HEF4021B

8-bit static shift register Rev. 9 — 30 August 2013

Product data sheet

1. **General description**

The HEF4021B is an 8-bit static shift register (parallel-to-serial converter) with a synchronous serial data input (DS), a clock input (CP), an asynchronous active HIGH parallel load input (PL), eight asynchronous parallel data inputs (D0 to D7) and buffered parallel outputs from the last three stages (Q5 to Q7).

Each register stage is a D-type master-slave flip-flop with a set direct (SD) and clear direct (CD) input. Information on D0 to D7 is asynchronously loaded into the register while PL is HIGH, independent of CP and DS. When PL is LOW, data on DS is shifted into the first register position and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of CP. Schmitt trigger action makes the clock input highly tolerant of slower rise and fall times.

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to V_{DD}, V_{SS}, or another input.

Features and benefits 2.

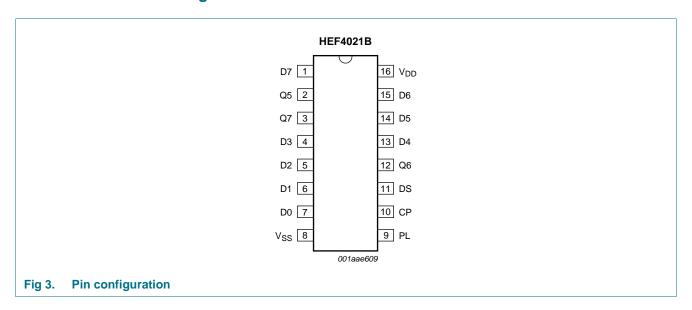
- Tolerant of slower rise and fall times
- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Specified from -40 °C to +125 °C
- Complies with JEDEC standard JESD 13-B

3. Ordering information

Table 1. **Ordering information**

All types operate from -40 °C to +125 °C.

Type number	Package		Version
	Name	Description	
HEF4021BP	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
HEF4021BT	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
HEF4021BTT	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1



4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Q5 to Q7	2, 12, 3	buffered parallel output from the last three stages
D0 to D7	7, 6, 5, 4, 13, 14,15, 1	parallel data input
V _{SS}	8	ground supply voltage
PL	9	parallel load input
СР	10	clock input (LOW-to-HIGH edge-triggered)
DS	11	serial data input
V_{DD}	16	supply voltage

6. Functional description

Table 3. Function table[1]

Number of clock	Inputs			Outputs				
transitions	СР	DS	PL	Q5	Q6	Q7		
Serial operation	Serial operation							
1	↑	data 1	L	X	X	Χ		
2	\uparrow	data 2	L	X	X	X		
3	\uparrow	data 3	L	Χ	Χ	Χ		
6	↑	Χ	L	data 1	X	Χ		
7	\uparrow	X	L	data 2	data 1	Χ		

Table 3. Function table 1... continued

Number of clock	Inputs			Outputs		
transitions	СР	DS	PL	Q5	Q6	Q7
8	\uparrow	X	L	data 3	data 2	data 1
	\	Χ	L	no change	no change	no change
Parallel operation						
	Χ	Χ	Н	D5	D6	D7

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care;

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
I_{IK} input clamping current $V_I < -0.5 \text{ V or } V_I > V_{DD} + 0.5 \text{ V}$	±10 mA
V _I input voltage -0.5	$V_{DD} + 0.5 V$
I_{OK} output clamping current $V_O < -0.5 \text{ V or } V_O > V_{DD} + 0.5 \text{ V}$ -	±10 mA
$I_{I/O}$ input/output current -	±10 mA
I _{DD} supply current -	50 mA
T_{stg} storage temperature -65	5 +150 °C
T _{amb} ambient temperature -40) +125 °C
P _{tot} total power dissipation T _{amb} –40 °C to +125 °C	
DIP16 package [1] -	750 mW
SO16 and TSSOP16 package [2] -	500 mW
P power dissipation per output -	100 mW

^[1] For DIP16 package: P_{tot} derates linearly with 12 mW/K above 70 $^{\circ}\text{C}.$

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage		3	-	15	V
V_{I}	input voltage		0	-	V_{DD}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{DD} = 5 V$	-	-	3.75	μs/V
		$V_{DD} = 10 \text{ V}$	-	-	0.5	μs/V
		V _{DD} = 15 V	-	-	0.08	μs/V

HEF4021E

 $[\]uparrow$ = LOW to HIGH clock transition; \downarrow = HIGH to LOW clock transition; data n = data (HIGH or LOW) on the DS input at the nth \uparrow CP transition.

