

Low Power, 5.0kV rms Dual I²C Isolators

Data Sheet

FEATURES

Bidirectional I²C communication Ultra-low power consumption Supports up to 2 MHz operation **Open-drain interfaces** Side 1 outputs with 3.5 mA sink current Side 2 outputs with 35 mA sink current 3.0V to 5.5V supply/logic levels High common-mode transient immunity: 120 kV/µs typical Safety and regulatory approvals: UL certificate number: E494497 5000Vrms for 1 minute per UL 1577 **CSA Component Acceptance Notice 5A** VDE certificate number: 40052896 DIN VDE V 0884-11:2017-01 V_{IORM} = 1200V peak CQC certification per GB4943.1-2011 AEC-Q100 (Pending) Wide temperature range: -40°C to 125°C **RoHS-compliant, WB SOIC-16 package APPLICATIONS** Isolated I²C, SMBus, PMBus interfaces Multilevel I²C interfaces **Electric and Hybrid-Electric Vehicles Open-Drain Networks** I²C Level Shifting **Power supplies GENERAL DESCRIPTION**

The $\pi 220N61/\pi 221N61$ devices are low-power bidirectional isolators compatible with the I²C interface and are based on **iDivider®** technology from 2PaiSemi. These devices have logic input and output buffers that are separated by using a silicon dioxide (SiO₂) barrier. These devices block high voltages and prevent noise currents from entering the control side ground, avoiding circuit interference and damaging sensitive components.

The $\pi 220N61/\pi 221N61$ devices are based on iDivider® technology with functional, performance, size, and power consumption advantages as compared to optocouplers.

The π 220N61 provides two bidirectional channels, supporting a complete isolated I²C interface. The π 221N61 provides one bidirectional channel and one unidirectional channel for applica-

π220N61/π221N61

tions where a bidirectional clock is not required. The $\pi 221N61$ is used in applications that have a single master while the $\pi 220N61$ is suitable for multi-master applications.

These devices feature independent 3.0V to 5.5V supplies on each side of the isolator. These devices operate from DC to 2MHz at ambient temperatures of -40° C to $+125^{\circ}$ C.

FUNCTIONAL BLOCK DIAGRAMS

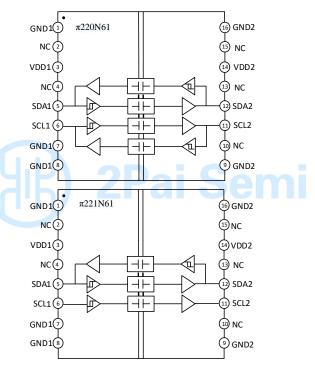


Figure 1. π 220N61/ π 221N61 functional Block Diagram

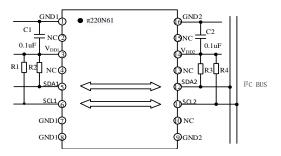


Figure 2. π 220N61 Typical Application Circuit

Rev.1.1

Information furnished by 2Pai semi is believed to be accurate and reliable. However, no responsibility is assumed by 2Pai semi for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of 2Pai semi.

Trademarks and registered trademarks are the property of their respective owners.

Room 307–309, No.22, Boxia Road, Pudong New District, Shanghai, 201203, China 021-50850681 2Pai Semiconductor Co., Limited. All rights reserved. http://www.rpsemi.com/

$\pi 220N61/\pi 221N61$

PIN CONFIGURATIONS AND FUNCTIONS

$\pi 220N61/\pi 221N61$ Pin Function Descriptions

Pin No.	Name	Description			
1	GND1	Ground 1. This pin is the ground reference for Isolator Side 1.			
2	NC	No connect.			
3	VDD1	Supply Voltage for Isolator Side 1.			
4	NC	No connect.			
5	SDA1	Serial data input / output, side 1.			
6 SCL1 Serial clock input / output, side 1.					
7	GND1	Ground 1. This pin is the ground reference for Isolator Side 1.			
8	GND1	Ground 1. This pin is the ground reference for Isolator Side 1.			
9	GND2	Ground 2. This pin is the ground reference for Isolator Side 2.			
10	NC	No connect.			
11	SCL2	Serial clock input / output, side 2.			
12	SDA2	Serial data input / output, side 2.			
13	NC	No connect.			
14	VDD2	Supply Voltage for Isolator Side 2.			
15	NC	No connect.			
16	GND2	Ground 2. This pin is the ground reference for Isolator Side 2.			

