

# Enhanced ESD, 5.0 kV rms, 150kbps Triple-Channel Digital Opto-Couplers

### **Data Sheet**

# $\pi 131U6XR$

#### FEATURES

Ultra-low power consumption (150kbps): 0.80mA /Channel Maximum data rate: 150kbps High common-mode transient immunity: 250 kV/us High robustness to radiated and conducted noise Isolation voltages: AC 5000Vrms **High ESD rating:** ESDA/JEDEC JS-001-2017 Human body model (HBM) ±8kV Safety and regulatory approvals (Pending): UL certificate number: 5000Vrms for 1 minute per UL 1577 VDE certificate number: DIN V VDE V 0884-11 (VDE V 0884-11):2017-01 V<sub>IORM</sub> = 1200V peak CQC certification per GB4943.1-2011 2.5 V to 5.5 V level translation Wide temperature range: -40°C to 125°C 10-Lead, RoHS-compliant WB SSOIC-10 package

devices operate with the supply voltage on either side ranging from 2.5 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The fail-safe state is available in which the outputs transition to a preset state when the input power supply is not applied.

#### FUNCTIONAL BLOCK DIAGRAMS

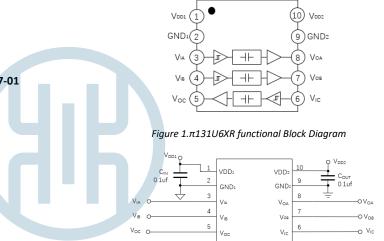



Figure 2.π131U6XR Typical Application Circuit

#### APPLICATIONS

Rev.1.1

General-purpose multichannel isolation Industrial field bus isolation Isolation Industrial automation systems Isolated switch mode supplies Isolated ADC, DAC Motor control

## GENERAL DESCRIPTION PAI SEMICONDUCTOR

The  $\pi 1xxxxxR$  is a 2PaiSemi digital Opto-Coupler product family that includes over hundreds of digital isolator products. By using maturated standard semiconductor CMOS technology and 2PaiSemi *iDivider*<sup>®</sup> technology, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators.

Intelligent voltage divider technology (*iDivider*<sup>®</sup> technology) is a new generation digital isolator technology invented by 2PaiSemi. It uses the principle of capacitor voltage divider to transmit voltage signal directly cross the isolator capacitor without signal modulation and demodulation.

The  $\pi$ 1xxxxxR digital Opto-Coupler data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 5.0 kV rms and the data rate from DC up to 200Mbps (see the Ordering Guide). The

Information furnished by 2PaiSemi is believed to be accurate and reliable. However, no responsibility is assumed by 2PaiSemi for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of 2PaiSemi.

Trademarks and registered trademarks are the property of their respective owners.

## **PIN CONFIGURATIONS AND FUNCTIONS**

Table 1.π131U6XR Pin Function Descriptions

| Pin No. | Name    | Description                                                     |
|---------|---------|-----------------------------------------------------------------|
| 1       | VDD1    | Supply Voltage for Isolator Side 1.                             |
| 2       | $GND_1$ | Ground 1. This pin is the ground reference for Isolator Side 1. |
| 3       | VIA     | Logic Input A.                                                  |
| 4       | VIB     | Logic Input B.                                                  |
| 5       | Voc     | Logic Output C.                                                 |
| 6       | Vic     | Logic Input C.                                                  |
| 7       | Vob     | Logic Output B.                                                 |
| 8       | Voa     | Logic Output A.                                                 |
| 9       | $GND_2$ | Ground 2. This pin is the ground reference for Isolator Side 2. |
| 10      | Vdd2    | Supply Voltage for Isolator Side 2.                             |

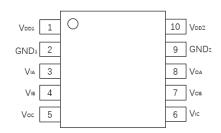



Figure  $3.\pi 131U6XR$  Pin Configuration

## **ABSOLUTE MAXIMUM RATINGS**

Table 2.Absolute Maximum Ratings<sup>4</sup>

| Parameter                                                                                  | Rating                             |
|--------------------------------------------------------------------------------------------|------------------------------------|
| Supply Voltages (V <sub>DD1</sub> -GND <sub>1</sub> , V <sub>DD2</sub> -GND <sub>2</sub> ) | -0.5 V to +7.0 V                   |
| Input Voltages (V <sub>IA</sub> , V <sub>IB</sub> , V <sub>IC</sub> ) <sup>1</sup>         | –0.5 V to V <sub>DDx</sub> + 0.5 V |
| Output Voltages (V <sub>OA</sub> , V <sub>OB</sub> , V <sub>Oc</sub> ) <sup>1</sup>        | -0.5 V to V <sub>DDx</sub> + 0.5 V |
| Average Output Current per Pin <sup>2</sup> Side 1 Output Current (I <sub>01</sub> )       | -10 mA to +10 mA                   |
| Average Output Current per Pin <sup>2</sup> Side 2 Output Current (I <sub>O2</sub> )       | -10 mA to +10 mA                   |
| Common-Mode Transients Immunity <sup>3</sup>                                               | -300 kV/μs to +300 kV/μs           |
| Storage Temperature (T <sub>ST</sub> ) Range                                               | -65°C to +150°C                    |
| Ambient Operating Temperature (T <sub>A</sub> ) Range                                      | -40°C to +125°C                    |

Notes:

 $^1V_{\text{DDx}}$  is the side voltage power supply V\_DD, where x = 1 or 2.