^[2] For SO16 package: P_{tot} derates linearly with 8 mW/K above 70 °C. For TSSOP16 package: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

9. Static characteristics

Table 6. Static characteristics

 $V_{SS} = 0$ V; $V_I = V_{SS}$ or V_{DD} unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	T _{amb} =	–40 °C	T _{amb} =	25 °C	T _{amb} = 85 °C		T _{amb} =	125 °C	Unit		
				Min	Max	Min	Max	Min	Max	Min	Max			
V _{IH}	HIGH-level	$ I_{O} < 1 \mu A$	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V		
	input voltage		10 V	7.0	-	7.0	-	7.0	-	7.0	-	V		
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V		
V _{IL}	LOW-level	$ I_{O} < 1 \mu A$	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V		
	input voltage		10 V	-	3.0	-	3.0	-	3.0	-	3.0	V		
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V		
V _{OH}	HIGH-level	$ I_{O} < 1 \mu A$	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V		
	output		10 V	9.95	-	9.95	-	9.95	-	9.95	-	V		
	voltage		15 V	14.95	-	14.95	-	14.95	-	14.95	-	V		
V _{OL}	LOW-level	$ I_{O} < 1 \mu A$	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V		
	output voltage		10 V	-	0.05	-	0.05	-	0.05	-	0.05	V		
	voltage		15 V	-	0.05	-	0.05	-	0.05	-	0.05	V		
I _{OH}	HIGH-level output current	$V_0 = 2.5 \text{ V}$	5 V	-	-1.7	-	-1.4	-	-1.1	-	-1.1	mΑ		
		output current	output current	$V_{O} = 4.6 \text{ V}$	5 V	-	-0.64	-	-0.5	-	-0.36	-	-0.36	mΑ
		$V_0 = 9.5 V$	10 V	-	-1.6	-	-1.3	-	-0.9	-	-0.9	mΑ		
		$V_0 = 13.5 \text{ V}$	15 V	-	-4.2	-	-3.4	-	-2.4	-	-2.4	mΑ		
I _{OL}	LOW-level	$V_0 = 0.4 \ V$	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mΑ		
	output current	$V_0 = 0.5 \ V$	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mΑ		
		V _O = 1.5 V	15 V	4.2	-	3.4	-	2.4	-	2.4	-	mΑ		
I _I	input leakage current	$V_{DD} = 15 \text{ V}$	15 V	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μΑ		
I _{DD}	supply	$I_O = 0 A$	5 V	-	5	-	5	-	150	-	150	μΑ		
	current	ent	10 V	-	10	-	10	-	300	-	300	μΑ		
			15 V	-	20	-	20	-	600	-	600	μΑ		
C _I	input capacitance		-	-	-	-	7.5	-	-	-	-	pF		

10. Dynamic characteristics

Table 7. Dynamic characteristics

 $V_{SS} = 0 \text{ V; } T_{amb} = 25 \text{ °C; for test circuit see } Figure 7; unless otherwise specified.}$

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula	Min	Тур	Max	Unit
t_{PHL}	HIGH to LOW	CP to Qn	5 V	11 98 ns + (0.55 ns/pF)C _L	-	125	250	ns
	propagation delay see Figure 4	see <u>Figure 4</u>	10 V	44 ns + (0.23 ns/pF)C _L	-	55	110	ns
			15 V	32 ns + (0.16 ns/pF)C _L	-	40	80	ns
		PL to Qn	5 V	93 ns + (0.55 ns/pF)C _L	-	120	240	ns
		see <u>Figure 4</u>	10 V	44 ns + (0.23 ns/pF)C _L	-	55	110	ns
			15 V	32 ns + $(0.16 \text{ ns/pF})C_L$	-	40	80	ns

HEF4021B

All information provided in this document is subject to legal disclaimers.

