DIN Track Mounted, Standard 17.5-mm Width Timer Range

- A wide AC/DC power supply range (24 to 230 VAC/ 24 to 48 VDC) reduces the number of timer models kept in stock.
- Eight operating modes (H3DS-M) and four operating modes (H3DS-S) cover a wide range of applications.
■ A wide time setting range of 0.10 s to 120 h .
- Two LEDs indicate power and relay status respectively.
■ Smart Dial/Selector-locking Mechanism: Prevents the dials and selectors on the Timer's front panel from being inadvertently operated or being operated without authorization. The lock can only be unlocked and locked with an optional pen-type Lock Key.

■ Screwless spring terminal type available.
■ Sticker provided for easy timer identification and management.

- Terminal clamp left open when delivered (screw terminal type).
■ Finger protection terminal block to meet VDE0106/P100.
■ Enables easy sequence checks through instantaneous outputs for a zero set value at any time range.
■ Conforms to EN61812-1 and IEC60664-1 (VDE0110) 4 kV/2.
- Conforms to EMC standards (EN50081-1 and EN50082-2).

Ordering Information

Supply voltage	Control output	Input type	Operating mode (see note)	Model	
				Screw terminal type	Screwless spring terminal type
$\begin{aligned} & 24 \text { to } 230 \text { VAC }(50 / 60 \mathrm{~Hz}) / \\ & 24 \text { to } 48 \text { VDC } \end{aligned}$	Contact output: SPDT (time-limit output SPDT)	Voltage input	Eight multi-modes: A, B, B2, C, D, E, G, J	H3DS-ML	H3DS-MLC
		No-input available	Four multi-modes: A, B2, E, J	H3DS-SL	H3DS-SLC
			Single mode: A	H3DS-AL	H3DS-ALC

Note: The operating modes are as follows:

> A: ON-delay
> B: Flicker OFF start
> B2: Flicker ON start
> C: Signal ON/OFF-delay
> D: SIgnal OFF-delay
> E: Interval
> G: Signal ON/OFF-delay
> J: One shot

Model Number Legend

H3DS -

L \square
123

1. M : Multi-function type

S: Standard type
A: Single-function type
2. L: Smart lock mechanism
3. None:Screw terminal type

C: Screwless spring terminal type

- Accessories (Order Separately)

Lock Key	Younting Track	$50 \mathrm{~cm}(\mathrm{I}) \times 7.3 \mathrm{~mm}(\mathrm{t})$
	$1 \mathrm{~m}(\mathrm{I}) \times 7.3 \mathrm{~mm}(\mathrm{t})$	PFP-50N
	$1 \mathrm{~m}(\mathrm{l}) \times 16 \mathrm{~mm}(\mathrm{t})$	PFP-100N
End Plate	PFP-100N2	
Spacer	PFP-M	

Specifications

■ General

Item	H3DS-ML \square	H3DS-SL \square	H3DS-AL \square
Operating mode	A: ON-delay (Signal or Power) B: Flicker OFF start (Signal or Power) B2: Flicker ON start (Signal or Power) C: Signal ON/OFF-delay D: Signal OFF-delay E: Interval (Signal or Power) G: Signal ON/OFF-delay J: One-shot (Signal or Power)	A: ON-delay B2: Flicker ON start E: Interval J: One-shot	A: ON-delay (fixed)
Input type	Voltage input	---	
Output type	Relay: SPDT		
External connections	Screw terminal, screwless spring terminal		
Terminal block	Screw terminal type: Clamps two $2.5-\mathrm{mm}$ max. bar terminals without sleeves. Screwless spring terminal type: Clamps two $1.5-\mathrm{mm}$ max. bar terminals without sleeves.		
Terminal screw tightening torque	0.98 N • m max.		
Mounting method	DIN track mounting (see note)		
Attachment	Nameplate label		
Approved standards	```UL508, CSA 22.2 No.14 Conforms to EN61812-1, IEC60664-1 (VDE0110) 4 kV/2, VDE0106/P100 Conforms to IEC60947-5-1 (AC-13; 250 V 5 A/AC-14; 250 V 1 A/AC-15; 250 V 1 A/DC-13; 30 V 0.1 A/DC-14; 30 V 0.05 A) Conforms to EN50081-1 and EN50082-2```		

Note: Can be mounted to DIN Track with a plate thickness of 1 to 2.5 mm .

- Time Ranges

Time scale display	Time range
0.1 s	0.1 to 1.2 s
1 s	1 to 12 s
0.1 m	0.1 to 1.2 min
1 m	1 to 12 min
0.1 h	0.1 to 1.2 h
1 h	1 to 12 h
10 h	10 to 120 h

Note: When the time setting dial is set to " 0 " for any time scale, the output will operate instantaneously.