<sup>2</sup> See *Figure 4* for the maximum rated current values for various temperatures.

<sup>3</sup> See *Figure 12* for Common-mode transient immunity (CMTI) measurement.

<sup>4</sup> Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

### **RECOMMENDED OPERATING CONDITIONS**

Table 3. Recommended Operating Conditions

| Parameter                       | Symbol                        | Min                               | Тур | Max                               | Unit |
|---------------------------------|-------------------------------|-----------------------------------|-----|-----------------------------------|------|
| Supply Voltage                  | V <sub>DDx</sub> <sup>1</sup> | 2.5                               |     | 5.5                               | V    |
| High Level Input Signal Voltage | V <sub>IH</sub>               | 0.6*V <sub>DDx</sub> <sup>1</sup> |     | V <sub>DDx</sub> <sup>1</sup>     | V    |
| Low Level Input Signal Voltage  | VIL                           | 0                                 |     | 0.3*V <sub>DDx</sub> <sup>1</sup> | V    |
| High Level Output Current       | Іон                           | -6                                |     |                                   | mA   |
| Low Level Output Current        | Ιοι                           |                                   |     | 6                                 | mA   |
| Maximum Data Rate               |                               | 0                                 |     | 150                               | Kbps |
| Junction Temperature            | ΤJ                            | -40                               |     | 150                               | °C   |
| Ambient Operating Temperature   | T <sub>A</sub>                | -40                               |     | 125                               | °C   |

Notes:

 $^{1}$  V<sub>DDx</sub> is the side voltage power supply V<sub>DD</sub>, where x = 1 or 2.

### **Truth Tables**

Table 4.π131U6XR Truth Table

| 16 Januari 1                       | V Statal                                                                | V Statal               | Default Low             | Default High            | Test Conditions  |  |
|------------------------------------|-------------------------------------------------------------------------|------------------------|-------------------------|-------------------------|------------------|--|
| V <sub>Ix</sub> Input <sup>1</sup> | V <sub>DDI</sub> State <sup>1</sup> V <sub>DDO</sub> State <sup>1</sup> |                        | Vox Output <sup>1</sup> | Vox Output <sup>1</sup> | /Comments        |  |
| Low                                | Powered <sup>2</sup>                                                    | Powered <sup>2</sup>   | Low                     | Low                     | Normal operation |  |
| High                               | Powered <sup>2</sup>                                                    | Powered <sup>2</sup>   | High                    | High                    | Normal operation |  |
| Open                               | Powered <sup>2</sup>                                                    | Powered <sup>2</sup>   | Low                     | High                    | Default output   |  |
| Don't Care <sup>4</sup>            | Unpowered <sup>3</sup>                                                  | Powered <sup>2</sup>   | Low                     | High                    | Default output⁵  |  |
| Don't Care⁴                        | Powered <sup>2</sup>                                                    | Unpowered <sup>3</sup> | High Impedance          | High Impedance          |                  |  |

Notes:

<sup>1</sup>V<sub>Ix</sub>/V<sub>Ox</sub> are the input/output signals of a given channel (A or B). V<sub>DDI</sub>/V<sub>DDO</sub> are the supply voltages on the input/output signal sides of this given channel.

 $^2$  Powered means V\_DDx  $\geq 2.4$  V

 $^3$  Unpowered means V\_DDx < 2.0V

 $^{4}$  Input signal (V<sub>Ix</sub>) must be in a low state to avoid powering the given V<sub>DDI</sub><sup>1</sup> through its ESD protection circuitry.

<sup>5</sup> If the V<sub>DDI</sub> goes into unpowered status, the channel outputs the default logic signal after around 1us. If the V<sub>DDI</sub> goes into powered status, the channel outputs the input status logic signal after around 18us.

### **SPECIFICATIONS**

#### **ELECTRICAL CHARACTERISTICS**

Table 5.Switching Specifications

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 2.5V_{DC} \pm 3\%$  or  $3.3V_{DC} \pm 10\%$  or  $5V_{DC} \pm 10\%$ ,  $T_A = 25^{\circ}C$ , unless otherwise noted.