 Table 7.
 Dynamic characteristics ...continued

 $V_{SS} = 0 \text{ V; } T_{amb} = 25 \text{ °C; for test circuit see } \underline{Figure 7}; unless otherwise specified.$

frequency see Figure 5 10 V 15 30 - MHz	Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula	Min	Тур	Max	Unit
Figure F	t _{PLH}			5 V	11 88 ns + (0.55 ns/pF)C _L	-	115	230	ns
PL to Qn see Figure 4 10 V 39 ns + (0.28 ns/pF)CL - 105 210 ns 15 V 39 ns + (0.28 ns/pF)CL - 50 100 ns 15 V 32 ns + (0.16 ns/pF)CL - 50 100 ns 15 V 32 ns + (0.16 ns/pF)CL - 60 120 ns 15 V 10 ns + (1.00 ns/pF)CL - 60 120 ns 15 V 10 ns + (1.00 ns/pF)CL - 20 30 60 ns 15 V 10 ns + (0.28 ns/pF)CL - 20 30 60 ns 15 V 10 ns + (0.28 ns/pF)CL - 20 30 60 ns 15 V 10 ns + (0.28 ns/pF)CL - 20 30 60 ns 15 V 10 ns + (0.28 ns/pF)CL - 20 30 60 ns 15 V 15		propagation delay	see <u>Figure 4</u>	10 V	39 ns + (0.23 ns/pF)C _L	-	50	100	ns
See Figure 4 10 V 39 ns + (0.23 ns/pF)CL - 50 100 ns 15 V 32 ns + (0.16 ns/pF)CL - 40 80 ns 15 V 32 ns + (0.16 ns/pF)CL - 40 80 ns 15 V 32 ns + (0.16 ns/pF)CL - 60 120 ns 15 V 9 ns + (0.42 ns/pF)CL - 30 60 ns 15 V 6 ns + (0.28 ns/pF)CL - 20 40 ns 15 V 6 ns + (0.28 ns/pF)CL - 20 40 ns 15 V 6 ns + (0.28 ns/pF)CL - 20 40 ns 15 V 6 ns + (0.28 ns/pF)CL - 20 40 ns 15 V 6 ns + (0.28 ns/pF)CL - 20 40 ns 15 V 15				15 V	32 ns + (0.16 ns/pF)C _L	-	40	80	ns
t₁ transition time				5 V	78 ns + (0.55 ns/pF)C _L	-	105	210	ns
			see <u>Figure 4</u>	10 V	39 ns + (0.23 ns/pF)C _L	-	50	100	ns
10 V 9 ns + (0.42 ns/pF)CL				15 V	32 ns + (0.16 ns/pF)C _L	-	40	80	ns
t _{su}	t _t	transition time	Qn; see Figure 4	5 V	10 ns + (1.00 ns/pF)C _L	-	60	120	ns
				10 V	9 ns + (0.42 ns/pF)C _L	-	30	60	ns
				15 V	6 ns + (0.28 ns/pF)C _L	-	20	40	ns
$t_{h} = \frac{15 \text{V}}{15 \text{V}} + \frac{15 \text{J}}{50} = \frac{10 \text{V}}{10 \text{N}} + \frac{15 \text{J}}{50} = \frac{10 \text{N}}{10 \text{N}} + \frac{15 \text{J}}{10 \text{V}} = \frac{10 \text{N}}{10 \text{V}} + \frac{15 \text{J}}{10 \text{V}} = \frac{10 \text{N}}{10 \text{N}} + \frac{15 \text{J}}{10 \text{V}} = \frac{10 \text{N}}{10 \text{N}} + \frac{15 \text{J}}{10 \text{V}} = \frac{10 \text{N}}{10 \text{V}} = \frac{10 \text{N}}{10 \text{V}} + \frac{15 \text{J}}{10 \text{V}} = \frac{10 \text{N}}{10 \text{N}} = \frac{10 \text{N}}{10 $	t _{su}	set-up time		5 V		+25	-15	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			see Figure 5	10 V		+25	-10	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				15 V		+15	-5	-	ns
$t_{h} \\ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				5 V		50	25	-	ns
			see <u>Figure 6</u>	10 V		30	10	-	ns
				15 V		20	5	-	ns
$t_{W} \text{pulse width} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _h	hold time	•	5 V		40	20	-	ns
$t_{W} = \frac{10 \text{ to PL; see Figure 6}}{10 \text{ V}} = \frac{5 \text{ V}}{15 \text{ V}} + 115 -10 - \text{$				10 V		20	10	-	ns
				15 V		15	8	-	ns
$t_{W} \text{pulse width} \begin{array}{c} CP = LOW; \\ \text{minimum width;} \\ \text{see Figure 5} \end{array} \begin{array}{c} 5 \ V \\ \\ 10 \ V \\ \end{array} \begin{array}{c} 30 \ 15 \\ \\ 15 \ V \\ \end{array} \begin{array}{c} 30 \ 15 \\ \\ 24 \ 12 \\ \end{array} \begin{array}{c} - \ \text{ns} \\ \end{array} \begin{array}{c} \\ 15 \ V \\ \end{array} \begin{array}{c} 10 \ V \\ \\ \end{array} \begin{array}{c} 10 \ V \\ \end{array} \begin{array}{c} 30 \ 15 \\ \end{array} \begin{array}{c} - \ \text{ns} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$,	5 V		+15	-10	-	ns
$t_{W} \ \ \text{Pulse width} \ \ \begin{array}{llllllllllllllllllllllllllllllllll$			see <u>Figure 6</u>	10 V		15	0	-	ns
				15 V		15	0	-	ns
	t_{W}	pulse width	•	5 V		70	35	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			•	10 V		30	15	-	ns
			occ <u>rigure o</u>	15 V		24	12	-	ns
				5 V		70	35	-	ns
			•	10 V		30	15	-	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			occ <u>rigure c</u>	15 V		24	12	-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{rec}	recovery time	•	5 V		50	10	-	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			see <u>Figure 6</u>	10 V		40	5	-	ns
frequency see Figure 5 10 V 15 30 - MHz				15 V		35	5	-	ns
10 0 10 10 10 10 10 10 10 10 10 10 10 10	f _{clk(max)}			5 V		6	13	-	MHz
15 V 20 40 - MHz		trequency	see <u>Figure 5</u>	10 V		15	30	-	MHz
				15 V		20	40	-	MHz

