
Model: FXO-HC73 SERIES

Frea: 0.75 MHz to 250MHz

7 x 5mm 3.3V Oscillator HCMOS

Features

- XTREMELY Low Jitter
- Low Cost
- XPRESS Delivery
- Frequency Resolution to six decimal places
- Stabilities to ± 20 PPM
- -20 to +70°C or -40 to +85°C operating temperatures
- Tri-State Enable / Disable Feature
- Industry Standard Package, Footprint & Pin-Out
- Fully RoHS compliant
- Gold over Nickel Termination Finish
- Serial ID with Comprehensive Traceability

For more information -- Click on the drawing

Description

The Fox XPRESSO Crystal Oscillator is a breakthrough in configurable Frequency Control Solutions. XPRESSO utilizes a family of proprietary ASICs, designed and developed by Fox, with a key focus on noise reduction technologies.

The 3rd order Delta Sigma Modulator reduces noise to the levels that are comparable to traditional Bulk Quartz and SAW oscillators. The ASICs family has ability to select the output type, input voltages, and temperature performance features.

With the XPRESS lead-time, low cost, low noise, wide frequency range, excellent ambient performance, XpressO is an excellent choice over the conventional technologies.

Finished XPRESSO parts are 100% final tested.

Rev. 11/28/2007

Need a

nage

Applications

- ANY application requiring an oscillator
- SONET
- Ethernet
- Storage Area Network
- **Broadband Access**
- Microprocessors / DSP / FPGA
- Industrial Controllers
- Test and Measurement Equipment
- Fiber Channel

Contents

	page
Model Selection & Part Number Guide	2
Electrical Characteristic	2
Absolute Maximums	3
Output Wave Characteristics	3
Phase Noise	4
Jitter	4
Pin Assignment	5
Recommended Circuit	5
Reflow	5
Mechanical Drawing and Pad Layout	6
Tape and Reel Specification	7
Label	7
Traceability - LOT Number & Serial Identification	ר 8
RoHS Material Declaration	9
SGS Report 10 a	& 11
Mechanical Test	12
Burn-In Test	12
MTTF / FITS calculations	13
Other XPRESSO Links	14
Fox Contact Information	14

FOXElectronics 5570 Enterprise Parkway Fort Myers, Florida 33905 USA +1.239.693.0099 FAX +1.239.693.1554 http://www.foxonline.com