| Parameter                                                 | Symbol                         | Min | Тур  | Max | Unit  | Test Conditions/Comments                                                                                                                   |
|-----------------------------------------------------------|--------------------------------|-----|------|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Minimum Pulse Width                                       | PW                             |     |      | 6.2 | us    | Within pulse width distortion (PWD) limit                                                                                                  |
| Maximum Data Rate                                         |                                | 150 |      |     | kbps  | Within PWD limit                                                                                                                           |
| Propagation Delay Time <sup>1,4</sup>                     | tpнL, tpLH                     |     | 0.28 | 0.5 | us    | The different time between 50% input signal to 50% output signal 50% @ 5V <sub>DC</sub> supply                                             |
|                                                           | срнс, срсн                     |     | 0.29 | 0.5 | us    | @ 3.3V <sub>DC</sub> supply                                                                                                                |
|                                                           |                                |     | 0.30 | 0.5 | us    | @ 2.5V <sub>DC</sub> supply                                                                                                                |
| Pulse Width Distortion <sup>4</sup>                       | PWD                            | 0   | 1    | 10  | ns    | The max different time between tphL and tpLH@<br>5V <sub>DC</sub> supply. And The value is   tphL - tpLH                                   |
| Pulse width Distortion                                    | PVUD                           | 0   | 1    | 10  | ns    | @ 3.3V <sub>DC</sub> supply                                                                                                                |
| 2 P A                                                     | I S                            | 0   | 1    | 10  | ns    | @ 2.5V <sub>DC</sub> supply                                                                                                                |
| Part to Part Propagation Delay                            | tpsk                           |     |      | 150 | ns    | The max different propagation delay time<br>between any two devices at the same<br>temperature, load and voltage @ 5V <sub>DC</sub> supply |
| Skew <sup>4</sup>                                         |                                |     |      | 150 | ns    | @ 3.3V <sub>DC</sub> supply                                                                                                                |
|                                                           |                                |     |      | 150 | ns    | @ 2.5V <sub>DC</sub> supply                                                                                                                |
| Channel to Channel Propagation<br>Delay Skew <sup>4</sup> | tcsк                           |     | 0    | 50  | ns    | The max amount propagation delay time differs between any two output channels in the single device @ 5V <sub>DC</sub> supply.              |
| Delay Skew                                                |                                |     | 0    | 50  | ns    | @ 3.3V <sub>DC</sub> supply                                                                                                                |
|                                                           |                                |     | 0    | 50  | ns    | @ 2.5V <sub>DC</sub> supply                                                                                                                |
| Output Signal Rise/Fall Time <sup>4</sup>                 | t <sub>r</sub> /t <sub>f</sub> |     | 1.5  |     | ns    | See Figure 9                                                                                                                               |
| Common-Mode Transient<br>Immunity <sup>3</sup>            | СМТІ                           |     | 250  |     | kV/μs | $V_{IN} = V_{DDx}^2 \text{ or } 0V, V_{CM} = 1000 V.$                                                                                      |
| ESD<br>(HBM - Human body model)                           | ESD                            |     | ±8   |     | kV    |                                                                                                                                            |

Notes:

 $^{1}t_{pLH}$  = low-to-high propagation delay time,  $t_{pHL}$  = high-to-low propagation delay time. See *Figure 10*.

 $^2\,V_{\text{DDx}}$  is the side voltage power supply V\_DD, where x = 1 or 2.

<sup>3</sup> See Figure 12 for Common-mode transient immunity (CMTI) measurement.

<sup>4</sup> t<sub>r</sub> means is the time from 10% amplitude to 90% amplitude of the rising edge of the signal, t<sub>r</sub> means is the time from 90% amplitude to 10% amplitude of the falling edge of the signal.

#### Table 6.DC Specifications

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 2.5V_{DC} \pm 3\%$  or  $3.3V_{DC} \pm 10\%$  or  $5V_{DC} \pm 10\%$ ,  $T_A = 25$ °C, unless otherwise noted.

| Parameter                                                    | Symbol                       | Min                                | Тур                    | Max              | Unit | Test<br>Conditions/Comments              |
|--------------------------------------------------------------|------------------------------|------------------------------------|------------------------|------------------|------|------------------------------------------|
| Rising Input Signal Voltage Threshold                        | V <sub>IT+</sub>             |                                    | $0.5^*V_{DDx}^1$       | $0.6^*V_{DDx}^1$ | V    |                                          |
| Falling Input Signal Voltage Threshold                       | V <sub>IT</sub> .            | 0.3* V <sub>DDX</sub> <sup>1</sup> | $0.35* V_{DDX}^1$      |                  | V    |                                          |
| High Level Output Voltage                                    | V <sub>OH</sub> <sup>1</sup> | V <sub>DDx</sub> - 0.1             | V <sub>DDx</sub>       |                  | V    | –20 μA output current                    |
| Tigh Level Output Voltage                                    | VOH -                        | V <sub>DDx</sub> - 0.2             | $V_{\text{DDx}} - 0.1$ |                  | V    | -2 mA output current                     |
| Low Level Output Voltage                                     | Vol                          |                                    | 0                      | 0.1              | V    | 20 µA output current                     |
| Low Level Output Voltage                                     | VOL                          |                                    | 0.1                    | 0.2              | V    | 2 mA output current                      |
| Input Current per Signal Channel                             | I <sub>IN</sub>              | -10                                | 0.5                    | 10               | μA   | $0 V \le Signal voltage \le V_{DDX}^{1}$ |
| V <sub>DDx</sub> <sup>1</sup> Undervoltage Rising Threshold  | VDDxUV+                      | 2.1                                | 2.25                   | 2.4              | V    |                                          |
| V <sub>DDx</sub> <sup>1</sup> Undervoltage Falling Threshold | VDDxUV-                      | 2.0                                | 2.1                    | 2.25             | V    |                                          |
| V <sub>DDx</sub> <sup>1</sup> Hysteresis                     | VDDxUVH                      |                                    | 0.15                   |                  | V    |                                          |

Notes:

 $^1$  V<sub>DDx</sub> is the side voltage power supply V<sub>DD</sub>, where x = 1 or 2.

