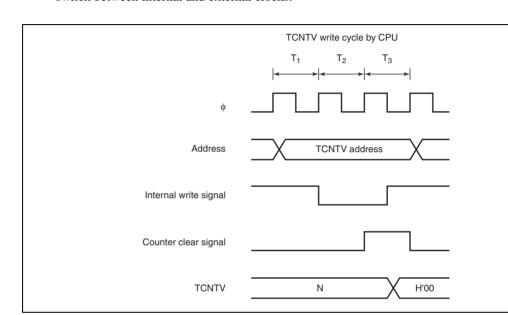


Figure 12.11 Contention between TCNTV Write and Clear

Rev.5.00 Nov. 02, 2005 Page 172 of 500

REJ09B0027-0500

RENESAS

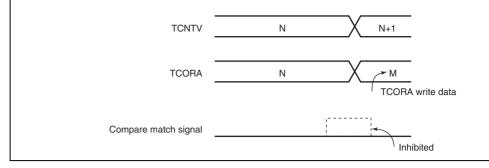


Figure 12.12 Contention between TCORA Write and Compare Match

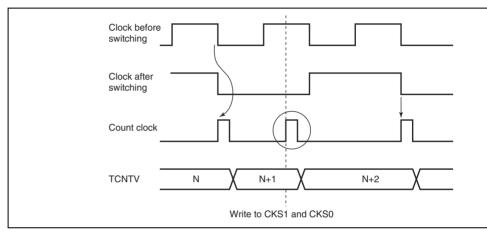


Figure 12.13 Internal Clock Switching and TCNTV Operation

Rev.5.00 Nov. 02, 2005 Pag REJ09

Rev.5.00 Nov. 02, 2005 Page 174 of 500

REJ09B0027-0500

- Independently assignable output compare or input capture functions
- Selection of five counter clock sources: four internal clocks (ϕ , $\phi/2$, $\phi/4$, and $\phi/8$) and
- external clock
 - Seven selectable operating modes
 - Output compare function
 - Selection of 0 output, 1 output, or toggle output
 - Input capture function
 - Rising edge, falling edge, or both edges

- Synchronous operation

Simultaneous clearing by compare match or input capture is possible.

Three-phase PWM output for non-overlapped normal and counter phases

Timer counters_0 and _1 (TCNT_0 and TCNT_1) can be written simultaneously

- PWM mode Up to six-phase PWM output can be provided with desired duty ratio.
 - Reset synchronous PWM mode

 - Three-phase PWM output for normal and counter phases
 - Complementary PWM mode
 - The A/D conversion start trigger can be set for PWM cycles.
- Buffer operation
- The input capture register can be consisted of double buffers.
- The output compare register can automatically be modified.
- High-speed access by the internal 16-bit bus
 - 16-bit TCNT and GR registers can be accessed in high speed by a 16-bit bus inte
- Any initial timer output value can be set

TIM08Z0A 000120030300

- Output of the timer is disabled by external trigger

		FTIOD0	FTIOD1
Counter clearing function		Compare match/input capture of GRA_0, GRB_0, GRC_0, or GRD_0	Compare match/input cap GRA_1, GRB_1, GRC_1, GRD_1
Compare	0 output	Yes	Yes
match output	1 output	Yes	Yes
	output	Yes	Yes
Input capture for	unction	Yes	Yes
Synchronous of	peration	Yes	Yes
PWM mode		Yes	Yes
Reset synchronous PWM mode		Yes	Yes

Compare match/input capture A0

GRC_1, GRD_1

Yes

Yes

to D1

Overflow Underflow

FTIOA1, FTIOB1, FTIOC

Compare match/input cap

GRC_0, GRD_0

Yes

Yes

to D0

Overflow

FTIOA0, FTIOB0, FTIOC0,

Rev.5.00 Nov. 02, 2005 Page 176 of 500

Complementary PWM

Buffer function Interrupt sources

mode

Buffer register

I/O pins

RENESAS

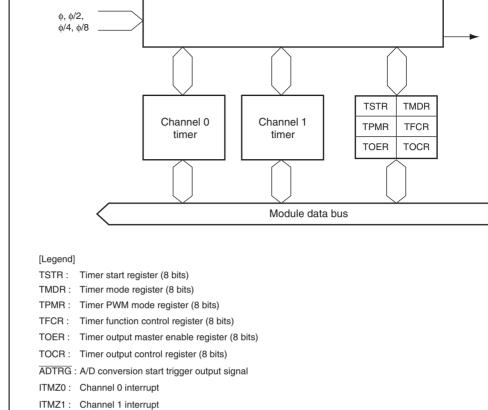
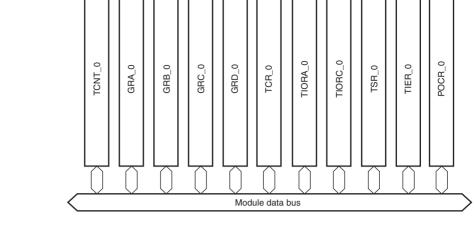



Figure 13.1 Timer Z Block Diagram

Rev.5.00 Nov. 02, 2005 Pag

[Legend]

TCNT 0: Timer counter 0 (16 bits)

GRA_0, GRB_0: General registers A_0, B_0, C_0, and D_0 (input capture/output compare registers:

GRC_0, GRD_0 : 16 bits \times 4)

TCR_0: Timer control register_0 (8 bits)
TIORA_0: Timer I/O control register A_0 (8 bits)
TIORC_0: Timer I/O control register C_0 (8 bits)
TSR_0: Timer status register_0 (8 bits)

TIER_0: Timer interrupt enable register_0 (8 bits)
POCR_0: PWM mode output level control register_0 (8 bits)

ITMZ0: Channel 0 interrupt

Figure 13.2 Timer Z (Channel 0) Block Diagram

Rev.5.00 Nov. 02, 2005 Page 178 of 500 REJ09B0027-0500

[Legend]

TCNT_1: Timer counter_1 (16 bits)

GRA_1, GRB_1: General registers A_1, B_1, C_1, and D_1 (input capture/output compare registers:

GRC_1, GRD_1 : 16 bits × 4)
TCR_1 : Timer control register_1 (8 bits)

TIORA_1: Timer I/O control register A_1 (8 bits)
TIORC_1: Timer I/O control register C_1 (8 bits)

TSR_1: Timer status register_1 (8 bits)
TIER_1: Timer interrupt enable register_1 (8 bits)

POCR_1: PWM mode output level control register_1 (8 bits)

ITMZ1: Channel 1 interrupt

Figure 13.3 Timer Z (Channel 1) Block Diagram

Rev.5.00 Nov. 02, 2005 Pag

Input capture/output compare D0	FTIOD0	Input/output	GRD_0 output compare output input capture input, or PWM o
Input capture/output compare A1	FTIOA1	Input/output	GRA_1 output compare output input capture input, or PWM or reset synchronous PWM and complementary PWM modes)
Input capture/output compare B1	FTIOB1	Input/output	GRB_1 output compare output input capture input, or PWM or
Input capture/output compare C1	FTIOC1	Input/output	GRC_1 output compare output input capture input, or PWM or
Input capture/output compare D1	FTIOD1	Input/output	GRD_1 output compare output input capture input, or PWM or

FTIOC0

Input/output

RENESAS

input capture input, or PWM or

GRC_0 output compare output

input capture input, or PWM synchronous output (in reset synchronous PWM and comple

PWM modes)

REJ09B0027-0500

compare B0

Input capture/output compare C0

Rev.5.00 Nov. 02, 2005 Page 180 of 500

• Timer output control register (TOCR)

Channel 0

- Timer control register_0 (TCR_0)
- Timer I/O control register A_0 (TIORA_0)
- Timer I/O control register C_0 (TIORC_0)
- Timer status register_0 (TSR_0)
- Timer interrupt enable register_0 (TIER_0)
- PWM mode output level control register_0 (POCR_0)
- Timer counter_0 (TCNT_0)
- General register A_0 (GRA_0)
- General register B_0 (GRB_0)
- General register C_0 (GRC_0)
- General register D_0 (GRD_0)

Channel 1

- Timer control register_1 (TCR_1)
- Timer I/O control register A_1 (TIORA_1)
- Timer I/O control register C_1 (TIORC_1)
- Timer status register_1 (TSR_1)
- Timer interrupt enable register_1 (TIER_1)
- PWM mode output level control register_1 (POCR_1)
- Timer counter_1 (TCNT_1)
- General register A_1 (GRA_1)
- General register B_1 (GRB_1)

Rev.5.00 Nov. 02, 2005 Pag REJ09

1	STR1	0	R/W	Channel 1 Counter Start	
				0: TCNT_1 halts counting	
				1: TCNT_1 starts counting	
0	STR0	0	R/W	Channel 0 Counter Start	
				0: TCNT_0 halts counting	
				1: TCNT_0 starts counting	

5	BFD0	0	R/W	Buffer Operation D0
				0: GRD_0 operates normally
				 GRB_0 and GRD_0 are used together for but operation
4	BFC0	0	R/W	Buffer Operation C0
				0: GRC_0 operates normally
				 GRA_0 and GRC_0 are used together for but operation
3 to 1	_	All 1	_	Reserved
				These bits are always read as 1, and cannot be
0	SYNC	0	R/W	Timer Synchronization
				0: TCNT_1 and TCNT_0 operate as a different

buller Operation CT

operation

0: GRC_1 operates normally

1: GRA_1 and GRD_1 are used together for bu

1: TCNT_1 and TCNT_0 are synchronized TCNT_1 and TCNT_0 can be pre-set or clear

Rev.5.00 Nov. 02, 2005 Pag

REJ09

synchronously

PWMC1	0	R/W	PWM Mode C1
			0: FTIOC1 operates normally
			1: FTIOC1 operates in PWM mode
PWMB1	0	R/W	PWM Mode B1
			0: FTIOB1 operates normally
			1: FTIOB1 operates in PWM mode
_	1	_	Reserved
			This bit is always read as 1, and cannot be modi
PWMD0	0	R/W	PWM Mode D0
			0: FTIOD0 operates normally
			1: FTIOD0 operates in PWM mode
PWMC0	0	R/W	PWM Mode C0
			0: FTIOC0 operates normally
			1: FTIOC0 operates in PWM mode
PWMB0	0	R/W	PWM Mode B0

1: FTIOD1 operates in PWM mode

Rev.5.00 Nov. 02, 2005 Page 184 of 500 REJ09B0027-0500

5

RENESAS

0: FTIOB0 operates normally1: FTIOB0 operates in PWM mode

5	ADLG	U	1 1/ V V	A/D Trigger Lage delect
				A/D module should be set to start an A/D converse the external trigger
				0: A/D trigger at the crest in complementary PV
				1: A/D trigger at the trough in complementary P
4	ADTRG	0	R/W	External Trigger Disable
				 A/D trigger for PWM cycles is disabled in complementary PWM mode
				 A/D trigger for PWM cycles is enabled in complementary PWM mode
3	OLS1	0	R/W	Output Level Select 1
				Selects the counter-phase output levels in rese synchronous PWM mode or complementary PV
				0: Initial output is high and the active level is lov
				1: Initial output is low and the active level is hig
2	OLS0	0	R/W	Output Level Select 0
				Selects the normal-phase output levels in reset synchronous PWM mode or complementary PV
				0: Initial output is high and the active level is lov
				1: Initial output is low and the active level is hig
				Figure 13.4 shows an example of outputs in ressynchronous PWM mode and complementary F mode when OLS1 = 0 and OLS0 = 0.

5

ADEG

0

1: External clock input is enabled

A/D Trigger Edge Select

REJ09

Rev.5.00 Nov. 02, 2005 Pag

the crest)

Note: When reset synchronous PWM mode or complementary PWM mode is selected by bits, this setting has the priority to the setti PWM mode by each bit in TPMR. Stop TC and TCNT_1 before making settings for resynchronous PWM mode or complemental mode.

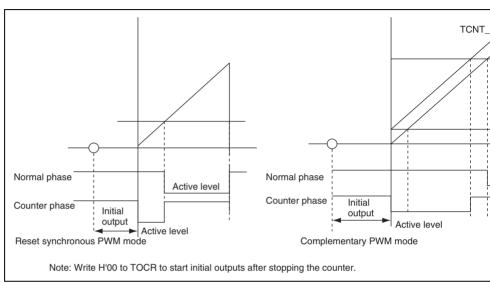


Figure 13.4 Example of Outputs in Reset Synchronous PWM Mode and Complementary PWM Mode

Rev.5.00 Nov. 02, 2005 Page 186 of 500

6	EC1	1	R/W	Master Enable C1
				0: FTIOC1 pin output is enabled according to the TFCR, and TIORC_1 settings
				1: FTIOC1 pin output is disabled regardless of TFCR, and TIORC_1 settings (FTIOC1 pin is as an I/O port).
5	EB1	1	R/W	Master Enable B1
				0: FTIOB1 pin output is enabled according to the TFCR, and TIORA_1 settings
				1: FTIOB1 pin output is disabled regardless of TFCR, and TIORA_1 settings (FTIOB1 pin is as an I/O port).
4	EA1	1	R/W	Master Enable A1
				0: FTIOA1 pin output is enabled according to the TFCR, and TIORA_1 settings
				1: FTIOA1 pin output is disabled regardless of TFCR, and TIORA_1 settings (FTIOA1 pin is as an I/O port).

3

ED0

1

Master Enable D0

as an I/O port).

REJ09

0: FTIOD0 pin output is enabled according to the

1: FTIOD0 pin output is disabled regardless of TFCR, and TIORC_0 settings (FTIOD0 pin is

TFCR, and TIORC_0 settings

1: FTIOD1 pin output is disabled regardless of TFCR, and TIORC_1 settings (FTIOD1 pin is

as an I/O port).

				as an I/O port).
0	EA0	1	R/W	Master Enable A0
				 FTIOA0 pin output is enabled according to the TFCR, and TIORA_0 settings
				1: FTIOA0 pin output is disabled regardless of th TFCR, and TIORA_0 settings (FTIOA0 pin is as an I/O port).

1: FTIOB0 pin output is disabled regardless of the

13.3.6 Timer Output Control Register (TOCR)

TOCR selects the initial outputs before the first occurrence of a compare match. Note tha OLS1 and OLS0 in TFCR set these initial outputs in reset synchronous PWM mode and complementary PWM mode.

Bit	Bit Name	Initial Value	R/W	Description
7	TOD1	0	R/W	Output Level Select D1
				0: 0 output at the FTIOD1 pin*
				1: 1 output at the FTIOD1 pin*
6	TOC1	0	R/W	Output Level Select C1
				0: 0 output at the FTIOC1 pin*
				1: 1 output at the FTIOC1 pin*
5	TOB1	0	R/W	Output Level Select B1
				0: 0 output at the FTIOB1 pin*
				1: 1 output at the FTIOB1 pin*
				·

RENESAS

Rev.5.00 Nov. 02, 2005 Page 188 of 500

				1: 1 output at the FTIOC0 pin*
1	TOB0	0	R/W	Output Level Select B0
				0: 0 output at the FTIOB0 pin*
				1: 1 output at the FTIOB0 pin*
0	TOA0	0	R/W	Output Level Select A0
				0: 0 output at the FTIOA0 pin*
				1: 1 output at the FTIOA0 pin*

Note: * The change of the setting is immediately reflected in the output value.

13.3.7 Timer Counter (TCNT)

The timer Z has two TCNT counters (TCNT_0 and TCNT_1), one for each channel. The counters are 16-bit readable/writable registers that increment/decrement according to input clocks can be selected by bits TPSC2 to TPSC0 in TCR. TCNT0 and TCNT 1 increment/decrement in complementary PWM mode, while they only increment in other

The TCNT counters are initialized to H'0000 by compare matches with corresponding CGRC, or GRD, or input captures to GRA, GRB, GRC, or GRD (counter clearing function the TCNT counters overflow, an OVF flag in TSR for the corresponding channel is set to TCNT_1 underflows, an UDF flag in TSR is set to 1. The TCNT counters cannot be accepted units; they must always be accessed as a 16-bit unit.

external signals. At this point, IMFA to IMFD flags in the corresponding TSR are set to 1 Detection edges for input capture signals can be selected by TIORA and TIORC.

When PWM mode, complementary PWM mode, or reset synchronous PWM mode is selevalues in TIORA and TIORC are ignored. Upon reset, the GR registers are set as output or registers (no output) and initialized to H'FFFF. The GR registers cannot be accessed in 8-they must always be accessed as a 16-bit unit.

Rev.5.00 Nov. 02, 2005 Page 190 of 500

REJ09B0027-0500

RENESAS

·
010: Clears TCNT by GRB compare match/inp capture*1
011: Synchronization clear; Clears TCNT in synwith counter clearing of the other channel
100: Disables TCNT clearing
101: Clears TCNT by GRC compare match/inp capture*1
110: Clears TCNT by GRD compare match/inp capture*1
111: Synchronization clear; Clears TCNT in synwith counter clearing of the other channel

Clock Edge 1 and 0

00: Count at rising edge 01: Count at falling edge 1X: Count at both edges

Time Prescaler 2 to 0

000: Internal clock: count by o

0	Т	TPSC0	0	R/W	001: Internal clock: count by φ/2
					010: Internal clock: count by φ/4
					011: Internal clock: count by φ/8
					1XX: External clock: count by FTIOA0 (TCLK)
Notes:	1.				utput compare register, TCNT is cleared by comp capture, TCNT is cleared by input capture.

2. Synchronous operation is set by TMDR.

R/W

R/W

R/W

R/W

CKEG1

CKEG0

TPSC2

TPSC1

3. X: Don't care

3

2

1

0

0

0

0

REJ09

101: Input capture to GRB at the falling edge 11X: Input capture to GRB at both rising and 3 — 1 — Reserved This bit is always read as 1. 2 IOA2 0 R/W I/O Control A2 to A0 1 IOA1 0 R/W GRA is an output compare register: 0 IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge					
4 IOB0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRB compare match 010: 1 output by GRB compare match 010: 1 output by GRB compare match 011: Toggle output by GRB compare match GRB is an input capture register: 100: Input capture to GRB at the rising edge 101: Input capture to GRB at the falling edge 11X: Input capture to GRB at both rising and 3 — 1 — Reserved This bit is always read as 1. 2 IOA2 0 R/W I/O Control A2 to A0 1 IOA1 0 R/W GRA is an output compare register: 00: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge 11X: Input capture to GRA at both rising and	6	IOB2	0	R/W	I/O Control B2 to B0
001: 0 output by GRB compare match 010: 1 output by GRB compare match 011: Toggle output by GRB compare match 011: Toggle output by GRB compare match GRB is an input capture register: 100: Input capture to GRB at the rising edge 101: Input capture to GRB at the falling edge 11X: Input capture to GRB at both rising and 3 — 1 — Reserved This bit is always read as 1. 2 IOA2 0 R/W I/O Control A2 to A0 1 IOA1 0 R/W GRA is an output compare register: 0 IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the falling edge 101: Input capture to GRA at the falling edge	5	IOB1	0	R/W	GRB is an output compare register:
010: 1 output by GRB compare match 011: Toggle output by GRB compare match GRB is an input capture register: 100: Input capture to GRB at the rising edge 101: Input capture to GRB at the falling edge 11X: Input capture to GRB at both rising and 3 — 1 — Reserved This bit is always read as 1. 2 IOA2 0 R/W I/O Control A2 to A0 1 IOA1 0 R/W GRA is an output compare register: 0 IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge	4	IOB0	0	R/W	000: Disables pin output by compare match
011: Toggle output by GRB compare match GRB is an input capture register: 100: Input capture to GRB at the rising edge 101: Input capture to GRB at the falling edge 11X: Input capture to GRB at both rising and 3 — 1 — Reserved This bit is always read as 1. 2 IOA2 0 R/W I/O Control A2 to A0 1 IOA1 0 R/W GRA is an output compare register: 0 IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge					001: 0 output by GRB compare match
GRB is an input capture register: 100: Input capture to GRB at the rising edge 101: Input capture to GRB at the falling edge 11X: Input capture to GRB at both rising and 3 — 1 — Reserved This bit is always read as 1. 2 IOA2 0 R/W I/O Control A2 to A0 1 IOA1 0 R/W GRA is an output compare register: 0 IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match 011: Toggle output by GRA at the rising edge 101: Input capture to GRA at the falling edge					010: 1 output by GRB compare match
100: Input capture to GRB at the rising edge 101: Input capture to GRB at the falling edge 11X: Input capture to GRB at both rising and 3 — 1 — Reserved This bit is always read as 1. 2 IOA2 0 R/W I/O Control A2 to A0 1 IOA1 0 R/W GRA is an output compare register: 0 IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge					011: Toggle output by GRB compare match
101: Input capture to GRB at the falling edge 11X: Input capture to GRB at both rising and 3 — 1 — Reserved This bit is always read as 1. 2 IOA2 0 R/W I/O Control A2 to A0 1 IOA1 0 R/W GRA is an output compare register: 0 IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge 11X: Input capture to GRA at both rising and					GRB is an input capture register:
11X: Input capture to GRB at both rising and Reserved This bit is always read as 1. IOA2 0 R/W I/O Control A2 to A0 IOA1 0 R/W GRA is an output compare register: IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge					100: Input capture to GRB at the rising edge
This bit is always read as 1. IOA2 0 R/W I/O Control A2 to A0 IOA1 0 R/W GRA is an output compare register: IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at both rising and					101: Input capture to GRB at the falling edge
This bit is always read as 1. IOA2 0 R/W I/O Control A2 to A0 IOA1 0 R/W GRA is an output compare register: IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at both rising and					11X: Input capture to GRB at both rising and
2 IOA2 0 R/W I/O Control A2 to A0 1 IOA1 0 R/W GRA is an output compare register: 0 IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at both rising and	3	_	1	_	Reserved
1 IOA1 0 R/W GRA is an output compare register: 0 IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge 11X: Input capture to GRA at both rising and					This bit is always read as 1.
0 IOA0 0 R/W 000: Disables pin output by compare match 001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge 11X: Input capture to GRA at both rising and	2	IOA2	0	R/W	I/O Control A2 to A0
001: 0 output by GRA compare match 010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge 11X: Input capture to GRA at both rising and	1	IOA1	0	R/W	GRA is an output compare register:
010: 1 output by GRA compare match 011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge 11X: Input capture to GRA at both rising and	0	IOA0	0	R/W	000: Disables pin output by compare match
011: Toggle output by GRA compare match GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge 11X: Input capture to GRA at both rising and					001: 0 output by GRA compare match
GRA is an input capture register: 100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge 11X: Input capture to GRA at both rising and					010: 1 output by GRA compare match
100: Input capture to GRA at the rising edge 101: Input capture to GRA at the falling edge 11X: Input capture to GRA at both rising and					011: Toggle output by GRA compare match
101: Input capture to GRA at the falling edge					GRA is an input capture register:
11X: Input capture to GRA at both rising and					100: Input capture to GRA at the rising edge
					101: Input capture to GRA at the falling edge
Legend: X: Don't care					11X: Input capture to GRA at both rising and
	Leger	nd: X: Don't	care		

Bit

7

Bit Name

value

1

R/W

Description

Reserved

RENESAS

This bit is always read as 1.

to GRB at the rising edge to GRB at the falling edge to GRB at both rising and fall

> to GRA at the rising edge to GRA at the falling edge to GRA at both rising and fall

Rev.5.00 Nov. 02, 2005 Page 192 of 500

				001: 0 output by GRD compare match
				010: 1 output by GRD compare match
				011: Toggle output by GRD compare match
				GRD is an input capture register:
				100: Input capture to GRD at the rising edge
				101: Input capture to GRD at the falling edge
				11X: Input capture to GRD at both rising and fa edges
3	_	1	_	Reserved
				This bit is always read as 1.
2	IOC2	0	R/W	I/O Control C2 to C0
1	IOC1	0	R/W	GRC is an output compare register:
0	IOC0	0	R/W	000: Disables pin output by compare match
				001: 0 output by GRC compare match
				010: 1 output by GRC compare match
				011: Toggle Output by GRC compare match
				GRC is an input capture register:
				100: Input capture to GRC at the rising edge
				101: Input capture to GRC at the falling edge

000: Disables pin output by compare match

11X: Input capture to GRC at both rising and fa

Rev.5.00 Nov. 02, 2005 Pag

REJ09

Legend: X: Don't care

IOD0

0

4

edges

				 When TCNT_1 underflows
				[Clearing condition]
				When 0 is written to UDF after reading UDF
4	OVF	0	R/W	Overflow Flag
				[Setting condition]
				When the TCNT value underflows
				[Clearing condition]
				When 0 is written to OVF after reading OVF
3	IMFD	0	R/W	Input Capture/Compare Match Flag D
				[Setting conditions]
				When TCNT = GRD and GRD is functioning
				compare register
				 When TCNT value is transferred to GRD by
				capture signal and GRD is functioning as inp
				capture register
				[Clearing condition]
				 When 0 is written to IMFD after reading IMF

Underflow Flag
[Setting condition]

UDF*

				Setting conditions]	
				 When TCNT = GRB and GRB is functioning compare register 	
				 When TCNT value is transferred to GRB by capture signal and GRB is functioning as in capture register 	
				[Clearing condition]	
				When 0 is written to IMFB after reading IMF	
0	IMFA	0	R/W	Input Capture/Compare Match Flag A	
				[Setting conditions]	
				 When TCNT = GRA and GRA is functioning compare register 	
				 When TCNT value is transferred to GRA by capture signal and GRA is functioning as in capture register 	

IMFB

0

1

Note:

When 0 is written to IMFC after reading IMF

Input Capture/Compare Match Flag B

[Clearing condition]

Bit 5 is not the UDF flag in TSR_0. It is a reserved bit. It is always read as 1.

• When 0 is written to IMFA after reading IMF

Rev.5.00 Nov. 02, 2005 Pag

			1: Interrupt requests (OVI) by OVF or UDF flag a enabled
IMIED	0	R/W	Input Capture/Compare Match Interrupt Enable I
			0: Interrupt requests (IMID) by IMFD flag are dis-
			1: Interrupt requests (IMID) by IMFD flag are ena
IMIEC	0	R/W	Input Capture/Compare Match Interrupt Enable (
			0: Interrupt requests (IMIC) by IMFC flag are dis-
			1: Interrupt requests (IMIC) by IMFC flag are ena
IMIEB	0	R/W	Input Capture/Compare Match Interrupt Enable I
			0: Interrupt requests (IMIB) by IMFB flag are disa
			1: Interrupt requests (IMIB) by IMFB flag are ena
IMIEA	0	R/W	Input Capture/Compare Match Interrupt Enable

disabled

0: Interrupt requests (OVI) by OVF or UDF flag a

0: Interrupt requests (IMIA) by IMFA flag are disa1: Interrupt requests (IMIA) by IMFA flag are ena

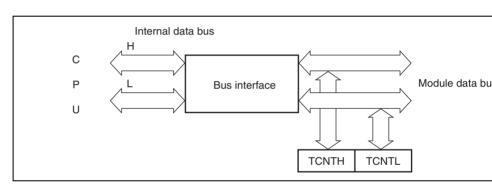
REJ09B0027-0500

3

2

RENESAS

Rev.5.00 Nov. 02, 2005 Page 196 of 500


				1: The output level of FTIOD is high-active
1	POLC	0	R/W	PWM Mode Output Level Control C
				0: The output level of FTIOC is low-active
				1: The output level of FTIOC is high-active
0	POLB	0	R/W	PWM Mode Output Level Control B
				0: The output level of FTIOB is low-active
				1: The output level of FTIOB is high-active

0: The output level of FTIOD is low-active

13.3.14 Interface with CPU

1. 16-bit register

TCNT and GR are 16-bit registers. Reading/writing in a 16-bit unit is enabled but d an 8-bit unit since the data bus with the CPU is 16-bit width. These registers must a accessed in a 16-bit unit. Figure 13.5 shows an example of accessing the 16-bit registers.

Figure~13.5~~Accessing~Operation~of~16-Bit~Register~(between~CPU~and~TCNT~(

Figure 13.6 Accessing Operation of 8-Bit Register (between CPU and TSTR (8

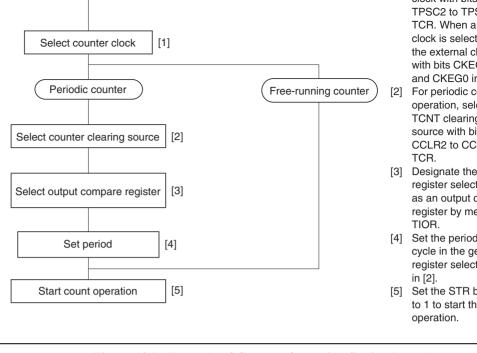


Figure 13.7 Example of Counter Operation Setting Procedure

Free-running count operation and periodic count operation
 Immediately after a reset, the TCNT counters for channels 0 and 1 are all designated running counters. When the relevant bit in TSTR is set to 1, the corresponding TCN starts an increment operation as a free-running counter. When TCNT overflows, the in TSR is set to 1. If the value of the OVIE bit in the corresponding TIER is 1 at this timer Z requests an interrupt. After overflow, TCNT starts an increment operation as H'0000.

Rev.5.00 Nov. 02, 2005 Pag

Figure 13.8 Free-Running Counter Operation

When compare match is selected as the TCNT clearing source, the TCNT counter for the channel performs periodic count operation. The GR registers for setting the period are de as output compare registers, and counter clearing by compare match is selected by means CCLR1 and CCLR0 in TCR. After the settings have been made, TCNT starts an increme operation as a periodic counter when the corresponding bit in TSTR is set to 1. When the value matches the value in GR, the IMFA, IMFB, IMFC, or IMFD flag in TSR is set to 1 TCNT is cleared to H'0000.

If the value of the corresponding IMIEA, IMIEB, IMIEC, or IMIED bit in TIER is 1 at the timer Z requests an interrupt. After a compare match, TCNT starts an increment operagain from H'0000.

Figure 13.9 illustrates periodic counter operation.

Rev.5.00 Nov. 02, 2005 Page 200 of 500 REJ09B0027-0500

RENESAS

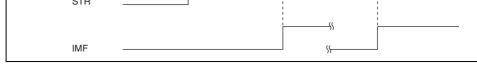


Figure 13.9 Periodic Counter Operation

2. TCNT count timing

A. Internal clock operation

A system clock (ϕ) or three types of clocks (ϕ /2, ϕ /4, or ϕ /8) that divides the syst can be selected by bits TPSC2 to TPSC0 in TCR.

Figure 13.10 illustrates this timing.

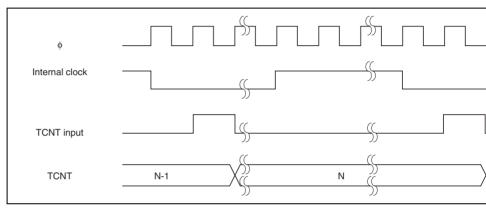


Figure 13.10 Count Timing at Internal Clock Operation

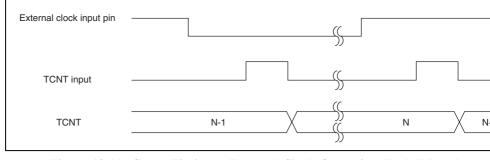


Figure 13.11 Count Timing at External Clock Operation (Both Edges Detect

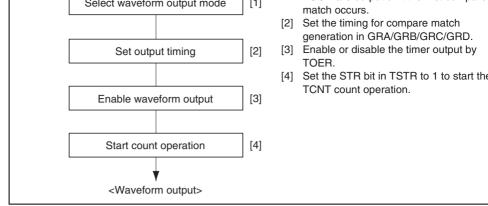


Figure 13.12 Example of Setting Procedure for Waveform Output by Compare

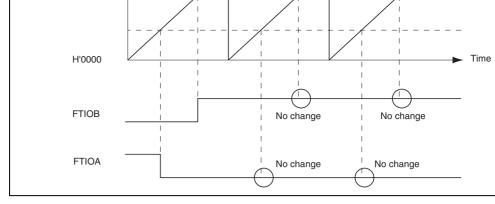


Figure 13.13 Example of 0 Output/1 Output Operation

Figure 13.14 shows an example of toggle output.

In this example, TCNT has been designated as a periodic counter (with counter clearic compare match B), and settings have been made such that the output is toggled by bo compare match A and compare match B.

Rev.5.00 Nov. 02, 2005 Page 204 of 500 REJ09B0027-0500

RENESAS

FTIOA Toggle ou

Figure 13.14 Example of Toggle Output Operation

TCNT input	
TCNT	N N+1
GR	N
Compare match signal	
FTIOA to FTIOD	

Figure 13.15 Output Compare Timing

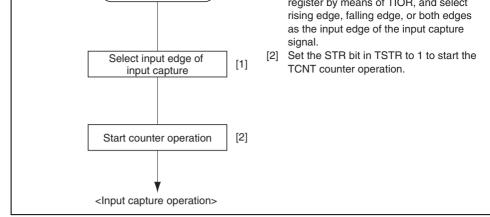


Figure 13.16 Example of Input Capture Operation Setting Procedure

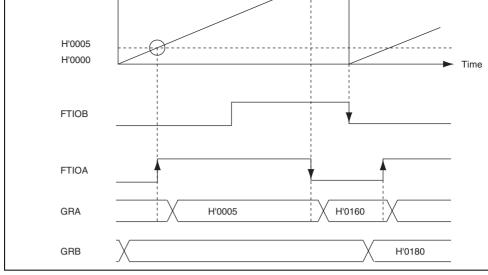


Figure 13.17 Example of Input Capture Operation

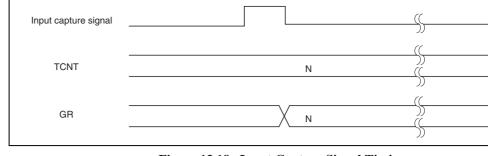
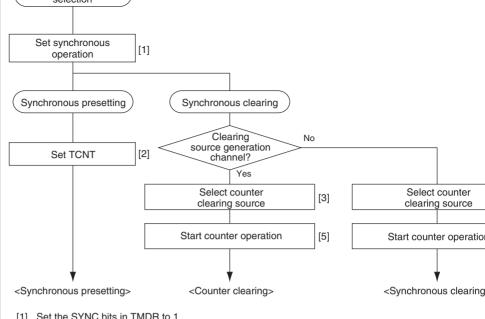



Figure 13.18 Input Capture Signal Timing

- [1] Set the SYNC bits in TMDR to 1.
- [2] When a value is written to either of the TCNT counters, the same value is simultaneously written to th other TCNT counter.
- [3] Set bits CCLR1 and CCLR0 in TCR to specify counter clearing by compare match/input capture.
- [4] Set bits CCLR1 and CCLR0 in TCR to designate synchronous clearing for the counter clearing source
- [5] Set the STR bit in TSTR to 1 to start the count operation.

Figure 13.19 Example of Synchronous Operation Setting Procedure

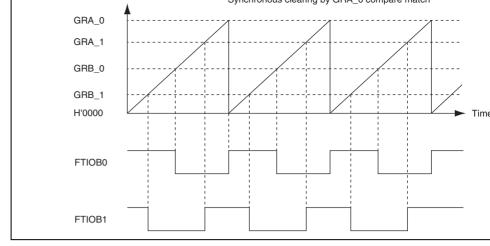


Figure 13.20 Example of Synchronous Operation

13.4.5 **PWM Mode**

In PWM mode, PWM waveforms are output from the FTIOB, FTIOC, and FTIOD outp with GRA as a cycle register and GRB, GRC, and GRD as duty registers. The initial out of the corresponding pin depends on the setting values of TOCR and POCR. Table 13.3 example of the initial output level of the FTIOB0 pin.

The output level is determined by the POLB to POLD bits corresponding to POCR. Whis 0, the FTIOB output pin is set to 0 by compare match B and set to 1 by compare match When POLB is 1, the FTIOB output pin is set to 1 by compare match B and cleared to 0 compare match A. In PWM mode, maximum 6-phase PWM outputs are possible.

Figure 13.21 shows an example of the PWM mode setting procedure.

Rev.5.00 Nov. 02, 2005 Pag REJ09

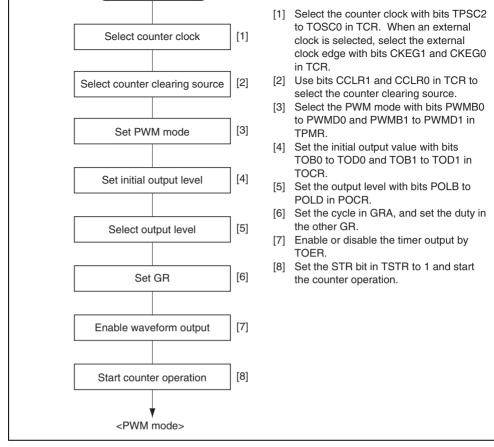


Figure 13.21 Example of PWM Mode Setting Procedure

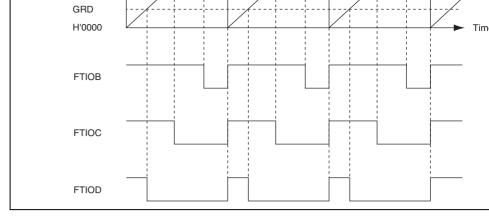


Figure 13.22 Example of PWM Mode Operation (1)

Figure 13.23 shows another example of operation in PWM mode. The output signals go TCNT is reset at compare match A, and the output signals go to 1 at compare match B, (TOB, TOC, and TOD = 0, POLB, POLC, and POLD = 1).

Rev.5.00 Nov. 02, 2005 Pag

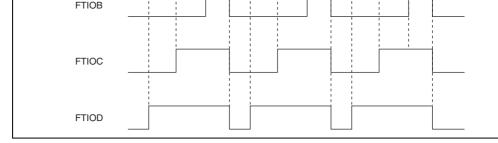


Figure 13.23 Example of PWM Mode Operation (2)

Figures 13.24 (when TOB, TOC, and TOD = 1, POLB, POLC, and POLD = 0) and 13.25 TOB, TOC, and TOD = 0, POLB, POLC, and POLD = 1) show examples of the output o waveforms with duty cycles of 0% and 100% in PWM mode.