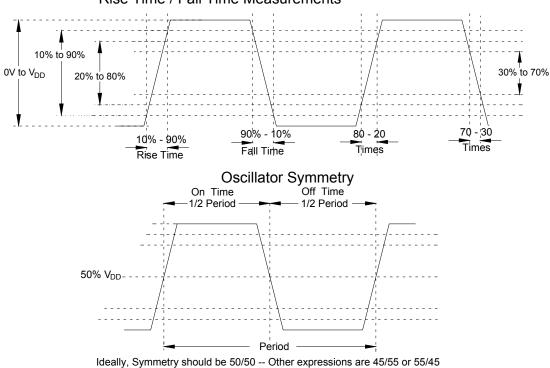
Page 1 of 14

Model Selection Guide & Fox Part Number STEP #1: Customer selects the Model Description and provides to Fox Customer Service **Model Description** F X O - H C 7 3 6 R - 106 . 25 Frequency (in MHz) Resolutions to 6 places past the decimal point *blank* = -20°C to +70°C H = HCMOS C = Ceramic 3 = 3.3 V 0 = ± 100 PPM **5** = 5 x 3.2mm L = LVDS $\mathbf{Q} = \mathbf{Q} \mathbf{u} \mathbf{a} \mathbf{r} \mathbf{t} \mathbf{z}$ **7** = 7 x 5mm **2** = 2.5 V 5 = ± 50 PPM $\mathbf{R} = -40^{\circ}$ C to $+85^{\circ}$ C P = LVPECL 6 = ± 25 PPM 8 = ± 20 PPM M = LVDS (pin 2 E/D)(-20 ~ +70°C) $\mathbf{Q} = \text{LVPECL} (pin 2 E/D)$ **X** = HCMOS (comp 2^{nd} Output) **STEP #2:** The Fox Customer Service team provides a customer specific Part Number for use on their Bill Of Materials (BOM). Fox Part Number (The assigned Fox Part Number must be on the BOM – not the above Model Description) (This will ensure receipt of the proper part) The 1st Field <u>768 – 106.25 – 20</u> Product Code # The 3rd Field 767 = FXO-HC5 Fox Internally Generated Number 768 = FXO-HC7 (If any specification changes, 770 = FXO - LC5the last digits change) 771 = FXO-LC7 The 2nd Field (The same specs for a different customer 773 = FXO-PC5 The Customer's Frequency also changes the last digits) 774 = FXO-PC7 This example, FXO-HC736R-106.25 = HCMOS Output, Ceramic 7 x 5mm Package, 3.3V,

36R-106.25 = HCMOS Output, Ceramic 7 x 5mm Package, 3.3V, ±25 PPM Stability, -40 to +85°C Temperature Range, at 106.25 MHz

Electrical Characteristics					
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)		
Frequency Range	Fo		0.750 to 250.000 MHz		
Frequency Stability ¹			100, 50, 25, & 20 ppm		
Temperature Range	T _o T _{stg}	Standard operating <i>Optional operating</i> Storage	-20°C to +70°C -40°C to +85°C -55°C to +125°C		
Supply Voltage	V _{DD}	Standard	3.3 V ± 5%		
Input Current (@ 15pF LOAD)	I _{DD}	0.75 ~ 20 MHz 20+ ~ 50 MHz 50+ ~ 130 MHz 130+ ~ 200 MHz 200+ ~ 250 MHz	32 mA 35 mA 47 mA 55 mA 60 mA		
Output Load	HCMOS	Standard Operational To 125MHz	15 pF 30 pF		
Start-Up Time	Ts		10 mS		
Output Enable / Disable Time			100 nS		
Moisture Sensitivity Level	MSL	JEDEC J-STD-20	1		
Termination Finish			Au		

Note 1 – Stability is inclusive of 25°C tolerance, operating temperature range, input voltage change, load change, aging, shock and vibration.

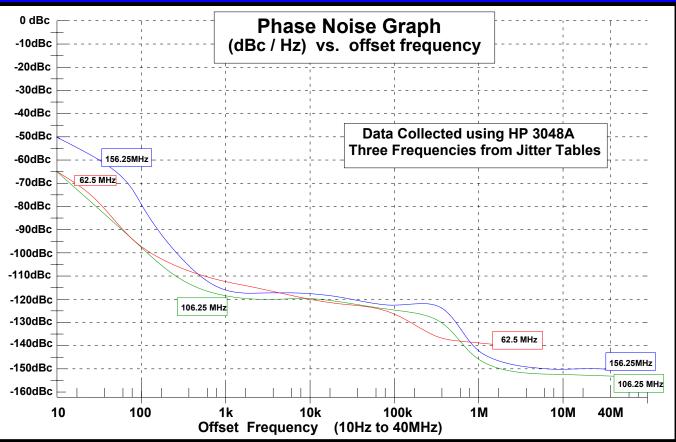


Absolute Maximum Ratings (Useful life may be impaired. For user guidelines only, not tested)				
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)	
Input Voltage	V _{DD}		-0.5V to +5.0V	
Operating Temperature	T _{AMAX}		–55°C to +105°C	
Storage Temperature	T _{STG}		–55°C to +125°C	
Junction Temperature			150°C	
ESD Sensitivity	HBM	Human Body Model	1 kV	