#### Table 7. Quiescent Supply Current

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 2.5V_{Dc}\pm 3\%$  or  $3.3V_{Dc}\pm 10\%$  or  $5V_{Dc}\pm 10\%$ ,  $T_A=25$ °C,  $C_L = 10$  pF, unless otherwise noted.

|                  |                       |      |                   |              | Test Conditions |                    |                        |  |
|------------------|-----------------------|------|-------------------|--------------|-----------------|--------------------|------------------------|--|
| Part             | rt Symbol Min Typ Max | Unit | Supply<br>voltage | Input signal |                 |                    |                        |  |
|                  | DD1 (Q)               |      | 0.83              | 0.97         | mA              |                    | Input is same with     |  |
|                  | DD2 (Q)               |      | 1.34              | 1.6          | mA              | 5V <sub>DC</sub>   | default output         |  |
|                  | DD1 (Q)               |      | 1.24              | 1.61         | mA              | JVDC               | Input is not same with |  |
|                  | DD2 (Q)               |      | 1.69              | 2.41         | mA              |                    | default output         |  |
|                  | DD1 (Q)               |      | 0.81              | 0.95         | mA              |                    | Input is same with     |  |
| π <b>131U6XR</b> | DD2 (Q)               |      | 1.32              | 1.58         | mA              | 2 21/              | default output         |  |
| /(13100/K        | DD1 (Q)               |      | 1.21              | 1.5          | mA              | 3.3V <sub>DC</sub> | Input is not same with |  |
|                  | DD2 (Q)               |      | 1.66              | 2.19         | mA              |                    | default output         |  |
|                  | Idd1 (q) 🏼 🏴          | AT S | 0.78              | 0.95         | mA              | ΤΟΙ                | Input is same with     |  |
|                  | DD2 (Q)               |      | 1.30              | 1.58         | mA              | 2.5V <sub>DC</sub> | default output         |  |
|                  | DD1 (Q)               |      | 1.17              | 1.45         | mA              | 2.3VDC             | Input is not same with |  |
|                  | DD2 (Q)               |      | 1.63              | 2.12         | mA              |                    | default output         |  |

#### Table 8.Total Supply Current vs. Data Throughput (C<sub>L</sub> = 10 pF)

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 2.5V_{DC} \pm 3\%$  or  $3.3V_{DC} \pm 10\%$  or  $5V_{DC} \pm 10\%$ ,  $T_A = 25^{\circ}C$ ,  $C_L = 10$  pF, unless otherwise noted.

| Doromotor     | Parameter Symbol |     | 2 Kbps |      | 50Kbps |      |      | 150Kbps |      |      | Unit | Supply             |
|---------------|------------------|-----|--------|------|--------|------|------|---------|------|------|------|--------------------|
| Farameter     | Symbol           | Min | Тур    | Max  | Min    | Тур  | Max  | Min     | Тур  | Max  | Unit | voltage            |
|               | DD1              |     | 1.03   | 1.29 |        | 1.04 | 1.29 |         | 1.04 | 1.29 | mA   | 5V <sub>DC</sub>   |
|               | DD2              |     | 1.52   | 2.0  |        | 1.53 | 2.0  |         | 1.54 | 2.0  | mA   | JVDC               |
| $\pi$ 131U6XR | DD1              |     | 1.01   | 1.23 |        | 1.01 | 1.23 |         | 1.02 | 1.23 | mA   | 2 21/              |
| /[13100/K     | DD2              |     | 1.49   | 1.89 |        | 1.5  | 1.89 |         | 1.51 | 1.89 | mA   | 3.3V <sub>DC</sub> |
|               | DD1              |     | 0.96   | 1.2  |        | 0.96 | 1.2  |         | 0.97 | 1.2  | mA   | 2.5V <sub>DC</sub> |
|               | DD2              |     | 1.47   | 1.85 |        | 1.47 | 1.85 |         | 1.48 | 1.85 | mA   | 2.3V <sub>DC</sub> |

#### INSULATION AND SAFETY RELATED SPECIFICATIONS

Table 9.Insulation Specifications

| Parameter                           | Symbol Value |      | Unit  | Test Conditions/Comments |
|-------------------------------------|--------------|------|-------|--------------------------|
| Rated Dielectric Insulation Voltage |              | 5000 | V rms | 1-minute duration        |

| Minimum External Air Gap (Clearance)                | L (CLR) ≥8 mm |      | mm | Measured from input terminals to output terminals, shortest distance through air     |
|-----------------------------------------------------|---------------|------|----|--------------------------------------------------------------------------------------|
| Minimum External Tracking<br>(Creepage)             | L (CRP)       | ≥8   | mm | Measured from input terminals to output terminals, shortest distance path along body |
| Minimum Internal Gap (Internal<br>Clearance)        |               | ≥21  | μm | Insulation distance through insulation                                               |
| Tracking Resistance (Comparative<br>Tracking Index) | CTI           | >400 | V  | DIN EN 60112 (VDE 0303-11):2010-05                                                   |
| Material Group                                      |               | II   |    | IEC 60112:2003 + A1:2009                                                             |