Rev.5.00 Nov. 02, 2005 Page 214 of 500

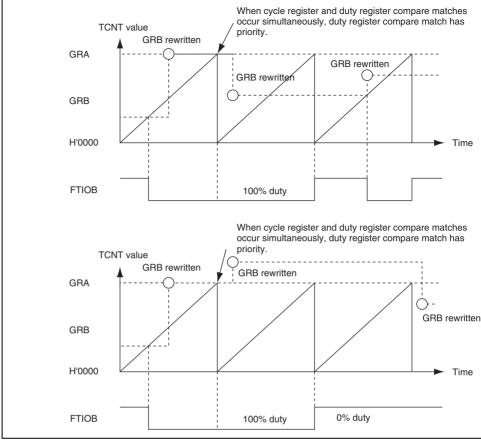


Figure 13.24 Example of PWM Mode Operation (3)

RENESAS

Rev.5.00 Nov. 02, 2005 Pag

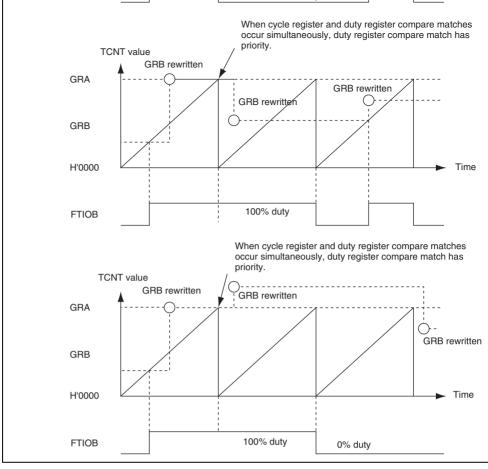


Figure 13.25 Example of PWM Mode Operation (4)

Rev.5.00 Nov. 02, 2005 Page 216 of 500

0	FTIOB0	Output	PWM output 1
0	FTIOD0	Output	PWM output 1 (counter-phase waveform of I output 1)
1	FTIOA1	Output	PWM output 2
1	FTIOC1	Output	PWM output 2 (counter-phase waveform of Fourtput 2)
1	FTIOB1	Output	PWM output 3
1	FTIOD1	Output	PWM output 3 (counter-phase waveform of I output 3)

Pin Function

Toggle output in synchronous with PWM cyc

Input/Output

Output

Channel

GRA_1

GRB_1

0

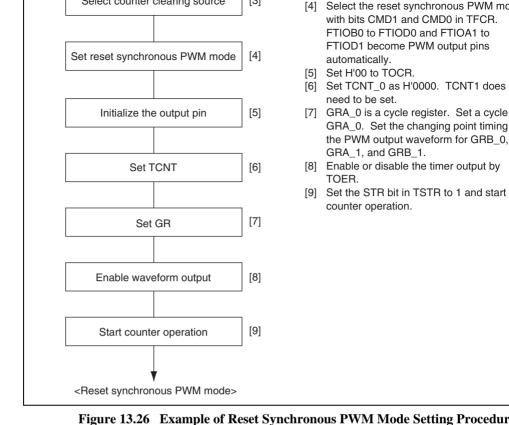
Pin Name

FTIOC0

Table 13.5	Register Settings in Reset Synchronous PWM Mode
Register	Description
TCNT_0	Initial setting of H'0000
TCNT_1	Not used (independently operates)
GRA_0	Sets counter cycle of TCNT_0
GRB_0	Set a changing point of the PWM waveform output from pins FTIOB0 a

FTIOC1.

FTIOD1.



Rev.5.00 Nov. 02, 2005 Pag

REJ09

Set a changing point of the PWM waveform output from pins FTIOA1 a

Set a changing point of the PWM waveform output from pins FTIOB1 a

righte 13.20 Example of Reset Synchronous I WWI Wode Setting I foccuur

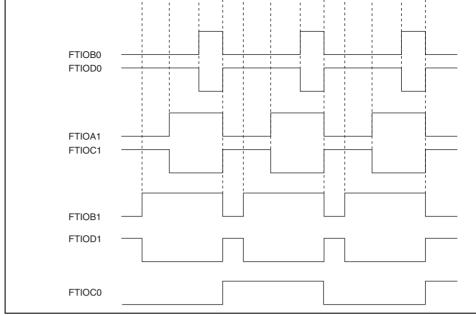


Figure 13.27 Example of Reset Synchronous PWM Mode Operation (OLS0 = O

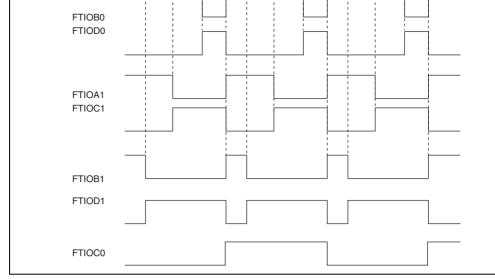


Figure 13.28 Example of Reset Synchronous PWM Mode Operation (OLS0 = OI

In reset synchronous PWM mode, TCNT_0 and TCNT_1 perform increment and indeper operations, respectively. However, GRA_1 and GRB_1 are separated from TCNT_1. We compare match occurs between TCNT_0 and GRA_0, a counter is cleared and an incremoperation is restarted from H'0000.

The PWM pin outputs 0 or 1 whenever a compare match between GRB_0, GRA_1, GRB TCNT_0 or counter clearing occur.

For details on operations when reset synchronous PWM mode and buffer operation are simultaneously set, refer to section 13.4.8, Buffer Operation.

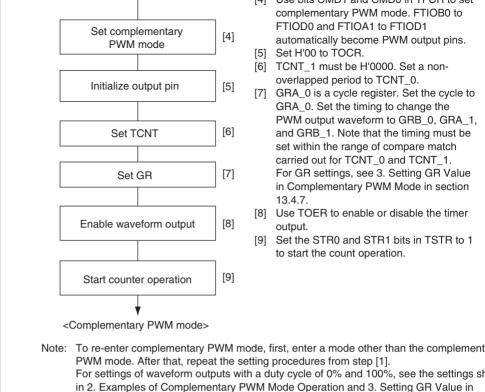
Rev.5.00 Nov. 02, 2005 Page 220 of 500

Table 13.6 Output Pins in Complementary PWM Mode

Pin Name

Channel

Input/Output


0	FTIOC0	Output	Toggle output in synchronous with PWM cyc
0	FTIOB0	Output	PWM output 1
0	FTIOD0	Output	PWM output 1 (counter-phase waveform no overlapped with PWM output 1)
1	FTIOA1	Output	PWM output 2
1	FTIOC1	Output	PWM output 2 (counter-phase waveform no overlapped with PWM output 2)
1	FTIOB1	Output	PWM output 3
1	FTIOD1	Output	PWM output 3 (counter-phase waveform not overlapped with PWM output 3)

Pin Function

 Table 13.7
 Register Settings in Complementary PWM Mode

FTIOD1.

Register	Description
TCNT_0	Initial setting of non-overlapped periods (non-overlapped periods are diwith TCNT_1)
TCNT_1	Initial setting of H'0000
GRA_0	Sets (upper limit value – 1) of TCNT_0
GRB_0	Set a changing point of the PWM waveform output from pins FTIOB0 a FTIOD0.
GRA_1	Set a changing point of the PWM waveform output from pins FTIOA1 a FTIOC1.
GRB_1	Set a changing point of the PWM waveform output from pins FTIOB1 a

Element 12.20 Engaged of Commission on DWM Mode Cotting Duccedung

Complementary PWM Mode in section 13.4.7.

Figure 13.29 Example of Complementar y PWM Mode Setting Procedure

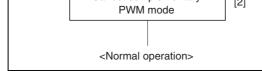


Figure 13.30 Canceling Procedure of Complementary PWM Mode

complementary PWM mode operation. In complementary PWM mode, TCNT_0 and perform an increment or decrement operation. When TCNT_0 and GRA_0 are compared their contents match, the counter is decremented, and when TCNT_1 underflows, the is incremented. In GRA_0, GRA_1, and GRB_1, compare match is carried out in the TCNT_0 → TCNT_1 → TCNT_1 → TCNT_0 and PWM waveform is output, during cycle of a up/down counter. In this mode, the initial setting will be TCNT_0 > TCNT_0.

2. Examples of Complementary PWM Mode Operation: Figure 13.31 shows an examp

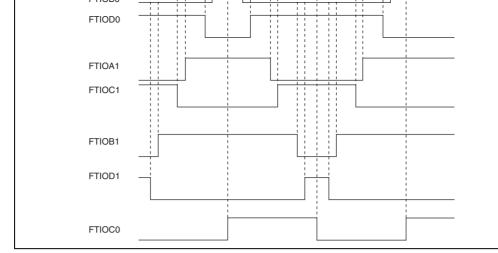


Figure 13.31 Example of Complementary PWM Mode Operation (1)

Figure 13.32 (1) and (2) show examples of PWM waveform output with 0% duty and 100 in complementary PWM mode (for one phase).

• TPSC2 = TPSC1 = TPSC0 = 0

Set GRB_0 to H'0000 or a value equal to or more than GRA_0. The waveform with a cycle of 0% and 100% can be output. When buffer operation is used together, the duty can easily be changed, including the above settings, during operation. For details on be

operation, refer to section 13.4.8, Buffer Operation.

• Other than TPSC2 = TPSC1 = TPSC0 = 0 Set GRB_0 to satisfy the following expression: GRA_0 + 1 < GRB_0 < H'FFFF. The waveform with a duty cycle of 0% and 100% can be output. For details on 0%- and 1 cycle waveform output, see 3. C., Outputting a waveform with a duty cycle of 0% and section 13.4.7.

Rev.5.00 Nov. 02, 2005 Page 224 of 500 REJ09B0027-0500

RENESAS

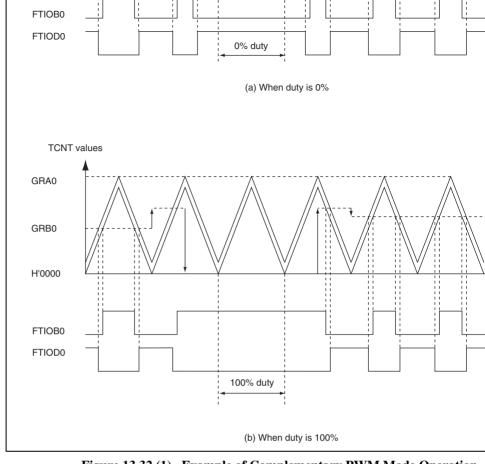


Figure 13.32 (1) Example of Complementary PWM Mode Operation (TPSC2 = TPSC1 = TPSC0 = 0) (2)

Rev.5.00 Nov. 02, 2005 Pag

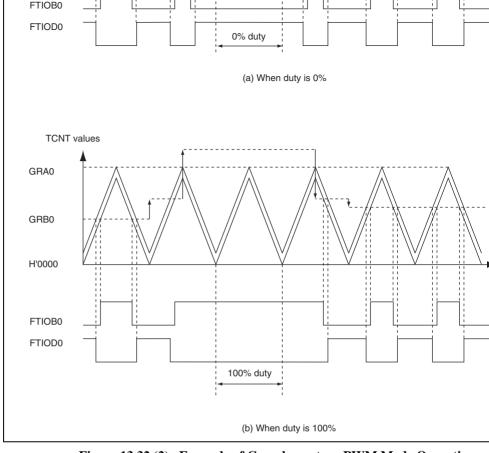


Figure 13.32 (2) Example of Complementary PWM Mode Operation (TPSC2 = TPSC1 = TPSC0 \neq 0) (3)

Rev.5.00 Nov. 02, 2005 Page 226 of 500

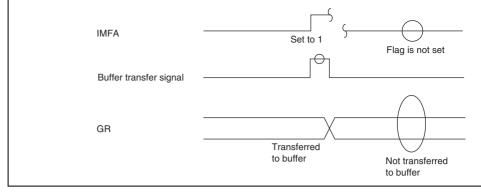


Figure 13.33 Timing of Overshooting

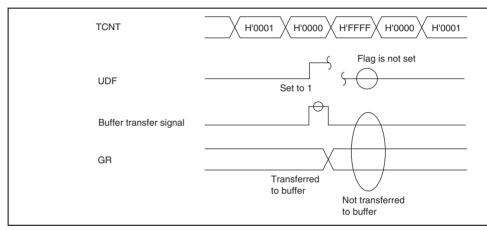


Figure 13.34 Timing of Undershooting

RENESAS

Rev.5.00 Nov. 02, 2005 Pag

H'FFFC or less. When TPSC2 = TPSC1 = TPSC0 = 0, the GRA_0 value can be H'FFFF or less. b. H'0000 to T – 1 (T: Initial value of TCNT0) must not be set for the initial value

- c. GRA 0-(T-1) or more must not be set for the initial value.
- d. When using buffer operation, the same values must be set in the buffer registe
- corresponding general registers.

- a. Writing to GR directly must be performed while the TCNT_1 and TCNT_0 va

 - should satisfy the following expression: H'0000 ≤ TCNT_1 < previous GR val

B. Modifying the setting value

- - previous GR value < TCNT $0 \le$ GRA 0. Otherwise, a waveform is not output

 - C., Outputting a waveform with a duty cycle of 0% and 100%.

TPSC0 = 0

= TPSC0 = 0

- - correctly. For details on outputting a waveform with a duty cycle of 0% and 10

is not output correctly.

- b. Do not write the following values to GR directly. When writing the values, a v
- $H'0000 \le GR \le T 1$ and $GRA 0 (T 1) \le GR < GRA 0$ when TPSC2 = T
- $H'0000 < GR \le T 1$ and $GRA_0 (T 1) \le GR < GRA_0 + 1$ when TPSC2
- c. Do not change settings of GRA 0 during operation.

- C. Outputting a waveform with a duty cycle of 0% and 100%

- - a. Buffer operation is not used and TPSC2 = TPSC1 = TPSC0 = 0Write H'0000 or a value equal to or more than the GRA_0 value to GR directly
 - timing shown below. • To output a 0%-duty cycle waveform, write a value equal to or more than the
 - value while H'0000 ≤ TCNT_1 < previous GR value To output a 100%-duty cycle waveform, write H'0000 while previous GR valu
- TCNT $0 \le GRA 0$
- Rev.5.00 Nov. 02, 2005 Page 228 of 500

value to the buffer register To output a 100%-duty cycle waveform, write H'0000 to the buffer register For details on buffer operation, see section 13.4.8, Buffer Operation.

To output a 0%-duty cycle waveform, write a value equal to or more than the

- c. Buffer operation is not used and other than TPSC2 = TPSC1 = TPSC0 = 0
- Write a value which satisfies GRA 0 + 1 < GR < H'FFFF to GR directly at the shown below. To output a 0%-duty cycle waveform, write the value while H'0000 ≤ TCNT previous GR value
- To output a 100%-duty cycle waveform, write the value while previous GR v TCNT $0 \le GRA \ 0$
 - To change duty cycles while a waveform with a duty cycle of 0% and 100%. output, the following procedure must be followed. To change duty cycles while a 0%-duty cycle waveform is being output, writ while $H'0000 \le TCNT$ 1 < previous GR value
- To change duty cycles while a 100%-duty cycle waveform is being output, w while previous GR value< $TCNT_0 \le GRA_0$ Note that changing from a 0%-duty cycle waveform to a 100%-duty cycle wa
- and vice versa is not possible. d. Buffer operation is used and other than TPSC2 = TPSC1 = TPSC0 = 0
- Write a value which satisfies $GRA_0 + 1 < GR < H'FFFF$ to the buffer regist waveform with a duty cycle of 0% can be output. However, a waveform with

cycle of 100% cannot be output using the buffer operation. Also, the buffer o cannot be used to change duty cycles while a waveform with a duty cycle of being output. For details on buffer operation, see section 13.4.8, Buffer Operation,

Rev.5.00 Nov. 02, 2005 Pag

	GRA	GRC
_	GRB	GRD
•		

1. When GR is an output compare register

When a compare match occurs, the value in the buffer register of the corresponding claransferred to the general register.

This operation is illustrated in figure 13.35.

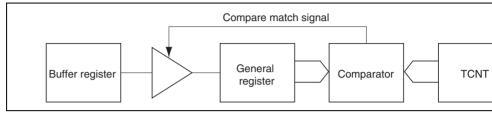


Figure 13.35 Compare Match Buffer Operation

2. When GR is an input capture register

When an input capture occurs, the value in TCNT is transferred to the general register value previously stored in the general register is transferred to the buffer register.

This operation is illustrated in figure 13.36.

transferred to the general register in the following timing:

- A. When TCNT 0 and GRA 0 are compared and their contents match
- B. When TCNT 1 underflows
- 4. Reset Synchronous PWM Mode

The value of the buffer register is transferred from compare match A0 to the general

5. Example of Buffer Operation Setting Procedure

Figure 13.37 shows an example of the buffer operation setting procedure.

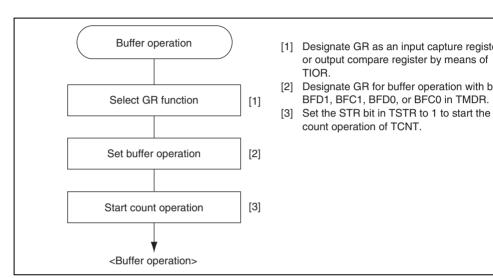


Figure 13.37 Example of Buffer Operation Setting Procedure

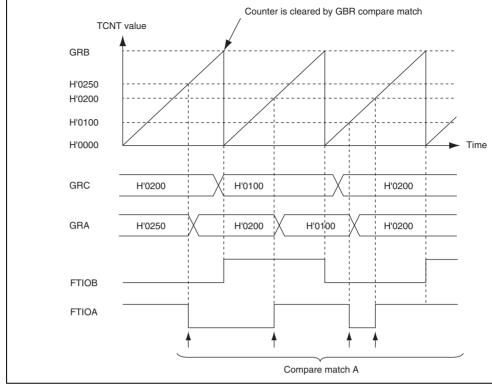


Figure 13.38 Example of Buffer Operation (1) (Buffer Operation for Output Compare Register)

Rev.5.00 Nov. 02, 2005 Page 232 of 500

GRC	-		N		
GRA		n	N		
	12.20 E	1 60	N. () (D)	• 6 D 66	0 "

Figure 13.39 Example of Compare Match Timing for Buffer Operation

Figure 13.40 shows an operation example in which GRA has been designated as an inpuregister, and buffer operation has been designated for GRA and GRC.

Counter clearing by input capture B has been set for TCNT, and falling edges have been as the FIOCB pin input capture input edge. And both rising and falling edges have been as the FIOCA pin input capture input edge.

As buffer operation has been set, when the TCNT value is stored in GRA upon the occur input capture A, the value previously stored in GRA is simultaneously transferred to GR transfer timing is shown in figure 13.41.

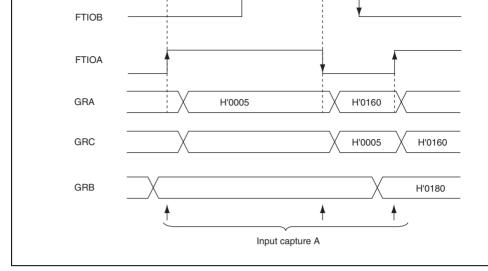


Figure 13.40 Example of Buffer Operation (2) (Buffer Operation for Input Capture Register)

Rev.5.00 Nov. 02, 2005 Page 234 of 500

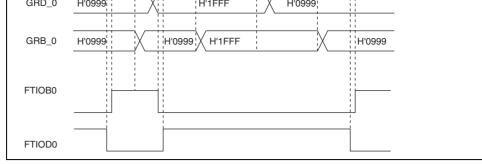

GRA	M N	n N
)) (()) ((
GRC	m X)) M)) M \ n
))))

Figure 13.41 Input Capture Timing of Buffer Operation

Figures 13.42 and 13.43 show the operation examples when buffer operation has been d for GRB_0 and GRD_0 in complementary PWM mode. These are examples when a PW waveform of 0% duty is created by using the buffer operation and performing GRD_0 \geq Data is transferred from GRD_0 to GRB_0 according to the settings of CMD_0 and CM TCNT_0 and GRA_0 are compared and their contents match or when TCNT_1 underflow However, when GRD_0 \geq GRA_0, data is transferred from GRD_0 to GRB_0 when TC underflows regardless of the setting of CMD_0 and CMD_1. When GRD_0 = H'0000, of transferred from GRD_0 to GRB_0 when TCNT_0 and GRA_0 are compared and their match regardless of the settings of CMD_0 and CMD_1.

RENESAS

Rev.5.00 Nov. 02, 2005 Pag

 $\label{eq:Figure 13.42 Buffer Operation (3)} \\ (Buffer Operation in Complementary PWM Mode CMD1 = CMD0 = 1)$

Rev.5.00 Nov. 02, 2005 Page 236 of 500

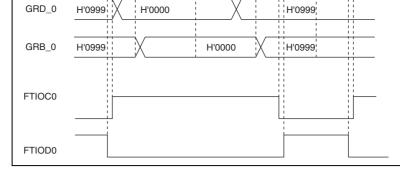


Figure 13.43 Buffer Operation (4) (Buffer Operation in Complementary PWM Mode CMD1 = CMD0 = 1)

13.4.9 Timer Z Output Timing

The outputs of channels 0 and 1 can be disabled or inverted by the settings of TOER and and the external level.

 Output Disable/Enable Timing of Timer Z by TOER: Setting the master enable bit in 1 disables the output of timer Z. By setting the PCR and PDR of the corresponding I beforehand, any value can be output. Figure 13.44 shows the timing to enable or disa output of timer Z by TOER.

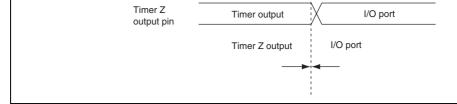


Figure 13.44 Example of Output Disable Timing of Timer Z by Writing to TO

2. Output Disable Timing of Timer Z by External Trigger: When P54/WKP4 is set as a input pin, and low level is input to WKP4, the master enable bit in TOER is set to 1 a output of timer Z will be disabled.

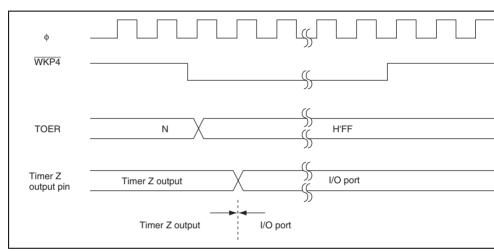


Figure 13.45 Example of Output Disable Timing of Timer Z by External Trig

Rev.5.00 Nov. 02, 2005 Page 238 of 500 REJ09B0027-0500

RENESAS

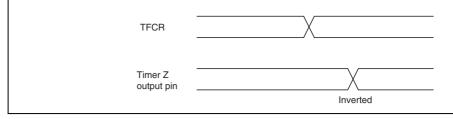


Figure 13.46 Example of Output Inverse Timing of Timer Z by Writing to T

4. Output Inverse Timing by POCR: The output level can be inverted by inverting the POLC, and POLB bits in POCR in PWM mode. Figure 13.47 shows the timing.

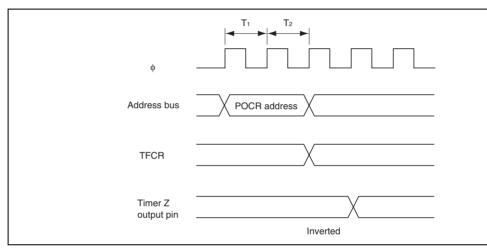


Figure 13.47 Example of Output Inverse Timing of Timer Z by Writing to P

Rev.5.00 Nov. 02, 2005 Pag REJ09 when the TCNT and GR matches, the compare match signal will not be generated ur TCNT input clock is generated. Figure 13.48 shows the timing to set the IMF flag.

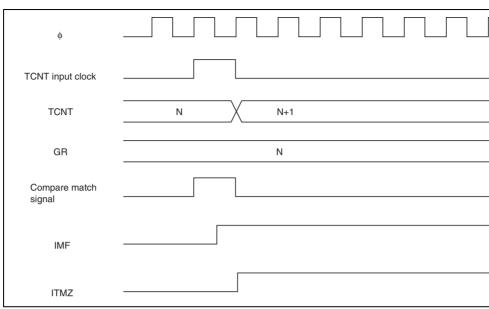
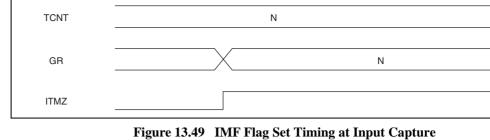



Figure 13.48 IMF Flag Set Timing when Compare Match Occurs

rigure 13.47 Intrinag Set Tilling at Input Capture

3. Overflow Flag (OVF) Set Timing: The overflow flag is set to 1 when the TCNT over Figure 13.50 shows the timing.

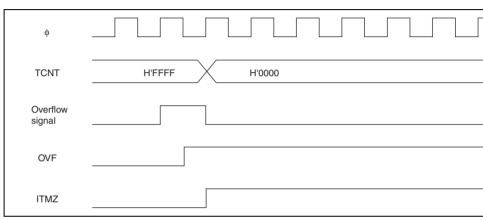


Figure 13.50 OVF Flag Set Timing

Rev.5.00 Nov. 02, 2005 Pag REJ09

Figure 13.51 Status Flag Clearing Timing

13.6 Usage Notes

1. Contention between TCNT Write and Clear Operations: If a counter clear signal is ge in the T₂ state of a TCNT write cycle, TCNT clearing has priority and the TCNT write performed. Figure 13.52 shows the timing in this case.

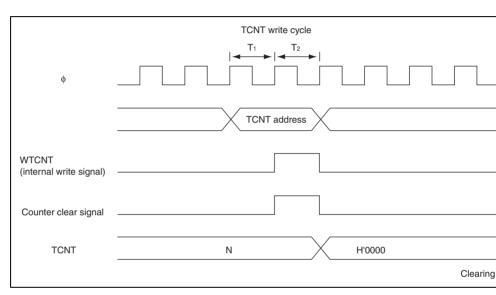


Figure 13.52 Contention between TCNT Write and Clear Operations

Rev.5.00 Nov. 02, 2005 Page 242 of 500

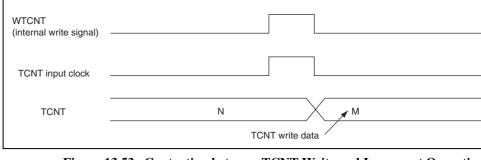


Figure 13.53 Contention between TCNT Write and Increment Operation

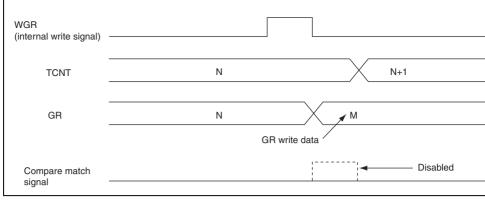


Figure 13.54 Contention between GR Write and Compare Match

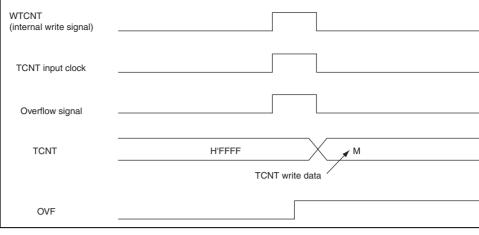


Figure 13.55 Contention between TCNT Write and Overflow

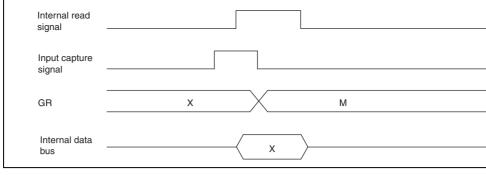


Figure 13.56 Contention between GR Read and Input Capture

	Counter clear signal	-			
	TCNT input clock				
	TCNT	N		H'0000	
	GR			N	
				Clea	ırin
_	Eigung 12	57 Contention has	truson Count Cloom	ng and Ingrement Once	~4:

Figure 13.57 Contention between Count Clearing and Increment Operation by Input Capture

WGR (internal write signal)			
Input capture signal			
o.g.na.			
TCNT	N		
GR		\longrightarrow	M 💌
			GR write data

Figure 13.58 Contention between GR Write and Input Capture

instruction must be executed. Note that this note is only applied to the F-ZTAT vers problem has already been solved in the mask ROM version.

Example: When clearing bit 4 (OVF) in TSR

MOV.B @TSR,R0L

MOV.B #B'11101111, ROL — Only the bit to be cleared is 0 and the other bits are all set to 1.

MOV.B ROL,@TSR

TOCR occur at the same timing.

10. Note on Writing to the TOA0 to TOD0 Bits and the TOA1 to TOD1 Bits in TOCR: The TOA0 to TOD0 bits and the TOA1 to TOD1 bits in TOCR decide the value of t pin, which is output until the first compare match occurs. Once a compare match occ this compare match changes the values of FTIOA0 to FTIOD0 and FTIOA1 to FTIO output, the values of the FTIOA0 to FTIOD0 and FTIOA1 to FTIOD1 pin output an

values read from the TOA0 to TOD0 and TOA1 to TOD1 bits may differ. Moreover writing to TOCR and the generation of the compare match A0 to D0 and A1 to D1 or same timing, the writing to TOCR has the priority. Thus, output change due to the co match is not reflected to the FTIOA0 to FTIOD0 and FTIOA1 to FTIOD1 pins. The when bit manipulation instruction is used to write to TOCR, the values of the FTIOA FTIOD0 and FTIOA1 to FTIOD1 pin output may result in an unexpected result. Wh is to be written to while compare match is operating, stop the counter once before ac TOCR, read the port 6 state to reflect the values of FTIOA0 to FTIOD0 and FTIOA FTIOD1 output, to TOA0 to TOD0 and TOA1 to TOD1, and then restart the counter 13.59 shows an example when the compare match and the bit manipulation instructi

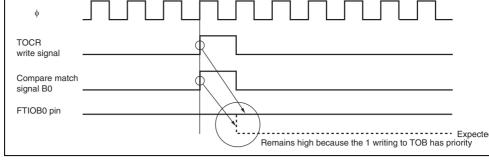


Figure 13.59 When Compare Match and Bit Manipulation Instruction to TO Occur at the Same Timing

Rev.5.00 Nov. 02, 2005 Page 250 of 500

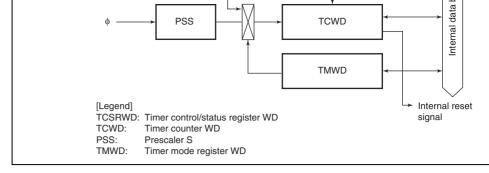


Figure 14.1 Block Diagram of Watchdog Timer

14.1 Features

- Selectable from nine counter input clocks.

 Eight clock sources (φ/64, φ/128, φ/256, φ/512, φ/1024, φ/2048, φ/4096, and φ/8192) internal oscillator can be selected as the timer-counter clock. When the internal oscil selected, it can operate as the watchdog timer in any operating mode.
- Reset signal generated on counter overflow
 An overflow period of 1 to 256 times the selected clock can be set.

14.2 Register Descriptions

The watchdog timer has the following registers.

- Timer control/status register WD (TCSRWD)
- Timer counter WD (TCWD)
- Timer mode register WD (TMWD)

RENESAS

Rev.5.00 Nov. 02, 2005 Pag

				1.
				This bit can be written to the WRST bit only who write value of the B0WI bit is 0. This bit is alway
1	B0WI	1	R/W	Bit 0 Write Inhibit
				the B2WI when the TCSRWE bit=1
				 Reset by RES pin When 0 is written to the WDON bit while wr
				[Clearing conditions]
				B2WI bit when the TCSRWE bit=1
				When 1 is written to the WDON bit while writing
				[Setting condition]
				TCWD starts counting up when WDON is set to halts when WDON is cleared to 0.
2	WDON	0	R/W	Watchdog Timer On
				This bit is always read as 1.
				write value of the B2WI bit is 0.
9	DEVVI	•	11/ * *	This bit can be written to the WDON bit only w
3	B2WI	1	R/W	When writing data to this bit, the value for bit 5 Bit 2 Write Inhibit
				TCSRWE bit is set to 1.
4	TCSRWE	0	R/W	Timer Control/Status Register WD Write Enable The WDON and WRST bits can be written who
4	TOODWE	^	D/\/	Times Control/Otation Desigter MD Mait- Free
				value of the B4WI bit is 0. This bit is always re-

TCWE

B4WI

0

1

R/W

R/W

Timer Counter WD Write Enable

Bit 4 Write Inhibit

TCWD can be written when the TCWE bit is set When writing data to this bit, the value for bit 7 n

6

5

14.2.2 Timer Counter WD (TCWD)

TCWD is an 8-bit readable/writable up-counter. When TCWD overflows from H'FF to internal reset signal is generated and the WRST bit in TCSRWD is set to 1. TCWD is in H'00.

14.2.3 Timer Mode Register WD (TMWD)

TMWD selects the input clock.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 4	_	All 1	_	Reserved
				These bits are always read as 1.
3	CKS3	1	R/W	Clock Select 3 to 0
2	CKS2	1	R/W	Select the clock to be input to TCWD.
1	CKS1	1	R/W	1000: Internal clock: counts on φ/64
0	CKS0	1	R/W	1001: Internal clock: counts on φ/128
				1010: Internal clock: counts on φ/256
				1011: Internal clock: counts on φ/512
				1100: Internal clock: counts on φ/1024
				1101: Internal clock: counts on φ/2048
				1110: Internal clock: counts on φ/4096
				1111: Internal clock: counts on φ8192
				0XXX: Internal oscillator
				For the internal oscillator overflow periods, see 23, Electrical Characteristics.

Legend: X: Don't care.

Rev.5.00 Nov. 02, 2005 Pag REJ09

Figure 14.2 shows an example of watchdog timer operation.

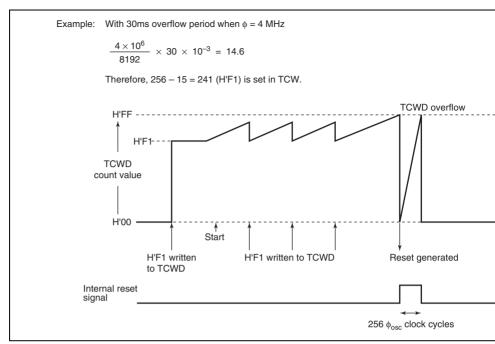


Figure 14.2 Watchdog Timer Operation Example

Rev.5.00 Nov. 02, 2005 Page 254 of 500

Pulse division method for less ripple

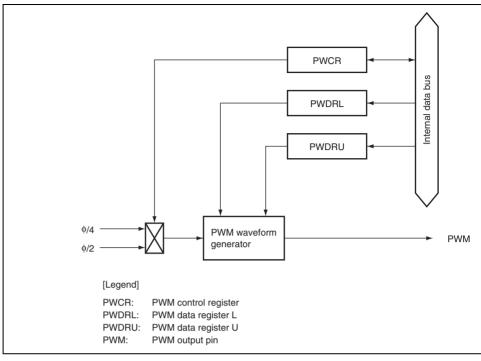


Figure 15.1 Block Diagram of 14-Bit PWM

Rev.5.00 Nov. 02, 2005 Pag REJ09 The 14-bit PWM has the following registers.

- PWM control register (PWCR)
- PWM data register U (PWDRU)
- PWM data register L (PWDRL)

15.3.1 PWM Control Register (PWCR)

PWCR selects the conversion period.

Bit	Bit Name	Initial Value	R/W	Description
7 to 1	_	All 1	_	Reserved
				These bits are always read as 1, and cannot be
0	PWCR0	0	R/W	Clock Select
				0: The input clock is $\phi/2$ ($t\phi = 2/\phi$)
				 The conversion period is 16384/φ, with a modulation width of 1/φ
				1: The input clock is $\phi/4$ ($t\phi = 4/\phi$)
				 The conversion period is 32768/φ, with a modulation width of 2/φ
Lagand	th Dariad	of DVA/NA of	aak innut	

Legend: to: Period of PWM clock input

Rev.5.00 Nov. 02, 2005 Page 256 of 500

PWDRU and PWDRL are initialized to H'C000.

15.4 Operation

When using the 14-bit PWM, set the registers in this sequence:

- 1. Set the PWM bit in the port mode register 1 (PMR1) to set the P11/PWM pin to fund PWM output pin.
- 2. Set the PWCR0 bit in PWCR to select a conversion period of either.
- 3. Set the output waveform data in PWDRU and PWDRL. Be sure to write byte data f PWDRL and then to PWDRU. When the data is written in PWDRU, the contents of registers are latched in the PWM waveform generator, and the PWM waveform generator data is updated in synchronization with internal signals.

One conversion period consists of 64 pulses, as shown in figure 15.2. The total high-lev during this period (T_H) corresponds to the data in PWDRU and PWDRL. This relation of expressed as follows:

$$T_{H} = (data \ value \ in \ PWDRU \ and \ PWDRL + 64) \times t\phi/2$$

where t ϕ is the period of PWM clock input: $2/\phi$ (bit PWCR0 = 0) or $4/\phi$ (bit PWCR0 = If the data value in PWDRU and PWDRL is from H'FFC0 to H'FFFF, the PWM output When the data value is H'C000, $T_{_{\rm H}}$ is calculated as follows:

$$T_{H} = 64 \times t\phi/2 = 32 t\phi$$

Rev.5.00 Nov. 02, 2005 Pag

REJ09

t f1 = t f2 = t f3 = ··· = t f64

Figure 15.2 Waveform Output by 14-Bit PWM

Rev.5.00 Nov. 02, 2005 Page 258 of 500

explanations are not given in this section.

16.1 **Features**

- Choice of asynchronous or clocked synchronous serial communication mode
- Full-duplex communication capability

The transmitter and receiver are mutually independent, enabling transmission and re be executed simultaneously.

Double-buffering is used in both the transmitter and the receiver, enabling continuou transmission and continuous reception of serial data.

- On-chip baud rate generator allows any bit rate to be selected
- External clock or on-chip baud rate generator can be selected as a transfer clock sour
- Six interrupt sources

Transmit-end, transmit-data-empty, receive-data-full, overrun error, framing error, a error.