Out	nut V	Wave	Chara	cteristics
Out	put	vave	Unara	Clensuos

Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Output LOW Voltage	V _{OL}	0.75 to 150 MHz 150+ to 250 MHz	10% V _{DD} 20% V _{DD}
Output HIGH Voltage	V _{OH}	0.75 to 150 MHz 150+ to 250 MHz	90% V _{DD} MIN 80% V _{DD} MIN
Output Symmetry (See Drawing Below)		@ 50% V _{DD} Level	45% ~ 55%
Output Enable (PIN # 1) Voltage	V _{IH}		70% V _{DD}
Output Disable (PIN # 1) Voltage	V _{IL}		30% V _{DD}
Cycle Rise Time (See Drawing Below)	T _R	0.75 to 150 MHz 150+ to 250 MHz	3 nS _(10%~90%) 3 nS _(20%~80%)
Cycle Fall Time (See Drawing Below)	T _F	0.75 to 150 MHz 150+ to 250 MHz	3 nS (90%~10%) 3 nS (80%~20%)

If 30% to 70% times are used, Rise and Fall times change to 1.5 nS from 0.75 to 250MHz If 20% to 80% times are used, Rise and Fall times change to 2 nS from 0.75 to 150MHz



Rise Time / Fall Time Measurements

Phase Noise

Jitter is frequency dependent. Below are typical values at select frequencies.

Phase Jitter & Time Interval Error (TIE)						
Frequency	Phase Jitter (12kHz to 20MHz)	TIE (Sigma of Jitter Distribution)	Units			
62.5 MHz	0.93	2.8	pS RMS			
106.25 MHz	0.86	3.2	pS RMS			
125 MHz	0.75	2.7	pS RMS			
156.25 MHz	0.77	3.3	pS RMS			

Phase Jitter is integrated from HP3048 Phase Noise Measurement System; measured directly into 50 ohm input; V_{DD} = 3.3V. <u>TIE</u> was measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software; V_{DD} = 3.3V. *Per MJSQ spec (Methodologies for Jitter and Signal Quality specifications)*

Random & Deterministic Jitter Composition					
Frequency	Random (Rj) (pS RMS)	Deterministic (Dj) (pS P-P)	Total Jitter (Tj) (14 x Rj) + Dj		
62.5 MHz	1.28	6.8	25.1 pS		
106.25 MHz	1.28	8.4	26.6 pS		
125 MHz	1.20	8.0	25.2 pS		
156.25 MHz	1.27	8.6	26.6 pS		

<u>**Rj and Dj**</u>, measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software. Per **MJSQ** spec (Methodologies for Jitter and Signal Quality specifications)

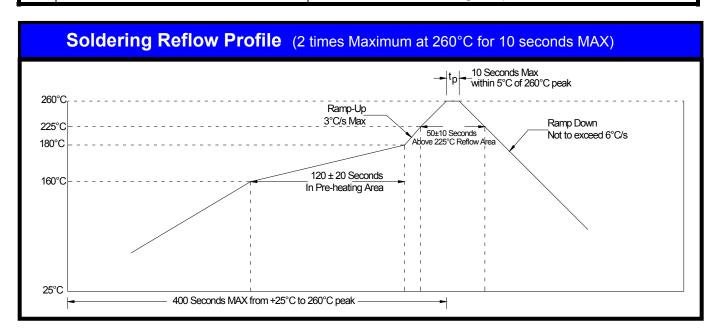
Pin Description and Recommended Circuit				
Pin #	Name	Туре	Function	
1	E/D ¹	Logic	Enable / Disable Control of Output (0 = Disabled)	
2	GND	Ground	Electrical Ground for V _{DD}	
3	Output	Output	HCMOS Oscillator Output	
4	V _{DD} ²	Power	Power Supply Source Voltage	
Test Points	N. C.	Hi Z	No Connection (Factory Use ONLY)	
NOTES	S:			
NOTES	 Includes pull-u Installation sho 	ould include a 0.01µF	rovide output when the pin (1) is No Connect. ⁻ bypass capacitor placed between V _{DD} power supply line noise.	