#### PACKAGE CHARACTERISTICS

Table 10.Package Characteristics

| Parameter                                  | Symbol | Typical Value | Unit  | Test Conditions/Comments          |
|--------------------------------------------|--------|---------------|-------|-----------------------------------|
| Resistance (Input to Output) <sup>1</sup>  | Rio    | 1011          | Ω     |                                   |
| Capacitance (Input to Output) <sup>1</sup> | Сю     | 1.5           | pF    | @1MHz                             |
| Input Capacitance <sup>2</sup>             | Cı     | 3             | pF    | @1MHz                             |
| IC lunction to Ambient Thermal Resistance  | Αιθ    | 45            | °C/W  | Thermocouple located at center of |
| IC Junction to Ambient mermar Resistance   | ALO    | 45            | C/ VV | package underside                 |

Notes:

<sup>1</sup>The device is considered a 2-terminal device; WB SSOIC-10 Pin1~Pin5 are shorted together as the one terminal, and WB SSOIC-10 Pin6~Pin10 are shorted together as the other terminal.

<sup>2</sup>Testing from the input signal pin to ground.

#### **REGULATORY INFORMATION**

See Table 11 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels.

#### Table 11.Regulatory

| Regulatory | π131U6XR                                                                           |
|------------|------------------------------------------------------------------------------------|
|            | Recognized under UL 1577                                                           |
| UL         | Component Recognition Program <sup>1</sup>                                         |
| 0L         | Single Protection, 5000V rms Isolation Voltage                                     |
| /          | File (pending)                                                                     |
|            | DIN V VDE V 0884-11 (VDE V 0884-11):2017-012                                       |
| VDE        | Basic insulation, V <sub>IORM</sub> = 1200 V peak, V <sub>IOSM</sub> = 5000 V peak |
|            | File (pending)                                                                     |
|            | Certified under CQC11-471543-2012 and GB4943.1-2011                                |
| CQC        | Basic insulation at 845 V rms (1200 V peak) working voltage                        |
| CQC        | Reinforced insulation at 422 V rms (600 V peak)                                    |
|            | File (pending)                                                                     |

Notes:

<sup>1</sup> In accordance with UL 1577, each  $\pi$ 131U6XR is proof tested by applying an insulation test voltage  $\geq$  6000 V rms for 1 sec.

 $^2$  In accordance with DIN V VDE V 0884-11, each  $\pi 131U6XR$  is proof tested by  $\geq 1800V$  peak for 1 sec.

#### DIN V VDE V 0884-11 (VDE V 0884-11) INSULATION CHARACTERISTICS

These digital Opto-Couplers are suitable for basic electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data.

Table 12.VDE Insulation Characteristics

| Description                                  | Test Conditions/Comments | Symbol | Characteristic | Unit |
|----------------------------------------------|--------------------------|--------|----------------|------|
| Installation Classification per DIN VDE 0110 |                          |        |                |      |
| For Rated Mains Voltage ≤ 150 V rms          |                          |        | l to IV        |      |

| Description                                | Test Conditions/Comments                                                                                                                                                                                                        | Symbol              | Characteristic | Unit   |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|--------|
| For Rated Mains Voltage ≤ 300 V rms        |                                                                                                                                                                                                                                 |                     | l to III       |        |
| For Rated Mains Voltage ≤ 400 V rms        |                                                                                                                                                                                                                                 |                     | l to III       |        |
| Climatic Classification                    |                                                                                                                                                                                                                                 |                     | 40/105/21      |        |
| Pollution Degree per DIN VDE 0110, Table 1 |                                                                                                                                                                                                                                 |                     | 2              |        |
| Maximum Rated Isolation Working Voltage    |                                                                                                                                                                                                                                 | VIOWM               | 1200           | V peak |
| Input to Output Test Voltage, Method B1    | $\label{eq:Viorma} \begin{split} V_{\text{IORM}} \times 1.5 = V_{\text{pd}(\text{m})}, 100\% \\ \text{production test, } t_{\text{ini}} = t_{\text{m}} = 1 \text{ sec,} \\ \text{partial discharge} < 5 \text{ pC} \end{split}$ | Vpd (m)             | 1800           | V peak |
| Input to Output Test Voltage, Method A     |                                                                                                                                                                                                                                 |                     |                |        |
| After Environmental Tests Subgroup 1       | $V_{IORM} \times 1.3 = V_{pd (m)}, t_{ini} = 60 \text{ sec, } t_m$<br>= 10 sec, partial discharge < 5 pC                                                                                                                        | $V_{\text{pd}}$ (m) | 1560           | V peak |
| After Input and/or Safety Test Subgroup 2  | $V_{IORM} \times 1.2 = V_{pd (m)}$ , $t_{ini} = 60 \text{ sec}$ , $t_m$                                                                                                                                                         |                     | 1440           | Vacak  |
| and Subgroup 3                             | = 10 sec, partial discharge < 5 pC                                                                                                                                                                                              |                     | 1440           | V peak |
| Maximum transient isolation voltage        | $V_{TEST} = V_{IOTM} , t = 60 s$ (qualification); $V_{TEST} = 1.2 \times V_{IOTM}, t$ = 1 s (100% production)                                                                                                                   | Vютм                | 7071           | V peak |
| Surge Isolation Voltage Basic              | Test method per IEC 62368-1,<br>1.2/50 μs waveform, V <sub>TEST</sub> = 1.3 ×<br>V <sub>IOSM</sub> = 6500 V <sub>PK</sub>                                                                                                       | Viosm               | 5000           | V peak |
| Surge Isolation Voltage Reinforced         | Test method per IEC 62368-1,<br>1.2/50 μs waveform, V <sub>TEST</sub> = 1.6 ×<br>V <sub>IOSM</sub>                                                                                                                              | Viosm               | /              | V peak |
| Safety Limiting Values                     | Maximum value allowed in the event of a failure (see <i>Figure 4</i> )                                                                                                                                                          |                     |                |        |
| Maximum Safety Temperature                 |                                                                                                                                                                                                                                 | Ts                  | 150            | °C     |
| Total Power Dissipation at 25°C            |                                                                                                                                                                                                                                 | Ps                  | 1.14           | W      |
| Insulation Resistance at T <sub>s</sub>    | V <sub>IO</sub> = 500 V                                                                                                                                                                                                         | Rs                  | >109           | Ω      |