Asynchronous mode

- Data length: 7 or 8 bits
- Stop bit length: 1 or 2 bits
- Parity: Even, odd, or none
- Receive error detection: Parity, overrun, and framing errors
- Break detection: Break can be detected by reading the RxD pin level directly in the framing error

			RDR	H'FFAD
			RSR	_
			TSR	_
Channel 2	SCI3_2	SCK3_2	SMR_2	H'F740
		RXD_2 TXD_2	BRR_2	H'F741
		17.D_L	SCR3_2	H'F742
			TDR_2	H'F743
			SSR_2	H'F744
			RDR_2	H'F745
			RSR_2	_
			TSR_2	_
Note: * Th	e channel 1 of tl	ne SCI3 is used in	on-board progra	mming mode by boot mo

TDR

SSR

H'FFAB

H'FFAC

Rev.5.00 Nov. 02, 2005 Page 260 of 500

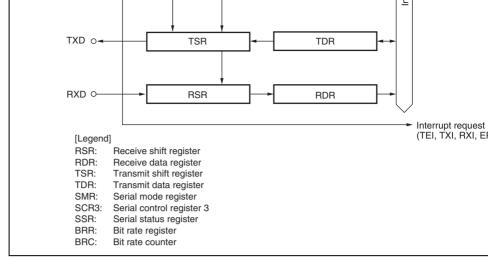


Figure 16.1 Block Diagram of SCI3

REJ09

16.3 Register Descriptions

The SCI3 has the following registers for each channel.

- Receive Shift Register (RSR)
- Receive Data Register (RDR)
- Transmit Shift Register (TSR)
- Transmit Data Register (TDR)
- Serial Mode Register (SMR)
- Serial Control Register 3 (SCR3)
- Serial Status Register (SSR)
- Bit Rate Register (BRR)

Rev.5.00 Nov. 02, 2005 Page 262 of 500 REJ09B0027-0500

receive-enabled. As KSK and KDK function as a double buffer in this way, continuous i operations are possible. After confirming that the RDRF bit in SSR is set to 1, read RDF once. RDR cannot be written to by the CPU. RDR is initialized to H'00.

16.3.3 **Transmit Shift Register (TSR)**

TSR is a shift register that transmits serial data. To perform serial data transmission, the transfers transmit data from TDR to TSR automatically, then sends the data that starts fi LSB to the TXD pin. TSR cannot be directly accessed by the CPU.

16.3.4 **Transmit Data Register (TDR)**

initialized to H'FF.

TDR is an 8-bit register that stores data for transmission. When the SCI3 detects that TS empty, it transfers the transmit data written in TDR to TSR and starts transmission. The buffered structure of TDR and TSR enables continuous serial transmission. If the next to data has already been written to TDR during transmission of one-frame data, the SCI3 to the written data to TSR to continue transmission. To achieve reliable serial transmission transmit data to TDR only once after confirming that the TDRE bit in SSR is set to 1. T

				0: Selects 8 bits as the data length.
				1: Selects 7 bits as the data length.
5	PE	0	R/W	Parity Enable (enabled only in asynchronous mo
				When this bit is set to 1, the parity bit is added to data before transmission, and the parity bit is chareception.
4	PM	0	R/W	Parity Mode (enabled only when the PE bit is 1 is asynchronous mode)
				0: Selects even parity.
				1: Selects odd parity.
3	STOP	0	R/W	Stop Bit Length (enabled only in asynchronous n
				Selects the stop bit length in transmission.
				0: 1 stop bit
				1: 2 stop bits
				For reception, only the first stop bit is checked, re of the value in the bit. If the second stop bit is 0, treated as the start bit of the next transmit characteristics.
2	MP	0	R/W	Multiprocessor Mode
				When this bit is set to 1, the multiprocessor

Character Length (enabled only in asynchronous

communication function is enabled. The PE bit a bit settings are invalid in multiprocessor mode. In

synchronous mode, clear this bit to 0.

R/W

Rev.5.00 Nov. 02, 2005 Page 264 of 500 RENESAS

CHR

and the baud rate, see section 16.3.8, Bit Hate (BRR). n is the decimal representation of the va BRR (see section 16.3.8, Bit Rate Register (BF

16.3.6 Serial Control Register 3 (SCR3)

SCR3 is a register that enables or disables SCI3 transfer operations and interrupt reques also used to select the transfer clock source. For details on interrupt requests, refer to see Interrupts.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TIE	0	R/W	Transmit Interrupt Enable
				When this bit is set to 1, the TXI interrupt requenabled.
6	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, RXI and ERI interrup are enabled.
5	TE	0	R/W	Transmit Enable
				When this bit s set to 1, transmission is enable
4	RE	0	R/W	Receive Enable
				When this bit is set to 1, reception is enabled.
		•	•	

Rev.5.00 Nov. 02, 2005 Pag

REJ09

1	CKE1	0	R/W	Clock Enable 0 and 1
0	CKE0	0	R/W	Selects the clock source.
				Asynchronous mode
				00: On-chip baud rate generator
				01: On-chip baud rate generator
				Outputs a clock of the same frequency as the from the SCK3 pin.
				10: External clock
				Inputs a clock with a frequency 16 times the

00: On-chip clock (SCK3 pin functions as clock of01: Reserved10: External clock (SCK3 pin functions as clock

11: Reserved

from the SCK3 pin.

• Clocked synchronous mode

When this bit is set to 1, TEI interrupt request is

11: Reserved

RENESAS

Rev.5.00 Nov. 02, 2005 Page 266 of 500

				 When 0 is written to TDRE after reading TD
				When the transmit data is written to TDR
6	RDRF	0	R/W	Receive Data Register Full
				Indicates that the received data is stored in RD
				[Setting condition]
				When serial reception ends normally and re is transferred from RSR to RDR
				[Clearing conditions]
				 When 0 is written to RDRF after reading RD
				 When data is read from RDR
5	OER	0	R/W	Overrun Error
				[Setting condition]
				When an overrun error occurs in reception
				[Clearing condition]

R/W

4

FER

0

When the TE bit in SCR3 is 0

[Clearing conditions]

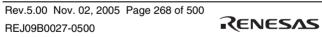
When data is transferred from TDR to TSR

• When 0 is written to OER after reading OEF

• When a framing error occurs in reception

• When 0 is written to FER after reading FER

Rev.5.00 Nov. 02, 2005 Pag


REJ09

Framing Error [Setting condition]

[Clearing condition]

				When TDRE = 1 at transmission of the last b frame serial transmit character [Classing conditions]
				[Clearing conditions]When 0 is written to TDRE after reading TDF
				When the transmit data is written to TDR
1	MPBR	0	R	Multiprocessor Bit Receive
				MPBR stores the multiprocessor bit in the receiv character data. When the RE bit in SCR3 is clea

				MPBR stores the multiprocessor bit in the rece character data. When the RE bit in SCR3 is cla its state is retained.
0	MPBT	0	R/W	Multiprocessor Bit Transfer
				MPBT stores the multiprocessor bit to be addetransmit character data.

[Asynchronous Mode]

$$N = \frac{\phi}{64 \times 2^{2n-1} \times B} \times 10^6 - 1$$

Error (%) =
$$\left\{ \frac{\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1 \right\} \times 100$$

[Clocked Synchronous Mode]

$$N = \frac{\phi}{8 \times 2^{2n-1} \times B} \times 10^6 - 1$$

Legend B: Bit rate (bit/s)

N: BRR setting for baud rate generator $(0 \le N \le 255)$

\$\phi\$: Operating frequency (MHz)

n: CSK1 and CSK0 settings in SMR $(0 \le n \le 3)$

REJ09

(bits/s)	n	N	(%)	n	N	(%)	n	
110	2	64	0.70	2	70	0.03	2	
150	1	191	0.00	1	207	0.16	1	
300	1	95	0.00	1	103	0.16	1	
600	0	191	0.00	0	207	0.16	0	
1200	0	95	0.00	0	103	0.16	0	
2400	0	47	0.00	0	51	0.16	0	
4800	0	23	0.00	0	25	0.16	0	

0.00

0.00

0.00

Legend:

Bit Rate

υ

3.6864

0.16

0.16

0.16

-6.99

8.51

0.00

-18.62

Error

-0.70

1.14

-2.48

-2.48

13.78

4.86

Error

0.16

-6.99

0.00

8.51

-14.67

4.9152

Ν

Operating Frequency ϕ (MHz)

0.00

0.00

0.00

0.00

0.00

22.88

0.00

Error

(%)

0.31

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-1.70

0.00

υ

n

//

Ν

—: A setting is available but error occurs

110	2	141	0.03	2	174	-0.26	2
150	2	103	0.16	2	127	0.00	2
300	1	207	0.16	1	255	0.00	2
600	1	103	0.16	1	127	0.00	1
1200	0	207	0.16	0	255	0.00	1
2400	0	103	0.16	0	127	0.00	0
4800	0	51	0.16	0	63	0.00	0
9600	0	25	0.16	0	31	0.00	0
19200	0	12	0.16	0	15	0.00	0

0.00

-6.99

Bit Rate

(bit/s)

Legend:

υ

n

Ν

—: A setting is available but error occurs.

Error

(%)

0.16

0.16

0.16

-2.34

-2.34

0.00

-2.34

n

U

9.8304

Ν

Error

(%)

Operating Frequency ϕ (MHz)

n

0.00

0.00

0.00

0.00

0.00

2.40

0.00

Ν

n

Ν

REJ09

Error

-0.25

0.16

0.16

0.16

0.16

0.16

0.16

-1.36

1.73

0.00

1.73

Rev.5.00 Nov. 02, 2005 Pag

(%)

-1.70

0.00

4800	0	79	0.00	0	90	0.16	0	95	0.00
9600	0	39	0.00	0	45	-0.93	0	47	0.00
19200	0	19	0.00	0	22	-0.93	0	23	0.00
31250	0	11	2.40	0	13	0.00	0	14	-1.70
38400	0	9	0.00	_	_	_	0	11	0.00
			Ope	rating F	requer	псу ф (М	Hz)		_
Bit Rate (bit/s)	n	l	N	Error (%)	n	N	l	Error (%)	
110	3		79	-0.12	3	8	8	-0.25	
150	2	:	233	0.16	3	6	4	0.16	
200	_		440	0.40		-	00	0.40	

0.16

0.16

0.00

0.00

110	3	79	-0.12	3	88	-0.25
150	2	233	0.16	3	64	0.16
300	2	116	0.16	2	129	0.16
600	1	233	0.16	2	64	0.16
1200	1	116	0.16	1	129	0.16
2400	0	233	0.16	1	64	0.16
4800	0	116	0.16	0	129	0.16
9600	0	58	-0.96	0	64	0.16
19200	0	28	1.02	0	32	-1.36
31250	0	17	0.00	0	19	0.00
38400	0	14	-2.34	0	15	1.73
Legend:						

Legend:

—: A setting is available but error occurs.

0.00

0.00

Rev.5.00 Nov. 02, 2005 Page 272 of 500

RENESAS

4.9152	153600	0	0	14.7456	460800	0
5	156250	0	0	16	500000	0
6	187500	0	0	 17.2032	537600	0
6.144	192000	0	0	 18	562500	0
7.3728	230400	0	0	 20	625000	0

REJ09

2.5k	0	199	1	99	1	199	1	249	2
5k	0	99	0	199	1	99	1	124	1
10k	0	49	0	99	0	199	0	249	1
25k	0	19	0	39	0	79	0	99	0
50k	0	9	0	19	0	39	0	49	0
100k	0	4	0	9	0	19	0	24	0
250k	0	1	0	3	0	7	0	9	0
500k	0	0*	0	1	0	3	0	4	0
1M			0	0*	0	1	_	_	0
2M					0	0*	_	_	0
2.5M							0	0*	_
4M									0

IVI

Legend:

Blank : No setting is available.

: Continuous transfer is not possible.

: A setting is available but error occurs.

Rev.5.00 Nov. 02, 2005 Page 274 of 500

2.5k	2	112	2	124
5k	1	224	1	249
10k	1	112	1	124
25k	0	179	0	199
50k	0	89	0	99
100k	0	44	0	49
250k	0	17	0	19
500k	0	8	0	9
1M	0	4	0	4
2M		_	_	_
2.5M	_	_	0	1
4M		_	_	_

Legend:

Blank : No setting is available.

: A setting is available but error occurs.

* : Continuous transfer is not possible.

Figure 16.2 Data Format in Asynchronous Communication

16.4.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external clock the SCK3 pin can be selected as the SCI3's serial clock, according to the setting of the Company and the CKE0 and CKE1 bits in SCR3. When an external clock is input at the SCK clock frequency should be 16 times the bit rate used.

When the SCI3 is operated on an internal clock, the clock can be output from the SCK3 prequency of the clock output in this case is equal to the bit rate, and the phase is such that rising edge of the clock is in the middle of the transmit data, as shown in figure 16.3.

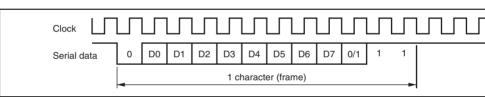


Figure 16.3 Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode) (Example with 8-Bit Data, Parity, Two Stop Bits)

Rev.5.00 Nov. 02, 2005 Page 276 of 500

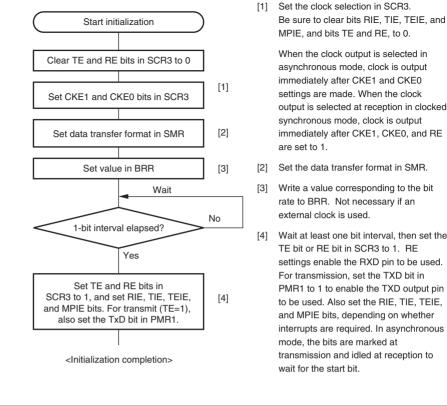


Figure 16.4 Sample SCI3 Initialization Flowchart

to 1210 colors transmission of the colors transmission and color complete

- 3. The SCI3 checks the TDRE flag at the timing for sending the stop bit.
 - 4. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent, are serial transmission of the next frame is started.
 - 5. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then t state" is entered, in which 1 is output. If the TEIE bit in SCR3 is set to 1 at this time, interrupt request is generated.
 - 6. Figure 16.6 shows a sample flowchart for transmission in asynchronous mode.

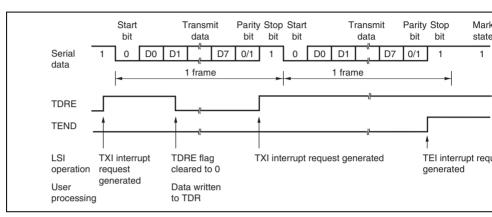


Figure 16.5 Example of SCI3 Transmission in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit)

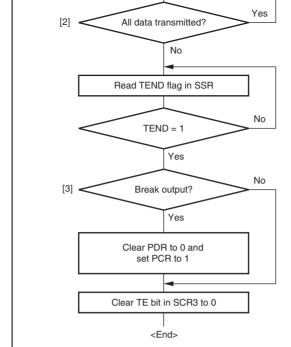


Figure 16.6 Sample Serial Transmission Data Flowchart (Asynchronous M

and PDR to 0, clear TxD in PMF

to 0, then clear the TE bit in SCI

to 0.

- RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt request is general.

 4. If a framing error is detected (when the stop bit is 0), the FER bit in SSR is set to 1 are
 - data is transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI inter request is generated.

 5. If reception is completed successfully, the RDRE bit in SSR is set to 1, and receive data.
 - 5. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive data transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt regenerated. Continuous reception is possible because the RXI interrupt routine reads the data transferred to RDR before reception of the next receive data has been completed.

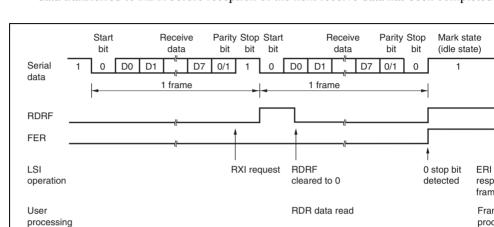


Figure 16.7 Example of SCI3 Reception in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit)

Table 16.6 shows the states of the SSR status flags and receive data handling when a receive detected. If a receive error is detected, the RDRF flag retains its state before receiving Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the

Rev.5.00 Nov. 02, 2005 Page 280 of 500

	'	1	J	L031	Overrain error i main		
1	1	0	1	Lost	Overrun error + parit		
0	0	1	1	Transf	erred to RDR Framing error + parit		
1	1	1	1	Lost	Overrun error + fram parity error		
Not	Note: * The RDRF flag retains the state it had before data reception.						

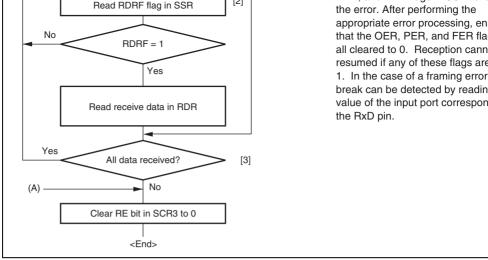


Figure 16.8 Sample Serial Reception Data Flowchart (Asynchronous Mode)

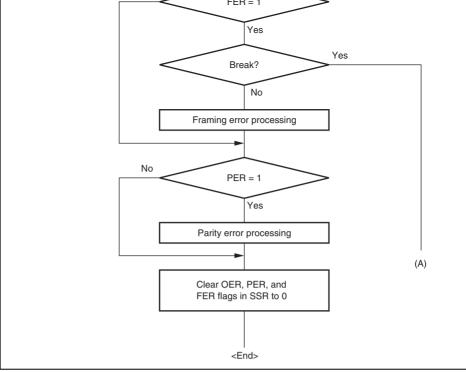


Figure 16.8 Sample Serial Reception Data Flowchart (Asynchronous Mode

REJ09

also have a double-buffered structure, so data can be read or written during transmission reception, enabling continuous data transfer.

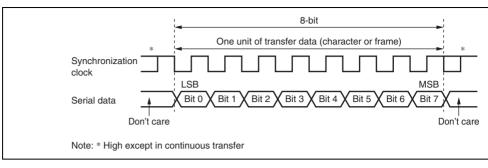


Figure 16.9 Data Format in Clocked Synchronous Communication

16.5.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external synchronization clock input at the SCK3 pin can be selected, according to the setting of the bit in SMR and CKE0 and CKE1 bits in SCR3. When the SCI3 is operated on an internal the synchronization clock is output from the SCK3 pin. Eight synchronization clock pulse output in the transfer of one character, and when no transfer is performed the clock is fixed.

16.5.2 SCI3 Initialization

Before transmitting and receiving data, the SCI3 should be initialized as described in a saflowchart in figure 16.4.

Rev.5.00 Nov. 02, 2005 Page 284 of 500

- mode has been specified, and synchronized with the hight clock when use of an exte has been specified. Serial data is transmitted sequentially from the LSB (bit 0), from pin.
- 4. The SCI3 checks the TDRE flag at the timing for sending the MSB (bit 7).
- of the next frame is started. 6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TDRE flag ma

5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial trai

output state of the last bit. If the TEIE bit in SCR3 is set to 1 at this time, a TEI inter request is generated.

Make sure that the receive error flags are cleared to 0 before starting transmission.

7. The SCK3 pin is fixed high at the end of transmission.

Figure 16.11 shows a sample flow chart for serial data transmission. Even if the TDRE cleared to 0, transmission will not start while a receive error flag (OER, FER, or PER) is

generated to 0

User Data written processing to TDR

Figure 16.10 Example of SCI3 Transmission in Clocked Synchronous Mod

Rev.5.00 Nov. 02, 2005 Page 286 of 500

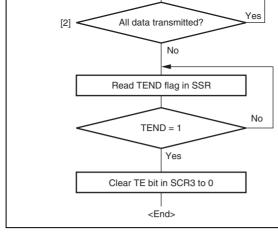


Figure 16.11 Sample Serial Transmission Flowchart (Clocked Synchronous M

RDRF flag remains to be set to 1.

4. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive datransferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt received to the received to th

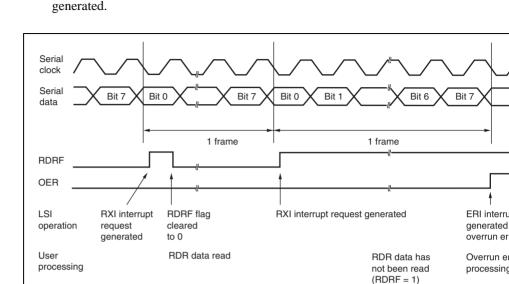


Figure 16.12 Example of SCI3 Reception in Clocked Synchronous Mode

Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the FER, PER, and RDRF bits to 0 before resuming reception. Figure 16.13 shows a sample chart for serial data reception.

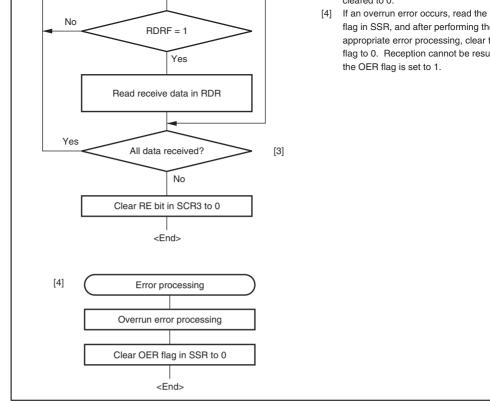


Figure 16.13 Sample Serial Reception Flowchart (Clocked Synchronous Mo

Rev.5.00 Nov. 02, 2005 Page 290 of 500

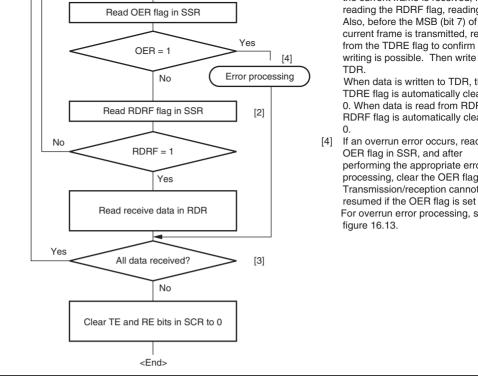


Figure 16.14 Sample Flowchart of Simultaneous Serial Transmit and Receive Option (Clocked Synchronous Mode)

communication using the multiprocessor format. The transmitting station first sends the I of the receiving station with which it wants to perform serial communication as data with multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit a When data with a 1 multiprocessor bit is received, the receiving station compares that data own ID. The station whose ID matches then receives the data sent next. Stations whose II match continue to skip data until data with a 1 multiprocessor bit is again received.

cie is a data transmission eyele. I iguie 10.15 shows an example of inter processor

The SCI3 uses the MPIE bit in SCR3 to implement this function. When the MPIE bit is s transfer of receive data from RSR to RDR, error flag detection, and setting the SSR status RDRF, FER, and OER, to 1, are inhibited until data with a 1 multiprocessor bit is receive reception of a receive character with a 1 multiprocessor bit, the MPBR bit in SSR is set to the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in set to 1 at this time, an RXI interrupt is generated.

When the multiprocessor format is selected, the parity bit setting is rendered invalid. All settings are the same as those in normal asynchronous mode. The clock used for multiprocommunication is the same as that in normal asynchronous mode.

RENESAS

Rev.5.00 Nov. 02, 2005 Page 292 of 500

[Legend] MPB: Multiprocessor bit

Figure 16.15 Example of Inter-Processor Communication Using Multiprocessor (Transmission of Data H'AA to Receiving Station A)

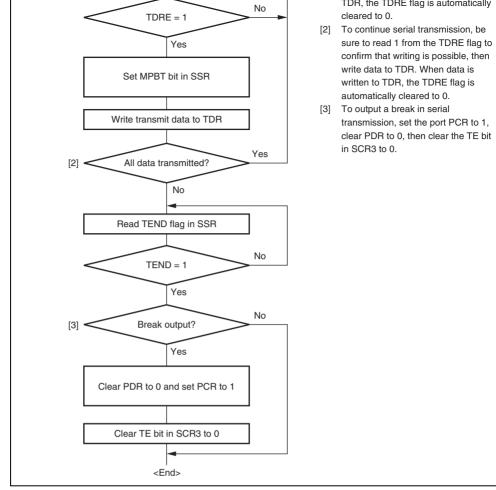


Figure 16.16 Sample Multiprocessor Serial Transmission Flowchart

Rev.5.00 Nov. 02, 2005 Page 294 of 500

REJ09B0027-0500

RENESAS

RENESAS

Rev.5.00 Nov. 02, 2005 Pag

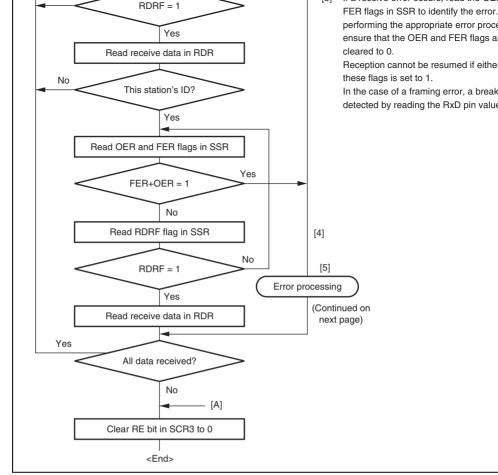


Figure 16.17 Sample Multiprocessor Serial Reception Flowchart (1)

Rev.5.00 Nov. 02, 2005 Page 296 of 500

REJ09B0027-0500

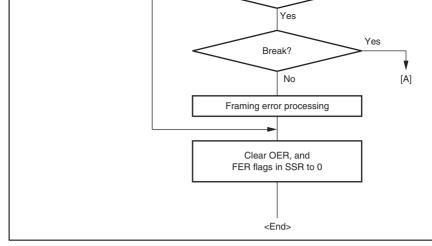
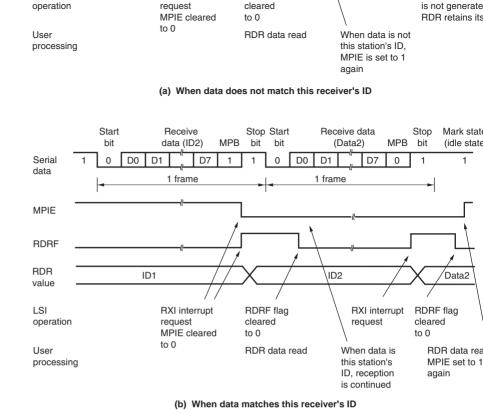



Figure 16.17 Sample Multiprocessor Serial Reception Flowchart (2)

RURF flag

cleared

RXI Interrupt re

RXI interrupt

request

Figure 16.18 Example of SCI3 Reception Using Multiprocessor Format (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

Rev.5.00 Nov. 02, 2005 Page 298 of 500

REJ09B0027-0500

RENESAS

The initial value of the TDRE flag in SSR is 1. Thus, when the TIE bit in SCR3 is set to
transferring the transmit data to TDR, a TXI interrupt request is generated even if the tra
is not ready. The initial value of the TEND flag in SSR is 1. Thus, when the TEIE bit in
set to 1 before transferring the transmit data to TDR, a TEI interrupt request is generated
the transmit data has not been sent. It is possible to make use of the most of these interru
requests efficiently by transferring the transmit data to TDR in the interrupt routine. To
generation of these interrupt requests (TXI and TEI), set the enable bits (TIE and TEIE)
correspond to these interrupt requests to 1, after transferring the transmit data to TDR.

Setting TEND in SSR

Setting OER, FER, and PER in SSR

TEI

ERI

Transmission End

Receive Error

When TE is 0, the TxD pin is used as an I/O port whose direction (input or output) and led determined by PCR and PDR. This can be used to set the TxD pin to mark state (high lev send a break during serial data transmission. To maintain the communication line at mark until TE is set to 1, set both PCR and PDR to 1. As TE is cleared to 0 at this point, the Tx becomes an I/O port, and 1 is output from the TxD pin. To send a break during serial trar first set PCR to 1 and clear PDR to 0, and then clear TE to 0. When TE is cleared to 0, the transmitter is initialized regardless of the current transmission state, the TxD pin becomes port, and 0 is output from the TxD pin.

16.8.3 Receive Error Flags and Transmit Operations (Clocked Synchronous Mod

Transmission cannot be started when a receive error flag (OER, PER, or FER) is set to 1, the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit is to 0.

RENESAS

Legend N: Ratio of bit rate to clock (N = 16)

D : Clock duty (D = 0.5 to 1.0)

L : Frame length (L = 9 to 12)
F : Absolute value of clock rate deviation

Assuming values of F (absolute value of clock rate deviation) = 0 and D (clock duty) = formula (1), the reception margin can be given by the formula.

$$M = \{0.5 - 1/(2 \times 16)\} \times 100 \ [\%] = 46.875\%$$

However, this is only the computed value, and a margin of 20% to 30% should be allow system design.

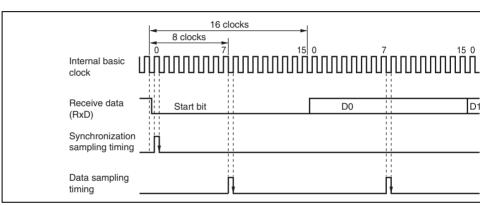


Figure 16.19 Receive Data Sampling Timing in Asynchronous Mode

Rev.5.00 Nov. 02, 2005 Pag

Rev.5.00 Nov. 02, 2005 Page 302 of 500 REJ09B0027-0500

RENESAS

- Selection of I²C format or clocked synchronous serial format
- Continuous transmission/reception

Since the shift register, transmit data register, and receive data register are independent each other, the continuous transmission/reception can be performed.

I²C bus format

- Start and stop conditions generated automatically in master mode
- Selection of acknowledge output levels when receiving
- Automatic loading of acknowledge bit when transmitting
- Bit synchronization/wait function

In master mode, the state of SCL is monitored per bit, and the timing is synchronized automatically.

If transmission/reception is not yet possible, set the SCL to low until preparations ar completed.

• Six interrupt sources

Transmit data empty (including slave-address match), transmit end, receive data full slave-address match), arbitration lost, NACK detection, and stop condition detection

Direct bus drive

Two pins, SCL and SDA pins, function as NMOS open-drain outputs when the bus function is selected.

Clocked synchronous format

Four interrupt sources

Transmit-data-empty, transmit-end, receive-data-full, and overrun error

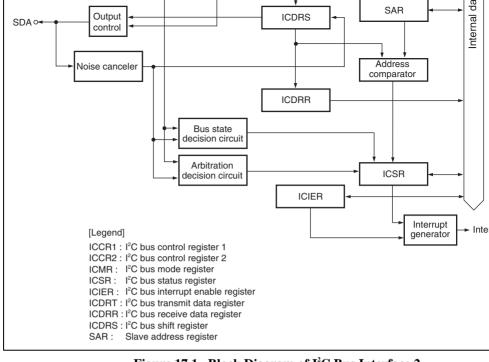


Figure 17.1 Block Diagram of I²C Bus Interface 2

Rev.5.00 Nov. 02, 2005 Page 304 of 500

REJ09B0027-0500

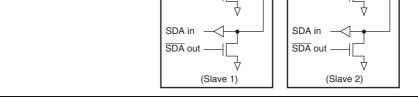


Figure 17.2 External Circuit Connections of I/O Pins

17.2 Input/Output Pins

Table 17.1 summarizes the input/output pins used by the I²C bus interface 2.

Table 17.1 I²C Bus Interface Pins

Name	Abbreviation	I/O	Function
Serial clock	SCL	I/O	IIC serial clock input/output
Serial data	SDA	I/O	IIC serial data input/output

17.3 Register Descriptions

The I²C bus interface 2 has the following registers:

- I²C bus control register 1 (ICCR1)
- I²C bus control register 2 (ICCR2)
- I²C bus mode register (ICMR)
- I²C bus interrupt enable register (ICIER)
- I²C bus status register (ICSR)
- I²C bus slave address register (SAR)
- I²C bus transmit data register (ICDRT)

Rev.5.00 Nov. 02, 2005 Pag

				port ranouorn)
				 This bit is enabled for transfer operations. (SC SDA pins are bus drive state.)
6	RCVD	0	R/W	Reception Disable
				This bit enables or disables the next operation w is 0 and ICDRR is read.
				0: Enables next reception
				1: Disables next reception
5	MST	0	R/W	Master/Slave Select
4	TRS	0	R/W	Transmit/Receive Select
				In master mode with the I ² C bus format, when are is lost, MST and TRS are both reset by hardward causing a transition to slave receive mode. Modi of the TRS bit should be made between transfer
				After data receive has been started in slave received, when the first seven bits of the receive day with the slave address that is set to SAR and the bit is 1, TRS is automatically set to 1. If an overnoccurs in master mode with the clock synchrono format, MST is cleared to 0 and slave receive mentered.
				Operating modes are described below according and TRS combination. When clocked synchrono format is selected and MST is 1, clock is output.

port function.)

0: This module is halted. (SCL and SDA pins are

Rev.5.00 Nov. 02, 2005 Page 306 of 500 RENESAS REJ09B0027-0500

00: Slave receive mode 01: Slave transmit mode 10: Master receive mode 11: Master transmit mode

1	0	0	0	φ/56	89.3 kHz	143 kHz
			1	φ/80	62.5 kHz	100 kHz
		1	0	φ/96	52.1 kHz	83.3 kHz
			1	φ/128	39.1 kHz	62.5 kHz
	1	0	0	φ/160	31.3 kHz	50.0 kHz
			1	φ/200	25.0 kHz	40.0 kHz
		1	0	φ/224	22.3 kHz	35.7 kHz
			1	φ/256	19.5 kHz	31.3 kHz
		·				•

BIT 3

CKS3

BIT 2

CKS2

1

BIT I

CKS1

0

1

0

1

BIT U

0

1

0

1

0

1

0

1

CKS0 Clock

φ/28

φ/40

φ/48

φ/64

φ/80

φ/100

φ/112

φ/128

 $\phi = 5 \text{ MHz}$

179 kHz

125 kHz

104 kHz

78.1 kHz

62.5 kHz

50.0 kHz

44.6 kHz

39.1 kHz

 $\phi = 8 \text{ MHz}$

286 kHz

200 kHz

167 kHz

125 kHz

100 kHz

80.0 kHz

71.4 kHz

62.5 kHz

Rev.5.00 Nov. 02, 2005 Pag

REJ09

Transfer Rate

357 kHz

250 kHz

208 kHz

156 kHz

125 kHz

100 kHz

89.3 kHz

78.1 kHz 179 kHz

125 kHz

104 kHz

78.1 kHz

62.5 kHz

50.0 kHz

44.6 kHz

39.1 kHz

 $\phi = 10 \text{ MHz}$ $\phi = 16 \text{ MHz}$

571 kHz

400 kHz

333 kHz

250 kHz

200 kHz

160 kHz

143 kHz

125 kHz

286 kHz

200 kHz

167 kHz

125 kHz

100 kHz

80.0 kHz

71.4 kHz

62.5 kHz

the start condition has been issued. This bit is cl
0 when the SDA level changes from low to high
condition of SCL = high, assuming that the stop
has been issued. Write 1 to BBSY and 0 to SCP
a start condition. Follow this procedure when als
transmitting a start condition. Write 0 in BBSY ar
SCP to issue a stop condition. To issue start/sto
conditions, use the MOV instruction.

6 SCP 1 W Start/Stop Issue Condition Disable
The SCP bit controls the issue of start/stop cond
master mode.

R/W

stored.

transfer.

SDA Output Value Control

format, this bit has no meaning. With the I²C bus this bit is set to 1 when the SDA level changes fit to low under the condition of SCL = high, assum

To issue a start condition, write 1 in BBSY and 0 A retransmit start condition is issued in the same issue a stop condition, write 0 in BBSY and 0 in This bit is always read as 1. If 1 is written, the date

This bit is used with SDAOP when modifying out of SDA. This bit should not be manipulated durin

When writing, SDA pin is changed to output lo

0: When reading, SDA pin outputs low.

1: When reading, SDA pin outputs high.

When writing, SDA pin is changed to output F (outputs high by external pull-up resistance).

Rev.5.00 Nov. 02, 2005 Page 308 of 500

REJ09B0027-0500

5

SDAO

1

RENESAS

				communication failure during I ² C operation, I ² C part can be reset without setting ports and initia registers.
0	_	1	_	Reserved
				This bit is always read as 1, and cannot be mod
	selects wh	s Mode Renether the Mansfer bit co	ISB or LSE	MR) 3 is transferred first, performs master mode wait of

R/W

This bit is always read as T, and cannot be mod

This bit resets the control part except for I2C reg this bit is set to 1 when hang-up occurs becaus

In master mode with the I2C bus format, this bit whether to insert a wait after data transfer exce acknowledge bit. When WAIT is set to 1, after t the clock for the final data bit, low period is exte two transfer clocks. If WAIT is cleared to 0, data acknowledge bits are transferred consecutively

IIC Control Part Reset

and selects the transfer bit count.							
Bit	Bit Name	Initial Value	R/W	Description			
7	MLS	0	R/W	MSB-First/LSB-First Select			
				0: MSB-first			
				1: LSB-first			
				Set this bit to 0 when the I2C bus format is used			
6	WAIT	0	R/W	Wait Insertion Bit			

9	bus format or with t	ne ciocked synchronous ser
The setting of this bit is invalid in slave mode w	9	he clocked synchronous ser

IICRST

When	writing,	settings	of BC2	to BC0	are	in۱

111: 7 bits

			Bit Counter 2 to 0					
C1 (0	R/W	These bits specify the number of bits to be tra					
CO (0	R/W	next. When read, the remaining number of indicated. With the I ² C bus format, the data with one addition acknowledge bit. Bit BC2 settings should be made during an interval transfer frames. If bits BC2 to BC0 are set to other than 000, the setting should be made pin is low. The value returns to 000 at the etransfer, including the acknowledge bit. Wit synchronous serial format, these bits should					
			I ² C Bus Format	Clock Synchronous Serial				
			000: 9 bits	000: 8 bits				
			001: 2 bits	001: 1 bits				
			010: 3 bits	010: 2 bits				
			011: 4 bits	011: 3 bits				
			100: 5 bits	100: 4 bits				
			101: 6 bits	101: 5 bits				
			110: 7 bits	110: 6 bits				
		-	-	next. When read, the indicated. With the I ² C with one addition ack settings should be matransfer frames. If bits other than 000, the sepin is low. The value transfer, including the synchronous serial for modified. I ² C Bus Format 000: 9 bits 001: 2 bits 010: 3 bits 011: 4 bits 100: 5 bits 101: 6 bits				

Rev.5.00 Nov. 02, 2005 Page 310 of 500 RE.109B0027-0500

111: 8 bits

6	TEIE	0	R/W	Transmit End Interrupt Enable
				This bit enables or disables the transmit end in (TEI) at the rising of the ninth clock while the T ICSR is 1. TEI can be canceled by clearing the or the TEIE bit to 0.
				0: Transmit end interrupt request (TEI) is disab
				1: Transmit end interrupt request (TEI) is enab
5	RIE	0	R/W	Receive Interrupt Enable
				This bit enables or disables the receive data fur request (RXI) and the overrun error interrupt re (ERI) with the clocked synchronous format, who receive data is transferred from ICDRS to ICDR RDRF bit in ICSR is set to 1. RXI can be cancelled clearing the RDRF or RIE bit to 0.
				 Receive data full interrupt request (RXI) and error interrupt request (ERI) with the clocked synchronous format are disabled.
				 Receive data full interrupt request (RXI) and error interrupt request (ERI) with the clocked synchronous format are enabled.
4	NAKIE	0	R/W	NACK Receive Interrupt Enable
				This bit enables or disables the NACK receive request (NAKI) and the overrun error (setting obit in ICSR) interrupt request (ERI) with the closynchronous format, when the NACKF and AL

1: Transmit data empty interrupt request (TXI) i

ICSR are set to 1. NAKI can be canceled by cle

0: NACK receive interrupt request (NAKI) is dis 1: NACK receive interrupt request (NAKI) is ena

Rev.5.00 Nov. 02, 2005 Pag

REJ09

NACKF, OVE, or NAKIE bit to 0.