GND Output 2 3

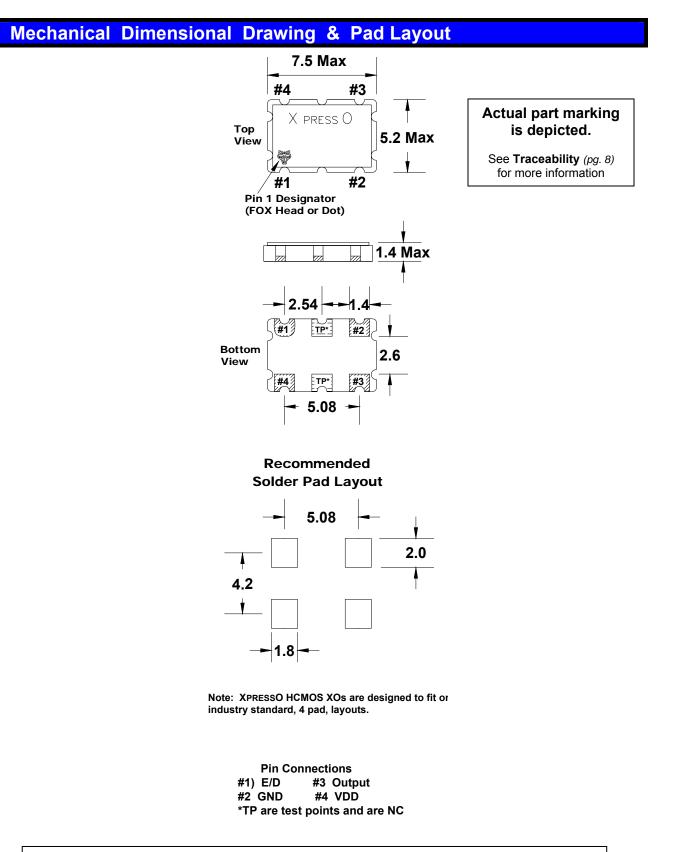
Terminations as viewed from the Top NOTE: XPRESSO HCMOS XOs are designed to fit on Industry Standard, 4 pad layouts

Enable / Disable Control	
Pin # 1 (state)	Output (Pin # 3)
OPEN (No Connection)	ACTIVE Output
"1" Level V _{IH} > 70% V _{DD}	ACTIVE Output
"0" Level V _{IL} < 30% V _{DD}	High Impedance

GND

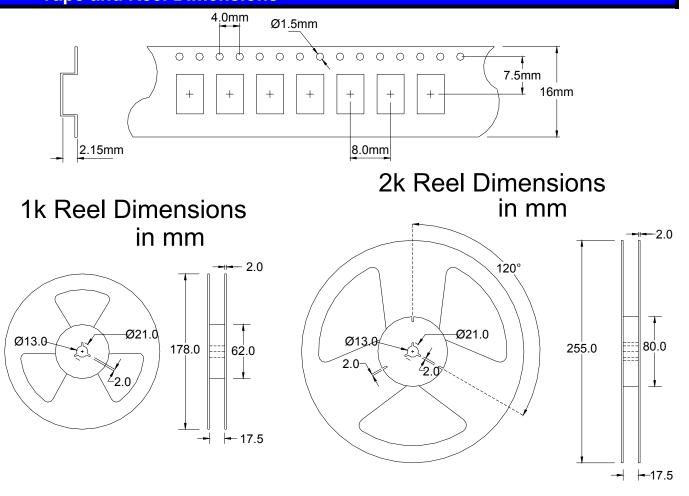

-

#2


#3

OUT

_ HCMOS LOAD ~ (15 pF)



Drawing is for reference to critical specifications defined by size measurements. Certain non-critical visual attributes, such as side castellations, reference pin shape, etc. may vary

Tape and Reel Dimensions

An additional identification code is contained internally if tracking should ever be necessary

Traceability – LOT Number & Serial Identification

LOT Number

The LOT Number has direct ties to the customer purchase order. The LOT Number is marked on the "Reel" label, and also stored internally on non-volatile memory inside the XPRESSO part. XPRESSO parts that are shipped Tape and Reel, are also placed in an Electro Static Discharge (ESD) bag and will have the LOT Number labeled on the exterior of the ESD bag.