 $^{[1] \}quad \text{The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (C_L in pF).}$

Table 8. Dynamic power dissipation P_D

 P_D can be calculated from the formulas shown. $V_{SS} = 0$ V; $t_r = t_f \le 20$ ns; $T_{amb} = 25$ °C.

Symbol	Parameter	V_{DD}	Typical formula for P _D (μW)	where:
P_D	dynamic power	5 V	$P_D = 900 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$	f_i = input frequency in MHz,
	dissipation	10 V	$P_D = 4300 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$	f_o = output frequency in MHz,
		15 V	$P_D = 12000 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$	C_L = output load capacitance in pF, V_{DD} = supply voltage in V, $\Sigma(f_o \times C_L)$ = sum of the outputs.

11. Waveforms

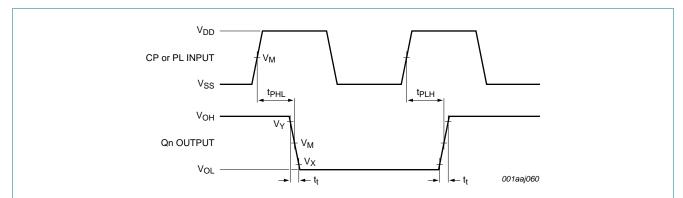


Fig 4. Waveforms showing propagation delays for CP and PL inputs to Qn output and Qn transition times

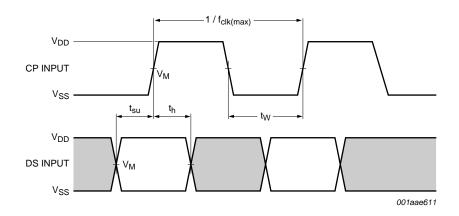


Fig 5. Waveforms showing minimum clock pulse width, set-up time, and hold time for CP and DS.

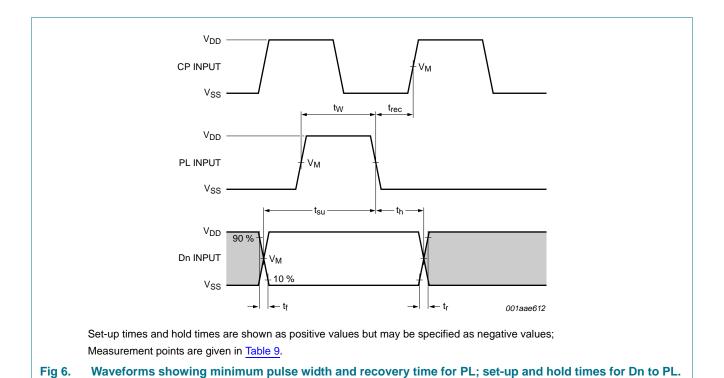
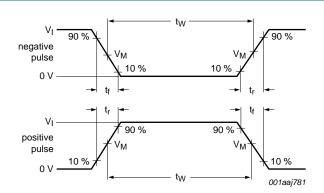
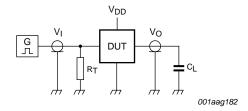