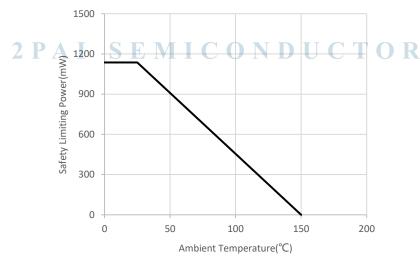



Figure 4.Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per VDE

### **Data Sheet**

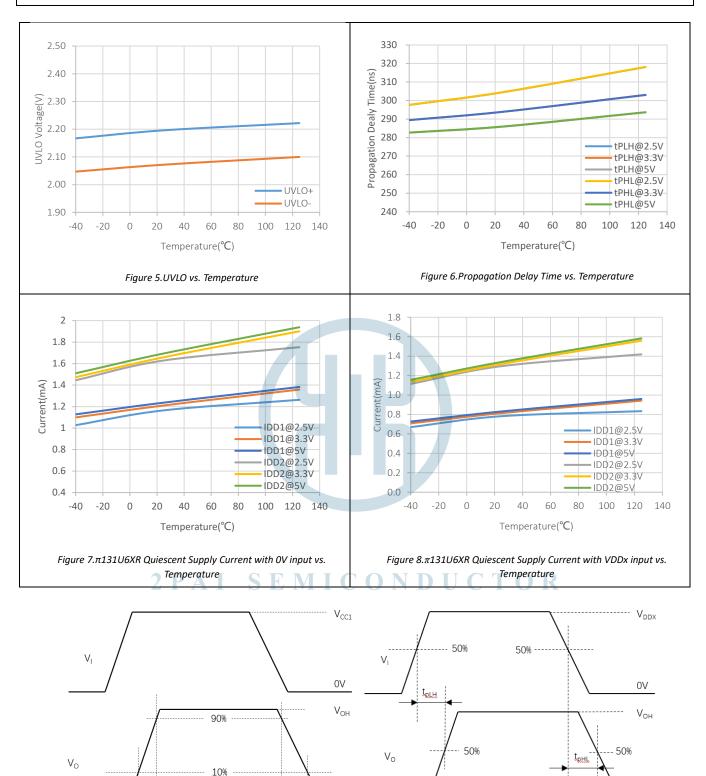



Figure 9.Transition time waveform measurement

<u>t</u>f

Vol

 $V_{OL}$ 

**π131U6XR** 

Figure 10. Propagation delay time waveform measurement

### APPLICATIONS INFORMATION

#### **OVERVIEW**

The  $\pi 1xxxxxR$  is 2PaiSemi digital Opto-Couplers product family based on 2PaiSemi unique *iDivider*<sup>®</sup> technology. Intelligent voltage divider technology (*iDivider*<sup>®</sup> technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit signal directly cross the isolator capacitor without signal modulation and demodulation. Compare to the traditional Opto-couple technology, icoupler technology, OOK technology, *iDivider*<sup>®</sup> is a more essential and concise isolation signal transmit technology which leads to greatly simplification on circuit design and therefore significantly improves device performance, such as lower power consumption, faster speed, enhanced antiinterference ability, lower noise.

By using maturated standard semiconductor CMOS technology and the innovative *iDivider*<sup>®</sup> design, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators. The  $\pi$ 1xxxxR digital Opto-Coupler data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 5.0 kV rms and the data rate from DC up to 200Mbps (see the Ordering Guide).

The  $\pi 131U6XR$  are the outstanding 150Kbps triple-channel digital Opto-Couplers with the enhanced ESD capability. The devices transmit data across an isolation barrier by layers of silicon dioxide isolation. The devices operate with the supply voltage on either side ranging from 2.5 V to 5.5 V, offering voltage translation of 2.5 V and 5 V logic.