It is recommended that the XPRESSO parts remain in this ESD bag during storage for protection and identification.

If the parts become separated from the label showing the LOT Number, it can be retrieved from inside one of the parts, and the information that can be obtained is listed below:

- Customer Purchase Order Number
- Internal Fox Sales Order Number
- Dates that the XPRESSO part was shipped from the factory
- The assigned customer part number
- The specification that the part was designed for

Serial Identification

The Serial ID is the individualized information about the configuration of that particular XPRESSO part. The Serial ID is unique for each and every XPRESSO part, and can be read by special Fox equipment.

With the Serial ID, the below information can be obtained about that individual, XPRESSO part:

- Equipment that the XPRESSO part was configured on
- Raw material used to configure the XPRESSO part
- Traceability of the raw material back to the foundries manufacturing lot
- Date and Time that the part was configured
- Any optimized electrical parameters based on customer specifications
- Electrical testing of the actual completed part
- Human resource that was monitoring the configuration of the part

Fox has equipment placed at key Fox locations World Wide to read the Lot Identification and Serial Number of any XPRESSO part produced and can then obtain the information from above within 24 hours

RoHS Material Declaration

	Material Name	Component	Content	Content	
			(mg)	(w t %)	(CAS Number)
Cover	Kovar	Nickel (Ni)	5.09	3.63%	7440-02-0
		Cobalt (Co)	3.15	2.24%	7440-48-4
		Iron (Fe)	9.47	6.75%	7439-89-6
Base	Ceramic	Alumina (Al ₂ O ₃)	79.178	56.4%	1344-28-1
		Silicon Oxide (SiO ₂)	3.143	2.24%	14808-60-7
		Chromium Oxide (Cr ₂ O ₃)	3.379	2.41%	1308-38-9
		Titanium Oxide (TiO ₂)	0.873	0.622%	13463-67-7
		Magnesium Oxide (MgO)	0.437	0.311%	1309-48-4
		Calcium Oxide (CaO)	0.297	0.212%	1305-78-8
	+ Metallization	Tungsten (W)	12.272	8.74%	7440-33-7
		Molybdenum (Mo)	0.380	0.27%	7439-98-7
	+ Nickel Plating	Nickel (Ni)	4.740	3.38%	7440-02-0
		Cobalt (Co)	0.395	0.28%	7440-48-4
	+ Gold Plating	Gold (Au)	0.624	0.445%	7440-57-5
	+Seal ring	Iron (Fe)	5.809	4.14%	7439-89-6
		Nickel (Ni)	3.119	2.22%	7440-02-0
		Cobalt (Co)	1.829	1.30%	7440-48-4
	+silver solder	Silver (Ag)	2.269	1.62%	7440-22-4
		Copper (Cu)	0.400	0.285%	7440-50-8
ΙC	ΙC	Aluminum (Al)	0.0021	0.00150%	7429-90-5
		Silicon (Si)	0.950	0.68%	7440-21-3
	Gold	Gold (Au)	0.480	0.342%	7440-57-5
	Adhesive	Silver (Ag)	0.000210	0.000150%	7440-22-4
		Ероху	0.0000700	0.0000499%	
Crystal	Crystal	Silicon Dioxide (SiO ₂)	2.04	1.45%	14808-60-7
	Electrode	Silver (Ag)	0.019	0.0135%	7440-22-4
		Nickel (Ni)	0.000159	0.000113%	7440-02-0
	Adhesive	Silver (Ag)	0.00037	0.000264%	7440-22-4
		Silicon (Si)	0.000125	0.000089%	7440-21-3
TOTAL			140.3	100.00%	