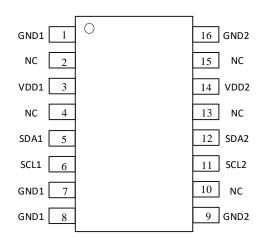


Figure 3. $\pi 220N61/\pi 221N61$ Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Table 1. Absolute Maximum Ratings ^{1,2}						
Parameter	Rating					
Supply Voltages (V _{DD1} -GND ₁ , V _{DD2} -GND ₂)	–0.5 V to +7.0 V					
Signal Voltage SDA1/SCL1	–0.5 V to V _{DDx} + 0.5 V					
Signal Voltage SDA2/SCL2	-0.5 V to V _{DDx} + 0.5 V					
Average Output Current SDA1/SCL1 (I ₀₁)	-20 mA to +20 mA					
Average Output Current SDA2/SCL2 (I ₀₂)	-100 mA to +100 mA					
Storage Temperature (T_{ST}) Range	–55°C to +150°C					
Maximum junction temperature TJ(MAX)	+150°C					

Notes:

¹All voltage values here within are with respect to the local ground pin (GND1 or GND2) and are peak voltage values.

² Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

RECOMMENDED OPERATING CONDITIONS

Table 2. Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{DDx} ¹	3		5.5	v
Input/Output Signal Voltage (Vsda1, Vscl1, Vsda2, Vscl2)		0		V_{DDx}^{1}	v
Low-level input voltage, side 1	VIL1	0		0.45	v
High-level input voltage, side 1	VIH1	0.7*V _{DD1}		V_{DD1}	v
Low-level input voltage, side 2	VIL2	0		$0.3*V_{DD2}$	v

High-level input voltage, side 2	VIH2	0.7*V _{DD2}	V _{DD2}	v
Output current, side 1	I _{OL1}	0.5	3.5	mA
Output current, side 2	I _{OL2}	0.5	35	mA
Capacitive load, side 1	C1		40	pF
Capacitive load, side 2	C2		400	pF
Operating frequency	fмах		2	MHz
Ambient Operating Temperature	T _A	-40	125	°C

Notes:

 1 V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2.

Truth Tables

Table 3. *π*220N61/*π*221N61 Truth Table

V _{Ix} Input ¹	V _{DDI} State ¹	V _{DDO} State ¹	Vox Output ¹		
Low	Powered ²	Powered ²	Low		
High	Powered ²	Powered ²	High Impedance		
Open ⁴	Powered ²	Powered ²	High Impedance		
Don't Care	Unpowered ³	Powered ²	High Impedance		
Don't Care	Powered ²	Unpowered ³	High Impedance		

Notes:

 $^{1}V_{lx}/V_{0x}$ are the input/output signals of a given channel (SDA or SCL). V_{DDI}/V_{DDO} are the supply voltages on the input/output signal sides of this given channel. 2 Powered means $V_{DDx} \ge 2.95$ V