■ Ratings

Rated supply voltage (see notes 1 and 2)		24 to 230 VAC (50/60 Hz)/24 to 48 VDC
Operating voltage range		85% to 110% of rated supply voltage
Power reset		Minimum power-off time: 0.1 s
Reset voltage		2.4 VAC/DC max.
Power consumption (see note 3)	H3DS-ML \square	AC: approx. 26.9 VA (1.8 W) at 230 VAC DC: approx. 0.6 W at 24 VDC
	H3DS-SL \square	AC: approx. 26.5 VA (1.8 W) at 230 VAC DC: approx. 0.6 W at 24 VDC
	H3DS-AL \square	AC: approx. 27.1 VA (1.8 W) at 230 VAC DC: approx. 0.6 W at 24 VDC
Voltage input		Max. permissible capacitance between inputs lines (terminals B1 and A2): 2,000 pF Load connectable in parallel with inputs (terminals B1 and A1). H-level: 20.4 to 253 VAC/20.4 to 52.8 VDC L-level: 0 to $2.4 \mathrm{VAC} / \mathrm{DC}$
Control output		Contact output: 5 A at 250 VAC with resistive load $(\cos \phi=1)$ 5 A at 30 VDC with resistive load $(\cos \phi=1)$
Ambient temperature		Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) Storage: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity		Operating: 35\% to 85\%

Note: 1. DC ripple rate: 20% max.
2. Since an inrush current of 0.4 A will occur when using the power supply voltage at 24 VDC , pay careful attention when turning on or off the power supply to the Timer with a solid-state output such as a sensor.
3. The power consumption is for mode A after the Timer counts the time-up time and for the AC input at 50 Hz . The power consumption of the H3DS-ML includes the input circuit with the B1 and A1 terminals short-circuited.

■ Characteristics

Accuracy of operating time	$\pm 1 \%$ max. of $\mathrm{FS}(\pm 1 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range)
Setting error	$\pm 10 \% 50 \mathrm{~ms} \mathrm{max}$. of FS
Signal input time	50 ms min .
Influence of voltage	$\pm 0.5 \%$ max. of FS ($\pm 0.5 \% \pm 10 \mathrm{~ms}$ max. at 1.2-s range)
Influence of temperature	$\pm 2 \%$ max. of FS ($\pm 2 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range)
Insulation resistance	$100 \mathrm{M} \Omega$ min. at 500 VDC
Dielectric strength	Between current-carrying metal parts and exposed non-current-carrying metal parts: 2,000 VAC for 1 min . Between control output terminals and operating circuit: 2,000 VAC for 1 min . Between contacts not located next to each other: 1,000 VAC for 1 min .
Vibration resistance	Malfunction: $0.5-\mathrm{mm}$ single amplitude at 10 to 55 Hz Destruction: $0.75-\mathrm{mm}$ single amplitude at 10 to 55 Hz
Shock resistance	Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in 6 directions Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in 6 directions
Impulse withstand voltage	3 kV (between power terminals) 4.5 kV (between current-carrying metal parts and exposed non-current-carrying metal parts)
Noise immunity	Square-wave noise generated by noise simulator (pulse width: $100 \mathrm{~ns} / 1 \mu \mathrm{~s}$, 1-ns rise) $\pm 1.5 \mathrm{kV}$
Static immunity	Malfunction: 4 kV Destruction: 8 kV
Life expectancy	Mechanical: 10 million operations min. (under no load at 1,800 operations $/ \mathrm{h}$) Electrical: 100,000 operations \min. (5 A at 250 VAC , resistive load at 360 operations $/ \mathrm{h}$) (see note)
EMC	
Case color	Light gray (5Y7/1)
Enclosure rating	IP30 (Terminal block: IP20)
Weight	100 g

Note: For reference:
A maximum current of 0.15 A can be switched at $125 \mathrm{VDC}(\cos \phi=1)$.
A maximum current of 0.1 A can be switched if L / R is 7 ms .
In both cases, a life of 100,000 operations can be expected.
The minimum applicable load is 10 mA at 5 VDC (failure level: P).

Nomenclature

(Front View)

Operation

■ Block Diagram

- I/O Functions

Item		H3DS-ML \square	H3DS-SL $\square /-A L \square$
Input	Start	Starts operation.	No input is available.
Output	Control output	Outputs are turned ON according to designated output mode when preset value is reached.	Outputs are turned ON according to designated output mode when preset value is reached.

Basic Operation

Setting of Selector

The selectors can be turned clockwise and counterclockwise to select the desired time scale, or operating mode.
Each selector has a snap mechanism that secures the selector at a given position. Set the selector at a position at which it is secured. Do not set it midway between two securing positions or a malfunction could result from improper setting.