3rd Party (SGS) Material Report

SGS				
Test Repo	ort	No. 2053204/EC	Date : Mar 01 2006	Page 1 of 2
FOX ELECTRONICS 5570 ENTERPRISE P/ FT. MYERS, FL 33905		Y		
Report on the submitte	ed sample	e said to be CERAMIC SEAM	I SEAL OSCILLATOR.	
SGS Job No. Supplier / Manufacture Sample Receiving Date Testing Period		1981176 FOX ELECTRONICS FEB 17 2006 FEB 18 - 24 2006		
Test Requested :	1) 2) 3) 4) 5)	To determine the Cadmium To determine the Lead Cor To determine the Mercury (To determine the Hexavale To determine PBBs (polybr (Polybrominated diphenyle)	ntent in the submitted samp Content in the submitted sa ent Chromium Content on th rominated biphenyls) and P	le. mple. e submitted sample. BDEs
Test Method :	1-3) 4) 5)	With reference to EPA Met Analysis was performed by Emission Spectrometry (IC With reference to EPA Met The sample was alkaline di analyzed by using Colorime Spectrophotometer). With reference to EPA Met GC/MS or LC/ MS.	Inductively Coupled Argon P-AES). hod 3060A & 7196A. igested by using EPA Methe etric method 7196A (by UV-	od 3060A, and then Vis
Test Results :	1-5)	Please refer to next page.		
Signed for and on beha SGS Hong Kong Ltd	alf of			

Hok a Ting, Family Laboratory Executive

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Hong Kong Ltd. 5/F - 8/F & 28/F -29/F, Metropole Square, 2 On Ylu Street, Slu Lek Yuen, Shatin, N.T., Hong Kong. t (852) 2334 4481-9 f (852) 2764 3126 www.hk.sgs.com Member of the SGS Group (SGS SA)

3rd Party (SGS) Material Report (continued)

Test Report

No. 2053204/EC

Date : Mar 01 2006

Page 2 of 2

Test Results

Test Item	<u>1</u>	Detection Limit
1) Cadmium (Cd)	ND	2 ppm
2) Lead (Pb)	ND	2 ppm
3) Mercury (Hg)	ND	2 ppm
 Hexavalent Chromium (Cr⁶⁺) 	ND	2 ppm

(Results shown are of the total weight of samples)

Note : ppm = mg/kg

ND = Not Detected Not detected is reported when the reading is less than detection limit value

5) Flows Detendents	4	Detection Limit
Flame Retardants	1	Detection Limit
Polybrominated Biphenyls (PBBs)		
Monobromobiphenyl	ND	5 ppm
Dibromobiphenyl	ND	5 ppm
Tribromobiphenyl	ND	5 ppm
Tetrabromobiphenyl	ND	5 ppm
Pentabromobiphenyl	ND	5 ppm
Hexabromobiphenyl	ND	5 ppm
Heptabromobiphenyl	ND	5 ppm
Octabromobiphenyl	ND	5 ppm
Nonabromobiphenyl	ND	5 ppm
Decabromobiphenyl	ND	5 ppm
Polybrominated Diphenylethers (PBDEs)		
Monobromodiphenyl ether	ND	5 ppm
Dibromodiphenyl ether	ND	5 ppm
Tribromodiphenyl ether	ND	5 ppm
Tetrabromodiphenyl ether	ND	5 ppm
Pentabromodiphenyl ether	ND	5 ppm
Hexabromodiphenyl ether	ND	5 ppm
Heptabromodiphenyl ether	ND	5 ppm
Octabromodiphenyl ether	ND	5 ppm
Nonabromodiphenyl ether	ND	5 ppm
Decabromodiphenyl ether	ND	5 ppm

Note : ppm = mg/kg

ND = Not Detected

Not detected is reported when the reading is less than detection limit value.