Table 9. Measurement points

Supply voltage	Input	Output		
V_{DD}	V _M	V _M	V _X	V _Y
5 V to 15 V	0.5V _{DD}	0.5V _{DD}	0.1V _{DD}	0.9V _{DD}

a. Input waveform

b. Test circuit

Test data is given in Table 10.

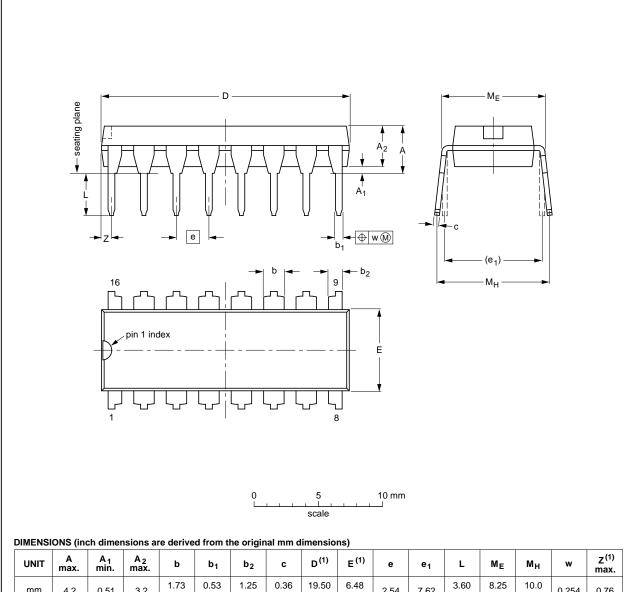
Definitions for test circuit:

DUT = Device Under Test.

C_L = load capacitance including jig and probe capacitance.

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

Fig 7. Test circuit for measuring switching times


Table 10. Test data

Supply voltage	Input	Load	
V_{DD}	VI	t _r , t _f	CL
5 V to 15 V	V _{SS} or V _{DD}	≤ 20 ns	50 pF

12. Package outline

DIP16: plastic dual in-line package; 16 leads (300 mil)

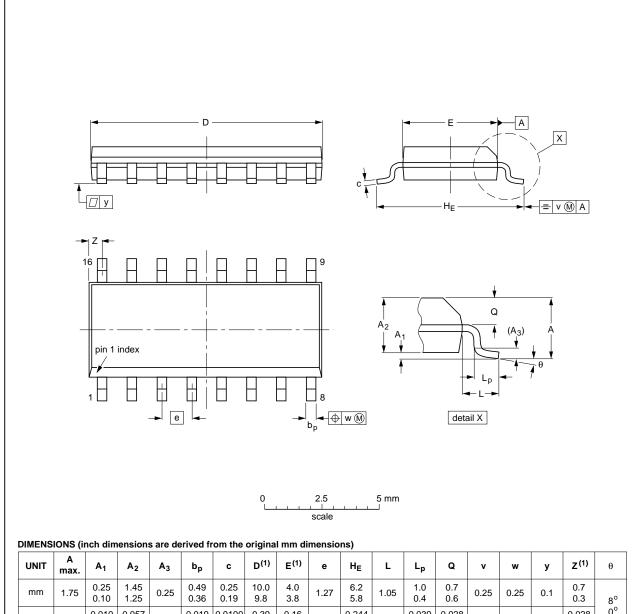
SOT38-4

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.02	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.03

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT38-4						95-01-14 03-02-13


Fig 8. Package outline SOT38-4 (DIP16)

HEF4021B

All information provided in this document is subject to legal disclaimers.