The  $\pi$ 131U6XR have very low propagation delay and high speed. The input/output design techniques allow logic and supply voltages over a wide range from 2.5 V to 5.5 V, offering voltage translation of 2.5 V and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference.

See the Ordering Guide for the model numbers that have the failsafe output state of low or high.

#### PCB LAYOUT

The low-ESR ceramic bypass capacitors must be connected between VDD1 and GND1 and between VDD2 and GND2. The bypass capacitors are placed on the PCB as close to the isolator device as possible. The recommended bypass capacitor value is between  $0.1\mu$ F and  $10\mu$ F. The user may also include resistors (50–300  $\Omega$ ) in series with the inputs and outputs if the system is

excessively noisy, or in order to enhance the anti ESD ability of the system.



Figure 11.Recommended Printed Circuit Board Layout

Avoid reducing the isolation capability, Keep the space underneath the isolator device free from metal such as planes, pads, traces and vias.

To minimize the impedance of the signal return loop, keep the solid ground plane directly underneath the high-speed signal path, the closer the better. The return path will couple between the nearest ground plane to the signal path. Keep suitable trace width for controlled impedance transmission lines interconnect. To reduce the rise time degradation, keep the length of input/output signal traces as short as possible, and route low inductance loop for the signal path and It's return path.

#### **CMTI MEASUREMENT**

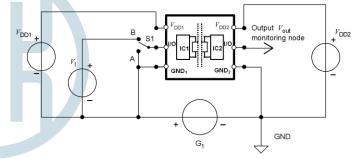
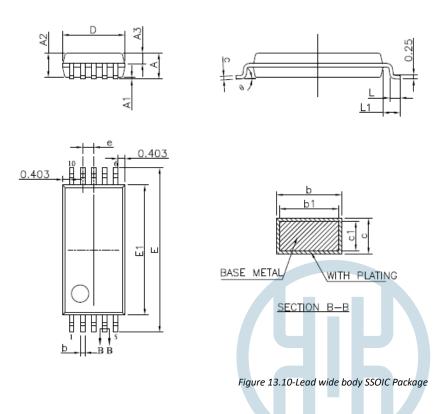




Figure 12.Common-mode transient immunity (CMTI) measurement To measure the Common-Mode Transient Immunity (CMTI) of  $\pi 1xxxxx$  isolator under specified common-mode pulse magnitude (V<sub>CM</sub>) and specified slew rate of the common-mode pulse (dV<sub>CM</sub>/dt) and other specified test or ambient conditions, The common-mode pulse generator (G<sub>1</sub>) will be capable of providing fast rising and falling pulses of specified magnitude and duration of the common-mode pulse (V<sub>CM</sub>) and the maximum common-mode slew rates (dV<sub>CM</sub>/dt) can be applied to  $\pi 1xxxxx$ isolator coupler under measurement. The common-mode pulse is applied between one side ground GND1 and the other side ground GND2 of  $\pi 1xxxxx$  isolator and shall be capable of providing positive transients as well as negative transients.

### **OUTLINE DIMENSIONS**



|            | MILLIMETER |      |      |  |  |
|------------|------------|------|------|--|--|
| SYMBOL     | MIN NOM    |      | MAX  |  |  |
| Α          |            |      | 1.65 |  |  |
| A1         | 0.05       |      | 0.20 |  |  |
| A2         | 1.35       | 1.40 | 1.45 |  |  |
| A3         | 0.55       | 0.60 | 0.65 |  |  |
| b          | 0.23       |      | 0.31 |  |  |
| b1         | 0.22       | 0.25 | 0.28 |  |  |
| с          | 0.20       | _    | 0.24 |  |  |
| <b>c</b> 1 | 0.19       | 0.20 | 0.21 |  |  |
| D          | 3.50       | 3.60 | 3.70 |  |  |
| Е          | 9.30       | 9.50 | 9.70 |  |  |
| E1         | 7.40       | 7.50 | 7.60 |  |  |
| е          | 0.635BSC   |      |      |  |  |
| L          | 0.45       | _    | 0.75 |  |  |
| L1         | 1.00REF    |      |      |  |  |
| θ          | 0          | _    | r    |  |  |

### Land Patterns

The figure below illustrates the recommended land pattern details for the  $\pi$ 131U6XR in a 10-Lead XXXXXXXX. The table below lists the values for the dimensions shown in the illustration.

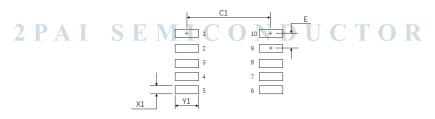


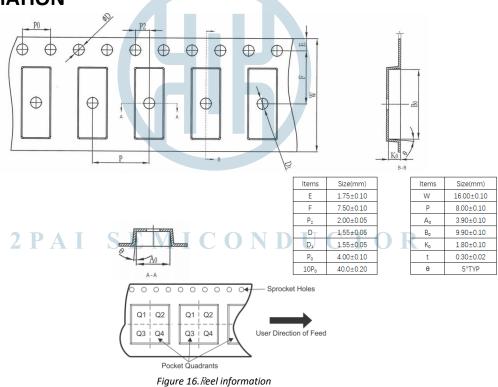

Figure 14. 10-Lead wide body SSOIC Land Pattern

#### Table 13. 10-Lead wide body SSOIC Land Pattern Dimensions

| Dimension | Feature            | Value | Unit |
|-----------|--------------------|-------|------|
| C1        | Pad column spacing | 8.9   | mm   |
| E         | Pad row pitch      | 0.635 | mm   |
| X1        | Pad width          | 0.4   | mm   |
| Y1        | Pad length         | 1.5   | mm   |

Note:

1. This land pattern design is based on IPC -7351 for Density Level B (Median Land Protrusion).


2.All feature sizes shown are at maximum material condition and a card fabrication tolerance of 0.05 mm is assumed.