Selection of Operating Mode (except for H3DS-AL)

The H3DS-ML/-SL can be set to any one of the operating modes A to J. Turn the operating mode selector with a screwdriver until the desired operating mode appears in the operating mode display window.
H3DS-ML (8 modes): A, B, B2, C, D, E, G, J (In order of appearance) H3DS-SL (4 modes): A, E, B2, J, E, E, J, J (In order of appearance)
Note: Letters that appear more than once indicate exactly the same operating mode.

Selection of Time Scale

The time scale is selected by turning the time scale selector. The time scales will appear in the following order in the time scale display window on the left of the selector:
$1 \mathrm{~s}, 0.1 \mathrm{~s}, 1 \mathrm{~h}, 0.1 \mathrm{~h}, 10 \mathrm{~h}, 1 \mathrm{~h}, 1 \mathrm{~m}, 0.1 \mathrm{~m}$.
Note: The time scale " 1 h " appears twice. Both instances indicate exactly the same time scale.

Locking/Unlocking of Selectors and Time Setting Dial

The time setting dial, time scale selector, and operating mode selector can be locked using the Y92S-38 Lock Key, a special pen type tool that is sold separately. To lock the dial or selectors, insert the Lock Key in the keyhole to the lower right of the dial or selector and turn it clockwise until the dial or selector is completely covered with the red cover. To unlock, turn the Lock Key in the opposite direction.

■ Timing Chart

Note: 1. The minimum power reset time is 0.1 s and the minimum signal input time is 0.05 s .
2. The letter " t " in the timing charts stands for the set time and " $\mathrm{t}-\mathrm{a}$ " means that the period is less than the time set.

Note: The start input of the H3DS-ML \square model is activated by applying a voltage to B1 and A2 terminals. The voltage can be applied by turning on the contact between B1 and A1 (Refer to Terminal Arrangement).

Note: The start input of the H3DS-ML \square model is activated by applying a voltage to B1 and A2 terminals. The voltage can be applied by turning on the contact between B1 and A1 (Refer to Terminal Arrangement).

Dimensions

Note: All units are in millimeters unless otherwise indicated.
H3DS-ML $\square /-S L \square /-A L \square$

Installation

- Terminal Arrangement

Note: 1. DC supply voltage does not require the designation of polarity.
2. The contact symbol for the H3DS is indicated with Γ° o contact for conventional timers.

■ Input Connections

The inputs of the H3DS-ML \square are voltage (voltage imposition or open) inputs.

No-contact Input
(Connection to PNP output sensor.)

Operates with PNP transistor ON

No-contact Input
(Connection to NPN output sensor.)

Contact Input

Operates with relay ON

Voltage Input Signal Levels

No-contact input	1. Transistor ON Residual voltage: 1 V max. (Voltage between terminals B_{1} and A_{2} must be more than the rated "H-level" voltage (20.4 VDC min.).)
	2. Transistor OFF Leakage current: 0.01 mA max. (Voltage between terminals B_{1} and A_{2} must be less than the rated "L-level" voltage (2.4 VDC max.).)

Accessories (Order Separately)

Note: All units are in millimeters unless otherwise indicated.

■ Dimensions

Lock Key

Y92S-38

Mounting Track

PFP-100N, PFP-50N

Note: The values shown in parentheses are for the PFP-50N.

PFP-100N2

Spacer

PFP-S

End Plate
PFP-M

Precautions

■ Changing of Setting

NOTICE: Do not change the time scale or operating mode, while the Timer is in operation or malfunction could result.

- Power Supplies

The H3DS Series is provided with a transformerless power supply system. An electric shock may be received if the input terminal or the output type selector switch is touched while power is being supplied.
Use the bar terminal for wiring the H3DS. Using a stranded-wire terminal may cause a short-circuit due to a stray wire entering into the Timer.
Both AC and DC power supplies can be connected to the power input terminals without regarding polarity.
With the H3DS only, a DC power supply must be connected to the power input terminals as designated according to the polarity of the terminals.
A DC power supply can be connected if its ripple factor is 20% or less and the mean voltage is within the rated operating voltage range of the Timer.
Make sure that the voltage is applied within the specified range, otherwise the internal elements of the Timer may be damaged.
Connect the power supply voltage through a relay or switch in such a way that the voltage reaches a fixed value at once or the Timer may not be reset or a timer error could result.
For the power supply of an input device of the H3DS-ML \square, use an isolating transformer, of which the primary and secondary windings are mutually isolated and the secondary winding is not grounded.