1	ACKBR	0	R	Receive Acknowledge
				In transmit mode, this bit stores the acknowledge that are returned by the receive device. This bit modified.
				0: Receive acknowledge = 0
				1: Receive acknowledge = 1
0	ACKBT	0	R/W	Transmit Acknowledge
				In receive mode, this bit specifies the bit to be seacknowledge timing.
				0: 0 is sent at the acknowledge timing.
				1: 1 is sent at the acknowledge timing.

is halted.

REJ09B0027-0500

Rev.5.00 Nov. 02, 2005 Page 312 of 500

				 When transmit mode is entered from receiv slave mode
				[Clearing conditions]
				When 0 is written in TDRE after reading TD
				When data is written to ICDRT with an instr
6	TEND	0	R/W	Transmit End
				[Setting conditions]
				 When the ninth clock of SCL rises with the format while the TDRE flag is 1
				 When the final bit of transmit frame is sent clock synchronous serial format
				[Clearing conditions]
				When 0 is written in TEND after reading TE
				When data is written to ICDRT with an instr
5	RDRF	0	R/W	Receive Data Register Full
				[Setting condition]
				 When a receive data is transferred from IC ICDRR
				[Clearing conditions]
				When 0 is written in RDRF after reading RI

When TRS is set

been issued

• When a start condition (including re-transfe

When ICDRR is read with an instruction

Rev.5.00 Nov. 02, 2005 Pag

[Setting Conditions]

- In master mode, when a stop condition is de after frame transfer
- In slave mode, when a stop condition is dete the general call address or the first byte slave address, next to detection of start condition, with the address set in SAR

[Clearing Condition]

When 0 is written in STOP after reading STC

Rev.5.00 Nov. 02, 2005 Page 314 of 500 REJ09B0027-0500

RENESAS

					 If the internal SDA and SDA pin disagree at SCL in master transmit mode
					 When the SDA pin outputs high in master m a start condition is detected
					 When the final bit is received with the clock synchronous format while RDRF = 1 [Clearing condition]
					 When 0 is written in AL/OVE after reading A
	1	AAS	0	R/W	Slave Address Recognition Flag
					In slave receive mode, this flag is set to 1 if the following a start condition matches bits SVA6 to SAR.
					[Setting conditions]

RENESAS

receive mode.
[Clearing condition]

[Setting conditions]

• When 0 is written in AAS after reading AAS

Rev.5.00 Nov. 02, 2005 Pag

17.3.6 Slave Address Register (SAR)

SAR selects the communication format and sets the slave address. When the chip is in slawith the I²C bus format, if the upper 7 bits of SAR match the upper 7 bits of the first fram received after a start condition, the chip operates as the slave device.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 1	SVA6 to SVA0	All 0	R/W	Slave Address 6 to 0
				These bits set a unique address in bits SVA6 to differing form the addresses of other slave devic connected to the I ² C bus.
0	FS	0	R/W	Format Select
				0: I ² C bus format is selected.
				1: Clocked synchronous serial format is selected

Rev.5.00 Nov. 02, 2005 Page 316 of 500

REJ09B0027-0500

ICDRR is an 8-bit register that stores the receive data. When data of one byte is received transfers the receive data from ICDRS to ICDRR and the next data can be received. ICD receive-only register, therefore the CPU cannot write to this register. The initial value of is H'FF.

17.3.9 I²C Bus Shift Register (ICDRS)

ICDRS is a register that is used to transfer/receive data. In transmission, data is transferred ICDRT to ICDRS and the data is sent from the SDA pin. In reception, data is transferred ICDRS to ICDRR after data of one byte is received. This register cannot be read directly CPU.

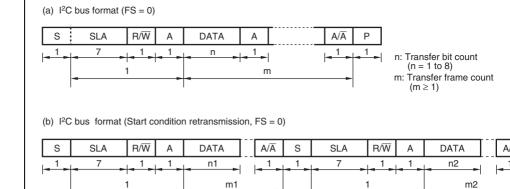


Figure 17.3 I²C Bus Formats

n1 and n2: Transfer bit count (n1 and n2 = 1 to 8) m1 and m2: Transfer frame count (m1 and m2 \geq 1

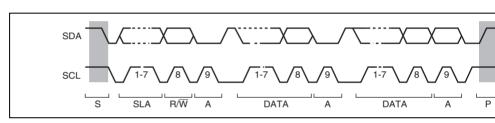


Figure 17.4 I²C Bus Timing

Legend

S: Start condition. The master device drives SDA from high to low while SCL is hig SLA: Slave address

Rev.5.00 Nov. 02, 2005 Page 318 of 500

REJ09B0027-0500

described below.

- Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 to 1.
- bits in ICCR1 to 1. (Initial setting)

 2. Read the BBSY flag in ICCR2 to confirm that the bus is free. Set the MST and TRS
- ICCR1 to select master transmit mode. Then, write 1 to BBSY and 0 to SCP using N instruction. (Start condition issued) This generates the start condition.
- 3. After confirming that TDRE in ICSR has been set, write the transmit data (the first be show the slave address and R/\overline{W}) to ICDRT. At this time, TDRE is automatically clean data is transferred from ICDRT to ICDRS. TDRE is set again.
- 4. When transmission of one byte data is completed while TDRE is 1, TEND in ICSR at the rise of the 9th transmit clock pulse. Read the ACKBR bit in ICIER, and confin slave device has been selected. Then, write second byte data to ICDRT. When ACK the slave device has not been acknowledged, so issue the stop condition. To issue the condition, write 0 to BBSY and SCP using MOV instruction. SCL is fixed low until
- 5. The transmit data after the second byte is written to ICDRT every time TDRE is set.6. Write the number of bytes to be transmitted to ICDRT. Wait until TEND is set (the object data transmission) while TDRE is 1, or wait for NACK (NACKF in ICSR = 1) receive device while ACKE in ICIER is 1. Then, issue the stop condition to clear TE

transmit data is prepared or the stop condition is issued.

NACKF.7. When the STOP bit in ICSR is set to 1, the operation returns to the slave receive mo

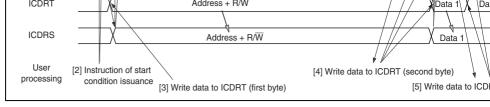


Figure 17.5 Master Transmit Mode Operation Timing (1)

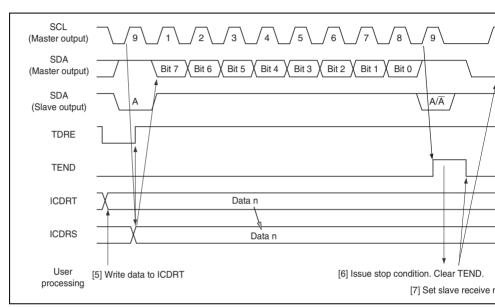


Figure 17.6 Master Transmit Mode Operation Timing (2)

Rev.5.00 Nov. 02, 2005 Page 320 of 500 REJ09B0027-0500

level specified by ACKBT in ICIER to SDA, at the 9th receive clock pulse.

is cleared to 0.

- 3. After the reception of first frame data is completed, the RDRF bit in ICST is set to 1 of 9th receive clock pulse. At this time, the receive data is read by reading ICDRR, a
 - 4. The continuous reception is performed by reading ICDRR every time RDRF is set. I receive clock pulse falls after reading ICDRR by the other processing while RDRF i fixed low until ICDRR is read.
 - 5. If next frame is the last receive data, set the RCVD bit in ICCR1 to 1 before reading This enables the issuance of the stop condition after the next reception.
 - - 6. When the RDRF bit is set to 1 at rise of the 9th receive clock pulse, issue the stage c 7. When the STOP bit in ICSR is set to 1, read ICDRR. Then clear the RCVD bit to 0.

8. The operation returns to the slave receive mode.

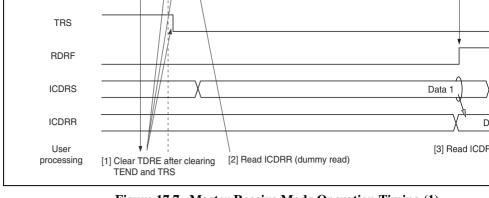


Figure 17.7 Master Receive Mode Operation Timing (1)

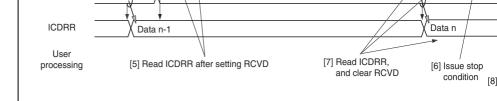


Figure 17.8 Master Receive Mode Operation Timing (2)

17.4.4 Slave Transmit Operation

In slave transmit mode, the slave device outputs the transmit data, while the master devithe receive clock and returns an acknowledge signal. For slave transmit mode operation refer to figures 17.9 and 17.10.

The transmission procedure and operations in slave transmit mode are described below.

- 1. Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 bits in ICCR1 to 1. (Initial setting) Set the MST and TRS bits in ICCR1 to select sla mode, and wait until the slave address matches.
- 2. When the slave address matches in the first frame following detection of the start co the slave device outputs the level specified by ACKBT in ICIER to SDA, at the rise clock pulse. At this time, if the 8th bit data (R/W) is 1, the TRS and ICSR bits in IC set to 1, and the mode changes to slave transmit mode automatically. The continuous

transmission is performed by writing transmit data to ICDRT every time TDRE is se

- 3. If TDRE is set after writing last transmit data to ICDRT, wait until TEND in ICSR i with TDRE = 1. When TEND is set, clear TEND.
- 4. Clear TRS for the end processing, and read ICDRR (dummy read). SCL is free.
- 5. Clear TDRE.

Rev.5.00 Nov. 02, 2005 Pag REJ09

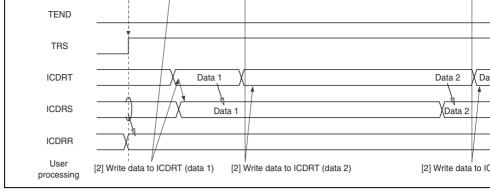


Figure 17.9 Slave Transmit Mode Operation Timing (1)

Rev.5.00 Nov. 02, 2005 Page 324 of 500

REJ09B0027-0500

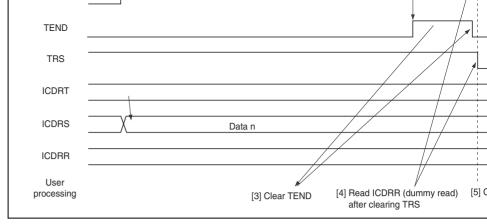


Figure 17.10 Slave Transmit Mode Operation Timing (2)

17.4.5 Slave Receive Operation

In slave receive mode, the master device outputs the transmit clock and transmit data, at slave device returns an acknowledge signal. For slave receive mode operation timing, refigures 17.11 and 17.12. The reception procedure and operations in slave receive mode a described below.

- 1. Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 bits in ICCR1 to 1. (Initial setting) Set the MST and TRS bits in ICCR1 to select slamode, and wait until the slave address matches.
- 2. When the slave address matches in the first frame following detection of the start co the slave device outputs the level specified by ACKBT in ICIER to SDA, at the rise clock pulse. At the same time, RDRF in ICSR is set to read ICDRR (dummy read). (read data show the slave address and R/W, it is not used.)

Rev.5.00 Nov. 02, 2005 Pag REJ09

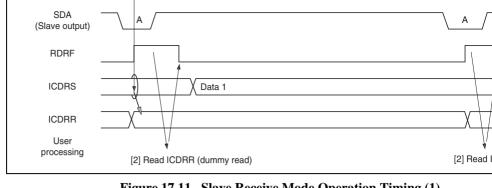


Figure 17.11 Slave Receive Mode Operation Timing (1)

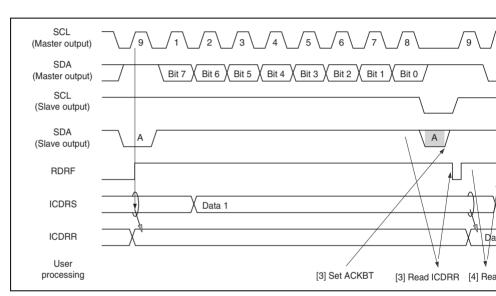


Figure 17.12 Slave Receive Mode Operation Timing (2)

Rev.5.00 Nov. 02, 2005 Page 326 of 500 REJ09B0027-0500

MSB first or LSB first. The output level of SDA can be changed during the transfer wai SDAO bit in ICCR2.

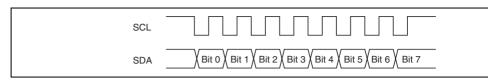


Figure 17.13 Clocked Synchronous Serial Transfer Format

Transmit Operation

In transmit mode, transmit data is output from SDA, in synchronization with the fall of clock. The transfer clock is output when MST in ICCR1 is 1, and is input when MST is transmit mode operation timing, refer to figure 17.14. The transmission procedure and of in transmit mode are described below.

- 1. Set the ICE bit in ICCR1 to 1. Set the MST and CKS3 to CKS0 bits in ICCR1 to 1. (setting)
- 2. Set the TRS bit in ICCR1 to select the transmit mode. Then, TDRE in ICSR is set.
- 3. Confirm that TDRE has been set. Then, write the transmit data to ICDRT. The data transferred from ICDRT to ICDRS, and TDRE is set automatically. The continuous transmission is performed by writing data to ICDRT every time TDRE is set. When from transmit mode to receive mode, clear TRS while TDRE is 1.

Rev.5.00 Nov. 02, 2005 Pag

User processing [3] Write data to ICDRT to ICDRT

[3] Write data to ICDRT

Figure 17.14 Transmit Mode Operation Timing

Receive Operation

In receive mode, data is latched at the rise of the transfer clock. The transfer clock is output MST in ICCR1 is 1, and is input when MST is 0. For receive mode operation timing, referingure 17.15. The reception procedure and operations in receive mode are described below

- 1. Set the ICE bit in ICCR1 to 1. Set the MST and CKS3 to CKS0 bits in ICCR1 to 1. (I setting)
- 2. When the transfer clock is output, set MST to 1 to start outputting the receive clock.
- 3. When the receive operation is completed, data is transferred from ICDRS to ICDRR a RDRF in ICSR is set. When MST = 1, the next byte can be received, so the clock is continually output. The continuous reception is performed by reading ICDRR every to RDRF is set. When the 8th clock is risen while RDRF is 1, the overrun is detected and
- 4. To stop receiving when MST = 1, set RCVD in ICCR1 to 1, then read ICDRR. Then, fixed high after receiving the next byte data.

AL/OVE in ICSR is set. At this time, the previous reception data is retained in ICDR

RENESAS

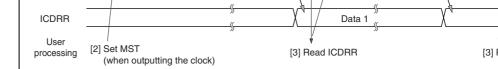


Figure 17.15 Receive Mode Operation Timing

17.4.7 Noise Canceler

The logic levels at the SCL and SDA pins are routed through noise cancelers before beinternally. Figure 17.16 shows a block diagram of the noise canceler circuit.

The noise canceler consists of two cascaded latches and a match detector. The SCL (or input signal is sampled on the system clock, but is not passed forward to the next circuit outputs of both latches agree. If they do not agree, the previous value is held.

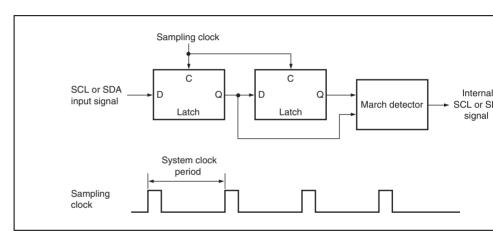


Figure 17.16 Block Diagram of Noise Conceler

Rev.5.00 Nov. 02, 2005 Pag REJ09

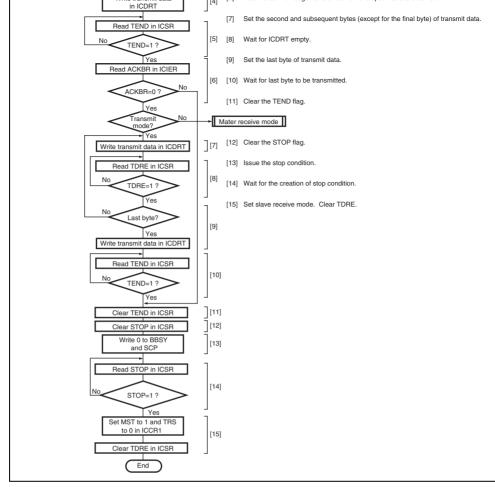
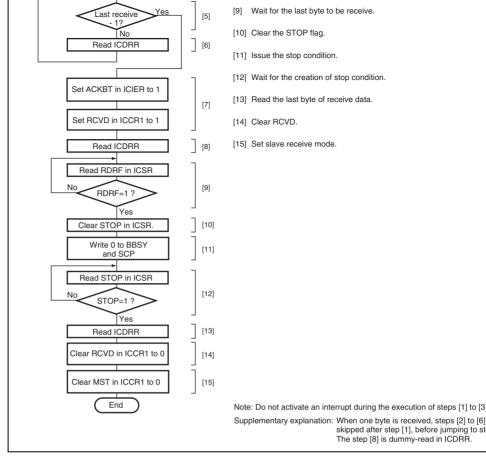



Figure 17.17 Sample Flowchart for Master Transmit Mode

Rev.5.00 Nov. 02, 2005 Page 330 of 500

Y es

Figure 17.18 Sample Flowchart for Master Receive Mode

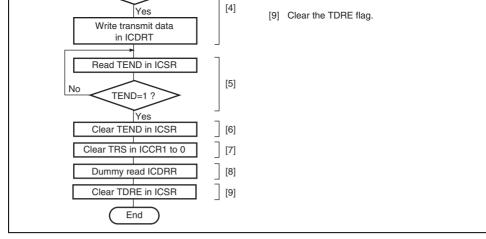


Figure 17.19 Sample Flowchart for Slave Transmit Mode

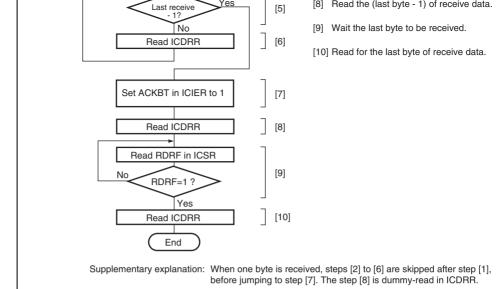


Figure 17.20 Sample Flowchart for Slave Receive Mode

Transmit End	TEI	(TEND=1) • (TEIE=1)	0	0
Receive Data Full	RXI	(RDRF=1) • (RIE=1)	0	0
STOP Recognition	STPI	(STOP=1) • (STIE=1)	0	×
NACK Receive	NAKI	{(NACKF=1)+(AL=1)} •	0	×
Arbitration Lost/Overrun Error		(NAKIE=1)	0	0

When interrupt conditions described in table 17.3 are 1 and the I bit in CCR is 0, the CPU executes an interrupt exception processing. Interrupt sources should be cleared in the exc processing. TDRE and TEND are automatically cleared to 0 by writing the transmit data ICDRT. RDRF are automatically cleared to 0 by reading ICDRR. TDRE is set to 1 again same time when transmit data is written to ICDRT. When TDRE is cleared to 0, then an edata of one byte may be transmitted.

Figure 17.21 shows the timing of the bit synchronous circuit and table 17.4 shows the ti SCL output changes from low to Hi-Z then SCL is monitored.

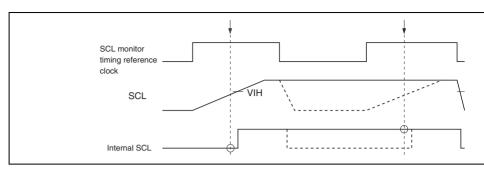


Figure 17.21 The Timing of the Bit Synchronous Circuit

Table 17.4 Time for Monitoring SCL

CKS3	CKS2	Time for Monitoring SCL
0	0	7.5 tcyc
	1	19.5 tcyc
1	0	17.5 tcyc
	1	41.5 tcyc

- Circuit, by the load of the SCL bus (load capacitance of pull-up resistance)
- 2. When the bit synchronous circuit is activated by extending the low period of eighth at clocks, that is driven by the slave device

17.7.2 WAIT Setting in I²C Bus Mode Register (ICMR)

If the WAIT bit is set to 1, and the SCL signal is driven low for two or more transfer cloc slave device at the eighth and ninth clocks, the high period of ninth clock may be shorten avoid this, set the WAIT bit in ICMR to 0.

Rev.5.00 Nov. 02, 2005 Page 336 of 500

RENESAS

- Conversion time: at least 3.5 µs per channel (at 20-MHz operation)
 - Two operating modes
 - Single mode: Single-channel A/D conversion
 - Scan mode: Continuous A/D conversion on 1 to 4 channels
 - Four data registers
 - Conversion results are held in a data register for each channel
 - Sample-and-hold function
 - Two conversion start methods
 - Software
 - External trigger signal
 - Interrupt request
 - An A/D conversion end interrupt request (ADI) can be generated

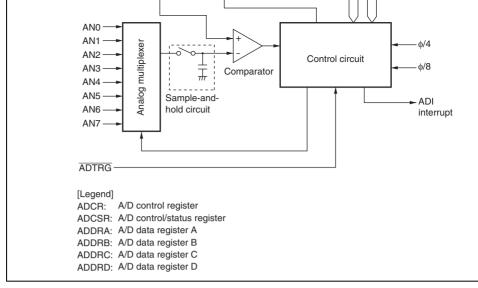


Figure 18.1 Block Diagram of A/D Converter

Rev.5.00 Nov. 02, 2005 Page 338 of 500 REJ09B0027-0500

Analog input pin 1	AN1	Input	
Analog input pin 2	AN2	Input	
Analog input pin 3	AN3	Input	
Analog input pin 4	AN4	Input	Group 1 analog input
Analog input pin 5	AN5	Input	
Analog input pin 6	AN6	Input	
Analog input pin 7	AN7	Input	_
A/D external trigger input pin	ADTRG	Input	External trigger input for

Input

Group 0 analog input

A/D conversion

AN0

Analog input pin 0

Rev.5.00 Nov. 02, 2005 Pag

18.3.1 A/D Data Registers A to D (ADDRA to ADDRD)

There are four 16-bit read-only ADDR registers; ADDRA to ADDRD, used to store the r A/D conversion. The ADDR registers, which store a conversion result for each analog in channel, are shown in table 18.2.

The converted 10-bit data is stored in bits 15 to 6. The lower 6 bits are always read as 0.

The data bus width between the CPU and the A/D converter is 8 bits. The upper byte can directly from the CPU, however the lower byte should be read via a temporary register. T temporary register contents are transferred from the ADDR when the upper byte data is retherefore byte access to ADDR should be done by reading the upper byte first then the lower data is a lower data is a specific proper byte first then the lower data is a lower data is a lower data in the lower data is a lower data in the lower data is a lower data in the lower data in the lower data is a lower data in the lower data in the lower data is a lower data in the lower data in the lower data in the lower data is a lower data in the lower data in the lower data in the lower data in the lower data is a lower data in the lower

Table 18.2 Analog Input Channels and Corresponding ADDR Registers

Analog Input Channel

Group 0	Group 1	A/D Data Register to Be Stored Results of A/D Conversi
AN0	AN4	ADDRA
AN1	AN5	ADDRB
AN2	AN6	ADDRC
AN3	AN7	ADDRD

Rev.5.00 Nov. 02, 2005 Page 340 of 500

				[Clearing condition]
				 When 0 is written after reading ADF = 1
6	ADIE	0	R/W	A/D Interrupt Enable
				A/D conversion end interrupt request (ADI) is er ADF when this bit is set to 1
5	ADST	0	R/W	A/D Start
				Setting this bit to 1 starts A/D conversion. In sin this bit is cleared to 0 automatically when conve

R/W

R/W

4

3

SCAN

CKS

0

0

Clear the ADST bit to 0 before switching the cor time.

selected in scan mode

or a transition to standby mode.

Selects the A/D conversions time. 0: Conversion time = 134 states (max.) 1: Conversion time = 70 states (max.)

Scan Mode

operating mode. 0: Single mode 1: Scan mode

Clock Select

REJ09

the specified channel is complete. In scan mode conversion continues sequentially on the specifi channels until this bit is cleared to 0 by software

Selects single mode or scan mode as the A/D c

101: AN5	101: AN4 and AN5
110: AN6	110: AN4 to AN6
111: AN7	111: AN4 to AN7

18.3.3 A/D Control Register (ADCR)

ADCR enables A/D conversion started by an external trigger signal.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TRGE	0	R/W	Trigger Enable
				A/D conversion is started at the falling edge and edge of the external trigger signal (ADTRG) when is set to 1.
				The selection between the falling edge and rising the external trigger pin (ADTRG) conforms to the bit in the interrupt edge select register 2 (IEGR2)
6 to 1	_	All 1	_	Reserved
				These bits are always read as 1.
0	_	0	R/W	Reserved
				Do not set this bit to 1, though the bit is readable/

Rev.5.00 Nov. 02, 2005 Page 342 of 500 REJ09B0027-0500

- 1. A/D conversion is started when the ADST bit in ADCSR is set to 1, according to so external trigger input.
 - 2. When A/D conversion is completed, the result is transferred to the corresponding A/ register of the channel. 3. On completion of conversion, the ADF bit in ADCSR is set to 1. If the ADIE bit is s
 - this time, an ADI interrupt request is generated. 4. The ADST bit remains set to 1 during A/D conversion. When A/D conversion ends,
 - bit is automatically cleared to 0 and the A/D converter enters the wait state.

18.4.2 Scan Mode

chainlet as follows.

In scan mode, A/D conversion is performed sequentially for the analog input of the spec

- channels (four channels maximum) as follows: 1. When the ADST bit in ADCSR is set to 1 by software or external trigger input, A/D
- conversion starts on the first channel in the group (AN0 when CH2 = 0, AN4 when 0 2. When A/D conversion for each channel is completed, the result is sequentially transthe A/D data register corresponding to each channel.
- 3. When conversion of all the selected channels is completed, the ADF flag in ADCSR If the ADIE bit is set to 1 at this time, an ADI interrupt requested is generated. A/D starts again on the first channel in the group.
- 4. The ADST bit is not automatically cleared to 0. Steps [2] and [3] are repeated as lon ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stop.

In scan mode, the values given in table 18.3 apply to the first conversion time. In the second subsequent conversions, the conversion time is 128 states (fixed) when CKS = 0 and 66 s (fixed) when CKS = 1.

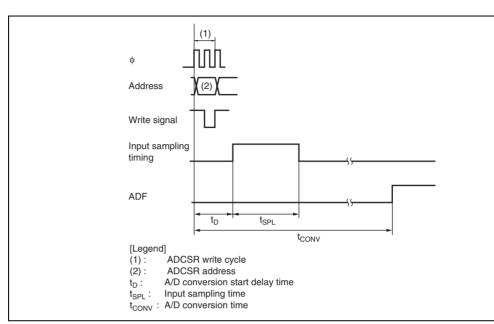


Figure 18.2 A/D Conversion Timing

Rev.5.00 Nov. 02, 2005 Page 344 of 500

10.4.4 External Higger Input Hinnig

A/D conversion can also be started by an external trigger input. When the TRGE bit in A set to 1, external trigger input is enabled at the ADTRG pin. A falling edge at the ADTR pin sets the ADST bit in ADCSR to 1, starting A/D conversion. Other operations, in bot and scan modes, are the same as when the bit ADST has been set to 1 by software. Figure shows the timing.

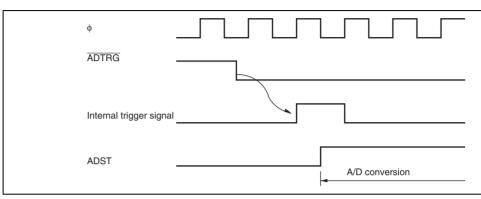


Figure 18.3 External Trigger Input Timing

when the digital output changes from the minimum voltage value 0000000000 to 000 (see figure 18.5). Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion characteristics and the ideal A/D conversion characteristics. when the digital output changes from 11111111110 to 1111111111 (see figure 18.5).

• Nonlinearity error

The deviation from the ideal A/D conversion characteristic as the voltage changes fro full scale. This does not include the offset error, full-scale error, or quantization error.

Absolute accuracy

The deviation between the digital value and the analog input value. Includes offset en scale error, quantization error, and nonlinearity error.

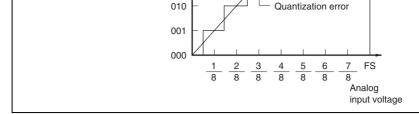


Figure 18.4 A/D Conversion Accuracy Definitions (1)

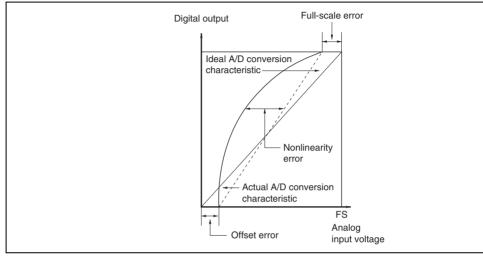


Figure 18.5 A/D Conversion Accuracy Definitions (2)

Rev.5.00 Nov. 02, 2005 Pag

filter effect is obtained in this case, it may not be possible to follow an analog signal with differential coefficient (e.g., 5 mV/ μ s or greater) (see figure 18.6). When converting a high analog signal or converting in scan mode, a low-impedance buffer should be inserted.

18.6.2 Influences on Absolute Accuracy

Adding capacitance results in coupling with GND, and therefore noise in GND may adversaffect absolute accuracy. Be sure to make the connection to an electrically stable GND.

Care is also required to ensure that filter circuits do not interfere with digital signals or acantennas on the mounting board.

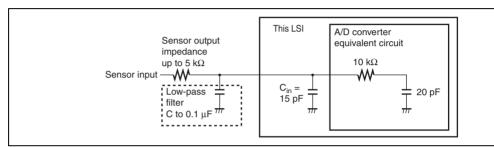


Figure 18.6 Analog Input Circuit Example

- Three reading methods:
 - Current address read

 - Random address read
 - Sequential read
- Acknowledge polling possible
- Write cycle time:
 - 10 ms (power supply voltage Vcc = 2.7 V or more)
- Write/Erase endurance:
 - 10⁴ cycles/byte (byte write mode), 10⁵ cycles/page (page write mode)
- Data retention:
 - 10 years after the write cycle of 10⁴ cycles (page write mode)
- Interface with the CPU
 - I²C bus interface (complies with the standard of Philips Corporation)
 - Device code 1010
 - Sleep address code can be changed (initial value: 000)
 - The I²C bus is open to the outside, so the EEPROM can be directly accessed from th

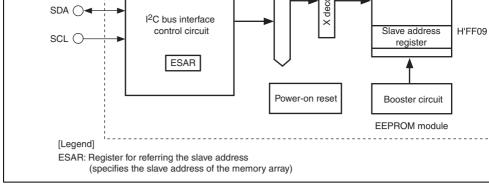


Figure 19.1 Block Diagram of EEPROM

Rev.5.00 Nov. 02, 2005 Page 350 of 500

			proper resistor value for your system by col V_{ol} , I_{ol} , and the C_{in} pin capacitance in section DC Characteristics and in section 23.2.3, A Characteristics. Maximum clock frequency kHz.
Serial data pin	SDA	Input/Output	The SDA pin is bidirectional for serial data to the SDA pin needs to be pulled up by resist pin is open-drain driven structure. Use provalue for your system by considering V_{OL} , I_{O} pin capacitance in section 23.2.2, DC Characteristics and in section 23.2.3, AC

19.3 Register Description

The EEPROM has a following register.

• EEPROM key register (EKR)

19.3.1 EEPROM Key Register (EKR)

EKR is an 8-bit readable/writable register, which changes the slave address code writter EEPROM. The slave address code is changed by writing H'5F in EKR and then writing

H'00 to H'07 as an address code to the H'FF09 address in the EEPROM by the byte writ EKR is initialized to H'FF.

Characteristics. Except for a start condition stop condition which will be discussed later to-low and low-to-high change of SDA input

done during SCL low periods.

19.4.2 Bus Format and Timing

The I²C bus format and the I²C bus timing follow section 17.4.1, I²C Bus Format. The bu specific for the EEPROM are the following two.

- 1. The EEPROM address is configured of two bytes, the write data is transferred in the cupper address and lower address from each MSB side.
- 2. The write data is transmitted from the MSB side.

The bus format and bus timing of the EEPROM are shown in figure 19.2.

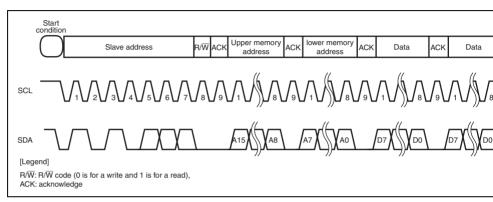


Figure 19.2 EEPROM Bus Format and Bus Timing

19.4.3 Start Condition

A high-to-low transition of the SDA input with the SCL input high is needed to generate condition for starting read, write operation.

Rev.5.00 Nov. 02, 2005 Page 352 of 500

All address data and serial data such as read data and write data are transmitted to and fi bit unit. The acknowledgement is the signal that indicates that this 8-bit data is normally transmitted to and from.

In the write operation, EEPROM sends "0" to acknowledge in the ninth cycle after receidata. In the read operation, EEPROM sends a read data following the acknowledgemen receiving the data. After sending read data, the EEPROM enters the bus open state. If the EEPROM receives "0" as an acknowledgement, it sends read data of the next address. In EEPROM does not receive acknowledgement "0" and receives a following stop condition the read operation and enters a standby mode. If the EEPROM receives neither acknow "0" nor a stop condition, the EEPROM keeps bus open without sending read data.

19.4.6 Slave Addressing

The EEPROM device receives a 7-bit slave address and a 1-bit R/\overline{W} code following the of the start conditions. The EEPROM enables the chip for a read or a write operation w operation.

The slave address consists of a former 4-bit device code and latter 3-bit slave address as table 19.2. The device code is used to distinguish device type and this LSI uses "1010" in the same manner as in a general-purpose EEPROM. The slave address code selects out of all devices with device code 1010 (8 devices in maximum) which are connected to bus. This means that the device is selected if the inputted slave address code received in of A2, A1, A0 is equal to the corresponding slave address reference register (ESAR).

The slave address code is stored in the address H'FF09 in the EEPROM. It is transferred from the slave address register in the memory array during 10 ms after the reset is releast access to the EEPROM is not allowed during transfer.

-				
5	Device code D1	_	1	
4	Device code D0	_	0	
3	Slave address code A2	0	A2	The initial value can be
2	Slave address code A1	0	A1	The initial value can be
1	Slave address code A0	0	A0	The initial value can be

0

19.4.7 Write Operations

Device code D2

There are two types write operations; byte write operation and page write operation. To the write operation, input 0 to R/\overline{W} code following the slave address.

1. Byte Write

6

A write operation requires an 8-bit data of a 7-bit slave address with R/\overline{W} code = "0". the EEPROM sends acknowledgement "0" at the ninth bit. This enters the write mod two bytes of the memory address are received from the MSB side in the order of upper lower. Upon receipt of one-byte memory address, the EEPROM sends acknowledger and receives a following a one-byte write data. After receipt of write data, the EEPROM acknowledgement "0". If the EEPROM receives a stop condition, the EEPROM enter internally controlled write cycle and terminates receipt of SCL and SDA inputs until

completion of the write cycle. The EEPROM returns to a standby mode after comple

The byte write operation is shown in figure 19.3.

Rev.5.00 Nov. 02, 2005 Page 354 of 500

the write cycle.

Figure 19.3 Byte Write Operation

2. Page Write

to be written in a single write cycle. The write data is input in the same sequence as write in the order of a start condition, slave address + R/W code, memory address (n write data (Dn) with every ninth bit acknowledgement "0" output. The EEPROM er page write operation if the EEPROM receives more write data (Dn+1) is input instead receiving a stop condition after receiving the write data (Dn). LSB 3 bits (A2 to A0 EEPROM address are automatically incremented to be the (n+1) address upon received.

This LSI is capable of the page write operation which allows any number of bytes up

Addresses in the page are incremented at each receipt of the write data and the write be input up to 8 bytes. If the LSB 3 bits (A2 to A0) in the EEPROM address reach t address of the page, the address will roll over to the first address of the same page. Valdress is rolled over, write data is received twice or more to the same address, how

last received data is valid. At the receipt of the stop condition, write data reception i

data (Dn+1). Thus the write data can be received sequentially.

terminated and the write operation is entered. The page write operation is shown in figure 19.4.

Figure 19.4 Page Write Operation

19.4.8 Acknowledge Polling

Acknowledge polling feature is used to show if the EEPROM is in an internally-timed wor not. This feature is initiated by the input of the 8-bit slave address $+ R/\overline{W}$ code following start condition during an internally-timed write cycle. Acknowledge polling will operate code = "0". The ninth acknowledgement judges if the EEPROM is an internally-timed wor not. Acknowledgement "1" shows the EEPROM is in a internally-timed write cycle as acknowledgement "0" shows the internally-timed write cycle has been completed. The acknowledge polling starts to function after a write data is input, i.e., when the stop conditinput.

19.4.9 Read Operation

There are three read operations; current address read, random address read, and sequential Read operations are initiated in the same way as write operations with the exception of R

1. Current Address Read

The internal address counter maintains the (n+1) address that is made by the last addrescessed during the last read or write operation, with incremented by one. Current adread accesses the (n+1) address kept by the internal address counter.