³ Unpowered means $V_{DDx} < 2.30V$

 4 Invalid input condition as an I²C system requires that a pullup resistor to V_{DD} is connected.

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

Table 4. DC Specifications

 V_{DD1} - $V_{GND1} = V_{DD2}$ - $V_{GND2} = 3.3V_{DC} \pm 10\%$ or $5V_{DC} \pm 10\%$, $T_A = 25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
SIDE 1 LOGIC LEVELS						
Voltage input threshold low, SDA1 and SCL1	VILT1	470	510	570	mV	
Voltage input threshold high, SDA1 and SCL1	V _{IHT1}	540	580	630	mV	
Voltage input hysteresis	V_{HYST1}	50	70		mV	VIHT1 –VILT1
Low-level output voltage, SDA1 and SCL1	V _{OL1}	650	700	800	mV	0.5 mA ≤ (Isda1 and IscL1) ≤ 3.5 mA
Low-level output voltage to high- level input voltage threshold difference, SDA1 and SCL1	ΔVoit1 ¹	60	120		mV	0.5 mA ≤ (ISDA1 and ISCL1) ≤ 3.5 mA
SIDE 2 LOGIC LEVELS						
Voltage input threshold low, SDA2 and SCL2	VILT2	0.30* V _{DD2}		0.42*V _{DD2}	v	
Voltage input threshold high, SDA2and SCL2	V_{IHT2}	0.60* V _{DD2}		0.66*V _{DD2}	v	
Voltage input hysteresis	VHYST2	0.20* V _{DD2}	0.28* V _{DD2}		V	VIHT2 – VILT2
Low-level output voltage, SDA2 and SCL2	Vol2			0.4	v	0.5 mA ≤ (Isda₂ and IscL₂) ≤ 35 mA
BOTH SIDES						
Input leakage currents, SDA1, SCL1, SDA2, and SCL2	IIN		0.01	10	μΑ	VSDA1, VSCL1 = V_{DD1} ; VSDA2, VSCL2 = V_{DD2}

π220N61/π221N61

V _{DDx} ³ Undervoltage Rising Threshold	Vddxuv+	2.45	2.75	2.95	v	
V _{DDx} ³Undervoltage Falling Threshold	Vddxuv-	2.30	2.60	2.80	v	
V _{DDx} ³ Hysteresis	Vddxuvh		0.15		V	

Notes:

¹ \triangle VOIT1 = VOL1 – VIHT1. This is the minimum difference between the output logic low level and the input logic threshold within a given component. This ensures that there is no possibility of the part latching up the bus to which it is connected.

 2 V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2.

Table 5. Quiescent Supply Current

 V_{DD1} - $V_{GND1} = V_{DD2}$ - $V_{GND2} = 3.3V_{DC} \pm 10\%$ or $5V_{DC} \pm 10\%$, $T_A = 25^{\circ}C$, R1, R2 = Open; C1, C2 = Open (figure 17), unless otherwise noted. Test method refer to Figure 17.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
	DD1 (Q)		1.7	2.4	mA	VSDA1, VSCL1 = GND1;
π220N61 Quiescent Supply Current @ 5V _{DC} Supply	DD2 (Q)		1.4	2.1	mA	VSDA2, VSCL2 = GND2
	DD1 (Q)		1.5	2.3	mA	VSDA1, VSCL1 = VDD1;
	DD2 (Q)		1.2	1.8	mA	VSDA2, VSCL2 = VDD2
	DD1 (Q)		1.5	2.3	mA	VSDA1, VSCL1 = GND1;
$\pi 220N61$ Quiescent Supply Current @ $3.3V_{DC}$ Supply	DD2 (Q)		1.2	1.8	mA	VSDA2, VSCL2 = GND2
	DD1 (Q)		1.5	2.3	mA	VSDA1, VSCL1 = VDD1;
	DD2 (Q)		1.2	1.8	mA	VSDA2, VSCL2 = VDD2
	DD1 (Q)		1.1	1.7	mA	VSDA1, VSCL1 = GND1;
$\pi 221N61$ Quiescent Supply Current @ 5V _{DC}	IDD2 (Q)		1.2	1.8	mA	VSDA2, VSCL2 = GND2
Supply	DD1 (Q)	5	1.2	1.8	mA	VSDA1, VSCL1 = VDD1;
	DD2 (Q)		1.2	1.8	mA	VSDA2, VSCL2 = VDD2
	DD1 (Q)		1.0	1.5	mA	VSDA1, VSCL1 = GND1;
$\pi 221N61$ Quiescent Supply Current @ 3.3V _{DC}	DD2 (Q)		1.1	1.7	mA	VSDA2, VSCL2 = GND2
Supply	DD1 (Q)		1.1	1.7	mA	VSDA1, VSCL1 = VDD1;
	DD2 (Q)		1.1	1.7	mA	VSDA2, VSCL2 = VDD2