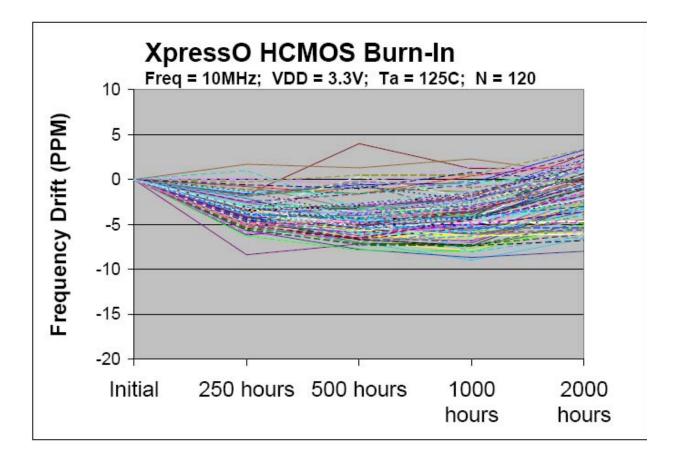
Sample Description:

1. Black Ceramic w/ Silvery, Golden Metal w/ Silvery Chips

*** End of Report ***

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Hong Kong Ltd. 5/F - 8/F & 28/F -29/F, Metropole Square, 2 On Ylu Street, Slu Lek Yuen, Shatin, N.T., Hong Kong. t (852) 2334 4481-9 t (852) 2754 3126 www.hk.sgs.com Member of the SGS Group (SGS SA)



Mechanical Testing

Parameter	Test Method
Mechanical Shock	Drop from 75cm to hardwood surface – 3 times
Mechanical Vibration	10~55Hz, 1.5mm amplitude, 1 Minute Sweep 2 Hours each in 3 Directions (X, Y, Z)
High Temperature Burn-in	Under Power @ 125°C for 2000 Hours (results below)
Hermetic Seal	He pressure: 4 \pm 1 kgf / cm ² 2 Hour soak

2,000 Hour Burn-In

Burn-In Testing – under power 2000 Hours, 125°C

MTTF / FITS Calculations

Products are grouped together by process for MTTF calculations. (All XpressO output and package types are manufactured with the same process)

Number of Parts Tested: 360 (120 of each output type: HCMOS, LVDS, LVPECL) Number of Failures: 0 Test Temperature: 125°C Number of Hours: 2000

MTTF was calculated using the following formulas:

[1.] Device Hours (devhrs) = (number of devices) x (hours at elevated temperature in °K)

[2.] $MTTF = \frac{devhrs \times af \times 2}{\chi^2}$ [3.] FITS = $\frac{1}{MTTF} * 10^9$

$$3.$$
 FITS = $\frac{}{MTT}$

Where:

which c.		
Label	Name	Formula/Value
af	Acceleration Factor	$\boldsymbol{\ell}^{(\frac{eV}{k})\times(\frac{1}{t_1}-\frac{1}{t_2})}$
eV	Activation Energy	0.40 V
k	Bolzman's Constant	8.62 X 10 ⁻⁵ <i>eV</i> /°K
t ₁		Operating Temperature (°K)
t ₂		Accelerated Temperature (°K)
Θ	Theta	Confidence Level (60% industry standard)
r	Failures	Number of failed devices
X ²	Chi-Square	statistical significance for bivariate tabular analysis [table look- up] based on assumed Θ (Theta – confidence) and number of failures (r) For zero failures (60% Confidence): χ^2 = 1.830

DEVICE-HOURS = 360 x 2000 HOURS = 720,000

ACCELERATION FACTOR = $e^{(\frac{0.40}{8.625}) \times (\frac{1}{298} - \frac{1}{398})} = 49.91009$

MTTF = $\frac{720,000 \times 49.91009 \times 2}{2}$ = 15,607,065 Hours 1.833

Failure Rate = $\frac{1.833}{720,000 \times 49.91009 \times 2}$ = 6.41E-8

FITS = Failure Rate *1E9 = 64

Notes :