After receiving in the order of a start condition and the slave address $+ R/\overline{W}$ code (R/\overline{W}) the EEPROM outputs the 1-byte data of the (n+1) address from the most significant be following acknowledgement "0". If the EEPROM receives in the order of acknowledgement "1" and a following stop condition, the EEPROM stops the read operation and is turned standby state.

Rev.5.00 Nov. 02, 2005 Page 356 of 500

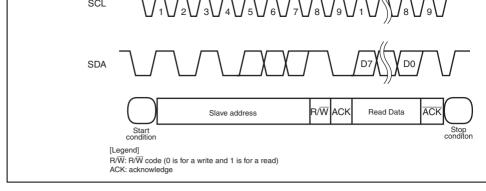


Figure 19.5 Current Address Read Operation

2. Random Address Read

to a standby state.

This is a read operation with defined read address. A random address read requires a write to set read address. The EEPROM receives a start condition, slave address + $\overline{F}(R/\overline{W}=0)$, memory address (upper) and memory address (lower) sequentially. The outputs acknowledgement "0" after receiving memory address (lower) then enters a address read with receiving a start condition again. The EEPROM outputs the read address which was defined in the dummy write operation. After receiving acknowledgement "1" and a following stop condition, the EEPROM stops the random read operation as

The random address read operation is shown in figure 19.6.

Rev.5.00 Nov. 02, 2005 Pag REJ09

3. Sequential Read

This is a mode to read the data sequentially. Data is sequential read by either a currer read or a random address read. If the EEPROM receives acknowledgement "0" after read data is output, the read address is incremented and the next 1-byte read data are cout. Data is output sequentially by incrementing addresses as long as the EEPROM racknowledgement "0" after the data is output. The address will roll over and returns a zero if it reaches the last address H'01FF. The sequential read can be continued after The sequential read is terminated if the EEPROM receives acknowledgement "1" and

following stop condition as the same manner as in the random address read.

The condition of a sequential read when the current address read is used is shown in f 19.7.

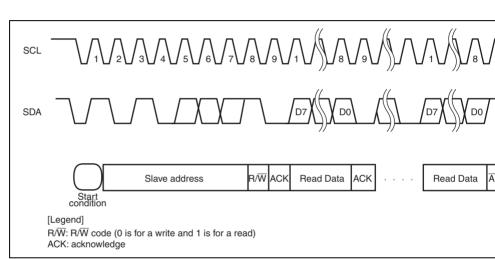


Figure 19.7 Sequential Read Operation (when current address read is used

turned on from the ground level (V_{ss}) .

4. V_{cc} turn on speed should be longer than 10 us.

19.5.2 Write/Erase Endurance

The endurance is 10^5 cycles/page (1% cumulative failure rate) in case of page programm 10^4 cycles/byte in case of byte programming. The data retention time is more than 10 ye device is page-programmed less than 10^4 cycles.

19.5.3 Noise Suppression Time

This EEPROM has a noise suppression function at SCL and SDA inputs, that cuts noise less than 50 ns. Be careful not to allow noise of width more than 50 ns because the noise more than 50 ms is recognized as an active pulse.

Rev.5.00 Nov. 02, 2005 Page 360 of 500

power suppry voltage rises again.

Even if the power supply voltage falls, the unstable state when the power supply voltage below the guaranteed operating voltage can be removed by entering standby mode when exceeding the guaranteed operating voltage and during normal operation. Thus, system can be improved. If the power supply voltage falls more, the reset state is automatically the power supply voltage rises again, the reset state is held for a specified period, then a is automatically entered.

Figure 20.1 is a block diagram of the power-on reset circuit and the low-voltage detection

20.1 **Features**

Power-on reset circuit

Uses an external capacitor to generate an internal reset signal when power is first sup Low-voltage detection circuit

LVDR: Monitors the power-supply voltage, and generates an internal reset signal wl voltage falls below a specified value. LVDI: Monitors the power-supply voltage, and generates an interrupt when the voltage

below or rises above respective specified values.

Two pairs of detection levels for reset generation voltage are available: when only the circuit is used, or when the LVDI and LVDR circuits are both used.

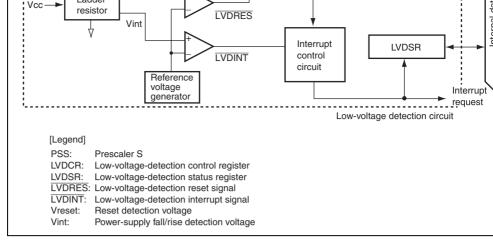


Figure 20.1 Block Diagram of Power-On Reset Circuit and Low-Voltage Detection

20.2 Register Descriptions

The low-voltage detection circuit has the following registers.

- Low-voltage-detection control register (LVDCR)
- Low-voltage-detection status register (LVDSR)

20.2.1 Low-Voltage-Detection Control Register (LVDCR)

LVDCR is used to enable or disable the low-voltage detection circuit, set the detection le the LVDR function, enable or disable the LVDR function, and enable or disable generation interrupt when the power-supply voltage rises above or falls below the respective levels.

Rev.5.00 Nov. 02, 2005 Page 362 of 500

				1: Reset detection voltage is 3.6 V (typ.)
				When the falling or rising voltage detection inte used, reset detection voltage of 2.3 V (typ.) shoused. When only a reset detection interrupt is udetection voltage of 3.6 V (typ.) should be used
2	LVDRE	0*	R/W	LVDR Enable
				0: Disables the LVDR function
				1: Enables the LVDR function
1	LVDDE	0	R/W	Voltage-Fall-Interrupt Enable
				0: Interrupt on the power-supply voltage falling selected detection level disabled
				1: Interrupt on the power-supply voltage falling selected detection level enabled
0	LVDUE	0	R/W	Voltage-Rise-Interrupt Enable
				0: Interrupt on the power-supply voltage rising a selected detection level disabled
1		LVDDE	LVDDE 0	LVDDE 0 R/W

LVDR Detection Level Select

0: Reset detection voltage is 2.3 V (typ.)

1: Interrupt on the power-supply voltage rising a

Rev.5.00 Nov. 02, 2005 Pag

REJ09

selected detection level enabled

3

Note:

LVDSEL

0*

R/W

Not initialized by LVDR but initialized by a power-on reset or WDT reset.

1	0	1	1	1	0	0	0	0	
Legend	: *: me	eans inval	id.						
20.2.2 Low-Voltage-Detection Status Register (LVDSR)									

LVDSR indicates whether the power-supply voltage falls below or rises above the respec specified values. Initial Value Description Bit **Bit Name** R/W 7 to 2 All 1 Reserved These bits are always read as 1, and cannot be **LVDDF** 0* R/W LVD Power-Supply Voltage Fall Flag [Cotting condition]

				[Setting condition]
				When the power-supply voltage falls below Vint $= 3.7 \text{ V}$
				[Clearing condition]
				Writing 0 to this bit after reading it as 1
0	LVDUF	0*	R/W	LVD Power-Supply Voltage Rise Flag
				[Setting condition]
				When the power supply voltage falls below Vint the LVDUE bit in LVDCR is set to 1, then rises a (U) (typ. = 4.0 V) before falling below Vreset1 (ty V)
				[Clearing condition]
				Writing 0 to this bit after reading it as 1

Initialized by LVDR.

Note: *

REJ09B0027-0500

Rev.5.00 Nov. 02, 2005 Page 364 of 500

RENESAS

prevent the incorrect operation of the chip by noise on the \overline{RES} pin.

To achieve stable operation of this LSI, the power supply needs to rise to its full level as within the specified time. The maximum time required for the power supply to rise and power has been supplied (t_{pwon}) is determined by the oscillation frequency (f_{osc}) and cap which is connected to \overline{RES} pin $(C_{\overline{RES}})$. If t_{pwon} means the time required to reach 90 % of supply voltage, the power supply circuit should be designed to satisfy the following form

$$t_{\scriptscriptstyle PWON} \ (ms) \leq 90 \times C_{\overline{RES}} \ (\mu F) \, + \, 162/f_{\scriptscriptstyle OSC} \ (MHz)$$

(t_{_{PWON}} \leq 3000 ms,
$$C_{\overline{RES}} \geq 0.22~\mu F,$$
 and $f_{_{OSC}}$ = 10 in 2-MHz to 10-MHz operation

Note that the power supply voltage (Vcc) must fall below Vpor = 100 mV and rise after the $\overline{\text{RES}}$ pin is removed. To remove charge on the $\overline{\text{RES}}$ pin, it is recommended that the should be placed near Vcc. If the power supply voltage (Vcc) rises from the point above power-on reset may not occur.

Figure 20.2 Operational Timing of Power-On Reset Circuit

20.3.2 Low-Voltage Detection Circuit

LVDR (Reset by Low Voltage Detect) Circuit:

after a power-on reset is canceled. To operate the LVDR, set the LVDE bit in LVDCR to for $50~\mu s$ (t_{LVDON}) until the reference voltage and the low-voltage-detection power supply by stabilized by a software timer, etc., then set the LVDRE bit in LVDCR to 1. After that, the settings of ports must be made. To cancel the low-voltage detection circuit, first the LVD should be cleared to 0 and then the LVDE bit should be cleared to 0. The LVDE and LVI must not be cleared to 0 simultaneously because incorrect operation may occur.

Figure 20.3 shows the timing of the LVDR function. The LVDR enters the module-stand

When the power-supply voltage falls below the Vreset voltage (typ. = 2.3 V or 3.6 V), the clears the $\overline{\text{LVDRES}}$ signal to 0, and resets the prescaler S. The low-voltage detection reset remains in place until a power-on reset is generated. When the power-supply voltage rise the Vreset voltage again, the prescaler S starts counting. It counts $131,072 \text{ clock } (\phi) \text{ cycle}$ then releases the internal reset signal. In this case, the LVDE, LVDSEL, and LVDRE bits LVDCR are not initialized.

Note that if the power supply voltage (Vcc) falls below $V_{LVDRmin} = 1.0 \text{ V}$ and then rises fro point, the low-voltage detection reset may not occur.

If the power supply voltage (Vcc) falls below Vpor = 100 mV, a power-on reset occurs.

Rev.5.00 Nov. 02, 2005 Page 366 of 500

REJ09B0027-0500

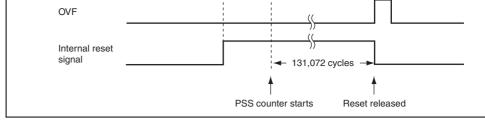


Figure 20.3 Operational Timing of LVDR Circuit

LVDI (Interrupt by Low Voltage Detect) Circuit:

a power-on reset is canceled. To operate the LVDI, set the LVDE bit in LVDCR to 1, w μs (t_{LVDON}) until the reference voltage and the low-voltage-detection power supply have s by a software timer, etc., then set the LVDDE and LVDUE bits in LVDCR to 1. After the output settings of ports must be made. To cancel the low-voltage detection circuit, first the LVDDE and LVDUE bits should all be cleared to 0 and then the LVDE bit should be cleared to 10 at the same timing as the LVDDE and LVDUE because incorrect operation may occur.

Figure 20.4 shows the timing of LVDI functions. The LVDI enters the module-standby

When the power-supply voltage falls below Vint (D) (typ. = 3.7 V) voltage, the LVDI c $\overline{\text{LVDINT}}$ signal to 0 and the LVDDF bit in LVDSR is set to 1. If the LVDDE bit is 1 at an IRQ0 interrupt request is simultaneously generated. In this case, the necessary data is saved in the external EEPROM, etc, and a transition must be made to standby mode or smode. Until this processing is completed, the power supply voltage must be higher than limit of the guaranteed operating voltage.

When the power-supply voltage does not fall below Vreset1 (typ. = 2.3 V) voltage but r Vint (U) (typ. = 4.0 V) voltage, the LVDI sets the $\overline{\text{LVDINT}}$ signal to 1. If the LVDUE by

Rev.5.00 Nov. 02, 2005 Pag REJ09

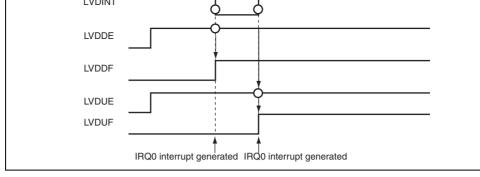


Figure 20.4 Operational Timing of LVDI Circuit

REJ09B0027-0500

LVDUE bits to 0. Then clear the LVDE bit to 0. The LVDE bit must not be cleared same timing as the LVDRE, LVDDE, and LVDUE bits because incorrect operation

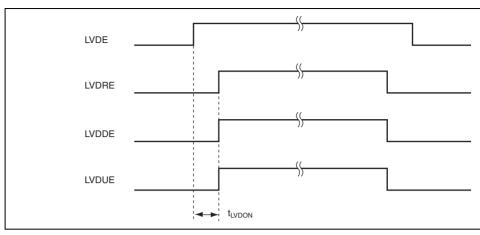


Figure 20.5 Timing for Operation/Release of Low-Voltage Detection Circ

Rev.5.00 Nov. 02, 2005 Pag

Rev.5.00 Nov. 02, 2005 Page 370 of 500

REJ09B0027-0500

21.1 When Using Internal Power Supply Step-Down Circuit

Connect the external power supply to the V_{cc} pin, and connect a capacitance of approximular between V_{cc} and V_{ss} , as shown in figure 21.1. The internal step-down circuit is made simply by adding this external circuit. In the external circuit interface, the external power voltage connected to V_{cc} and the GND potential connected to V_{ss} are the reference levels example, for port input/output levels, the V_{cc} level is the reference for the high level, and level is that for the low level. The A/D converter analog power supply is not affected by internal step-down circuit.

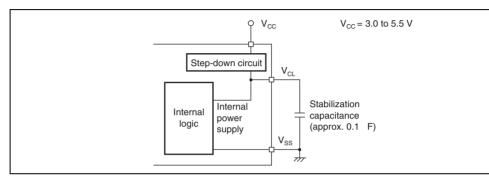


Figure 21.1 Power Supply Connection when Internal Step-Down Circuit is

RENESAS

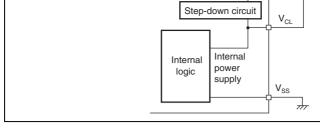


Figure 21.2 Power Supply Connection when Internal Step-Down Circuit is Not

Do not attempt to access reserved addresses.

- When the address is 16-bit wide, the address of the upper byte is given in the list.
- Registers are classified by functional modules.
- The data bus width is indicated.
- The number of access states is indicated.
- 2. Register bits
- Bit configurations of the registers are described in the same order as the register add
 - Reserved bits are indicated by in the bit name column.
- When registers consist of 16 bits, bits are described from the MSB side.
- 3. Register states in each operating mode
- Register states are described in the same order as the register addresses.
- The register states described here are for the basic operating modes. If there is a spec for an on-chip peripheral module, refer to the section on that on-chip peripheral mod

Timer I/O control register A_0	TIORA_0	8	H'F701	Timer Z
Timer I/O control register C_0	TIORC_0	8	H'F702	Timer Z
Timer status register_0	TSR_0	8	H'F703	Timer Z
Timer interrupt enable register_0	TIER_0	8	H'F704	Timer Z
PWM mode output level control register_0	POCR_0	8	H'F705	Timer Z
Timer counter_0	TCNT_0	16	H'F706	Timer Z
General register A_0	GRA_0	16	H'F708	Timer Z
General register B_0	GRB_0	16	H'F70A	Timer Z
General register C_0	GRC_0	16	H'F70C	Timer Z
General register D_0	GRD_0	16	H'F70E	Timer Z
Timer control register_1	TCR_1	8	H'F710	Timer Z
Timer I/O control register A_1	TIORA_1	8	H'F711	Timer Z
Timer I/O control register C_1	TIORC_1	8	H'F712	Timer Z
Timer status register_1	TSR_1	8	H'F713	Timer Z
Timer interrupt enable register_1	TIER_1	8	H'F714	Timer Z
PWM mode output level control register_1	POCR_1	8	H'F715	Timer Z
Timer counter_1	TCNT_1	16	H'F716	Timer Z
General register A_1	GRA_1	16	H'F718	Timer Z
General register B_1	GRB_1	16	H'F71A	Timer Z

TCR_0

H'F000 to H'F6FF

H'F700

Timer Z

REJ09B0027-0500

Timer control register_0

Hour data register	RHRDR	8	H'F72A	RTC
Day-of-week data register	RWKDR	8	H'F72B	RTC
RTC control register 1	RTCCR1	8	H'F72C	RTC
RTC control register 2	RTCCR2	8	H'F72D	RTC
_	_	_	H'F72E	RTC
Clock source select register	RTCCSR	8	H'F72F	RTC
Low-voltage-detection control register	LVDCR	8	H'F730	LVDC*1
Low-voltage-detection status register	LVDSR	8	H'F731	LVDC*1
_	_	_	H'F732 to H'F73F	_
Serial mode register_2	SMR_2	8	H'F740	SCI3_2
Bit rate register_2	BRR_2	8	H'F741	SCI3_2
Serial control register 3_2	SCR3_2	8	H'F742	SCI3_2
Transmit data register_2	TDR_2	8	H'F743	SCI3_2
Serial status register_2	SSR_2	8	H'F744	SCI3_2

TOCR

RSECDR 8

RMINDR 8

8

H'F725

H'F726, H'F727

H'F728

H'F729

Timer Z

Timer Z

RTC

RTC

8

8

8

8 8

8

REJ09

Rev.5.00 Nov. 02, 2005 Pag

Timer output control register

counter data register

Minute data register

Second data register/free running

8 H'F744 SCI3_2

Slave address register	SAR	8	H'F74D	IIC2	8
I2C bus transmit data register	ICDRT	8	H'F74E	IIC2	8
I2C bus receive data register	ICDRR	8	H'F74F	IIC2	8
_	_	_	H'F750 to H'F75F	_	
Timer mode register B1	TMB1	8	H'F760	Timer B1	8
Timer counter B1	TCB1	8	H'F761	Timer B1	8
	_	_	H'F762 to	_	
			H'FF8F		
Flash memory control register 1	FLMCR1	8	H'FF90	ROM	8
Flash memory control register 2	FLMCR2	8	H'FF91	ROM	8
Flash memory power control register	FLPWCR	8	H'FF92	ROM	8
Erase block register 1	EBR1	8	H'FF93	ROM	8
_	_	_	H'FF94 to H'FF9A	ROM	
Flash memory enable register	FENR	8	H'FF9B	ROM	8
_	_	_	H'FF9C to H'FF9F	ROM	
Timer control register V0	TCRV0	8	H'FFA0	Timer V	8
Timer control/status register V	TCSRV	8	H'FFA1	Timer V	8
Rev.5.00 Nov. 02, 2005 Page 376 of 500 REJ09B0027-0500		NESA	5		

ICSR

8

H'F74C

IIC2

8

I2C status register

Transmit data register	TDR	8	H'FFAB	SCI3	8
Serial status register	SSR	8	H'FFAC	SCI3	8
Receive data register	RDR	8	H'FFAD	SCI3	8
_	_	_	H'FFAE, H'FFAF	SCI3	_
A/D data register	ADDRA	16	H'FFB0	A/D converter	8
A/D data register	ADDRB	16	H'FFB2	A/D converter	8
A/D data register	ADDRC	16	H'FFB4	A/D converter	8
A/D data register	ADDRD	16	H'FFB6	A/D converter	8
A/D control/status register	ADCSR	8	H'FFB8	A/D converter	8
A/D control register	ADCR	8	H'FFB9	A/D converter	8
_	_	_	H'FFBA, H'FFBB	_	_
PWM data register L	PWDRL	8	H'FFBC	14-bit PWM	8
PWM data register U	PWDRU	8	H'FFBD	14-bit PWM	8
PWM control register	PWCR	8	H'FFBE	14-bit PWM	8
			H'FFBF	14-bit PWM	

BRR

SCR3

8

8

H'FFA9

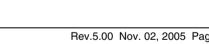
H'FFAA

SCI3

SCI3

8

8


REJ09

Bit rate register

Serial control register 3

Break address register H	BARH	8	H'FFCA
Break address register L	BARL	8	H'FFCB
Break data register H	BDRH	8	H'FFCC
Break data register L	BDRL	8	H'FFCD
Port pull-up control register 1	PUCR1	8	H'FFD0
Port pull-up control register 5	PUCR5	8	H'FFD1
_	_	_	H'FFD2, H'FFD3
Port data register 1	PDR1	8	H'FFD4
Port data register 2	PDR2	8	H'FFD5
Port data register 3	PDR3	8	H'FFD6
_	_	_	H'FFD7
Port data register 5	PDR5	8	H'FFD8
Port data register 6	PDR6	8	H'FFD9
Port data register 7	PDR7	8	H'FFDA
Port data register 8	PDR8	8	H'FFDB
_	_	_	H'FFDC

ABRKCR 8

ABRKSR 8

H'FFC8

H'FFC9

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Address break

Address break

Address break

Address

Address

Address break

I/O port

break

break

Address break control register

Address break status register

_	_	_	H'FFE7
Port control register 5	PCR5	8	H'FFE8
Port control register 6	PCR6	8	H'FFE9
Port control register 7	PCR7	8	H'FFEA
Port control register 8	PCR8	8	H'FFEB
_	_	_	H'FFEC to H'FFEF
System control register 1	SYSCR1	8	H'FFF0
System control register 2	SYSCR2	8	H'FFF1
Interrupt edge select register 1	IEGR1	8	H'FFF2
Interrupt edge select register 2	IEGR2	8	H'FFF3
Interrupt enable register 1	IENR1	8	H'FFF4
Interrupt enable register 2	IENR2	8	H'FFF5
Interrupt flag register 1	IRR1	8	H'FFF6
Interrupt flag register 2	IRR2	8	H'FFF7
Wakeup interrupt flag register	IWPR	8	H'FFF8
Module standby control register 1	MSTCR1	8	H'FFF9
Module standby control register 2	MSTCR2	8	H'FFFA
_	_		H'FFEB

PCR1

PCR2

PCR3

8

8

8

RENESAS

H'FFEB Low power

Interrupt 8 8 Interrupt

I/O port

Low power

Low power

Interrupt

Interrupt

Interrupt

Interrupt

Interrupt

Low power

Low power

Rev.5.00 Nov. 02, 2005 Pag

8

8

8

8

8

8

8

8

8

8

H'FFE4

H'FFE5

H'FFE6

8 8

8

8

8

8

REJ09

Port control register 1

Port control register 2

Port control register 3

EEPROM slave address register	_	8	H'FF09	EEPROM	_		
EEPROM key register	EKR	8	H'FF10	EEPROM	8		
Notes: 1. LVDC: Low-voltage detection circuits (optional)							

2. WDT: Watchdog timer

GRB_0 GRB0H7 GRB0H6 GRB0H5 GRB0H4 GRB0H3 GRB0H2 GRB0H1 GRB0L7 GRB0L6 GRB0L5 GRB0L4 GRB0L3 GRB0L2 GRB0L1 GRC_0 GRC0H7 GRC0H6 GRC0H5 GRC0H4 GRC0H3 GRC0H2 GRC0H1 GRC_0 GRC0L7 GRC0L6 GRC0L5 GRC0L4 GRC0L3 GRC0L2 GRC0L1 GRD_0 GRD0H7 GRD0H6 GRD0H5 GRD0H4 GRD0H3 GRD0H2 GRD0H1 TCR_1 CCLR2 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TIORA_1 — IOB2 IOB1 IOB0 — IOA2 IOA1 TIORC_1 — IOD2 IOD1 IOD0 — IOC2 IOC1 TSR_1 — — UDF OVF IMFD IMFC IMFB TIER_1 — — — OVIE IMIED IMIEC IMIEB POCR_1 — <th></th> <th>GRA0L7</th> <th>GRA0L6</th> <th>GRA0L5</th> <th>GRA0L4</th> <th>GRA0L3</th> <th>GRA0L2</th> <th>GRA0L1</th>		GRA0L7	GRA0L6	GRA0L5	GRA0L4	GRA0L3	GRA0L2	GRA0L1
GRC_0 GRC0H7 GRC0H6 GRC0H5 GRC0H4 GRC0H3 GRC0H2 GRC0H1 GRC0L7 GRC0L6 GRC0L5 GRC0L4 GRC0L3 GRC0L2 GRC0L1 GRD_0 GRD0H7 GRD0H6 GRD0H5 GRD0H4 GRD0H3 GRD0H2 GRD0H1 GRD0L7 GRD0L6 GRD0L5 GRD0L4 GRD0L3 GRD0L2 GRD0L1 TCR_1 CCLR2 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TIORA_1 — IOB2 IOB1 IOB0 — IOA2 IOA1 TIORC_1 — IOD2 IOD1 IOD0 — IOC2 IOC1 TSR_1 — — — OVIE IMIED IMIEC IMIEB TIER_1 — — — — — POLD POLC TCNT_1 TCNT1H7 TCNT1H6 TCNT1H5 TCNT1H4 TCNT1H3 TCNT1H2 TCNT1H1 TCNT1L7 TCNT1L6 TC	GRB_0	GRB0H7	GRB0H6	GRB0H5	GRB0H4	GRB0H3	GRB0H2	GRB0H1
GRCOL7 GRCOL6 GRCOL5 GRCOL4 GRCOL3 GRCOL2 GRCOL1 GRD_0 GRDOH7 GRDOH6 GRDOH5 GRDOH4 GRDOH3 GRDOH2 GRDOH1 GRDOL7 GRDOL6 GRDOL5 GRDOL4 GRDOL3 GRDOL2 GRDOL1 TCR_1 CCLR2 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TIORA_1 — IOB2 IOB1 IOB0 — IOA2 IOA1 TIORC_1 — IOD2 IOD1 IOD0 — IOC2 IOC1 TSR_1 — — UDF OVF IMFD IMFC IMFB TIER_1 — — — — POLD POLC TCNT_1 TCNT1H7 TCNT1H6 TCNT1H5 TCNT1H4 TCNT1H3 TCNT1H2 TCNT1H1 TCNT_1L7 TCNT1L6 TCNT1L5 TCNT1L4 TCNT1L3 TCNT1L2 TCNT1L1 GRA_1 GRA1L7 GRA1L6 GRA1L5		GRB0L7	GRB0L6	GRB0L5	GRB0L4	GRB0L3	GRB0L2	GRB0L1
GRD_0 GRD0H7 GRD0H6 GRD0H5 GRD0H4 GRD0H3 GRD0H2 GRD0H1 TCR_1 CCLR2 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TIORA_1 — IOB2 IOB1 IOB0 — IOA2 IOA1 TIORC_1 — IOD2 IOD1 IOD0 — IOC2 IOC1 TSR_1 — — UDF OVF IMFD IMFC IMFB TIER_1 — — — OVIE IMIED IMIEC IMIEB POCR_1 — — — — POLD POLC TCNT_1 TCNT1H7 TCNT1H6 TCNT1H5 TCNT1H4 TCNT1H3 TCNT1H2 TCNT1H1 GRA_1 GRA1H7 GRA1H6 GRA1H5 GRA1H4 GRA1H3 GRA1H2 GRA1H1 GRA1L7 GRA1L6 GRA1L5 GRA1L4 GRA1L3 GRA1L2 GRA1L1	GRC_0	GRC0H7	GRC0H6	GRC0H5	GRC0H4	GRC0H3	GRC0H2	GRC0H1
GRD0L7 GRD0L6 GRD0L5 GRD0L4 GRD0L3 GRD0L2 GRD0L1 TCR_1		GRC0L7	GRC0L6	GRC0L5	GRC0L4	GRC0L3	GRC0L2	GRC0L1
TCR_1 CCLR2 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TIORA_1 — IOB2 IOB1 IOB0 — IOA2 IOA1 TIORC_1 — IOD2 IOD1 IOD0 — IOC2 IOC1 TSR_1 — — UDF OVF IMFD IMFC IMFB TIER_1 — — — OVIE IMIED IMIEC IMIEB POCR_1 — — — — POLD POLC TCNT_1 TCNT1H7 TCNT1H6 TCNT1H5 TCNT1H4 TCNT1H3 TCNT1H2 TCNT1H1 TCNT1L7 TCNT1L6 TCNT1L5 TCNT1L4 TCNT1L3 TCNT1L2 TCNT1L1 GRA_1 GRA1H7 GRA1H6 GRA1H5 GRA1H4 GRA1H3 GRA1L2 GRA1H1 GRA1L7 GRA1L6 GRA1L5 GRA1L4 GRA1L3 GRA1L2 GRA1L1	GRD_0	GRD0H7	GRD0H6	GRD0H5	GRD0H4	GRD0H3	GRD0H2	GRD0H1
TIORA_1 — IOB2 IOB1 IOB0 — IOA2 IOA1 TIORC_1 — IOD2 IOD1 IOD0 — IOC2 IOC1 TSR_1 — UDF OVF IMFD IMFC IMFB TIER_1 — — OVIE IMIED IMIEC IMIEB POCR_1 — — — POLD POLC TCNT_1 TCNT1H6 TCNT1H5 TCNT1H4 TCNT1H3 TCNT1H2 TCNT1H1 TCNT1L7 TCNT1L6 TCNT1L5 TCNT1L4 TCNT1L3 TCNT1L2 TCNT1L1 GRA_1 GRA1H7 GRA1H6 GRA1H5 GRA1H4 GRA1H3 GRA1H2 GRA1H1 GRA1L7 GRA1L6 GRA1L5 GRA1L4 GRA1L3 GRA1L2 GRA1L1 Rev.5.00 Nov. 02,		GRD0L7	GRD0L6	GRD0L5	GRD0L4	GRD0L3	GRD0L2	GRD0L1
TIORC_1 — IOD2 IOD1 IOD0 — IOC2 IOC1 TSR_1 — UDF OVF IMFD IMFC IMFB TIER_1 — OVIE IMIED IMIEC IMIEB POCR_1 — — — POLD POLC TCNT_1 TCNT1H7 TCNT1H6 TCNT1H5 TCNT1H4 TCNT1H3 TCNT1H2 TCNT1H1 TCNT1L7 TCNT1L6 TCNT1L5 TCNT1L4 TCNT1L3 TCNT1L2 TCNT1L1 GRA_1 GRA1H7 GRA1H6 GRA1H5 GRA1H4 GRA1H3 GRA1H2 GRA1H1 GRA1L7 GRA1L6 GRA1L5 GRA1L4 GRA1L3 GRA1L2 GRA1L1 Rev.5.00 Nov. 02,	TCR_1	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1
TSR_1 — — UDF OVF IMFD IMFC IMFB TIER_1 — — — OVIE IMIED IMIEC IMIEB POCR_1 — — — — POLD POLC TCNT_1 TCNT1H7 TCNT1H6 TCNT1H5 TCNT1H4 TCNT1H3 TCNT1H2 TCNT1H1 TCNT1L7 TCNT1L6 TCNT1L5 TCNT1L4 TCNT1L3 TCNT1L2 TCNT1L1 GRA_1 GRA1H7 GRA1H6 GRA1H5 GRA1H4 GRA1H3 GRA1H2 GRA1H1 GRA1L7 GRA1L6 GRA1L5 GRA1L4 GRA1L3 GRA1L2 GRA1L1	TIORA_1	_	IOB2	IOB1	IOB0	_	IOA2	IOA1
TIER_1 — — — OVIE IMIED IMIEC IMIEB POCR_1 — — — — — POLD POLC TCNT_1 TCNT1H7 TCNT1H6 TCNT1H5 TCNT1H4 TCNT1H3 TCNT1H2 TCNT1H1 TCNT1L7 TCNT1L6 TCNT1L5 TCNT1L4 TCNT1L3 TCNT1L2 TCNT1L1 GRA_1 GRA1H7 GRA1H6 GRA1H5 GRA1H4 GRA1H3 GRA1H2 GRA1H1 GRA1L7 GRA1L6 GRA1L5 GRA1L4 GRA1L3 GRA1L2 GRA1L1 Rev.5.00 Nov. 02,	TIORC_1	_	IOD2	IOD1	IOD0	_	IOC2	IOC1
POCR_1 — — — — POLD POLC TCNT_1 TCNT1H7 TCNT1H6 TCNT1H5 TCNT1H4 TCNT1H3 TCNT1H2 TCNT1H1 TCNT1L7 TCNT1L6 TCNT1L5 TCNT1L4 TCNT1L3 TCNT1L2 TCNT1L1 GRA_1 GRA1H7 GRA1H6 GRA1H5 GRA1H4 GRA1H3 GRA1H2 GRA1H1 GRA1L7 GRA1L6 GRA1L5 GRA1L4 GRA1L3 GRA1L2 GRA1L1 Rev.5.00 Nov. 02,	TSR_1	_	_	UDF	OVF	IMFD	IMFC	IMFB
TCNT_1 TCNT1H7 TCNT1H6 TCNT1H5 TCNT1H4 TCNT1H3 TCNT1H2 TCNT1H1 TCNT1L7 TCNT1L6 TCNT1L5 TCNT1L4 TCNT1L3 TCNT1L2 TCNT1L1 GRA_1 GRA1H7 GRA1H6 GRA1H5 GRA1H4 GRA1H3 GRA1H2 GRA1H1 GRA1L7 GRA1L6 GRA1L5 GRA1L4 GRA1L3 GRA1L2 GRA1L1 Rev.5.00 Nov. 02,	TIER_1	_	_	_	OVIE	IMIED	IMIEC	IMIEB
TCNT1L7 TCNT1L6 TCNT1L5 TCNT1L4 TCNT1L3 TCNT1L2 TCNT1L1 GRA_1	POCR_1	_	_	_	_	_	POLD	POLC
GRA_1 GRA1H7 GRA1H6 GRA1H5 GRA1H4 GRA1H3 GRA1H2 GRA1H1 GRA1L7 GRA1L6 GRA1L5 GRA1L4 GRA1L3 GRA1L2 GRA1L1 Rev.5.00 Nov. 02,	TCNT_1	TCNT1H7	TCNT1H6	TCNT1H5	TCNT1H4	TCNT1H3	TCNT1H2	TCNT1H1
GRA1L7 GRA1L6 GRA1L5 GRA1L4 GRA1L3 GRA1L2 GRA1L1 Rev.5.00 Nov. 02,		TCNT1L7	TCNT1L6	TCNT1L5	TCNT1L4	TCNT1L3	TCNT1L2	TCNT1L1
Rev.5.00 Nov. 02,	GRA_1	GRA1H7	GRA1H6	GRA1H5	GRA1H4	GRA1H3	GRA1H2	GRA1H1
		GRA1L7	GRA1L6	GRA1L5	GRA1L4	GRA1L3	GRA1L2	GRA1L1
								0 Nov. 02,

IOD2

TCNT0L7

GRA0H7

IOD1

TCNT0L6 TCNT0L5

GRA0H5

GRA0H6

IOD0

OVF

OVIE

TCNT0L4

GRA0H4

TCNT0H7 TCNT0H6 TCNT0H5 TCNT0H4 TCNT0H3 TCNT0H2

IMFD

IMIED

TCNT0L3

GRA0H3

IOC2

IMFC

IMIEC

POLD

TCNT0L2

GRA0H2

IOC1

IMFB

IMIEB

POLC

TCNT0H1

TCNT0L1

GRA0H1

Rev.5.00 Nov. 02, 2005 Pag

IOC0

IMFA

IMIEA

POLB

TCNT0H0

TCNT0L0

GRA0H0

GRA0L0

GRB0H0

GRB0L0

GRC0H0

TIORC_0

TSR_0

TIER_0

POCR_0

TCNT_0

GRA_0

IOC1 IOC0 **IMFB** IMFA **IMIEB** IMIEA

POLB

TCNT1H0

TCNT1L0

GRA1H0

GRA1L0

RWKDR	BSY	_	_	_	_
RTCCR1	RUN	12/24	PM	RST	_
RTCCR2	_	_	FOIE	WKIE	DYIE
RTCCSR	_	RCS6	RCS5	_	RCS3
LVDCR	LVDE	_	_	_	LVDSEL
LVDSR	_	_	_	_	_
_	_	_	_	_	_
SMR_2	СОМ	CHR	PE	PM	STOP
BRR_2	BRR7	BRR6	BRR5	BRR4	BRR3
SCR3_2	TIE	RIE	TE	RE	MPIE
TDR_2	TDR7	TDR6	TDR5	TDR4	TDR3
SSR_2	TDRE	RDRF	OER	FER	PER
RDR_2	RDR7	RDR6	RDR5	RDR4	RDR3
ICCR1	ICE	RCVD	MST	TRS	CKS3
ICCR2	BBSY	SCP	SDAO	SDAOP	SCLO
ICMR	MLS	WAIT	_	_	BCWP

IIVIDII

TPMR

TFCR

TOER

TOCR

RSECDR

RMINDR

RHRDR

ו טוט

ED1

TOD1

BSY

BSY

BSY

PWMD1

STCLK

EC1

TOC1

SC12

MN12

PWMC1

ADEG

EB1

TOB1

SC11

MN11

HR11

PWMB1

ADTRG

EA1

TOA1

SC10

MN10

HR10

OLS1

ED0

TOD0

SC03

MN03

HR03

PWMD0

OLS0

EC0

TOC0

SC02

MN02

HR02

WK2

HRIE

RCS2

LVDRE

MP

BRR2

TEIE

TDR2

TEND

RDR2

CKS2

BC2

PWMC0

CMD1

EB0

TOB0

SC01

MN01

HR01

WK1

MNIE

RCS1

LVDDE

LVDDF

CKS1

BRR1

CKE1

TDR1

MPBR

RDR1

CKS1

IICRST

BC1

PWMB0

CMD0

EA0

TOA0

SC00

MN00

HR00

WK0

SEIE

RCS0

LVDUE

LVDUF

CKS0

BRR0

CKE0

TDR0

MPBT RDR0

CKS0

BC0

FLMCR1	_	SWE	ESU	PSU	EV	PV	E	Р
FLMCR2	FLER	_	_	_	_	_	_	_
FLPWCR	PDWND	_	_	_	_	_	_	_
EBR1	_	EB6	EB5	EB4	EB3	EB2	EB1	EB0
FENR	FLSHE	_	_	_	_	_	_	_
TCRV0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0
TCSRV	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0
TCORA	TCORA7	TCORA6	TCORA5	TCORA4	TCORA3	TCORA2	TCORA1	TCORA
TCORB	TCORB7	TCORB6	TCORB5	TCORB4	TCORB3	TCORB2	TCORB1	TCORB
TCNTV	TCNTV7	TCNTV6	TCNTV5	TCNTV4	TCNTV3	TCNTV2	TCNTV1	TCNTV
TCRV1	_	_	_	TVEG1	TVEG0	TRGE	_	ICKS0
_	_	_	_	_	_	_	_	_
SMR	СОМ	CHR	PE	PM	STOP	MP	CKS1	CKS0
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0
SCR3	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0
SSR	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT
RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0
ADDRA	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2
	AD1	AD0	_	_	_	_	_	_