Table 6. Switching Specifications

 V_{DD1} - $V_{GND1} = V_{DD2}$ - $V_{GND2} = 3.3V_{DC} \pm 10\%$ or $5V_{DC} \pm 10\%$, $T_A = 25^{\circ}C$, unless otherwise noted. Test method refer to Figure 17.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Output Signal Fall Time SDA1, SCL1	tf1	10	18	30	ns	$0.9 V_{DD1}$ to $0.9 V$; R1 = 1430 Ω ,C1 = 40 pF ,@ 5V _{DC} supply
		9	16	28	ns	R1 = 953 Ω, C1 = 40 PF; @ $3.3V_{DC}$ supply
		6	11	18	ns	0.7 V _{DD1} to 0.3 V _{DD1} ; R1 = 1430 Ω ,C1 = 40 pF ,@ 5V _{DC} supply
		6	10	16	ns	R1 = 953 Ω, C1 = 40 PF; @ $3.3V_{DC}$ supply
Output Signal Fall Time (SDA2, SCL2)	t _{f2}	22	36	45	ns	$0.9V_{DD2}$ to 0.4V; R2 = 143 Ω , C2 = 400 pF, @ 5V _{DC} supply
		20	31	42	ns	R2 = 95.3 Ω ,C2 = 400 pF; @ 3.3V _{DC} supply
		9	16	26	ns	0.7 V_{DD2} to 0.3 V_{DD2} ; R2 = 143 Ω , C2 = 400 pF, @ 5 V_{DC} supply
		8	14	23	ns	R2 = 95.3 Ω ,C2 = 400 pF; @ 3.3V _{DC} supply
Low-to-High Propagation Delay, Side 1 to Side 2	tpLH1-2		45	68	ns	0.55 V to 0.7 \times V_{DD2}; R1 = 1430 $\Omega,$ R2 = 143 $\Omega,$

$\pi 220N61/\pi 221N61$

					C1, C2 = 10 pF; @ 5V _{DC} supply
		38	57	ns	R1 = 953 Ω, R2 = 95.3 Ω, C1, C2 = 10 pF; @ 3.3V _{DC} supply
High-to-Low Propagation Delay, Side 1 to Side 2	tPHL1-2	67	100	ns	0.7 V to 0.4 V; R1 = 1430 Ω, R2 = 143 Ω, C1, C2 = 10 pF; @ $5V_{DC}$ supply
		64	96	ns	R1 = 953 Ω, R2 = 95.3 Ω, C1, C2 = 10 pF; @ 3.3V _{DC} supply
Pulse Width Distortion tpHL1-2 – tpLH1-2	PWD1-2	22	32	ns	R1 = 1430 Ω, R2 = 143 Ω, C1, C2 = 10 pF; @ 5V _{DC} supply
		26	39	ns	R1 = 953 Ω, R2 = 95.3 Ω, C1, C2 = 10 pF; @ 3.3V _{DC} supply
Low-to-High Propagation Delay, Side 2 to Side 1	tPLH2-1	44	62	ns	0.4 × V _{DD2} to 0.7 × VDD1; R1 = 1430 Ω, R2 = 143 Ω, C1, C2 = 10 pF; @ $5V_{DC}$ supply
		42	56	ns	R1 = 953 Ω, R2 = 95.3 Ω, C1, C2 = 10 pF; @ 3.3V _{DC} supply
High-to-Low Propagation Delay, Side 2 to Side 1	tPHL2-1	52	78	ns	$0.4 \times V_{DD2}$ to 0.9 V; R1 = 1430 Ω , R2 = 143 Ω , C1, C2 = 10 pF; @ 5V _{DC} supply
		57	86	ns	R1 = 953 Ω,R2 = 95.3 Ω,C1, C2 = 10 pF; @ 3.3V _{DC} supply
Pulse Width Distortion tpHL2-1 – tpLH2-1	PWD2-1	8	16	ns	R1 = 1430 Ω , R2 = 143 Ω , C1, 2 = 10 pF; @ 5V _{DC} supply
		15	30	ns	R1 = 953 Ω,R2 = 95.3 Ω,C1, C2 = 10 pF; @ 3.3V _{DC} supply
Round-trip propagation delay on Side 1	tLOOP1	104	156	ns	0.4 V to 0.3 × V _{DD1} ; R1 = 1430 Ω, R2 = 143 Ω,C1,C2 = 10 pF; @ 5V _{DC} supply
		88	132	ns	R1 = 953 Ω,R2 = 95.3 Ω,C1, C2 = 10 pF; @ 3.3V _{DC} supply
Common-Mode Transient Immunity ²	СМТІ	120		kV/μs	$V_{IN} = V_{DDx}^{1}$ or 0V, $V_{CM} = 1000$ V.
ESD(HBM - Human body model)	ESD	±6	r al	kV	

Notes:

 $^{1}V_{DDx}$ is the side voltage power supply V_{DD}, where x = 1 or 2.