Other XPRESSO Links

XPRESSO Brochure

Crystal Oscillators

HCMOS 5 x 3.2mm 3.3V XO 0.75 to 250MHz

HCMOS 7 x 5mm 3.3V XO 0.75 to 250MHz

LVPECL 5 x 3.2mm 3.3V XO 0.75 to 1.35GHz

LVPECL 7 x 5mm 3.3V XO 0.75 to 1.35GHz

LVDS 5 x 3.2mm 3.3V XO 0.75 to 1.35GHz

LVDS 7 x 5mm 3.3V XO 0.75 to 1.35GHz

Voltage Controlled Crystal Oscillators

HCMOS 5 x 3.2mm 3.3V VCXO 0.75 to 250MHz

HCMOS 7 x 5mm 3.3V VCXO 0.75 to 250MHz

LVPECL 5 x 3.2mm 3.3V VCXO 0.75 to 1.35GHz

LVPECL 7 x 5mm 3.3V VCXO 0.75 to 1.35GHz

LVDS 5 x 3.2mm 3.3V VCXO 0.75 to 1.35GHz

LVDS 7 x 5mm 3.3V VCXO 0.75 to 1.35GHz

Main Website www.foxonline.com

Patent Numbers: US 6,664,860, US 5,960,403, US 5,952,890; US 5,960,405; US 6,188,290; Foreign Patents: R.S.A. 98/0866, R.O.C. 120851; Singapore 67081, 67082; EP 0958652 China ZL 98802217.6, Malaysia MY-118540-A, Philippines 1-1998-000245, Hong Kong #HK1026079, Mexico #232179 US and Foreign Patents Pending XpressO[™] Fox Electronics

Contact Information		Fox Japan
		Tel:+81.3.3374.2079,
(USA)-Worldwide Headquarters		Fax: +81.3.3377.5221
Tel: 888-GET-2-FOX		Email: www.foxonline.com/email.htm
Outside US: +1.239.693.0099,		
Fax:+1.239.693.1554	Fox EMEA	
Email: www.foxonline.com/email.htm	Tel/Fax: +44 1283 568153	
	Email: www.foxonline.com/email.htm	

The above specifications, having been carefully prepared and checked, is believed to be accurate at the time of publication; however, no responsibility is assumed by Fox Electronics for inaccuracies.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for fox manufacturer:

Other Similar products are found below :

 FOXLF049-20
 FOXSDLF/240F-20
 FXO-HC736R-125
 FO5LSCDM100.00
 FOX924B-10.000
 FOXSDLF/240F-20/TR
 F4105R-250

 HC49ULF-11.0592MHz
 FOXSDLF/040R/TR
 VCS25AXT-447
 FO7HSCAM8.0
 FOXLF098-20
 70M15A
 FO7HHAAM32.0

 FO7HHAAM20.0-BULK
 FY3HCJM45.1584-BULK
 FO7HSCDM50.0
 FC7BSCCMM6.0-T1
 FOXSLF/120-20
 VCS25AXT-270 27.000MHZ

 FOX801BELF-160
 FOXLF250F-20
 FOXSDLF/049-20/TR
 FXO-LC735RGB-156.25
 FOXSDLF/245FR-20/TR
 FOXSDLF/200-20/TR

 FC3VREEEM38.4-T1
 FOX923CH-19.20M
 FXO-HC735-48
 FO7HSCAE48.0-BULK
 FOXSDLF/184-20
 F1100E-48.000MHZ
 FOXLF221

 20
 FOXSLF/245F-20
 FOXS/073-20-LF
 FOXSDLF/080R-20/TR
 FXO-PC536R-150
 FOXSLF041
 F4100-75.00
 FOXSLF/160-20

 FOXSLF/240F-20
 FOXLF05A
 NC38LF-327
 FXU-LC536R-212.50
 FOXSLF/200-20
 F3340-2.048MHZ
 718-13.2-1
 F4105-1000
 FOXLF160

 FC4SDCBMF20.0-T1
 FOX
 FOXLF100-T1
 FOXLF100
 FOXLF160
 FOXLF160