10014

10013

10012

IODII

10010

10010

Rev.5.00 Nov. 02, 2005 Pag

ABRKCR	RTINTE	CSEL1	CSEL0	ACMP2	ACMP1
ABRKSR	ABIF	ABIE	_	_	_
BARH	BARH7	BARH6	BARH5	BARH4	BARH3
BARL	BARL7	BARL6	BARL5	BARL4	BARL3
BDRH	BDRH7	BDRH6	BDRH5	BDRH4	BDRH3
BDRL	BDRL7	BDRL6	BDRL5	BDRL4	BDRL3
_	_	_	_	_	_
PUCR1	PUCR17	PUCR16	PUCR15	PUCR14	_
PUCR5	_	_	PUCR55	PUCR54	PUCR53
PDR1	P17	P16	P15	P14	_
PDR2	_	_	_	P24	P23
PDR3	P37	P36	P35	P34	P33
PDR5	P57*3	P56*3	P55	P54	P53
PDR6	P67	P66	P65	P64	P63
PDR7	_	P76	P75	P74	_
	•		•		

ADOIL

PWDRL

PWDRU

PWCR

TCWD

TMWD

REJ09B0027-0500

TCSRWD

HUL

B6WI

TCWD7

PWDRL7

PWDRL6

TCWE

TCWD6

PWDRL5

PWDRU5

B4WI

TCWD5

PWDRL4

PWDRU4

TCSRWE

TCWD4

PWDRL3

PWDRU3

B2WI

TCWD3

CKS3

PWDRL2

PWDRU2

WDON

TCWD2

CKS2

ACMP0

BARH2

BARL2

BDRH2

BDRL2

PUCR12

PUCR52

P12

P22

P32

P52

P62

P72

PWDRL1

PWDRU1

B0WI

TCWD1

CKS1

DCMP1

BARH1

BARL1

BDRH1

BDRL1

PUCR11

PUCR51

P11

P21

P31

P51

P61

P71

PWDRL0

PWDRU0

PWCR0

WRST

TCWD0

CKS0

DCMP0

BARH0

BARL0

BDRH0

BDRL0

PUCR10

PUCR50 P10

P20

P30

P50

P60

P70

EEPRORGE		Bit 6	Bit 5	Bit 4	Bit 3
_	_	_	_	_	_
MSTCR2	MSTS3_2	_	_	MSTTB1	_
MSTCR1	_	MSTIIC	MSTS3	MSTAD	MSTW
IWPR	_	_	IWPF5	IWPF4	IWPF3
IRR2	_	_	IRRTB1	_	_
IRR1	IRRDT	IRRTA	_	_	IRRI3
IENR2	_	_	IENTB1	_	_

1 01100

PCR56*3

PCR66

PCR76

PCR86

STS2

LSON

IENTA

PCR55

PCR65

PCR75

PCR85

STS1

DTON

WPEG5

IENWP

PCR54

PCR64

PCR74

STS0

MA2

WPEG4

PCR57*3

PCR67

PCR87

SSBY

SMSEL

NMIEG

IENDT

PCR5

PCR6

PCR7

PCR8

SYSCR1

SYSCR2

IEGR1

IEGR2

IENR1

Name Bit 7 Bit 6 Bit 5 Bit 4 **EKR**

Notes: 1. LVDC: Low-voltage detection circuits (optional) 2. WDT: Watchdog timer

3. These bits are reserved in the EEPROM stacked F-ZTAT[™] and mask-ROM v

RENESAS

1 01100

PCR53

PCR63

NESEL

MA1

IEG3

IEN3

WPEG3

PCR52

PCR62

PCR72

MA0

IEG2

IEN2

IRRI2

IWPF2

Bit 2

WPEG2

PCR51

PCR61

PCR71

SA1

IEG1

IEN1

IRRI1

IWPF1

MSTTV

MSTTZ

WPEG1

PCR50

PCR60

PCR70

SA0

IEG0

IEN0

IRRI0

IWPF0

MSTTA

MSTPWM

WPEG0

Rev.5.00 Nov. 02, 2005 Pag

Bit 1

Bit 0

Ν N Е

TCNT_0	Initialized	_	_	_	_	_
GRA_0	Initialized	_	_	_	_	_
GRB_0	Initialized	_	_	_	_	_
GRC_0	Initialized	_	_	_	_	_
GRD_0	Initialized	_	_	_	_	_
TCR_1	Initialized	_	_	_	_	_
TIORA_1	Initialized	_	_	_	_	_
TIORC_1	Initialized	_	_	_	_	_
TSR_1	Initialized	_	_	_	_	_
TIER_1	Initialized	_	_	_	_	_
POCR_1	Initialized	_	_	_	_	_
TCNT_1	Initialized	_	_	_	_	_
GRA_1	Initialized	_	_	_	_	_
GRB_1	Initialized	_	_	_	_	_
GRC_1	Initialized	_	_	_	_	_
GRD_1	Initialized	_	_	_	_	_
TSTR	Initialized	_	_	_	_	_
TMDR	Initialized	_	_	_	_	_
TPMR	Initialized		_	_	_	_
TFCR	Initialized					_
TOER	Initialized					_
TOCR	Initialized				_	_

Rev.5.00 Nov. 02, 2005 Page 386 of 500 REJ09B0027-0500

RSECDR

RTC

1R_2	Initialized	_	_	Initialized	Initialized	Initialized	SCI
IR_2	Initialized	_	_	Initialized	Initialized	Initialized	
R3_2	Initialized			Initialized	Initialized	Initialized	
R_2	Initialized	_	_	Initialized	Initialized	Initialized	
R_2	Initialized	_	_	Initialized	Initialized	Initialized	
)R_2	Initialized	_	_	Initialized	Initialized	Initialized	
CR1	Initialized	_	_	_	_	_	IIC2
CR2	Initialized	_	_	_	_	_	
MR	Initialized	_	_	_	_	_	_
ER	Initialized	_	_	_	_	_	
SR	Initialized	_	_	_	_	_	
.R	Initialized	_	_	_	_	_	
ORT	Initialized	_	_	_	_	_	
ORR	Initialized	_	_	_	_	_	
IB1	Initialized	_	_	_	_	_	Time
:B1	Initialized	_	_	_	_	_	
MCR1	Initialized	_	_	Initialized	Initialized	Initialized	RON
MCR2	Initialized	_	_	_	_	_	
PWCR	Initialized	_	_	_	_	_	_
R1	Initialized	_	_	Initialized	Initialized	Initialized	
NR	Initialized	_	_	_	_	_	_
RV0	Initialized	_	_	Initialized	Initialized	Initialized	Time
SRV	Initialized	_		Initialized	Initialized	Initialized	_

Rev.5.00 Nov. 02, 2005 Pag

	Initialized	Initialized	Initialized	_	_	Initialized	SSR
	Initialized	Initialized	Initialized	_	_	Initialized	RDR
A/D c	Initialized	Initialized	Initialized	_	_	Initialized	ADDRA
_	Initialized	Initialized	Initialized	_	_	Initialized	ADDRB
_	Initialized	Initialized	Initialized	_	_	Initialized	ADDRC
_	Initialized	Initialized	Initialized	_	_	Initialized	ADDRD
_	Initialized	Initialized	Initialized	_	_	Initialized	ADCSR
_	Initialized	Initialized	Initialized	_	_	Initialized	ADCR
14bit	_	_	_	_	_	Initialized	PWDRL
_	_	_	_	_		Initialized	PWDRU
_	_	_	_	_	_	Initialized	PWCR
WDT	_	_	_	_		Initialized	TCSRWD
_	_	_	_	_	_	Initialized	TCWD
_	_	_	_	_		Initialized	TMWD
Addre	_	_	_	_	_	Initialized	ABRKCR
_	_	_	_	_	_	Initialized	ABRKSR
						Initialized	BARH
_						Initialized	BARL
_	_	_	_	_	_	Initialized	BDRH
_	_	_	_	_	_	Initialized	BDRL

IIIIIalizea

IIIIIaiiZeu

IIIIIaiiZeu

I/O po

Initialized

Initialized

Initialized

PUCR1

PUCR5

PDR1

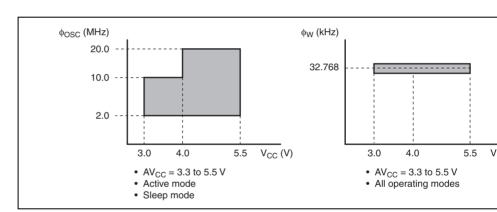
IIIIIIaiiZeu

PMR5	Initialized	_	_	_	_	_	
PMR3	Initialized	_	_	_	_	_	
PCR1	Initialized	_	_	_	_	_	
PCR2	Initialized	_	_	_	_	_	
PCR3	Initialized	_	_	_	_	_	
PCR5	Initialized	_	_	_	_	_	
PCR6	Initialized	_	_	_	_	_	
PCR7	Initialized	_	_	_	_	_	
PCR8	Initialized	_	_	_	_	_	
SYSCR1	Initialized	_	_	_	_	_	Low
SYSCR2	Initialized	_	_	_	_	_	
IEGR1	Initialized	_	_	_	_	_	Inte
IEGR2	Initialized	_	_	_	_	_	
IENR1	Initialized	_	_	_	_	_	
IENR2	Initialized	_	_	_	_	_	
IRR1	Initialized	_	_	_	_	_	
IRR2	Initialized	_	_	_	_	_	
IWPR	Initialized	_	_	_	_	_	
MSTCR1	Initialized	_	_	_	_	_	Low
MSTCR2	Initialized	_	_	_	_	_	<u>-</u>

IIIIIIaiiZeu

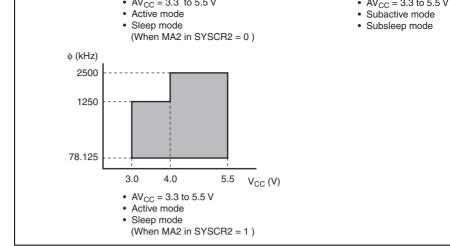
Rev.5.00 Nov. 02, 2005 Page 390 of 500

REJ09B0027-0500

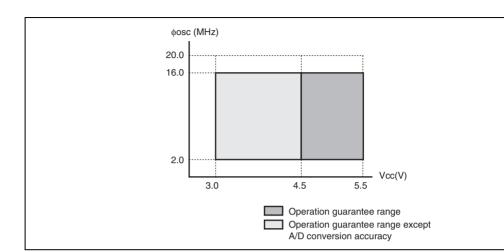

	and X1			
	Port B		-0.3 to AV _{cc} +0.3	٧
	X1		-0.3 to 4.3	V
Operating temperatu	ıre	T_{opr}	–20 to +75	°C
Storage temperature)	T_{stg}	-55 to +125	°C

Note: * Permanent damage may result if maximum ratings are exceeded. Normal opshould be under the conditions specified in Electrical Characteristics. Exceed values can result in incorrect operation and reduced reliability.

23.2 Electrical Characteristics (F-ZTATTM Version, EEPROM Sta F-ZTATTM Version)


23.2.1 Power Supply Voltage and Operating Ranges

Power Supply Voltage and Oscillation Frequency Range



Rev.5.00 Nov. 02, 2005 Pag

- V_{CC} = 3.0 to 5.5 V
 Active mode
- Sleep mode
- Range of Power Supply Voltage and Oscillation Frequency when Low-Voltage Det Circuit is Used

	,					_
	TMCIV, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1,SCK3, SCK3_2, TRGV		$V_{cc} \times 0.9$	_	V _{cc} + 0.3	
	RXD, RXD_2, SCL, SDA, P10 to P12, P14 to P17, P20 to P24, P30 to P37,	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$	$V_{cc} \times 0.7$	_	V _{cc} + 0.3	V
	P50 to P57, P60 to P67, P70 to P72 P74 to P76, P85 to P87		V _{cc} × 0.8	_	V _{cc} + 0.3	_
	PB0 to PB7	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$	$V_{\rm CC} \times 0.7$	_	$AV_{CC} + 0.3$	V
			$V_{cc} \times 0.8$	_	$AV_{CC} + 0.3$	
	OSC1	V_{cc} = 4.0 to 5.5 V	$V_{\rm CC} - 0.5$	_	$V_{CC} + 0.3$	V
			$V_{\rm CC} - 0.3$	_	$V_{CC} + 0.3$	
Input low V _{IL} voltage	RES, NMI, WKP0 to WKP5, IRQ0 to IRQ3, ADTRG, TMIB1, TMRIV,	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$	-0.3	_	V _{cc} ×0.2	V _
	TMCIV, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1, SCK3,		-0.3	_	V _{cc} ×0.1	

Note: Connect the TEST pin to Vss.

SCK3_2, TRGV

TMRIV,

Rev.5.00 Nov. 02, 2005 Page 394 of 500 RENESAS

				-0.3	_	0.3		
Output high voltage	V _{OH}	gh P14 to P17, —I _c litage P20 to P24, P30 to P37, —	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$ $-I_{OH} = 1.5 \text{ mA}$	V _{CC} - 1.0	_	_	V	
		P50 to P55, P60 to P67, P70 to P72, P74 to P76, P85 to P87,	-I _{OH} = 0.1 mA	V _{CC} - 0.5	_	_		
		P56, P57	$V_{CC} = 4.0 \text{ to } 5.5 \text{ V}$ $-I_{OH} = 0.1 \text{ mA}$	V _{cc} – 2.5	_	_	V	
			$V_{cc} = 3.0 \text{ to } 4.0 \text{ V}$ $-I_{OH} = 0.1 \text{ mA}$	V _{cc} – 2.0	_	_		
Output low voltage	V _{OL}	P10 to P12, P14 to P17, P20 to P24, P30 to P37,	V_{cc} = 4.0 to 5.5 V I_{oL} = 1.6 mA	_	_	0.6	V	
		P50 to P57, P70 to P72, P74 to P76, P85 to P87	$I_{OL} = 0.4 \text{ mA}$	_	_	0.4		
		P60 to P67	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$ $I_{oL} = 20.0 \text{ mA}$	_	_	1.5	V	
			$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$ $I_{oL} = 10.0 \text{ mA}$	_	_	1.0		
						$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$ $I_{OL} = 1.6 \text{ mA}$	_	_
			$I_{OL} = 0.4 \text{ mA}$	_	_	0.4		

 $V_{cc} = 4.0 \text{ to } 5.5 \text{ V} -0.3$

0.5

٧

PB0 to PB7

OSC1

REJ09

Rev.5.00 Nov. 02, 2005 Pag

		P10 to P12,	$V_{IN} = 0.5 \text{ V to}$	_
		P14 to P17,	$(V_{CC} - 0.5 \text{ V})$	
		P20 to P24,		
		P30 to P37,		
		P50 to P57,		
		P60 to P67,		
		P70 to P72,		
		P74 to P76,		
		P85 to P87,		
		PB0 to PB7	$V_{IN} = 0.5 \text{ V to}$	_
			$(AV_{CC} - 0.5 V)$	
Pull-up	$-I_{p}$	P10 to P12,	$V_{CC} = 5.0 \text{ V},$	50.0
MOS	·	P14 to P17,	$V_{IN} = 0.0 \text{ V}$	
current		P50 to P55	V _{CC} = 3.0 V,	_
			$V_{IN}^{CC} = 0.0 \text{ V}$	
Input	C _{in}	All input pins	f = 1 MHz,	_
capaci-		except power	$V_{IN} = 0.0 V,$	
tance		supply pins	$T_a = 25^{\circ}C$	
Active	I _{OPE1}	V _{cc}	Active mode 1	_
mode			$V_{CC} = 5.0 \text{ V},$	
current			$f_{OSC} = 20 \text{ MHz}$	
consump-			Active mode 1	_
tion			$V_{cc} = 3.0 \text{ V},$	
			$f_{OSC} = 10 \text{ MHz}$	
	I _{OPE2}	V _{cc}	Active mode 2	_
	OILL	00	$V_{CC} = 5.0 \text{ V},$	
			$f_{OSC} = 20 \text{ MHz}$	
			Active mode 2	_
			$V_{cc} = 3.0 \text{ V},$	
			$f_{OSC} = 10 \text{ MHz}$	

FIIODO, FIIOAT to FTIOD1 RXD, SCK3, RXD_2, SCK3_2, SCL, SDA

1.0

1.0

300.0

15.0

30.0

3.0

60.0

21.0

9.0

1.8

1.2

μΑ

μΑ

μΑ

рF

mΑ

mΑ

Rev.5.00 Nov. 02, 2005 Page 396 of 500

			$V_{cc} = 3.0 \text{ V},$ $f_{osc} = 10 \text{ MHz}$				
Subactive mode current consump-	I _{SUB}	V _{cc}	$V_{CC} = 3.0 \text{ V}$ 32-kHz crystal resonator $(\phi_{SUB} = \phi_W/2)$	_	35.0	70.0	μА
tion			$V_{CC} = 3.0 \text{ V}$ 32-kHz crystal resonator $(\phi_{SUB} = \phi_W/8)$		25.0	_	
Subsleep mode current consump- tion	I _{SUBSP}	V _{cc}	$V_{\rm CC} = 3.0 \text{ V}$ 32-kHz crystal resonator $(\phi_{\rm SUB} = \phi_{\rm W}/2)$	_	25.0	50.0	μА
Standby mode current consump- tion	I _{STBY}	V _{cc}	32-kHz crystal resonator not used	_	_	5.0	μА

2.0

Pin states during current consumption measurement are given below (exclud

in the pull-up MOS transistors and output buffers).

 V_{cc}

RAM data V_{RAM}

retaining voltage

٧

Standby mode	V _{cc}	CPU and timers both stop	V _{cc}	Main clock: ceramic or crysta		
				Subclock: Pin X1 = V _{SS}		

Crystal resonator

Table 23.2 DC Characteristics (2)

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$, unless otherwise indicated.

				Values			
Item	Symbol	Applicable Pins	Test Condition	Min	Тур	Max	Unit
EEPROM current consump- tion	I _{EEW}	V _{cc}	V_{cc} = 5.0 V, t_{scl} = 2.5 μs (when writing)	_	_	2.0	mA
	I _{EER}	V _{cc}	V_{cc} = 5.0 V, t_{scl} = 2.5 μs (when reading)	_	_	0.3	mA
	LEESTBY	V _{cc}	$V_{CC} = 5.0 \text{ V}, t_{SCL} = 2.5$ $\mu \text{s} \text{ (at standby)}$	_	_	3.0	μΑ

Note: The current consumption of the EEPROM chip is shown.

For the current consumption of H8/3687N, add the above current values to the consumption of H8/3687F.

		Port 6, SCL, and SDA	-
		Output pins except port 6, SCL, and SDA	
		Port 6, SCL, and SDA	_
Allowable output high current (per pin)	-I _{OH}	All output pins	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$
Allowable output high current (total)	$ -\Sigma I_{OH} $	All output pins	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$

 $\Sigma I_{\rm OL}$

Allowable output low current (total)

SDA Port 6

SDA

SCL, SDA

port 6, SCL, and

Output pins except $V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$

Rev.5.00 Nov. 02, 2005 Pag

REJ09

10.0

6.0

40.0

80.0

20.0

40.0

2.0

30.0

System clock (φ)	t _{cyc}			1	_	64	t _{osc}	*
cycle time				_	_	12.8	μs	
Subclock oscillation frequency	f _w	X1, X2		_	32.768	_	kHz	
Watch clock (ϕ_W) cycle time	t _w	X1, X2		_	30.5	_	μs	
Subclock (ϕ_{SUB}) cycle time	t _{subcyc}			2	_	8	t _w	*
Instruction cycle time				2	_	_	t _{cyc} t _{subcyc}	
Oscillation stabilization time (crystal resonator)	t _{rc}	OSC1, OSC2		_	_	10.0	ms	
Oscillation stabilization time (ceramic resonator)	t _{rc}	OSC1, OSC2		_	_	5.0	ms	
Oscillation stabilization time	t _{rex}	X1, X2		_	_	2.0	S	
External clock	t _{CPH}	OSC1	V _{cc} = 4.0 to 5.5 V	20.0	_		ns	F
high width				40.0	_	_	_	
External clock	t _{CPL}	OSC1	$V_{CC} = 4.0 \text{ to } 5.5 \text{ V}$	20.0	_	_	ns	_
low width				40.0	_	_	_	
External clock	t _{CPr}	OSC1	$V_{CC} = 4.0 \text{ to } 5.5 \text{ V}$	_	_	10.0	ns	_
rise time				_	_	15.0		
External clock	t _{CPf}	OSC1	$V_{CC} = 4.0 \text{ to } 5.5 \text{ V}$	_	_	10.0	ns	_
fall times								

15.0

RENESAS

REJ09B0027-0500

fall time

Rev.5.00 Nov. 02, 2005 Page 400 of 500

		TMCIV, TMRIV, TRGV, ADTRG, FTIOA0 to FTIOD0, FTIOA1 to				
		FTIOD1				
Input pin low width	t _{ii.}	NMI, TMIB1, IRQ0 to IRQ3, WKP0 to WKP5, TMCIV, TMRIV, TRGV, ADTRG, FTIOA0 to FTIOD0,	2	_	_	t _{cyc}

WKP5,

FTIOD1 Notes: 1. When an external clock is input, the minimum system clock oscillation freque

1.0 MHz. 2. Determined by MA2, MA1, MA0, SA1, and SA0 of system control register 2 (

SCL and SDA input spike pulse removal time	t _{sp}		_	_	1t _{cyc}	ns
SDA input bus-free time	t _{BUF}		5t _{cyc}	_	_	ns
Start condition input hold time	t _{stah}		3t _{cyc}	_	_	ns
Retransmission start condition input setup time	t _{STAS}		3t _{cyc}	_	_	ns
Setup time for stop condition input	t _{stos}		3t _{cyc}	_	_	ns
Data-input setup time	t _{SDAS}		1t _{cyc} +20	_	_	ns
Data-input hold time	t _{SDAH}		0	_	_	ns
Capacitive load of SCL and SDA	C _b		0	_	400	pF
SCL and SDA output fall time	t _{sf}	$V_{cc} = 4.0 \text{ to}$ 5.5 V	· —	_	250	ns
			_	_	300	_

width	SCKW						Scyc	
Transmit data delay	t _{TXD}	TXD	V _{CC} = 4.0 to 5.5 V	_	_	1	t _{cyc}	ı
time (clocked synchronous)				_	_	1	_	
Receive data setup	t _{RXS}	RXD	$V_{CC} = 4.0 \text{ to } 5.5 \text{ V}$	50.0	_	_	ns	_
time (clocked synchronous)				100.0	_	_	_	
Receive data hold	t _{RXH}	RXD	$V_{CC} = 4.0 \text{ to } 5.5 \text{ V}$	50.0	_	_	ns	
time (clocked synchronous)				100.0	_	_	_	

raiding power suppry	OPE	CC	71 °CC = 0.0 °		
current			f _{osc} = 20 MHz		
	Al _{STOP1}	AV_cc		_	50
	Al _{STOP2}	AV _{cc}		_	_
Analog input capacitance	C _{AIN}	AN0 to AN7		_	_
Allowable signal source impedance	R _{AIN}	AN0 to AN7		_	_
Resolution (data length)				10	10
Conversion time (single mode)			AV _{cc} = 3.3 to 5.5 V	134	_
Nonlinearity error				_	_
Offset error				_	
Full-scale error				_	_
Quantization error				_	_
Absolute accuracy				_	_
Conversion time (single mode)			$AV_{cc} = 4.0 \text{ to}$ 5.5 V	70	_
Nonlinearity error				_	
Offset error				_	_
Full-scale error				_	_
Quantization error					_
Absolute accuracy					_

AN7

 $\mathsf{AV}_{\mathsf{cc}}$

Analog power supply Alope

 $AV_{cc} = 5.0 V$ —

2.0

5.0

30.0

5.0

10

±7.5

±7.5

±7.5

±0.5

±8.0

±7.5

±7.5

±7.5

±0.5

±8.0

mΑ

μΑ

μΑ

рF

kΩ

bit

 $\mathbf{t}_{\mathrm{cyc}}$

LSB

LSB

LSB

LSB

LSB

 $\mathsf{t}_{\scriptscriptstyle\mathsf{cyc}}$

LSB

LSB

LSB

LSB

LSB

RENESAS

- 2. Al_{STOP1} is the current in active and sleep modes while the A/D converter is idle
 - 3. Al_{STOP2} is the current at reset and in standby, subactive, and subsleep modes A/D converter is idle.

23.2.5 Watchdog Timer Characteristics

Table 23.7 Watchdog Timer Characteristics

 $V_{cc} = 3.0$ to 5.5 V, $V_{ss} = 0.0$ V, $T_{s} = -20$ to +75°C, unless otherwise indicated.

		Applicable	Test		Value	s	
Item	Symbol	Pins	Condition	Min	Тур	Max	Unit
On-chip oscillator overflow time	t _{ovf}			0.2	0.4	_	S

Note: * Shows the time to count from 0 to 255, at which point an internal reset is gen when the internal oscillator is selected.

toprogrammi	ioprogramming ocum			.000	.0000	
Programming	Wait time after SWE bit setting* ¹	х		1	_	_
	Wait time after PSU bit setting* ¹	у		50	_	_
	Wait time after P bit setting	z1	$1 \le n \le 6$	28	30	32
	*1*4	z2	$7 \le n \le 1000$	198	200	202
		z3	Additional- programming	8	10	12
	Wait time after P bit clear*1	α		5	_	_
	Wait time after PSU bit clear*1	β		5	_	_
	Wait time after PV bit setting*1	γ		4	_	_
	Wait time after dummy write*1	ε		2	_	_
	Wait time after PV bit clear*1	η		2	_	_
	Wait time after SWE bit clear*1	θ		100	_	_
	Maximum programming count *1*4*5	N		_	_	1000

Rev.5.00 Nov. 02, 2005 Page 406 of 500 REJ09B0027-0500

		Wait time after dummy write* ¹	ε	2	_	_
		Wait time after EV bit clear*1	η	4	_	_
		Wait time after SWE bit clear*1	θ	100	_	_
		Maximum erase count *1*6*7	N	_	_	120
Notes:	1.	Make the time settings in acc	ake the time settings in accordance with the program/erase algorithms.			
	2.		e programming time for 128 bytes. (Indicates the total time for which the P mory control register 1 (FLMCR1) is set. The program-verify time is not in			

γ

20

- not in 3. The time required to erase one block. (Indicates the time for which the E bit in
 - memory control register 1 (FLMCR1) is set. The erase-verify time is not inclu-4. Programming time maximum value (t_p(max.)) = wait time after P bit setting (z maximum programming count (N) 5. Set the maximum programming count (N) according to the actual set values of
 - and z3, so that it does not exceed the programming time maximum value (t_p(t The wait time after P bit setting (z1, z2) should be changed as follows accord value of the programming count (n). Programming count (n)
 - $1 \le n \le 6$ $z1 = 30 \mu s$
 - $7 \le n \le 1000$ $z2 = 200 \mu s$

Wait time after EV

bit setting*1

- 6. Erase time maximum value $(t_c(max.))$ = wait time after E bit setting $(z) \times maxi$
- erase count (N)
- 7. Set the maximum erase count (N) according to the actual set value of (z), so
 - does not exceed the erase time maximum value (t_E(max.)).

RENESAS

REJ09

SCL, SDA input spike pulse removal time	t _{sp}	_	_	50	ns
SDA input bus-free time	t _{BUF}	1200	_	_	ns
Start condition input hold time	t _{STAH}	600	_	_	ns
Retransmit start condition input setup time	t _{stas}	600	_	_	ns
Stop condition input setup time	t _{stos}	600	_	_	ns
Data input setup time	t _{sdas}	160	_	_	ns
Data input hold time	t _{SDAH}	0	_	_	ns
SCL, SDA input fall time	t _{sf}	_	_	300	ns
SDA input rise time	t _{Sr}	_	_	300	ns
Data output hold time	t _{DH}	50	_	_	ns
SCL, SDA capacitive load	C _b	0	_	400	pF
Access time	t _{AA}	100	_	900	ns

 \mathbf{t}_{wc}

 \mathbf{t}_{RES}

10

13

ms

ms

control).

Cycle time at writing*

Reset release time

Note:

Cycle time at writing is a time from the stop condition to write completion (inter

Rev.5.00 Nov. 02, 2005 Page 408 of 500

Lower-limit voltage of LVDR operation*3	$V_{\scriptscriptstyle LVDRmin}$		1.0	_	_
LVD stabilization time	t _{LVDON}		50	_	_
Current consumption in standby mode	I _{STBY}	LVDE = 1, Vcc = 5.0 V, When a 32-kHz crystal resonator is not used	 r	_	350
Notes: 1. This voltage should be used. 2. Select the low-voltage reconstruction.		· ·			

3. When the power-supply voltage (Vcc) falls below $V_{LVDRmin} = 1.0 \text{ V}$ and then rise

Vreset1

Vreset2

LVDSEL = 0

LVDSEL = 1

2.3

3.6

Values

REJ09

3.0

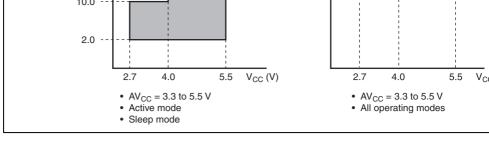
2.7

4.2

may not occur. Therefore sufficient evaluation is required.

23.2.9 **Power-On Reset Circuit Characteristics (Optional)**

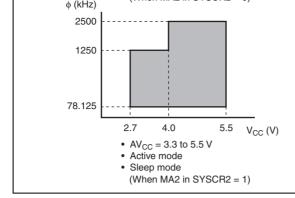
Table 23.11 Power-On Reset Circuit Characteristics


Reset detection voltage 1*1

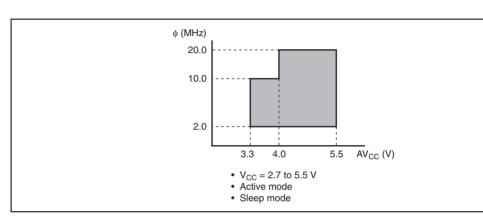
Reset detection voltage 2*2

 $V_{ss} = 0.0 \text{ V}$, $T_a = -20 \text{ to } +75^{\circ}\text{C}$, unless otherwise indicated.

Item		Symbol	Test Condition	Min	Тур	Max
Pull-up re	esistance of RES pin	R _{RES}		100	150	_
Power-or	n reset start voltage*	V_{por}		_	_	100
Note: *	The power-supply voltage charge of the RES pin is pin, it is recommended the voltage (Vcc) rises from	removed co	ompletely. In order e be placed in the	to rer Vcc si	move chargide. If the p	ge of the



Power Supply Voltage and Operating Frequency Range


Rev.5.00 Nov. 02, 2005 Page 410 of 500

REJ09B0027-0500

Analog Power Supply Voltage and A/D Converter Accuracy Guarantee Range

Range of Power Supply Voltage and Oscillation Frequency when Low-Voltage Det Circuit is Used

L	Operation guarantee range
	Operation guarantee range excep
	A/D conversion accuracy

Rev.5.00 Nov. 02, 2005 Page 412 of 500

REJ09B0027-0500

1 IVII 11 V ,					
TMCIV, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1, SCK3, SCK3_2, TRGV		V _{cc} × 0.9	_	V _{cc} + 0.3	
RXD, RXD_2 SCL, SDA, P10 to P12, P14 to P17, P20 to P24, P30 to P37	V_{cc} = 4.0 to 5.5 V	V _{cc} ×0.7	_	V _{cc} + 0.3	V
P50 to P57, P60 to P67, P70 to P72, P74 to P76, P85 to P87		V _{CC} × 0.8	_	V _{cc} + 0.3	
PB0 to PB7	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$	$V_{cc} \times 0.7$ $V_{cc} \times 0.8$	_	$AV_{CC} + 0.3$ $AV_{CC} + 0.3$	V
OSC1	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$	$V_{cc} - 0.5$ $V_{cc} - 0.3$		$V_{cc} + 0.3$ $V_{cc} + 0.3$	V

Rev.5.00 Nov. 02, 2005 Pag

REJ09

ADTAG, HVIIDT, TMRIV,

Note: Connect the TEST pin to Vss.

		SCL, SDA, P10 to P12, P14 to P17, P20 to P24, P30 to P37,	v _{cc} = 4.0 to 5.5 v	- 0.3		V _{CC} ∧ U. 3	V
		P50 to P57, P60 to P67, P70 to P72, P74 to P76, P85 to P87, PB0 to PB7		-0.3	_	V _{cc} ×0.2	_
		OSC1	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$	-0.3	_	0.5	_ V
				-0.3	_	0.3	
Output high voltage	V _{OH}	P10 to P12, P14 to P17, P20 to P24, P30 to P37,	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$ $-I_{OH} = 1.5 \text{ mA}$	V _{cc} – 1.0	_	_	V
		P50 to P55, P60 to P67, P70 to P72, P74 to P76, P85 to P87	-I _{OH} = 0.1 mA	V _{cc} – 0.5	_	_	
		P56, P57	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$ $-I_{OH} = 0.1 \text{ mA}$	V _{cc} – 2.5	_	_	V
			V _{cc} =2.7 to 4.0 V	V _{cc} - 2.0	_	_	_
			$-I_{OH} = 0.1 \text{ mA}$				

Rev.5.00 Nov. 02, 2005 Page 414 of 500

			CC				
			$I_{OL} = 10.0 \text{ mA}$				
			$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$	_	_	0.4	_
			$I_{OL} = 1.6 \text{ mA}$				
			I _{OL} = 0.4 mA	_	_	0.4	_
		SCL, SDA	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$	_	_	0.6	V
			$I_{OL} = 6.0 \text{ mA}$				
			I _{OL} = 3.0 mA	_	_	0.4	_
Input/ output leakage current	I _{IL}	OSC1, TMIB1, RES, NMI, WKP0 to WKP5, IRQ0 to IRQ3, ADTRG, TRGV, TMRIV, TMCIV, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1, RXD, SCK3, RXD_2, SCK3_2, SCL, SDA	$V_{IN} = 0.5 \text{ V to}$ $(V_{CC} - 0.5 \text{ V})$	_	_	1.0	μΑ
		P10 to P12, P14 to P17, P20 to P24, P30 to P37, P50 to P57, P60 to P67, P70 to P72, P74 to P76, P85 to P87,	$V_{IN} = 0.5 \text{ V to}$ $(V_{CC} - 0.5 \text{ V})$	_	_	1.0	μА
		PB0 to PB7	V _{IN} = 0.5 V to	_		1.0	μA

V_{cc} = 4.0 to 5.5 V —

REJ09

consump- ion			Active mode 1 $V_{cc} = 3.0 \text{ V},$ $f_{osc} = 10 \text{ MHz}$		9.0		
	I _{OPE2}	V _{cc}	Active mode 2 $V_{cc} = 5.0 \text{ V},$ $f_{osc} = 20 \text{ MHz}$	_	1.8	3.0	m <i>l</i>
			Active mode 2 $V_{cc} = 3.0 \text{ V},$ $f_{osc} = 10 \text{ MHz}$	_	1.2		
Sleep mode current consump- tion	I _{SLEEP1}	V _{cc}	Sleep mode 1 $V_{CC} = 5.0 \text{ V},$ $f_{OSC} = 20 \text{ MHz}$	_	17.5	22.5	m <i>A</i>
			Sleep mode 1 $V_{cc} = 3.0 \text{ V},$ $f_{osc} = 10 \text{ MHz}$	_	7.5		
	I _{SLEEP2}	V _{cc}	Sleep mode 2 $V_{CC} = 5.0 \text{ V},$ $f_{OSC} = 20 \text{ MHz}$		1.7	2.7	m/
			Sleep mode 2 $V_{cc} = 3.0 \text{ V},$ $f_{osc} = 10 \text{ MHz}$	_	1.1		
Subactive mode current consump-	I _{SUB}	V _{cc}	$V_{CC} = 3.0 \text{ V}$ 32-kHz crystal resonator $(\phi_{SUB} = \phi_W/2)$	_	35.0	70.0	μΑ
tion			$V_{\rm CC} = 3.0 \text{ V}$ 32-kHz crystal resonator $(\phi_{\rm SUB} = \phi_{\rm W}/8)$	_	25.0		
Subsleep mode current consump- tion	SUBSP	V _{cc}	$V_{\rm CC} = 3.0 \text{ V}$ 32-kHz crystal resonator $(\phi_{\rm SUB} = \phi_{\rm W}/2)$	_	25.0	50.0	μΑ
Rev.5.00 N REJ09B002		2005 Page 416	6 of 500	<u>-</u>			

Active mode 1	V _{cc}	Operates	V _{cc}	Main clock: ceramic or cry resonator
Active mode 2		Operates (\phiOSC/64)		Subclock: Pin X1 = V _{SS}
Sleep mode 1	V _{cc}	Only timers operate	V _{cc}	
Sleep mode 2	_	Only timers operate (φOSC/64)	_	
Subactive mode	V _{cc}	Operates	V _{cc}	Main clock: ceramic or cry resonator
Subsleep mode	V _{cc}	Only timers operate	V _{cc}	Subclock reso
Standby mode	V _{cc}	CPU and timers both stop	V _{cc}	Main clock: ceramic or cry resonator

Internal State

RES Pin

Mode

Oscillator Pi

Subclock: Pin X1 = V_{SS}

Other Pins

Note: * The current consumption of the EEPROM chip is shown.

For the current consumption of H8/3687N, add the above current values to the consumption of H8/3687.