²See Figure21 for Common-mode transient immunity (CMTI) measurement.

INSULATION AND SAFETY RELATED SPECIFICATIONS

Table 7. Insulation Specifications

Devenuenter	Value		11	Test Can ditions (Commonts		
Parameter	Symbol	π220N61/π221N61	Unit	Test Conditions/Comments		
Rated Dielectric Insulation Voltage		5000	V rms	1-minute duration		
Minimum External Air Gap (Clearance)	L (CLR)	8	mm min	Measured from input terminals to output terminals, shortest distance through air		
Minimum External Tracking (Creepage)	L (CRP)	8	mm min	Measured from input terminals to output terminals, shortest distance path along body		
Minimum Clearance in the Plane of the Printed Circuit Board (PCB Clearance)	L (PCB)	8.5	mm min	Measured from input terminals to output terminals, shortest distance through air, line of sight, in the PCB mounting plane		
Minimum Internal Gap (Internal Clearance)		21	μm min	Insulation distance through insulation		
Tracking Resistance (Comparative Tracking Index)	СТІ	>400	v	DIN IEC 112/VDE 0303 Part 1		
Material Group		II		Material Group (DIN VDE 0110, 1/89, Table 1)		

PACKAGE CHARACTERISTICS

Table 8. Package Characteristics

Devenuedan	Gumbal	Typical Value			
Parameter	Symbol	$\pi 220 \text{N} 61/\pi 221 \text{N} 61$	Unit	Test Conditions/Comments	
Resistance (Input to Output) ¹	Rı-o	10 ¹¹	Ω		
Capacitance (Input to Output) ¹	CI-O	1.5	рF	@1MHz	
Input Capacitance ²	Cı	7	рF	@1MHz	
IC Junction to Ambient Thermal Resistance	θιΑ	45	°C/W	Thermocouple located at center of package underside	

Notes:

¹The device is considered a 2-terminal device; WSOIC-16 Pin 1 – Pin8 are shorted together as the one terminal, and WSOIC-16 Pin 9 - Pin 16 are shorted together as the other terminal.

²Testing from the input signal pin to ground.

REGULATORY INFORMATION

See Table 9 for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels.

Table 9. Regulatory

UL	VDE	CQC
Recognized under UL 1577 Component Recognition Program ¹	DIN VDE V 0884-11:2017-01 ²	Certified under CQC11-471543-2012
Single Protection, 5000 V rms Isolation Voltage	Basic insulation, V _{IORM} = 1200 V peak, V _{IOSM} = 5000 V peak	GB4943.1-2011 Basic insulation at 845 V rms (1200 V peak) working voltage Reinforced insulation at 422 V rms (600 V peak)
File (E494497)	File (40052896)	File (CQC20001260258)

Notes:

¹In accordance with UL 1577, each $\pi 220N61/\pi 221N61$ is proof tested by applying an insulation test voltage \geq 6000 V rms for 1 sec.

²In accordance with DIN V VDE V 0884-11, each $\pi 220N61/\pi 221N61$ is proof tested by applying an insulation test voltage \geq 1800 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-11 approval.

DIN V VDE V 0884-11 (VDE V 0884-11) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The * marking on packages denotes DIN V VDE V 0884-11 approval.