## **Top Marking**



| Line 1                | πxxxxxx=Product name                      |  |  |
|-----------------------|-------------------------------------------|--|--|
| Line 2                | YY = Work Year                            |  |  |
|                       | WW = Work Week                            |  |  |
|                       | ZZ=Manufacturing code from assembly house |  |  |
| Line 3                | XXXX, no special meaning                  |  |  |
| Figure 15.Top marking |                                           |  |  |

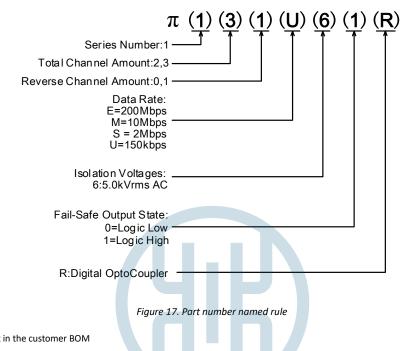
### **REEL INFORMATION**



## **ORDERING GUIDE**

Table 14.Ordering guide

| Model<br>Name <sup>1</sup> | Temperature<br>Range | No. of<br>Inputs, V <sub>DD1</sub><br>Side | No. of<br>Inputs, V <sub>DD2</sub><br>Side | Withstand<br>Voltage Rating<br>(kV rms) | Fail-Safe<br>Output<br>State | Package<br>Description | MSL<br>Peak Temp <sup>2</sup> | MOQ/<br>Quantity<br>per reel <sup>3</sup> |
|----------------------------|----------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------|------------------------------|------------------------|-------------------------------|-------------------------------------------|
| π131U61R                   | -40~125°C            | 2                                          | 1                                          | 5                                       | High                         | WB SSOIC-10            | Level-3-260C-168 HR           | 4000                                      |
| π131U60R                   | –40~125°C            | 2                                          | 1                                          | 5                                       | Low                          | WB SSOIC-10            | Level-3-260C-168 HR           | 4000                                      |


Note:

 $^{\rm 1}$  Pai1xxxxxx is equals to  $\pi1xxxxxx$  in the customer BOM

<sup>2</sup> MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>3.</sup> MOQ, minimum ordering quantity.

### PART NUMBER NAMED RULE



Notes: Pai1xxxxxx is equals to  $\pi$ 1xxxxx in the customer BOM

### IMPORTANT NOTICE AND DISCLAIMER

2PaiSemi intends to provide customers with the latest, accurate, and in-depth documentation. However, no responsibility is assumed by 2PaiSemi for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Characterization data, available modules, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. 2PaiSemi reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. 2PaiSemi shall have no liability for the consequences of use of the information supplied herein.

Trademarks and registered trademarks are the property of their respective owners. This document does not imply, or express copyright licenses granted hereunder to design or fabricate any integrated circuits.

Room 307-309, No.22, Boxia Road, Pudong New District, Shanghai, 201203, China 021-50850681

2Pai Semiconductor Co., Limited. All rights reserved.

http://www.rpsemi.com/

## **REVISION HISTORY**

| Revision | Date       | Page   | Change Record              |
|----------|------------|--------|----------------------------|
| Rev.1.0  | 2021/10/22 | All    | Initial version            |
|          |            | Page.3 | Update table 5             |
| Rev.1.1  | 2022/01/17 | Page.5 | Update table 11            |
|          |            | Page.6 | Safety Information update. |



# **2 PAI SEMICONDUCTOR**

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Isolators category:

Click to view products by 2Pai Semi manufacturer:

Other Similar products are found below :

SI8642EA-B-IU 141E61 140M31 140E60 122E61 142E60 163E60 141E61Q 140E61 SSP5841ED CA-IS3763LN CA-IS3742LN SSP5842ED 160M60 142E61 140E31 140M30 141E60Q 140M61 160U31 BL7142WH BL7142WL CA-IS3741LN CA-IS3762LN CA-IS3730LW CA-IS3644HVW CA-IS3742LW-Q1 CA-IS1204W CA-IS3641HVW CA-IS3092VW CA-IS3761LN CA-IS3760HN CA-IS3730HW CA-IS3731LW CA-IS3640LW CA-IS3761LW CA-IS2092VW CA-IS3763HN CA-IS3722HW CA-IS3211VBJ CA-IS3082WNX CA-IS3762LW CA-IS3842LWW CA-IS3720LW SI8621BD-B-IS ISO7842FDWWR 163U31 140U31 161E61 220N61Q