Rev.5.00 Nov. 02, 2005 Page 418 of 500 REJ09B0027-0500

RENESAS

		SCL, and SDA	
		Port 6, SCL, and SDA	_
		Output pins except port 6, SCL, and SDA	
		Port 6, SCL, and SDA	
Allowable output high	-I _{OH}	All output pins	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$
current (per pin)			
Allowable output high	$ -\Sigma I_{OH} $	All output pins	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$
current (total)			

SCL, and SDA

Output pins

except port 6,

 $V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$

Port 6 SCL, SDA

 $\Sigma {\rm I}_{\rm OL}$

Allowable output low

current (total)

Rev.5.00 Nov. 02, 2005 Pag

REJ09

10.0

6.0

40.0

80.0

20.0

40.0

2.0

30.0

System clock (φ)	t _{cyc}			1		64	t _{osc}	*2
cycle time				_	_	12.8	μs	
Subclock oscillation frequency	f _w	X1, X2		_	32.768	_	kHz	
Watch clock (ϕ_w) cycle time	t _w	X1, X2		_	30.5	_	μs	
Subclock (ϕ_{SUB}) cycle time	t _{subcyc}			2	_	8	t _w	*2
Instruction cycle time				2	_	_	t _{cyc} t _{subcyc}	
Oscillation stabilization time (crystal resonator)	t _{rc}	OSC1, OSC2		_	_	10.0	ms	
Oscillation stabilization time (ceramic resonator)	t _{re}	OSC1, OSC2		_	_	5.0	ms	
Oscillation stabilization time	t _{rex}	X1, X2		_	_	2.0	S	
External clock	t _{CPH}	OSC1	$V_{CC} = 4.0 \text{ to } 5.5 \text{ V}$	20.0	_	_	ns	F
high width				40.0	_	_		
External clock	t _{CPL}	OSC1	$V_{CC} = 4.0 \text{ to } 5.5 \text{ V}$	20.0	_	_	ns	
low width				40.0	_	_	_	
External clock	t _{CPr}	OSC1	$V_{CC} = 4.0 \text{ to } 5.5 \text{ V}$	_	_	10.0	ns	_
rise time				_	_	15.0		
External clock	t _{CPf}	OSC1	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$			10.0	ns	_
							_	

Rev.5.00 Nov. 02, 2005 Page 420 of 500

REJ09B0027-0500

fall time

15.0

		WKP5, TMCIV, TMRIV, TRGV, ADTRG, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1				
Input pin low width	t _{IL}	NMI, TMIB1, IRQ0 to IRQ3, WKP0 to WKP5, TMCIV, TMRIV, TRGV, ADTRG, FTIOA0 to FTIOD0, FTIOA1 to	2	_	_	t _{cyc} t _{subcyc}

Notes: 1. When an external clock is input, the minimum system clock oscillation freque

When an external clock is input, the minimum system clock oscillation neque
 MHz.
 Determined by MA2, MA1, MA0, SA1, and SA0 of system control register 2 (

SCL and SDA input spike pulse removal time	t _{SP}		_	_	1t _{cyc}	ns
SDA input bus-free time	t _{BUF}		5t _{cyc}	_	_	ns
Start condition input hold time	t _{stah}		3t _{cyc}	_	_	ns
Retransmission start condition input setup time	t _{stas}		3t _{cyc}	_	_	ns
Setup time for stop condition input	t _{stos}		3t _{cyc}	_	_	ns
Data-input setup time	t _{sdas}		1t _{cyc} +20	_	_	ns
Data-input hold time	t _{SDAH}		0	_		ns
Capacitive load of SCL and SDA	C _b		0	_	400	pF
SCL and SDA output fall time	t _{sf}	V _{cc} = 4.0 to 5.5 V	_	_	250	ns
			_	_	300	-

time (clocked synchronous)				_	_	1	
Receive data setup	t _{RXS}	RXD	$V_{CC} = 4.0 \text{ to } 5.5 \text{ V}$	50.0	_	_	ns
time (clocked synchronous)				100.0	_	_	
Receive data hold	t _{RXH}	RXD	$V_{\rm CC} = 4.0 \text{ to } 5.5 \text{ V}$	50.0	_	_	ns
time (clocked synchronous)				100.0	_	_	_

TXD

Transmit data delay

V_{CC} = 4.0 to 5.5 V — —

REJ09

	Al _{STOP1}	$AV_{\mathtt{CC}}$		_	50
	Al _{STOP2}	AV_cc		_	_
Analog input capacitance	C _{AIN}	AN0 to AN7		_	_
Allowable signal source impedance	R _{AIN}	AN0 to AN7		_	_
Resolution (data length)				10	10
Conversion time (single mode)			AV _{cc} = 3.3 to 5.5 V	134	_
Nonlinearity error				_	_
Offset error				_	_
Full-scale error				_	_
Quantization error				_	_
Absolute accuracy				_	_
Conversion time (single mode)			$AV_{cc} = 4.0 \text{ to}$ 5.5 V	70	_
Nonlinearity error				_	_
Offset error				_	_
Full-scale error					
Quantization error				_	_

AN7

 AV_{cc}

Analog power supply Alope

current

RENESAS

0.3

2.0

5.0

30.0

5.0

10

±7.5

±7.5

±7.5

±0.5

±8.0

±7.5

±7.5

±7.5

±8.0

mA

μΑ

μA pF

 $k\Omega$

bit

t_{cyc}

LSB

LSB

LSB

LSB

LSB

 $\mathbf{t}_{\scriptscriptstyle{\mathrm{cyc}}}$

LSB

LSB LSB

LSB

LSB

 $AV_{cc} = 5.0 \text{ V}$

 $f_{\rm osc} =$ 20 MHz

Rev.5.00 Nov. 02, 2005 Page 424 of 500

Absolute accuracy

- 2. Al_{STOP1} is the current in active and sleep modes while the A/D converter is idle
 - 3. Al_{STOP2} is the current at reset and in standby, subactive, and subsleep modes A/D converter is idle.

Watchdog Timer Characteristics 23.3.5

Table 23.17 Watchdog Timer Characteristics

 $V_{cc} = 2.7$ to 5.5 V, $V_{ss} = 0.0$ V, $T_{a} = -20$ to +75°C, unless otherwise indicated.

		Applicable	Test	Values		1	
Item	Symbol	Pins	Condition	Min	Тур	Max	Unit
On-chip oscillator overflow time	t _{ovf}			0.2	0.4	_	S
Note: *	Shows the t	ime to count fro	m 0 to 255, a	t which p	oint an i	nternal re	eset is aen

when the internal oscillator is selected.

REJ09

SCL, SDA input spike pulse removal time	t _{sp}	_	_	50	ns
SDA input bus-free time	t _{BUF}	1200	_	_	ns
Start condition input hold time	t _{STAH}	600	_	_	ns
Retransmit start condition input setup time	t _{stas}	600	_	_	ns
Stop condition input setup time	t _{stos}	600	_	_	ns
Data input setup time	t _{SDAS}	160	_	_	ns
Data input hold time	t _{SDAH}	0	_	_	ns
SCL, SDA input fall time	t _{sf}	_	_	300	ns
SDA input rise time	t _{Sr}	_	_	300	ns
Data output hold time	t _{DH}	50	_	_	ns
SCL, SDA capacitive load	C _b	0	_	400	pF
Access time	t	100	_	900	ns

 t_{wc}

 \mathbf{t}_{RES}

control).

Rev.5.00 Nov. 02, 2005 Page 426 of 500

Cycle time at writing*

Reset release time

Note:

RENESAS

Cycle time at writing is a time from the stop condition to write completion (inter

10

13

ms

ms

Reset detection voltage 1*1	Vreset1	LVDSEL = 0	_	2.3	2.7
Reset detection voltage 2*2	Vreset2	LVDSEL = 1	3.0	3.6	4.2
Lower-limit voltage of LVDR operation*3	$V_{\scriptscriptstyle LVDRmin}$		1.0	_	_
LVD stabilization time	t _{LVDON}		50	_	_
Current consumption in standby mode	I _{STBY}	LVDE = 1, Vcc = 5.0 V, When a 32- kHz crystal resonator is not used	_	_	350
Notes: 1. This voltage should be	used when th	ne falling and ris	ing volta	age dete	ction fun

used.

- 2. Select the low-voltage reset 2 when only the low-voltage detection reset is us
- 3. When the power-supply voltage (Vcc) falls below $V_{\text{\tiny LVDRmin}} = 1.0 \text{ V}$ and then rise may not occur. Therefore sufficient evaluation is required.

voltage

charge of the RES pin is removed completely. In order to remove charge of the pin, it is recommended that the diode be placed in the Vcc side. If the power-su voltage (Vcc) rises from the point over 100 mV, a power-on reset may not occur

23.4 Operation Timing

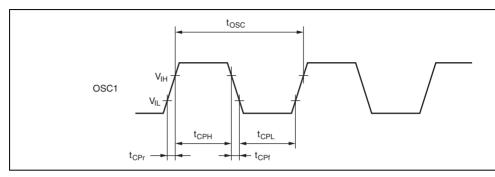


Figure 23.1 System Clock Input Timing

REJ09B0027-0500

Figure 23.2 RES Low Width Timing

Figure 23.3 Input Timing

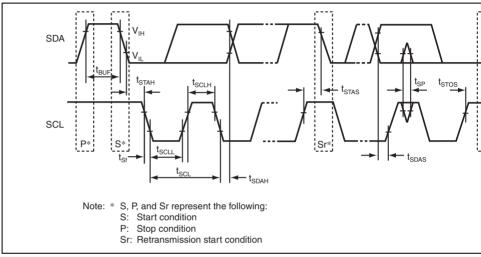


Figure 23.4 I²C Bus Interface Input/Output Timing

RENESAS

Rev.5.00 Nov. 02, 2005 Pag

REJ09

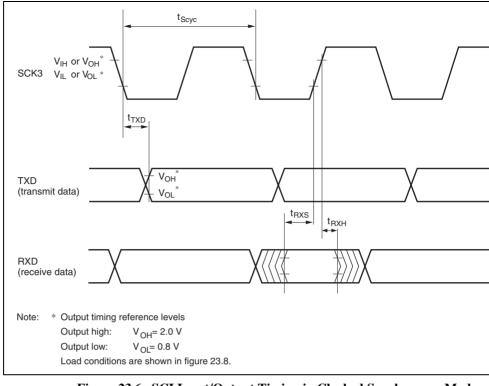


Figure 23.6 SCI Input/Output Timing in Clocked Synchronous Mode

Rev.5.00 Nov. 02, 2005 Page 430 of 500

REJ09B0027-0500

(out) ///////

Figure 23.7 EEPROM Bus Timing

23.5 Output Load Condition

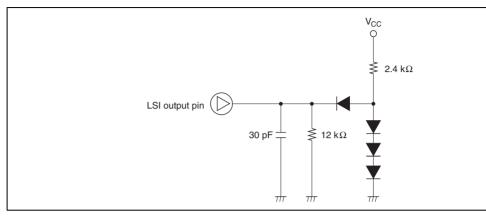


Figure 23.8 Output Load Circuit

REJ09

Rev.5.00 Nov. 02, 2005 Page 432 of 500 REJ09B0027-0500

RENESAS

	ERs	General source register (address register or 32-bit register)
-	ERn	General register (32-bit register)
_	(EAd)	Destination operand
_	(EAs)	Source operand
_	PC	Program counter
-	SP	Stack pointer
_	CCR	Condition-code register
_	N	N (negative) flag in CCR
_	Z	Z (zero) flag in CCR
_	V	V (overflow) flag in CCR
_	С	C (carry) flag in CCR
_	disp	Displacement

the state on the left to the state on the right Addition of the operands on both sides

Multiplication of the operands on both sides

Logical AND of the operands on both sides Logical OR of the operands on both sides

ERd

 \oplus

(), <>

General destination register (address register or 32-bit register)

Logical exclusive OR of the operands on both sides NOT (logical complement)

Contents of operand

Transfer from the operand on the left to the operand on the right, or trans

Subtraction of the operand on the right from the operand on the left

Division of the operand on the left by the operand on the right

REJ09

_	Not affected by execution of the instruction
Δ	Varies depending on conditions, described in notes

Rev.5.00 Nov. 02, 2005 Page 434 of 500

MOV.B @(d:24, ERs), Rd	В				8				@(d:24, ERs) → Rd8
MOV.B @ERs+, Rd	В					2			@ERs → Rd8
									ERs32+1 → ERs32
MOV.B @aa:8, Rd	В						2		@aa:8 → Rd8
MOV.B @aa:16, Rd	В						4		@aa:16 → Rd8
MOV.B @aa:24, Rd	В						6		@aa:24 → Rd8
MOV.B Rs, @ERd	В			2					Rs8 → @ERd
MOV.B Rs, @(d:16, ERd)	В				4				Rs8 → @(d:16, ERd)
MOV.B Rs, @(d:24, ERd)	В				8				Rs8 → @(d:24, ERd)
MOV.B Rs, @-ERd	В					2			ERd32−1 → ERd32
									Rs8 → @ERd
MOV.B Rs, @aa:8	В						2		Rs8 → @aa:8
MOV.B Rs, @aa:16	В						4		Rs8 → @aa:16
MOV.B Rs, @aa:24	В						6		Rs8 → @aa:24
MOV.W #xx:16, Rd	W	4							#xx:16 → Rd16
MOV.W Rs, Rd	W		2						Rs16 → Rd16
MOV.W @ERs, Rd	W			2					@ERs → Rd16
MOV.W @(d:16, ERs), Rd	W				4				@(d:16, ERs) → Rd16
MOV.W @(d:24, ERs), Rd	W				8				@(d:24, ERs) → Rd16
MOV.W @ERs+, Rd	W					2			@ERs → Rd16
									ERs32+2 \rightarrow @ ERd32
MOV.W @aa:16, Rd	W						4		@aa:16 → Rd16
MOV.W @aa:24, Rd	W						6		@aa:24 → Rd16
MOV.W Rs, @ERd	W			2					Rs16 → @ ERd
MOV.W Rs, @(d:16, ERd)	W				4				Rs16 → @ (d:16, ERd)
MOV.W Rs, @(d:24, ERd)	W				8				Rs16 → @ (d:24, ERd)
-	_				_			 	

_

2

IVIOV.D DS, DU

MOV.B @ERs, Rd

MOV.B @(d:16, ERs), Rd | B

nso → nuo

 $@\,\mathsf{ERs}\to\mathsf{Rd8}$

 $@(d:16, ERs) \rightarrow Rd8$

↑ ↑ 0

1 0

↑ 0

↑ 0

↑ 0

↑ 0

REJ09

↑ ↑ 0

1 \$ 0

1 ↓ 0

1 1 ↓ 0

1 ↑ 0

1 ↓ 0

1 ↑ 0

1 ↓ 0

1 **↓** 0

1 \$ 0

1 ↓ 0

1 \$ 0

\$ ↑ 0 ↑ 0

1 ↑ 0

 \updownarrow ↑ 0

		_	_										Ψ.	Ψ	•	Г
	MOV.L @ERs, ERd	L		4						@ERs → ERd32	_	-	\$	1	0	ŀ
	MOV.L @(d:16, ERs), ERd	L			6					@(d:16, ERs) → ERd32	<u> </u>	-	\$	1	0	-
	MOV.L @(d:24, ERs), ERd	L			10					@(d:24, ERs) → ERd32	<u> </u>	-	\$	1	0	-
	MOV.L @ERs+, ERd	L				4				@ERs → ERd32	<u> </u>	-	1	1	0	-
										ERs32+4 → ERs32						L
	MOV.L @aa:16, ERd	L					6			@aa:16 → ERd32	_	_	\$	1	0	ŀ
	MOV.L @aa:24, ERd	L					8			@aa:24 → ERd32	_	_	\$	1	0	ŀ
	MOV.L ERs, @ERd	L		4						ERs32 → @ERd	-	-	\$	1	0	-
	MOV.L ERs, @(d:16, ERd)	L			6					ERs32 → @(d:16, ERd)	-	-	\$	1	0	-
	MOV.L ERs, @(d:24, ERd)	L			10					ERs32 → @(d:24, ERd)	-	-	\$	1	0	-
	MOV.L ERs, @-ERd	L				4				ERd32–4 → ERd32	-	-	\$	1	0	-
										ERs32 → @ERd						
	MOV.L ERs, @aa:16	L					6			ERs32 → @aa:16	T-	-	1	1	0	-
	MOV.L ERs, @aa:24	L					8			ERs32 → @aa:24	T-	-	1	1	0	-
POP	POP.W Rn	W							2	@SP → Rn16	T-	-	1	1	0	-
										$SP+2 \rightarrow SP$						
	POP.L ERn	L							4	@SP → ERn32	T-	-	1	1	0	-
										$SP+4 \rightarrow SP$						
PUSH	PUSH.W Rn	W							2	SP–2 → SP	_	-	\$	1	0	-
										Rn16 → @SP						
	PUSH.L ERn	L							4	SP–4 → SP	_	-	\$	1	0	-
										ERn32 → @SP						
MOVFPE	MOVFPE @aa:16, Rd	В					4			Cannot be used in	Ca	anno	ot be	use	ed ir	1
										this LSI	thi	is LS	SI			
MOVTPE	MOVTPE Rs, @aa:16	В					4			Cannot be used in	Ca	anno	ot be	e use	ed ir	1
										this LSI	thi	is LS	SI			

									LHU32
	ADD.L ERs, ERd	L		2					ERd32+ERs32 → ERd32
ADDX	ADDX.B #xx:8, Rd	В	2					ı	Rd8+#xx:8 +C → Rd8
	ADDX.B Rs, Rd	В		2				ı	Rd8+Rs8 +C → Rd8
ADDS	ADDS.L #1, ERd	L		2				E	ERd32+1 → ERd32
	ADDS.L #2, ERd	L		2				E	ERd32+2 → ERd32
	ADDS.L #4, ERd	L		2				E	ERd32+4 → ERd32
INC	INC.B Rd	В		2				ı	Rd8+1 → Rd8
	INC.W #1, Rd	W		2				ı	Rd16+1 → Rd16
	INC.W #2, Rd	W		2				ı	Rd16+2 → Rd16
	INC.L #1, ERd	L		2				E	ERd32+1 → ERd32
	INC.L #2, ERd	L		2				E	ERd32+2 → ERd32
DAA	DAA Rd	В		2					Rd8 decimal adjust → Rd8
SUB	SUB.B Rs, Rd	В		2				ı	Rd8–Rs8 → Rd8
	SUB.W #xx:16, Rd	W	4					F	Rd16–#xx:16 → Rd16
	SUB.W Rs, Rd	W		2				F	Rd16-Rs16 → Rd16
	SUB.L #xx:32, ERd	L	6					E	ERd32-#xx:32 → ERd32
	SUB.L ERs, ERd	L		2				1	ERd32-ERs32 → ERd32
SUBX	SUBX.B #xx:8, Rd	В	2					ı	Rd8-#xx:8-C → Rd8
	SUBX.B Rs, Rd	В		2				ı	Rd8–Rs8–C → Rd8
SUBS	SUBS.L #1, ERd	L		2				1	ERd32−1 → ERd32
	SUBS.L #2, ERd	L		2				1	ERd32–2 → ERd32
	SUBS.L #4, ERd	L		2				E	ERd32–4 → ERd32
DEC	DEC.B Rd	В		2				ı	Rd8–1 → Rd8
	DEC.W #1, Rd	W		2				ı	Rd16–1 → Rd16
	DEC.W #2, Rd	W		2				F	Rd16–2 → Rd16

ADD.W Rs, Rd

ADD.L #xx:32, ERd

RENESAS

Rev.5.00 Nov. 02, 2005 Pag

 $Rd16+Rs16 \rightarrow Rd16$

ERd32+ $\#xx:32 \rightarrow$

ERd32

1 1

1 1

1 1

1 1

1 1

1 1

 \uparrow \uparrow

1 1

1 1

(3) 1 \updownarrow (3) 🗘

1 1

1 1

REJ09

 \updownarrow **\$** 1 1

(2) ↑ ↑ ↑

(3) ↑

↑ | ↑ |(3) | ↑

 \updownarrow 1 1 1

 \updownarrow

1 **\$**

\$ 1 (1)

(1)

(2)

1

\$ \updownarrow

(2)

(2)

\$

	MULXU. W Rs, ERd	W		2					-	_	_	-	-
MULXS	MULXS. B Rs, Rd	В		4				$Rd8 \times Rs8 \rightarrow Rd16$ (signed multiplication)	-	_	1	\$	-
	MULXS. W Rs, ERd	W		4				Rd16 × Rs16 → ERd32 (signed multiplication)	-	_	\$	\$	-
DIVXU	DIVXU. B Rs, Rd	В		2				Rd16 ÷ Rs8 → Rd16 (RdH: remainder, RdL: quotient) (unsigned division)	_	_	(6)	(7)	_
	DIVXU. W Rs, ERd	W		2				ERd32 ÷ Rs16 → ERd32 (Ed: remainder, Rd: quotient) (unsigned division)	_	_	(6)	(7)	
DIVXS	DIVXS. B Rs, Rd	В		4				Rd16 + Rs8 → Rd16 (RdH: remainder, RdL: quotient) (signed division)	_	_	(8)	(7)	_
	DIVXS. W Rs, ERd	W		4				ERd32 ÷ Rs16 → ERd32 (Ed: remainder, Rd: quotient) (signed division)	_	_	(8)	(7)	
CMP	CMP.B #xx:8, Rd	В	2					Rd8-#xx:8	<u> </u>	1	1	1	1
	CMP.B Rs, Rd	В		2				Rd8-Rs8	-	1	1	1	1
	CMP.W #xx:16, Rd	W	4					Rd16-#xx:16	_	(1)	1	1	1
	CMP.W Rs, Rd	W		2				Rd16-Rs16	_	(1)	1	\$	1
	CMP.L #xx:32, ERd	L	6					ERd32-#xx:32	_	(2)	1	1	1

Rev.5.00 Nov. 02, 2005 Page 438 of 500 REJ09B0027-0500

CMP.L ERs, ERd

ERd32-ERs32

							of ERd32)			•	
EXTS	EXTS.W Rd	W	2				(<bit 7=""> of Rd16) → (<bits 15="" 8="" to=""> of Rd16)</bits></bit>	_	\$	\$	0
	EXTS.L ERd	L	2				(<bit 15=""> of ERd32) → (<bits 16="" 31="" to=""> of ERd32)</bits></bit>	_	\Rightarrow	\$	0

	AND.W Rs, Rd	W		2				Rd16∧Rs16 → Rd16	_	_	Ţ	1	0
	AND.L #xx:32, ERd	L	6					$ERd32 {\scriptstyle \wedge} \#xx: 32 \to ERd32$	_	_	\$	1	0
	AND.L ERs, ERd	L		4				$ERd32 {\scriptstyle \wedge} ERs32 \to ERd32$	_	_	\$	1	0
OR	OR.B #xx:8, Rd	В	2					Rd8/#xx:8 \rightarrow Rd8	_	_	1	1	0
	OR.B Rs, Rd	В		2				Rd8∕Rs8 → Rd8	—	_	1	1	0
	OR.W #xx:16, Rd	W	4					Rd16/#xx:16 → Rd16	_	_	1	1	0
	OR.W Rs, Rd	W		2				Rd16∕Rs16 → Rd16	_	_	1	1	0
	OR.L #xx:32, ERd	L	6					ERd32/#xx:32 \rightarrow ERd32	_	_	1	1	0
	OR.L ERs, ERd	L		4				ERd32/ERs32 → ERd32	_	_	1	1	0
XOR	XOR.B #xx:8, Rd	В	2					$Rd8{\oplus}\#xx{:}8 \to Rd8$	_	_	\$	1	0
	XOR.B Rs, Rd	В		2				$Rd8 \oplus Rs8 \to Rd8$	_	_	1	1	0
	XOR.W #xx:16, Rd	W	4					$Rd16 \oplus \#xx: 16 \rightarrow Rd16$	_	_	1	1	0
	XOR.W Rs, Rd	W		2				Rd16⊕Rs16 → Rd16	_	_	1	1	0
	XOR.L #xx:32, ERd	L	6					$ERd32 \# xx \text{:} 32 \to ERd32$	_	_	1	1	0
	XOR.L ERs, ERd	L		4				$ERd32 {\oplus} ERs32 \to ERd32$	_	_	1	1	0
NOT	NOT.B Rd	В		2				¬ Rd8 → Rd8	_	_	1	1	0
	NOT.W Rd	W		2				¬ Rd16 → Rd16	_	_	1	1	0
	NOT.L ERd	L		2				¬ Rd32 → Rd32	_	_	1	1	0

Rev.5.00 Nov. 02, 2005 Page 440 of 500 REJ09B0027-0500

SHAR	SHAR.B Rd	В	2				-C	_	_	1	1	0
	SHAR.W Rd	W	2					_	_	1	1	0
	SHAR.L ERd	Г	2				MSB LSB	_	_	1	1	0
SHLL	SHLL.B Rd	В	2					_	_	1	1	0
	SHLL.W Rd	W	2				-0	_	_	1	1	0
	SHLL.L ERd	L	2				MSB LSB	_	_	1	1	0
SHLR	SHLR.B Rd	В	2					_	_	1	1	0
	SHLR.W Rd	W	2				0-	_	_	1	1	0
	SHLR.L ERd	L	2				MSB LSB	_	_	1	1	0
ROTXL	ROTXL.B Rd	В	2					_	_	1	1	0
	ROTXL.W Rd	W	2					_	_	1	1	0
	ROTXL.L ERd	L	2				MSB ← LSB	_	_	1	1	0
ROTXR	ROTXR.B Rd	В	2					_	_	1	1	0
	ROTXR.W Rd	W	2					_	_	1	1	0
	ROTXR.L ERd	L	2				MSB → LSB	_	_	1	1	0
ROTL	ROTL.B Rd	В	2					_	_	1	1	0
	ROTL.W Rd	W	2					_	_	1	1	0
	ROTL.L ERd	L	2				MSB ← LSB	_	_	1	1	0
ROTR	ROTR.B Rd	В	2					_	_	1	1	0
	ROTR.W Rd	W	2				C	_	_	1	1	0
	ROTR.L ERd	L	2				MSB ──► LSB	_	_	1	1	0

	BSET Rn, Rd	В	2					(Rn8 of Rd8) ← 1	_	_	_	_	_	•
	BSET Rn, @ERd	В		4				(Rn8 of @ERd) ← 1	_	_	_	_	_	
	BSET Rn, @aa:8	В				4		(Rn8 of @aa:8) ← 1	_	_	_	_	_	
BCLR	BCLR #xx:3, Rd	В	2					(#xx:3 of Rd8) ← 0	_	_	_	_	_	
	BCLR #xx:3, @ERd	В		4				(#xx:3 of @ERd) ← 0	_	_	_	_	_	
	BCLR #xx:3, @aa:8	В				4		(#xx:3 of @aa:8) ← 0	_	_	_	_	_	
	BCLR Rn, Rd	В	2					(Rn8 of Rd8) ← 0	_	_	_	_	_	
	BCLR Rn, @ERd	В		4				(Rn8 of @ERd) ← 0	_	_	_	_	_	
	BCLR Rn, @aa:8	В				4		(Rn8 of @aa:8) ← 0	_	_	_	_	_	
BNOT	BNOT #xx:3, Rd	В	2					(#xx:3 of Rd8) ←	_	_	_	_	_	
								¬ (#xx:3 of Rd8)						
	BNOT #xx:3, @ERd	В		4				(#xx:3 of @ERd) ←	_	_	_	_	_	
								¬ (#xx:3 of @ERd)						
	BNOT #xx:3, @aa:8	В				4		(#xx:3 of @aa:8) ←	_	_	_	_	_	
								¬ (#xx:3 of @aa:8)						
	BNOT Rn, Rd	В	2					(Rn8 of Rd8) ←	_	_	_	_	_	
								¬ (Rn8 of Rd8)						
	BNOT Rn, @ERd	В		4				(Rn8 of @ERd) ←	_	_	_	_	_	
								¬ (Rn8 of @ERd)						
	BNOT Rn, @aa:8	В				4		(Rn8 of @aa:8) ←	_	_	_	_	_	
								¬ (Rn8 of @aa:8)						
BTST	BTST #xx:3, Rd	В	2					¬ (#xx:3 of Rd8) \rightarrow Z	_	_	_	1	_	
	BTST #xx:3, @ERd	В		4				¬ ($\#xx:3$ of @ERd) → Z	_	_	_	1	_	
	BTST #xx:3, @aa:8	В				4		¬ (#xx:3 of @aa:8) → Z	_	_	_	1	_	
	BTST Rn, Rd	В	2					¬ (Rn8 of @Rd8) \rightarrow Z	_	_	_	1	_	
	BTST Rn, @ERd	В		4				¬ (Rn8 of @ERd) \rightarrow Z	-	_	_	1	_	
	BTST Rn, @aa:8	В				4		¬ (Rn8 of @aa:8) → Z	_	_	_	1	_	

Rev.5.00 Nov. 02, 2005 Page 442 of 500 REJ09B0027-0500

BLD BLD #xx:3, Rd

В

DO 1	DOT #XX.0, 110		_					O 7 (11XX.O OI 11GO)					
	BST #xx:3, @ERd	В		4				$C \rightarrow (\#xx:3 \text{ of } @ERd24)$	_	<u> — </u>		_	<u> </u>
	BST #xx:3, @aa:8	В				4		C → (#xx:3 of @aa:8)	_	_		_	-
BIST	BIST #xx:3, Rd	В	2					$\neg C \rightarrow (\#xx:3 \text{ of Rd8})$		_			
	BIST #xx:3, @ERd	В		4				\neg C \rightarrow (#xx:3 of @ERd24)		_			
	BIST #xx:3, @aa:8	В				4		¬ C → (#xx:3 of @aa:8)	_	_	_	_	_
BAND	BAND #xx:3, Rd	В	2					$C \land (\#xx:3 \text{ of Rd8}) \rightarrow C$	_	_	_	_	_
	BAND #xx:3, @ERd	В		4				$C \land (\#xx:3 \text{ of } @ ERd24) \rightarrow C$	_	_	_	_	_
	BAND #xx:3, @aa:8	В				4		C∧(#xx:3 of @aa:8) → C		_			_
BIAND	BIAND #xx:3, Rd	В	2					$C \land \neg \text{ (#xx:3 of Rd8)} \rightarrow C$	_	_	_	_	_
	BIAND #xx:3, @ERd	В		4				$C \land \neg \text{ (#xx:3 of @ERd24)} \rightarrow C$	_	_	_	_	_
	BIAND #xx:3, @aa:8	В				4		$C \land \neg (\#xx:3 \text{ of } @aa:8) \rightarrow C$	_	_	_	_	_
BOR	BOR #xx:3, Rd	В	2					$C\lor(\#xx:3 \text{ of Rd8}) \to C$		_			_
	BOR #xx:3, @ERd	В		4				$C\lor(\#xx:3 \text{ of } @ ERd24) \rightarrow C$	_	<u> </u>	<u> </u>	_	_
	BOR #xx:3, @aa:8	В				4		C∨(#xx:3 of @aa:8) → C	_	_	_	<u> </u>	_
BIOR	BIOR #xx:3, Rd	В	2					$C \lor \neg \text{ (#xx:3 of Rd8)} \to C$	_	_	-	<u> </u>	_
	BIOR #xx:3, @ERd	В		4				$C \lor \neg (\#xx:3 \text{ of } @ ERd24) \to C$	_	_	-	<u> </u>	_
	BIOR #xx:3, @aa:8	В				4		C∨¬ (#xx:3 of @aa:8) → C	_	_	-	<u> </u>	<u> </u>
BXOR	BXOR #xx:3, Rd	В	2					$C⊕(\#xx:3 \text{ of Rd8}) \rightarrow C$	_	_	-	-	_
	BXOR #xx:3, @ERd	В		4				$C \oplus (\#xx:3 \text{ of } @ ERd24) \rightarrow C$	_	-	-	<u> </u>	_
	BXOR #xx:3, @aa:8	В				4		C⊕(#xx:3 of @aa:8) → C	_	-	-	<u> </u>	_
BIXOR	BIXOR #xx:3, Rd	В	2					C⊕ ¬ (#xx:3 of Rd8) → C	_		_		_
	BIXOR #xx:3, @ERd	В		4				C⊕ ¬ (#xx:3 of @ERd24) → C	_	_	_	_	<u> </u>

BIXOR #xx:3, @aa:8 B

RENESAS

C⊕¬ (#xx:3 of @aa:8) → C

Rev.5.00 Nov. 02, 2005 Pag

BRN 0:16 (BF 0:16)	-			4			_	_	_	_	
BHI d:8	-			2		C∨ Z = 0	_	_	_	_	_
BHI d:16	-			4			_	_	_	_	_
BLS d:8	-			2		C∨ Z = 1	_	_	_	_	-
BLS d:16	-			4			_	_	_	_	-
BCC d:8 (BHS d:8)	-			2		C = 0	_	_	_	_	-
BCC d:16 (BHS d:16)	-			4			_	_	_	_	_
BCS d:8 (BLO d:8)	-			2		C = 1	_	_	_	_	_
BCS d:16 (BLO d:16)	-			4			_	_	_	_	_
BNE d:8	-			2		Z = 0	_	_	_	_	_
BNE d:16	-			4			_	_	_	_	
BEQ d:8	_			2		Z = 1	_	_	_	_	
BEQ d:16	-			4			_	_	_	_	
BVC d:8	-			2		V = 0	_	_	_	_	
BVC d:16				4			_	_	_	_	_
BVS d:8				2		V = 1	_	_	_	_	_
BVS d:16				4			_	_	_	_	_
BPL d:8	-			2		N = 0	_	_	_	_	-
BPL d:16	-			4			_	_	_	_	-
BMI d:8	-			2		N = 1	_	_	_	_	-
BMI d:16	-			4			_	_	_	_	-
BGE d:8	-			2		N⊕V = 0	_	_	_	_	-
BGE d:16	_			4			_	_	_	_	_
BLT d:8	_			2		N⊕V = 1	_	_	_	_	
BLT d:16	-			4			_	_	_	_	
BGT d:8	-			2		Z∨ (N⊕V) = 0	_	_	_	_	
BGT d:16	-			4			_	_	_	-	-
BLE d:8	-			2		Z∨ (N⊕V) = 1	_	_	_	_	
BLE d:16	_			4			_	_	_	_	_

Rev.5.00 Nov. 02, 2005 Page 444 of 500 REJ09B0027-0500

	5011 4110								PC ← PC+d:16					
JSR	JSR @ERn	_		2					PC → @-SP PC ← ERn	_	_	_	_	_
	JSR @aa:24	_				4			PC → @-SP PC ← aa:24	_		_	_	_
	JSR @@aa:8	_					2		PC → @-SP PC ← @aa:8	_	_			_
RTS	RTS	_						2	PC ← @SP+	_	_	_	_	_

RTE	RIE	_									CCR ← @SP+ PC ← @SP+	Ţ	1	1	Ţ	Ţ
SLEEP	SLEEP	_									Transition to power- down state	_	_	_	_	_
LDC	LDC #xx:8, CCR	В	2								#xx:8 → CCR	1	\$	\$	1	1
	LDC Rs, CCR	В		2							Rs8 → CCR	1	1	1	1	1
	LDC @ERs, CCR	W			4						@ERs → CCR	1	\$	\$	1	1
	LDC @(d:16, ERs), CCR	W				6					@(d:16, ERs) → CCR	1	\$	\$	1	1
	LDC @(d:24, ERs), CCR	W				10					@(d:24, ERs) → CCR	1	1	1	1	1
	LDC @ERs+, CCR	W					4				@ERs → CCR ERs32+2 → ERs32	\$	\$	\$	\$	\$
	LDC @aa:16, CCR	W						6			@aa:16 → CCR	1	1	1	1	1
	LDC @aa:24, CCR	W						8			@aa:24 → CCR	1	1	1	1	1
STC	STC CCR, Rd	В		2							CCR → Rd8	_	_	_	_	_
	STC CCR, @ERd	W			4						CCR → @ERd	_	_	_	_	-
	STC CCR, @(d:16, ERd)	W				6					CCR → @(d:16, ERd)	 -	_	_	_	-
	STC CCR, @(d:24, ERd)	W				10					CCR → @(d:24, ERd)	-	_	_	_	-
	STC CCR, @-ERd	W					4				$\begin{array}{c} ERd32-2 \to ERd32 \\ CCR \to @ERd \end{array}$	_	_	_	_	_
	STC CCR, @aa:16	W						6			CCR → @aa:16	_	_	_	_	_
	STC CCR, @aa:24	W						8			CCR → @aa:24	-	_	_	_	-
ANDC	ANDC #xx:8, CCR	В	2								CCR∧#xx:8 → CCR	1	1	1	1	1
ORC	ORC #xx:8, CCR	В	2								CCR∨#xx:8 → CCR	1	1	1	1	1
XORC	XORC #xx:8, CCR	В	2								CCR⊕#xx:8 → CCR	1	1	1	1	1
NOP	NOP	_								2	PC ← PC+2	-	_	_	_	-

Rev.5.00 Nov. 02, 2005 Page 446 of 500 REJ09B0027-0500

							$ \begin{array}{ccc} & R4L-1 \rightarrow R4L \\ until & R4L=0 \\ else \ next \end{array} $					
EEPMOV. W	_					4	if R4 \neq 0 then repeat @R5 \rightarrow @R6 R5+1 \rightarrow R5 R6+1 \rightarrow R6 R4-1 \rightarrow R4 until R4=0 else next	_	_	_	_	

- Notes: 1. The number of states in cases where the instruction code and its operands a in on-chip memory is shown here. For other cases see appendix A.3, Numbe Execution States.
 - 2. n is the value set in register R4L or R4.
 - (1) Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.
 - (2) Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.
 - (4) Set to 1 when the adjustment produces a carry; otherwise retains its prev (5) The number of states required for execution of an instruction that transfer

(3) Retains its previous value when the result is zero; otherwise cleared to 0.

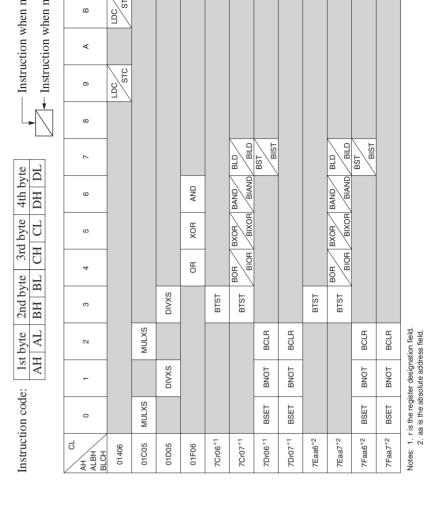
- synchronization with the E clock is variable.
- (6) Set to 1 when the divisor is negative; otherwise cleared to 0.
- (7) Set to 1 when the divisor is zero; otherwise cleared to 0.
- (8) Set to 1 when the quotient is negative; otherwise cleared to 0.