Table 10. VDE Insulation Characteristics

Description	Test Conditions (Comments	Symbol	Characteristic	
Description	Test Conditions/Comments		π220N61/π221N61	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage \leqslant 150 V rms			I to IV	
For Rated Mains Voltage ≤ 300 V rms			l to III	
For Rated Mains Voltage ≤ 400 V rms			I to III	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum repetitive peak isolation voltage		VIORM	1200	V peak

$\pi 220N61/\pi 221N61$

Input to Output Test Voltage, Method B1	$V_{IORM} \times 1.5 = V_{pd (m)}$, 100% production test, tini = t _m = 1 sec, partial discharge < 5 pC	Vpd (m)	1800	V peak
Input to Output Test Voltage, Method A				
After Environmental Tests Subgroup 1	$\label{eq:V_IORM} \begin{array}{l} V_{IORM} \times 1.2 = V_{pd~(m)}, t_{ini} = 60 \; sec, t_m = 10 \\ sec, \; partial \; discharge < 5 \; pC \end{array}$	V _{pd (m)}	1440	V peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\label{eq:V_IORM} \begin{array}{l} V_{IORM} \times 1.2 = V_{pd}_{(m)}, t_{ini} = 60 \; sec, t_m = 10 \\ sec, \; partial \; discharge < 5 \; pC \end{array}$		1440	V peak
Highest Allowable Overvoltage		VIOTM	7071	V peak
Surge Isolation Voltage Basic	Basic insulation, 1.2 μs rise time, 50 μs, 50% fall time	VIOSM	5000	V peak
Surge Isolation Voltage Reinforced	Reinforced insulation, 1.2 μ s rise time, 50 μ s, 50% fall time, VTEST = 1.3 \times VIOSM (qualification) ¹	Viosm		V peak
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 3)			
Maximum Junction Temperature		Ts	150	°C
Maximum Power Dissipation at 25°C		Ps	2.78	W
Insulation Resistance at Ts	V _{IO} = 800 V	Rs	>109	Ω

Notes:

¹In accordance with DIN V VDE V 0884-11, $\pi 220N61/\pi 221N61$ is proof tested by applying a surge isolation voltage 6500 V.

Typical Thermal Characteristic

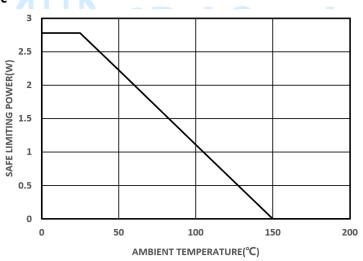


Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per VDE

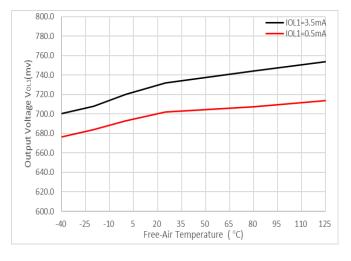


Figure 5. Side 1: Output Low Voltage vs Free-Air Temperature

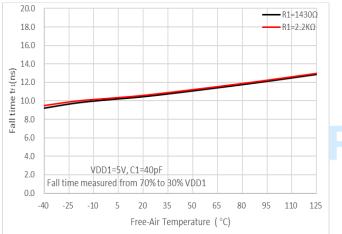


Figure 7. Side 1: Output Fall Time vs Free-Air Temperature

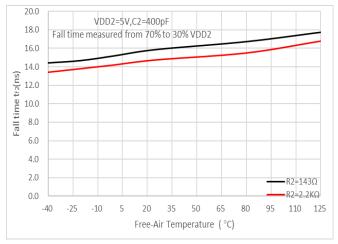


Figure 9. Side 2: Output Fall Time vs Free-Air Temperature

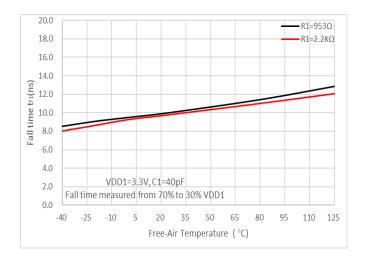


Figure 6. Side 1: Output Fall Time vs Free-Air Temperature

Figure 8. Side 2: Output Fall Time vs Free-Air Temperature

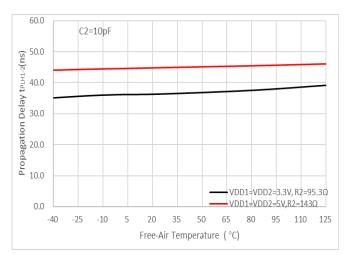


Figure 10. tplH1-2 Propagation Delay vs Free-Air Temperature

100.0 C2=10pF 90.0 Propagation Delay tPHL1-2(ns) 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 VDD1=VDD2=3.3V, R2=95.3Ω VDD1=VDD2=5V,R2=143Q 0.0 -25 -10 5 95 110 125 -40 20 35 50 65 80 Free-Air Temperature (°C)