- Installation

If the load current is continuously being supplied to the Timer for a long period of time, be sure to provide the mounting clearance as shown in the figure below. If used under the conditions other than those specified below, the life of internal components may be shortened due to an excessive rise in the internal temperature.

Switching Current vs. Ambient Temperature (When Mounting Two or More H3DS Units Side-by-Side)

(Measurement Condition: Input voltage of 230 VAC)

Input/Output

Relationship between Input and Power Supply Circuits (H3DS-ML \square)

Since the input circuit and the power supply circuit are configured independently, the input circuit can be turned on or off irrespective of the on/off state of the power supply.
It must be noted that a voltage equivalent to the power supply voltage is applied to the input circuit.
When connecting a relay or a transistor as an external signal input device, pay attention to the following points to prevent short-circuiting due to a sneak current to the transformerless power supply.
If a relay or transistor is connected to two or more Timers, the input terminals of those Timers must be wired properly so that they will not be different in phase or the terminals will be short-circuited to one another (refer to the figures below).

The H3DS Series is provided with a transformerless power supply system.

Input Wires

The input wires must be as short as possible. If the floating capacity of wires exceeds $2,000 \mathrm{pF}$ (approx. 17 m for cables with $120 \mathrm{pF} / \mathrm{m}$), the operation will be affected. Pay particular attention when using shielded cables.

■ Precautions for EN61812-1 Conformance

The H3DS as a built-in timer conforms to EN61812-1 provided that the following conditions are satisfied:
The output section of the H3DS is provided only with basic isolation. To ensure reinforced isolation required by the EN61812-1, provide supplementary basic isolation on the load side connected to the output.
The H3DS itself is designed according to the following:

- Overvoltage category III
- Pollution degree 2

On the above basis:
Operation parts on the front and bottom: Reinforced isolation

- With clearance of 5.5 mm and creepage distance of 5.5 mm at 230 VAC
Output: Basic isolation
- With clearance of 3 mm and creepage distance of 3 mm at 230 VAC

Environment

When using the Timer in an area with excess electronic noise, separate the Timer, wiring, and the equipment which generates the input signals as far as possible from the noise sources. It is also recommended to shield the input signal wiring to prevent electronic interference.
Organic solvents (such as paint thinner), as well as very acidic or basic solutions can damage the outer casing of the Timer.
Do not use the Timer in places where it is exposed to dust, corrosive gas, or direct sunlight.
When storing the Timer, make sure that the ambient temperature and humidity are within the rated values. Leave the Timer at room temperature for at least three hours before using the Timer if it has been stored at an ambient temperature of $-10^{\circ} \mathrm{C}$ or below.

- Others

If the Timer is mounted on a control board, dismount the Timer from the control board or short-circuit the circuitry of the power board before carrying out a voltage withstand test between the electric circuitry and non current-carrying metal part of the Timer, in order to prevent the internal circuitry of the Timer from damage.

Cat. No. L098-E1-1A In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation

Industrial Automation Company
Measuring and Supervisory Controls Department
28th FI., Crystal Tower Bldg.,
1-2-27, Shiromi, Chuo-ku,
Osaka 540-6028 Japan
Printed in Japan
Tel: (81)6-6949-6035/Fax: (81)6-6949-6069
0600-3M (0200) (O)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for omron manufacturer:
Other Similar products are found below :
G9ED-1-B-AQ-DC24 E3X-SD11 2M S8VM-10024C R88A-CCW002P2 S82Y-VM30D H3AM-NS-A AC100-240 G3NA-440B-2 DC5-24 XF2J-0824-11A-R100 G3NA-425B-2 DC5-24 XF2J-0824-12A G8JN-1C7T-R-DC12 G8VA-1A4T-R01-DC12 G8HE-1A7T-R-DC12 XF2W-2415-1A XF2U-3015-3A G8V-RH-1A7T-R-DC12 LY1D-2-5S-AC120 M165-JR-24D M16-TG-24D CS1G-CPU43-E M22CAT1 61F-GP-NT AC110 M7E-01DGN2-B M7E-02DGN2 M7E-08DRN2 M7E-20DRN1 M7E-HRN2 M8PHWS D2HW-C233MR F03-02 SUS316 F150LTC20 F3SJ-A0245P30 F3STGRNSMC21M1J8 F3UVHM MG2-US-AC24 MK2EP-UA-AC6V MK2PNIAC240 MK310EDC24 MKS2XTIN-11 DC110 MM4KPAC120NC MM4XPAC120 G2Q-184P-V-DC5 G2R-1114P-V-US-DC5 G2R13SNDDC24 G2RL-2A4-CF-DC48 G2U-114P-US-DC12 G2V-234P-US-DC48 G3CA-8H-AC100/110/120 G3PA-210B-US-DC24 G3PE525B3NDC1224