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01	l	0.0100 0.0075	0.39 0.38	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

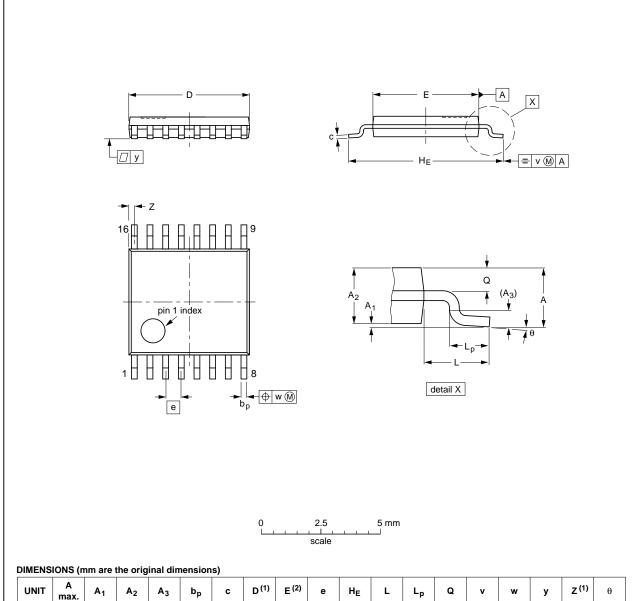

	OUTLINE		REFER	EUROPEAN	ISSUE DATE			
	VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
	SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Fig 9. Package outline SOT109-1 (SO16)

HEF4021B All information provided in this document is subject to legal disclaimers.

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE				
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE		
SOT403-1		MO-153				-99-12-27 03-02-18		

Fig 10. Package outline SOT403-1 (TSSOP16)

HEF4021B

All information provided in this document is subject to legal disclaimers.

13. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes							
HEF4021B v.9	20130830	Product data sheet	-	HEF4021B v.8							
Modifications:	 added type 	number HEF4021BTT.									
HEF4021B v.8	20111118	Product data sheet	-	HEF4021B v.7							
Modifications:	 Legal page: 	Legal pages updated.									
	 Changes in 	 Changes in "General description" and "Features and benefits". 									
	 Section "Ap 	plications" removed.									
HEF4021B v.7	20111010	Product data sheet	-	HEF4021B v.6							
HEF4021B v.6	20091127	Product data sheet	-	HEF4021B v.5							
HEF4021B v.5	20090707	Product data sheet	-	HEF4021B v.4							
HEF4021B v.4	20081110	Product data sheet	-	HEF4021B_CNV v.3							
HEF4021B_CNV v.3	19950101	Product specification	-	HEF4021B_CNV v.2							
HEF4021B_CNV v.2	19950101	Product specification	-	-							

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

HEF4021B

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2013. All rights reserved.

14 of 16

NXP Semiconductors HEF4021B

8-bit static shift register

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

16. Contents

1	General description	1
2	Features and benefits	1
3	Ordering information	1
4	Functional diagram	2
5	Pinning information	3
5.1	Pinning	3
5.2	Pin description	3
6	Functional description	3
7	Limiting values	4
8	Recommended operating conditions	4
9	Static characteristics	5
10	Dynamic characteristics	5
11	Waveforms	7
12	Package outline	IC
13	Revision history 1	13
14	Legal information 1	14
14.1	Data sheet status	14
14.2	Definitions 1	14
14.3	Disclaimers	
14.4	Trademarks1	15
15	Contact information 1	15
16	Contents	16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Counter Shift Registers category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

5962-8956101EA MC10E446FNG 74HC195N 74HC4516N 74HCT182N HEF4021BD HEF4534BP MC144111P NLV74HC165ADTR2G
5962-9172201M2A MC74HC597ADG MC100EP142MNG MC100EP016AMNG 5962-9172201MFA MC74HC164BDR2G
TC74HC165AP(F) 74AHC164T14-13 MC74LV594ADR2G NLV14094BDTR2G NLV74HC595ADTG MC74HC165AMNTWG
TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 CD4073BM96 CD4053BM96 MM74HC595MTCX 74HCT164T14-13
74HCT164S14-13 74HC4094D-Q100J NLV14014BFELG NLV74HC165ADR2G NLV74HC589ADTR2G NPIC6C595D-Q100,11
NPIC6C595PW,118 NPIC6C596ADJ NPIC6C596APW-Q100J NPIC6C596D-Q100,11 BU4094BCF-E2 BU4094BCFV-E2 74HC164D14
74HC164T14-13 TPIC6C596PWRG4 STPIC6D595MTR STP08CP05MTR CD74HC123E 74HC164D.653 74HC165D.653
74HCT165D.652 74HCT164D.652