Instruct	Instruction code:		byte	1	rte ;	L	—Inst	truction	when r	nost sig	 Instruction when most significant bit of BH i 	t bit of]	ВН і
		АН	1 AL	ВН	BL]← Inst	truction	when r	nost sig	 Instruction when most significant bit of BH i 	t bit of]	ВН і
AH AL	0	-	2	ю	4	r.	9	7	80	6	∢	В	O
0	NOP	Table A.2 (2)	STC	TDC	ORC	XORC	ANDC	LDC	ADD		Table A.2 (2)	Table A.2 (2)	
-	Table A.2 (2)	Table A.2 Table A.2 Table A.2 Table A.2 (2) (2) (2)	Table A.2 (2)	Table A.2 (2)	OR.B	XOR.B	AND.B	Table A.2 (2)	SUB		Table A.2 (2)	Table A.2 (2)	
2													
8								MOV.					
4	BRA	BRN	BHI	BLS	BCC	BCS	BNE	ВЕО	BVC	BVS	BPL	BMI	BGE
5	MULXU	DIVXU	MULXU	DIVXU	RTS	BSR	RTE	TRAPA	Table A.2 (2)		JMP		BSF
9	i C	i i	i i	i i	OR	XOR	AND	BST				MOV	>
7	BSE	O R R	BCLR	<u> </u>	BOR	BXOR	BAND	BLD	MOV	Table A.2 (2)	Table A.2 Table A.2 EEPMOV (2)	EEPMOV	
80								ADD					
6								ADDX					
٧								CMP					
В								SUBX					
O								OR					
D								XOR					
Е								AND					

Rev.5.00 Nov. 02, 2005 Page 448 of 500

REJ09B0027-0500

В					SHA	SHA	ROT	ROT	NEO				BMI	
A													BPL	
6			ADDS		SHAL	SHAR	ROTL	ROTR	NEG		SUB		BVS	
80	SLEEP		AD		Ŗ	HS	DH	RC	ž		าร		BVC	
7			INC						EXTU		OEC		BEQ	
9													BNE	AND
2			INC						EXTU		DEC		BCS	XOR
4	LDC/STC												BCC	OR
3					SHLL	SHLR	ROTXL	ROTXR	NOT				BLS	SUB
2													BHI	CMP
1					SHLL	SHLR	ROTXL	ROTXR	NOT				BRN	ADD
0	MOV	INC	ADDS	DAA	HS HS	SH	RO.	ROI	N	DEC	SUBS	DAS	BRA	MOV
BH AH AL	10	0A	0B	0F	10	11	12	13	17	1A	18	11	28	79


Rev.5.00 Nov. 02, 2005 Pag

REJ09

RENESAS

1st byte 2nd byte AH AL BH BL

Instruction code:

Rev.5.00 Nov. 02, 2005 Page 450 of 500

REJ09B0027-0500

BSET #0, @FF00

From table A.4:

$$I = L = 2$$
, $J = K = M = N = 0$

From table A.3:

$$S_{I} = 2$$
, $S_{L} = 2$

Number of states required for execution = $2 \times 2 + 2 \times 2 = 8$

When instruction is fetched from on-chip ROM, branch address is read from on-chip RO on-chip RAM is used for stack area.

From table A.4:

$$I = 2$$
, $J = K = 1$, $L = M = N = 0$

From table A.3:

$$S_{_{\rm I}}=S_{_{\rm J}}=S_{_{\rm K}}=2$$

Number of states required for execution = $2 \times 2 + 1 \times 2 + 1 \times 2 = 8$

Note: * Depends on which on-chip peripheral module is accessed. See section 22.1, F Addresses (Address Order).

Rev.5.00 Nov. 02, 2005 Page 452 of 500

	AND.B Rs, Rd	1	
	AND.W #xx:16, Rd	2	
	AND.W Rs, Rd	1	
	AND.L #xx:32, ERd	3	
	AND.L ERs, ERd	2	
ANDC	ANDC #xx:8, CCR	1	
BAND	BAND #xx:3, Rd	1	
	BAND #xx:3, @ERd	2	
	BAND #xx:3, @aa:8	2	
Всс	BRA d:8 (BT d:8)	2	
	BRN d:8 (BF d:8)	2	
	BHI d:8	2	
	BLS d:8	2	
	BCC d:8 (BHS d:8)	2	
	BCS d:8 (BLO d:8)	2	
	BNE d:8	2	
	BEQ d:8	2	
	BVC d:8	2	
	BVS d:8	2	
	BPL d:8	2	
	BMI d:8	2	
	BGE d:8	2	

ADDS

ADDX

AND

ADDS #1/2/4, ERd

ADDX #xx:8, Rd ADDX Rs, Rd

AND.B #xx:8, Rd

1

1

1

Rev.5.00 Nov. 02, 2005 Pag

REJ09

1

	BCC d:16(BHS d:16)	2		
	BCS d:16(BLO d:16)	2		
	BNE d:16	2		
	BEQ d:16	2		
	BVC d:16	2		
	BVS d:16	2		
	BPL d:16	2		
	BMI d:16	2		
	BGE d:16	2		
	BLT d:16	2		
	BGT d:16	2		
	BLE d:16	2		
BCLR	BCLR #xx:3, Rd	1		
	BCLR #xx:3, @ERd	2	2	
	BCLR #xx:3, @aa:8	2	2	
	BCLR Rn, Rd	1		
	BCLR Rn, @ERd	2	2	
	BCLR Rn, @aa:8	2	2	
BIAND	BIAND #xx:3, Rd	1		
	BIAND #xx:3, @ERd	2	1	
	BIAND #xx:3, @aa:8	2	1	
BILD	BILD #xx:3, Rd	1		
	BILD #xx:3, @ERd	2	1	

Rev.5.00 Nov. 02, 2005 Page 454 of 500 REJ09B0027-0500

BILD #xx:3, @aa:8

1

2

	BIXOR #xx:3, @ERd	2		1	
	BIXOR #xx:3, @aa:8	2		1	
BLD	BLD #xx:3, Rd	1			
	BLD #xx:3, @ERd	2		1	
	BLD #xx:3, @aa:8	2		1	
BNOT	BNOT #xx:3, Rd	1			
	BNOT #xx:3, @ERd	2		2	
	BNOT #xx:3, @aa:8	2		2	
	BNOT Rn, Rd	1			
	BNOT Rn, @ERd	2		2	
	BNOT Rn, @aa:8	2		2	
BOR	BOR #xx:3, Rd	1			
	BOR #xx:3, @ERd	2		1	
	BOR #xx:3, @aa:8	2		1	
BSET	BSET #xx:3, Rd	1			
	BSET #xx:3, @ERd	2		2	
	BSET #xx:3, @aa:8	2		2	
	BSET Rn, Rd	1			
	BSET Rn, @ERd	2		2	
	BSET Rn, @aa:8	2		2	
BSR	BSR d:8	2	1		
	BSR d:16	2	1		
BST	BST #xx:3, Rd	1			
	BST #xx:3, @ERd	2		2	

2

BST #xx:3, @aa:8

2

Rev.5.00 Nov. 02, 2005 Pag

	BXOR #xx:3, @ERd	2	1
	BXOR #xx:3, @aa:8	2	1
СМР	CMP.B #xx:8, Rd	1	
	CMP.B Rs, Rd	1	
	CMP.W #xx:16, Rd	2	
	CMP.W Rs, Rd	1	
	CMP.L #xx:32, ERd	3	
	CMP.L ERs, ERd	1	
DAA	DAA Rd	1	
DAS	DAS Rd	1	
DEC	DEC.B Rd	1	
	DEC.W #1/2, Rd	1	
	DEC.L #1/2, ERd	1	
DUVXS	DIVXS.B Rs, Rd	2	
	DIVXS.W Rs, ERd	2	
DIVXU	DIVXU.B Rs, Rd	1	
	DIVXU.W Rs, ERd	1	
EEPMOV	EEPMOV.B	2	2n+2*1
	EEPMOV.W	2	2n+2*1
EXTS	EXTS.W Rd	1	
	EXTS.L ERd	1	
EXTU	EXTU.W Rd	1	
	EXTU.L ERd	1	

Rev.5.00 Nov. 02, 2005 Page 456 of 500

REJ09B0027-0500

	JSR @aa:24	2		1		
	JSR @@aa:8	2	1	1		
LDC	LDC #xx:8, CCR	1				
	LDC Rs, CCR	1				
	LDC@ERs, CCR	2				1
	LDC@(d:16, ERs), CCR	3				1
	LDC@(d:24,ERs), CCR	5				1
	LDC@ERs+, CCR	2				1
	LDC@aa:16, CCR	3				1
	LDC@aa:24, CCR	4				1
MOV	MOV.B #xx:8, Rd	1				
	MOV.B Rs, Rd	1				
	MOV.B @ERs, Rd	1			1	
	MOV.B @(d:16, ERs), Rd	2			1	
	MOV.B @(d:24, ERs), Rd	4			1	
	MOV.B @ERs+, Rd	1			1	
	MOV.B @aa:8, Rd	1			1	
	MOV.B @aa:16, Rd	2			1	
	MOV.B @aa:24, Rd	3			1	
	MOV.B Rs, @Erd	1			1	
	MOV.B Rs, @(d:16, ERd)	2			1	
	MOV.B Rs, @(d:24, ERd)	4			1	
	MOV.B Rs, @-ERd	1			1	

1

MOV.B Rs, @aa:8

REJ09

1

	MOV.W @ERs+, Rd	1	1
	MOV.W @aa:16, Rd	2	1
	MOV.W @aa:24, Rd	3	1
	MOV.W Rs, @ERd	1	1
	MOV.W Rs, @(d:16,ERd)	2	1
	MOV.W Rs, @(d:24,ERd)	4	1
MOV	MOV.W Rs, @-ERd	1	1
	MOV.W Rs, @aa:16	2	1
	MOV.W Rs, @aa:24	3	1
	MOV.L #xx:32, ERd	3	
	MOV.L ERs, ERd	1	
	MOV.L @ERs, ERd	2	2
	MOV.L @(d:16,ERs), ERd	3	2
	MOV.L @(d:24,ERs), ERd	5	2
	MOV.L @ERs+, ERd	2	2
	MOV.L @aa:16, ERd	3	2
	MOV.L @aa:24, ERd	4	2
	MOV.L ERs,@ERd	2	2
	MOV.L ERs, @(d:16,ERd)	3	2
	MOV.L ERs, @(d:24,ERd)	5	2
	MOV.L ERs, @-ERd	2	2
	MOV.L ERs, @aa:16	3	2

Rev.5.00 Nov. 02, 2005 Page 458 of 500

MOV.L ERs, @aa:24

MOVFPE @aa:16, Rd*2

MOVTPE Rs,@aa:16*2

2

2

2

1

1

MOVFPE

MOVTPE

	NOT.L ERd	1	
OR	OR.B #xx:8, Rd	1	
	OR.B Rs, Rd	1	
	OR.W #xx:16, Rd	2	
	OR.W Rs, Rd	1	
	OR.L #xx:32, ERd	3	
	OR.L ERs, ERd	2	
ORC	ORC #xx:8, CCR	1	
POP	POP.W Rn	1	
	POP.L ERn	2	
PUSH	PUSH.W Rn	1	
	PUSH.L ERn	2	
ROTL	ROTL.B Rd	1	
	ROTL.W Rd	1	
	ROTL.L ERd	1	
ROTR	ROTR.B Rd	1	
	ROTR.W Rd	1	
	ROTR.L ERd	1	
ROTXL	ROTXL.B Rd	1	

1

1

1

1

NOP

NOT

NOP

NOT.W Rd

ROTXL.W Rd

ROTXL.L ERd

Rev.5.00 Nov. 02, 2005 Pag

REJ09

	SHAL.L ERd	1	
SHAR	SHAR.B Rd	1	
	SHAR.W Rd	1	
	SHAR.L ERd	1	
SHLL	SHLL.B Rd	1	
	SHLL.W Rd	1	
	SHLL.L ERd	1	
SHLR	SHLR.B Rd	1	
	SHLR.W Rd	1	
	SHLR.L ERd	1	
SLEEP	SLEEP	1	
STC	STC CCR, Rd	1	
	STC CCR, @ERd	2	1
	STC CCR, @(d:16,ERd)	3	1
	STC CCR, @(d:24,ERd)	5	1
	STC CCR,@-ERd	2	1
	STC CCR, @aa:16	3	1
	STC CCR, @aa:24	4	1
SUB	SUB.B Rs, Rd	1	
	SUB.W #xx:16, Rd	2	
	SUB.W Rs, Rd	1	
	SUB.L #xx:32, ERd	3	
	SUB.L ERs, ERd	1	

Rev.5.00 Nov. 02, 2005 Page 460 of 500 REJ09B0027-0500

SUBS #1/2/4, ERd

SUBS

1

		XOR.L #xx:32, ERd	3	
		XOR.L ERs, ERd	2	
XORC		XORC #xx:8, CCR	1	
Notes:	1.	n: Specified value n+1 times respect		R4. The source and destination operands are a
	2.	Cannot be used in	n this LSI.	

	MOVEPE,	_	_	_	_	_	_	_	_	_	_	_	_	_
	MOVTPE													
Arithmetic operations	ADD, CMP	BWL	BWL	_	_	_	_	_	_	_	_	_	_	_
	SUB	WL	BWL	_	_	_	_	_	_	_	_	_	_	_
	ADDX, SUBX	В	В	_	_	_	_	_	_	_	_	_	_	_
	ADDS, SUBS	_	L	_	_	_	_	_	_	_	_	_	_	_
	INC, DEC	_	BWL	_	_	_	_	_	_	_	_	_	_	_
	DAA, DAS	_	В	_	_	_	_	_	_	_	_	_	_	_
	MULXU,	_	BW	_	_	_	_	_	_	_	_	_	_	_
	MULXS,													
	DIVXU,													
	DIVXS													
	NEG	_	BWL	_	_	_	_	_	_	_	_	_	_	_
	EXTU, EXTS	_	WL	_	_	_	_	_	_	_	_	_	_	_
Logical operations	AND, OR, XOR	_	BWL	_	_	_	_	_	_	_	_	_	_	_
	NOT	_	BWL	_	_	_	_	_	_	_	_	_	_	_
Shift operations		_	BWL	_	_	_	_	_	_	_	_	_	_	_
Bit manipulations		_	В	В	_	_	_	В	_	_	_	_	_	_
Branching instructions	BCC, BSR	_	_	_	_	_	_	_	_	_	_	_	_	_
	JMP, JSR	_	_	0	_	_	_	_	_	_	0	0	_	_
	RTS	_	_	_	_	_	_	_	_	0	_	_	0	_
System control instructions	TRAPA	_	_	_	_	_	_	_	_	_	_	_	_	C
	RTE	_	_	_	_	_	_	_	_	_	_	_	_	C
	SLEEP	_	_	_	_	_	_	_	_	_	_	_	_	lС
	LDC	В	В	W	W	W	W	_	W	W	_	_	_	C
	STC	_	В	W	W	W	W	_	W	W	_	_	_	_
	ANDC, ORC,	В	_	_	_	_	_	_	_	_	_	_	_	_
	XORC													
	NOP	_	_	_	_	_	_	_	_	_	_	_	_	C
Block data transfer instructions		_	_	_	_	_	_	_	_	_	_	_	_	в۷

Rev.5.00 Nov. 02, 2005 Page 462 of 500 REJ09B0027-0500

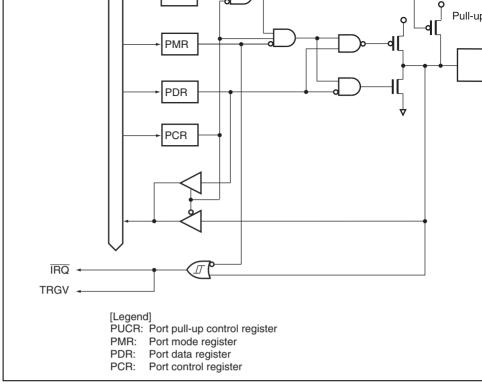


Figure B.1 Port 1 Block Diagram (P17)

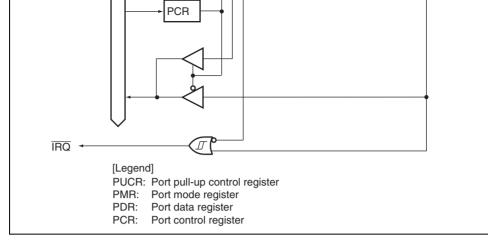


Figure B.2 Port 1 Block Diagram (P14, P16)

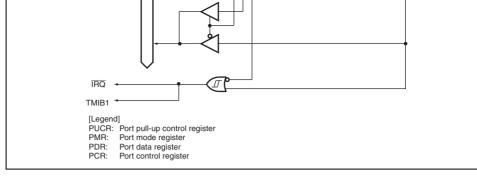


Figure B.3 Port 1 Block Diagram (P15)

Rev.5.00 Nov. 02, 2005 Pag REJ09

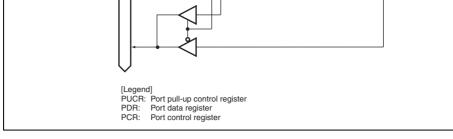


Figure B.4 Port 1 Block Diagram (P12)

Rev.5.00 Nov. 02, 2005 Page 466 of 500 REJ09B0027-0500

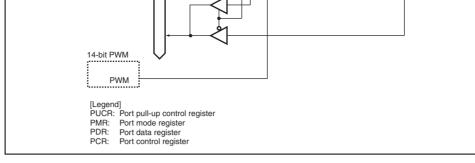


Figure B.5 Port 2 Block Diagram (P11)

Rev.5.00 Nov. 02, 2005 Pag REJ09

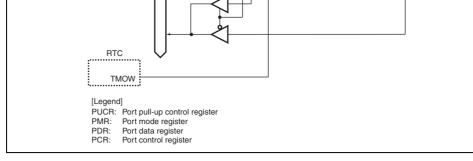


Figure B.6 Port 1 Block Diagram (P10)

Rev.5.00 Nov. 02, 2005 Page 468 of 500 REJ09B0027-0500

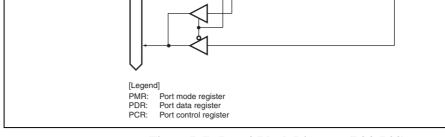


Figure B.7 Port 2 Block Diagram (P24, P23)

Rev.5.00 Nov. 02, 2005 Pag REJ09

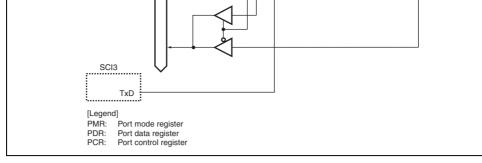


Figure B.8 Port 2 Block Diagram (P22)

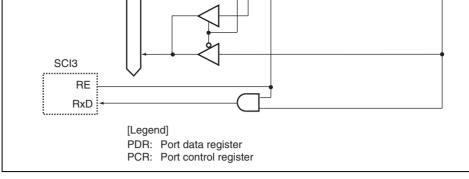


Figure B.9 Port 2 Block Diagram (P21)

Rev.5.00 Nov. 02, 2005 Pag REJ09

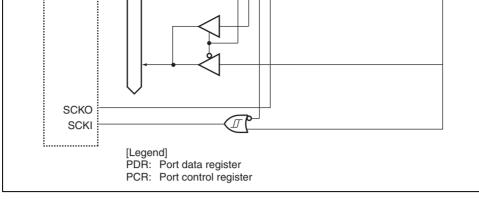


Figure B.10 Port 2 Block Diagram (P20)

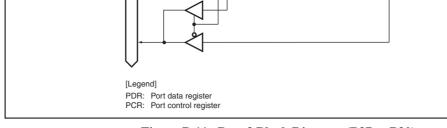


Figure B.11 Port 3 Block Diagram (P37 to P30)

Rev.5.00 Nov. 02, 2005 Pag

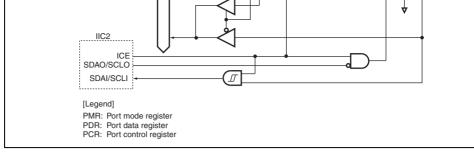


Figure B.12 Port 5 Block Diagram (P57, P56)*

Note: * This diagram is applied to the SCL and SDA pins in the H8/3687N.

Figure B.13 Port 5 Block Diagram (P55)

Rev.5.00 Nov. 02, 2005 Pag REJ09

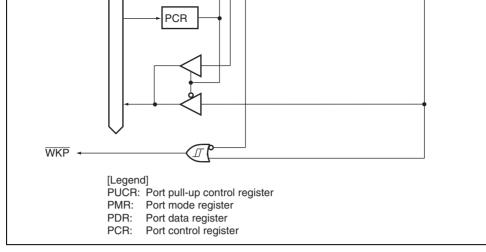


Figure B.14 Port 5 Block Diagram (P54 to P50)

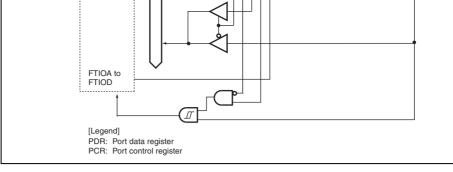


Figure B.15 Port 6 Block Diagram (P67 to P60)

Rev.5.00 Nov. 02, 2005 Pag

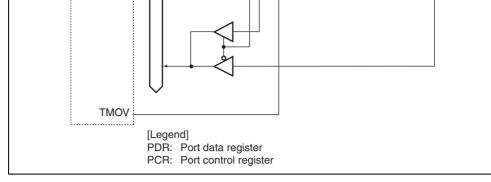


Figure B.16 Port 7 Block Diagram (P76)

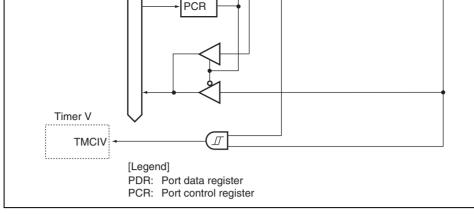


Figure B.17 Port 7 Block Diagram (P75)

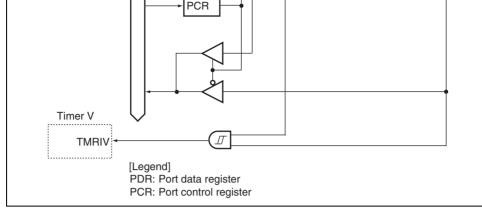


Figure B.18 Port 7 Block Diagram (P74)

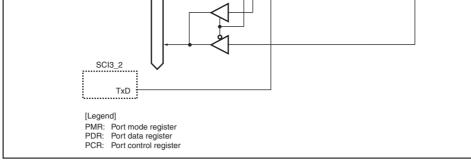


Figure B.19 Port 7 Block Diagram (P72)

Rev.5.00 Nov. 02, 2005 Pag

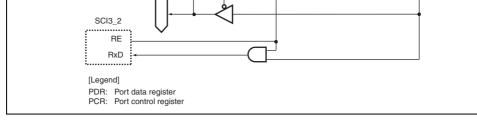


Figure B.20 Port 7 Block Diagram (P71)

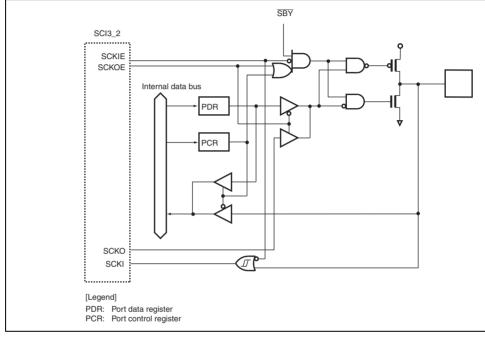


Figure B.21 Port 7 Block Diagram (P70)

Rev.5.00 Nov. 02, 2005 Page 482 of 500

RENESAS

REJ09B0027-0500

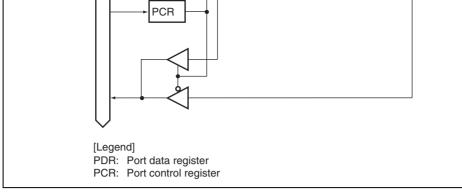


Figure B.22 Port 8 Block Diagram (P87 to P85)

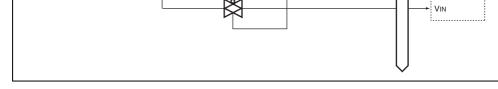


Figure B.23 Port B Block Diagram (PB7 to PB0)

	impedance			impedance
P76 to P74, P72 to P70	High impedance	Retained	Retained	High impedance
P87 to P85	High impedance	Retained	Retained	High impedance
PB7 to PB0	High impedance	High impedance	High impedance	High impedance

P67 to P60

High

Notes: 1. High level output when the pull-up MOS is in on state.

Retained

Retained

High

2. The P55 to P50 pins are applied to the H8/3687N.

Functioning Fu

Fu

Fu

Hi

im

REJ09

Functioning

Functioning

impedance

High

_		Product with	HD6433686GH	HD6433686G(***)H	QFP-64 (
		POR & LVDC	HD6433686GFP	HD6433686G(***)FP	LQFP-64
H8/3685	Mask ROM	Standard	HD6433685H	HD6433685(***)H	QFP-64
	version	product	HD6433685FP	HD6433685(***)FP	LQFP-64
		Product with	HD6433685GH	HD6433685G(***)H	QFP-64 (
		POR & LVDC	HD6433685GFP	HD6433685G(***)FP	LQFP-64
H8/3684	Flash memory	Standard	HD64F3684H	HD64F3684H	QFP-64 (
	version	product	HD64F3684FP	HD64F3684FP	LQFP-64
		Product with	HD64F3684GH	HD64F3684GH	QFP-64 (
		POR & LVDC	HD64F3684GFP	HD64F3684GFP	LQFP-64
	Mask ROM	Standard	HD6433684H	HD6433684(***)H	QFP-64 (
	version	product	HD6433684FP	HD6433684(***)FP	LQFP-64
		Product with	HD6433684GH	HD6433684G(***)H	QFP-64 (
		POR & LVDC	HD6433684GFP	HD6433684G(***)FP	LQFP-64
H8/3683	Mask ROM version	Standard product	HD6433683H	HD6433683(***)H	QFP-64 (
			HD6433683FP	HD6433683(***)FP	LQFP-64
		Product with POR & LVDC	HD6433683GH	HD6433683G(***)H	QFP-64 (
			HD6433683GFP	HD6433683G(***)FP	LQFP-64
H8/3682 Mask ROM	Mask ROM	Standard product	HD6433682H	HD6433682(***)H	QFP-64
	version		HD6433682FP	HD6433682(***)FP	LQFP-64
		Product with POR & LVDC	HD6433682GH	HD6433682G(***)H	QFP-64
			HD6433682GFP	HD6433682G(***)FP	LQFP-64
D 5.00 N		400 - (500			
REJ09B0027	ov. 02, 2005 Page 7-0500		ENESAS		
000000027	0000				

FIOUUCI WILLI

Standard

product

H8/3686

Mask ROM

version

POR & LVDC

100433007GH

HD6433686H

HD6433686FP

100433007G(****)H QFF-04 (F

QFP-64 (F

LQFP-64

HD6433687GFP HD6433687G(***)FP LQFP-64

HD6433686(***)H

HD6433686(***)FP

Rev.5.00 Nov. 02, 2005 Pag

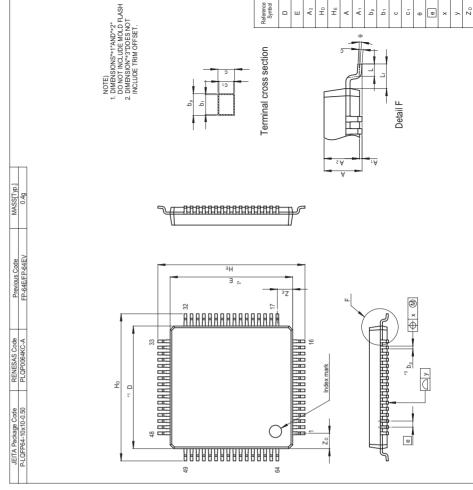


Figure D.1 FP-64E Package Dimensions

Rev.5.00 Nov. 02, 2005 Page 488 of 500

REJ09B0027-0500

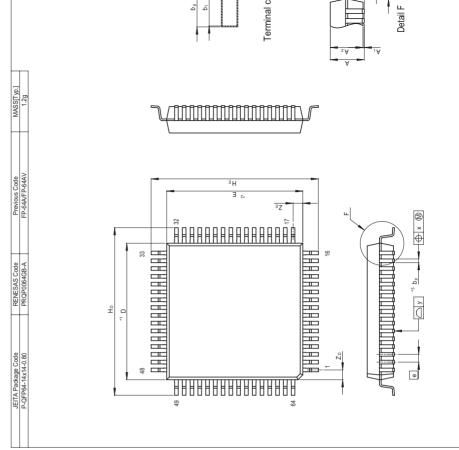


Figure D.2 FP-64A Package Dimensions

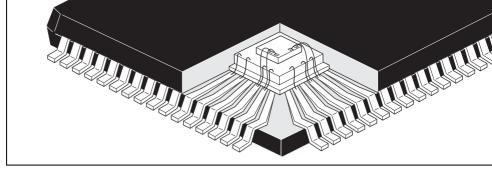
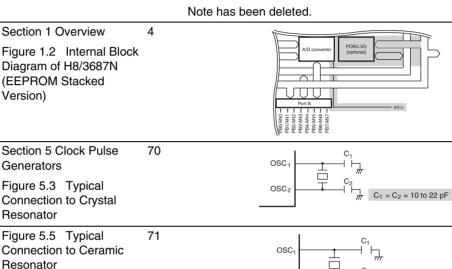


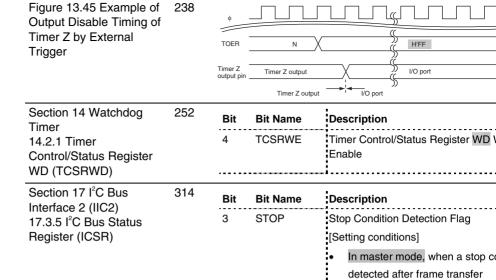
Figure E.1 EEPROM Stacked-Structure Cross-Sectional View


Rev.5.00 Nov. 02, 2005 Page 490 of 500

REJ09B0027-0500

available to the user.

- 5. When the E7 or E8 is used, address breaks can be
- either available to the user or for use by the E7 or address breaks are set as being used by the E7 of
- address break control registers must not be access 6. When the E7 or E8 is used, NMI is an input/output (open-drain in output mode), P85 and P87 are ing
- and P86 is an output pin. 7. Use channel 1 of the SCI3 (P21/RXD, P22/TXD)
- board programming mode by boot mode.


OSC₂

 $C_1 = 5 \text{ to } 30 \text{ pF}$ $C_2 = 5 \text{ to } 30 \text{ pF}$

		$\phi_{\rm osc}$ = 4 to 20 MHz, clear NESEL to 0
Section 8 RAM	107	Note: * When the E7 or E8 is used, area H'F780 to H'F must not be accessed.
Section 13 Timer Z	208	TCNT value Counter cleared by FTIOB input (fallii
Figure 13.17 Example of Input Capture Operation		H'0180
13.4.4 Synchronous Operation	211	Figure 13.20 shows an example of synchronous operathis example, synchronous operation has been selecte FTIOB0 and FTIOB1 have been designated for PWM I GRA_0 compare match has been set as the channel 0 clearing source, and synchronous clearing has been set channel 1 counter clearing source. In addition, the san clock has been set as the counter input clock for chance channel 1. Two-phase PWM waveforms are output fro FTIOB0 and FTIOB1.
13.4.5 PWM Mode	213	Figure 13.22 shows an example of operation in PWM in The output signals go to 1 and TCNT is reset at comparant to A, and the output signals go to 0 at compare match A, and D (TOB, TOC, and TOD = 1, POLB, POLC, and = 0).
	214	Figures 13.24 (when TOB, TOC, and TOD = 1, POLB, and POLD = 0) and 13.25 (when TOB, TOC, and TOD POLB, POLC, and POLD = 1) show examples of the o PWM waveforms with duty cycles of 0% and 100% in

mode.

Rev.5.00 Nov. 02, 2005 Page 492 of 500

18.3.1 A/D Data Registers upper byte first then the lower one. Word access is a A to D (ADDRA to possible. ADDR is initialized to H'0000. ADDRD)

336

340

Added

17.7 Usage Notes

Section 18 A/D Converter

Therefore byte access to ADDR should be done by re

In slave mode, when a stop cor detected after the general call a the first byte slave address, nex detection of start condition, acc the address set in SAR

Table 23.2 DC		item	Symbol	Pins	rest Condition
Characteristics (1)		Input high voltage	V _{IH}	PB0 to PB7	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$
		Input low	V _{IL}		$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$
		voltage		SCL, SDA,	
				P10 to P12,	
				:	
				P85 to P87,	
				PB0 to PB7	
	398	Mode		RES Pin	Internal State
		Active mod	e 1	V _{cc}	Operates
		Active mod	e 2	<u>-</u> '	Operates

Sleep mode 1

Sleep mode 2

 $V_{\rm cc}$

(\$OSC/64)

(\$OSC/64)

Only timers oper

REJ09B0027-0500

Rev.5.00 Nov. 02, 2005 Page 494 of 500

			PB0 to PB7	
	417	Mode	RES Pin	Internal State
		Active mode 1	V _{cc}	Operates
		Active mode 2	_	Operates (φOSC/64)
		Sleep mode 1	V _{cc}	Only timers ope
		Sleep mode 2		Only timers ope (φOSC/64)
Table 23.16 A/D Converter Characteristics	424			v
		Item	Test Condition	M
		Conversion time (single mode)	$AV_{cc} = 3.3 \text{ to } 5.5$	V 1
Figure 23.4 I ² C Bus Interface Input/Output Timing	429	SCL	P* - S* tsc	t _{SCLH}
Appendix D Package	488,	Swapped with new of	ones.	

489

Dimensions

Rev.5.00 Nov. 02, 2005 Page 496 of 500

REJ09B0027-0500

Slave addressing
Stop condition Effective address Effective address extension
Effective address Effective address extension
Effective address extension
Exception handling
Exception nanding
Reset exception handling.
Stack status
Trap instruction
${f F}$
Flash memory
Boot mode
Boot program
Erase/erase-verify
Erasing units
Error protection
Hardware protection
Power-down states
Program/program-verify
Programmer mode
Programming units
Programming/erasing in u
program mode
Software protection
Rev.5.00 Nov. 02, 2009
_

Slave address reference register

Noise canceler 329	
Slave address	0
Start condition	On-board programming modes
Stop condition319	Operation field
Transfer rate	
Instruction set	
Arithmetic operations instructions 24	P
Bit manipulation instructions	Package
Block data transfer instructions 31	Package dimensions
Branch instructions	Pin arrangement
Data transfer instructions	Power-down modes
Logic operations instructions	Sleep mode
Shift instructions	Standby mode
System control instructions	Subactive mode
Internal power supply	Subsleep mode
step-down circuit	Power-on reset
Interrupt	Power-on reset circuit
Internal interrupts 59	Product code lineup
Interrupt response time	Program counter (PC)
IRQ3 to IRQ0 interrupts57	
NMI interrupt57	
WKP5 to WKP0 interrupts 58	R
Interrupt mask bit	Realtime clock (RTC)
	Data reading procedure
	Initial setting procedure

Clocked synchronous serial format..... 327

Rev.5.00 Nov. 02, 2005 Page 498 of 500

Register

ABRKCR...... 64, 378

ABRKSR 65, 378

L

EBR1 93, 376, 383, 387

EKR 351, 380, 385, 390

PDR6......129, 37

TIORA192, 374, 381, 386	Event counter operation
TIORC193, 374, 381, 386	Interval timer operation
TLB1156	Timer V
TMB1155, 376, 383, 387	Timer Z
TMDR183, 375, 382, 386	Buffer operation
TMWD253, 378, 384, 388	Complementary PWM mode
TOCR188, 375, 382, 386	Input capture function
TOER187, 375, 382, 386	PWM mode
TPMR184, 375, 382, 386	Reset synchronous PWM mode.
TSR194, 374, 381, 386	Synchronous operation
TSTR182, 375, 382, 386	Waveform output by
Register field	compare match
S	X 7
	V
Serial communication interface 3	Vector address
(SCI3)259	
Asynchronous mode	
Bit rate	\mathbf{W}
Break	Watchdog timer
Clocked synchronous mode	S

TFCR185, 375, 382, 386

TIER196, 374, 381, 386

RENESAS

Timer B1

Auto-reload timer operation......

Rev.5.00 Nov. 02, 2005 Page 500 of 500

Renesas 16-Bit Single-Chip Microcomputer Hardware Manual H8/3687 Group

Publication Date: 1st Edition, Jul, 2001

Rev.5.00, Nov. 02, 2005

Published by: Sales Strategic Planning Div.

Renesas Technology Corp.

Edited by: Customer Support Department

Global Strategic Communication Div.

Renesas Solutions Corp.

©2005. Renesas Technology Corp. All rights reserved. Printed in Japan.

RENESAS SALES OFFICES

http://www.rei

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: -886- (21) 6472-1001, Fax: -866- (21) 6415-2952

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852-2265-6688, Fax: <852-2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632

Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bidg, 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82 > 2-799-63115, Fax: <82 > 2-796-2145

Renesas Technology Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Tel: <603> 7955-9390, Fax: <603> 7955-9510

H8/3687Group Hardware Manual

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Microprocessors - MPU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MC68302EH20C MC7457RX1000LC MC7457RX1267LC MC7457VG1267LC A2C00010998 A A2C52004004 R5F117BCGNA#20 R5F52106BDLA#U0 R5S72690W266BG#U0 ADJ3400IAA5DOE MPC8245TVV266D MPC8245TZU300D MPC8260ACVVMHBB MPC8323ECVRAFDCA MPC8323VRADDCA MPC8536ECVJAVLA BOXNUC5PGYH0AJ 20-668-0024 P1010NSN5DFB P2010NSN2MHC P2020NXE2HHC P5020NSE7QMB P5020NSE7TNB P5020NSE7VNB LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB A2C00010729 A A2C00039344 T1022NSE7MQB T1022NXN7PQB T1023NSE7MQA T1024NXE7PQA T1042NSE7MQB T1042NSN7MQB T1042NXN7WQB T2080NSE8TTB T2080NSN8PTB T2080NXE8TTB T2081NXN8TTB R5F101AFASP#V0 MC68302CEH20C TS68040MF33A MPC8260ACVVMIBB MPC8280CZUUPEA MPC8313ECVRAFFC MPC8313ECVRAGDC MPC8313EVRADDC MPC8313EVRADDC