Figure11. tphL1-2 Propagation Delay vs Free-Air Temperature

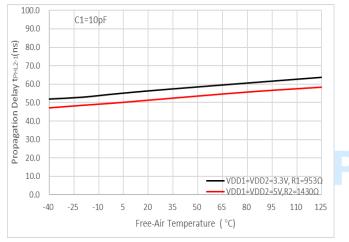


Figure13. tphL2-1 Propagation Delay vs Free-Air Temperature

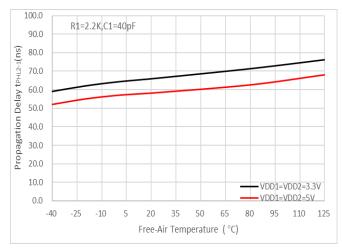
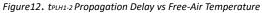
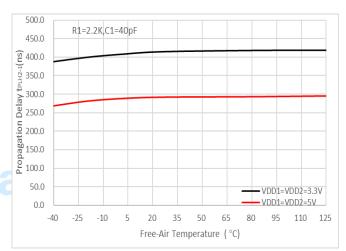




Figure15. tphl2-1 Propagation Delay vs Free-Air Temperature

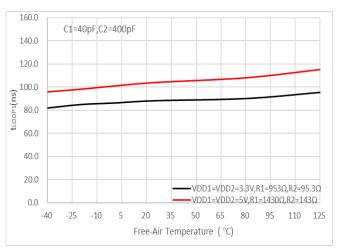


Figure16. tLOOP1 vs Free-Air Temperature

π220N61/π221N61

PARAMETER MEASUREMENT INFORMATION

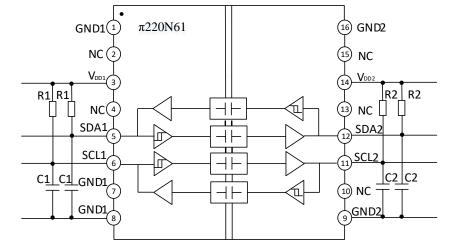


Figure 17. Test Diagram

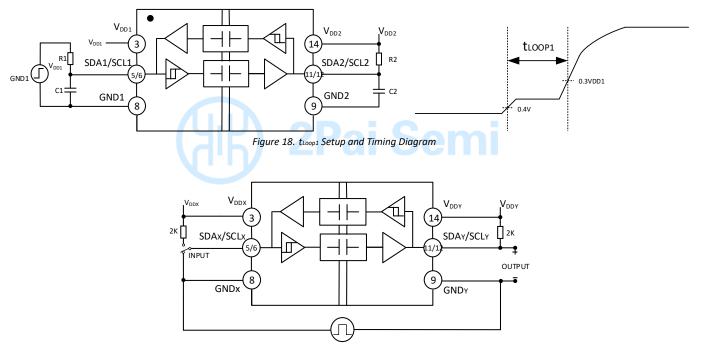


Figure 19. Common-Mode Transient Immunity Test Circuit

π220N61/π221N61

APPLICATIONS INFORMATION

Overview

The inter-integrated circuit (I²C) bus is a single-ended, two wire bus for efficient inter-IC communication and is used in a wide range of applications. The I²C bus is used for communication between multiple masters or a single master and slaves. The master device controls the serial clock line (SCL) and data is bidirectional transferred on the serial data line (SDA) between master and slaves. The I²C bus can theoretically add up to 112 communication nodes, however, the number of nodes will increase the load capacitance on the bus, thereby limiting the communication, tradeoffs are often made between communication speeds, bus length, and number of nodes based on actual conditions.

The I²C bus supports data transmission in four speeds: standard mode (up to 100Kbps), fast mode (up to 400Kbps), fast mode plus (up to 1Mbps), and high-speed mode (up to 3.4Mbps). The π 220N61/ π 221N61 devices support all the above four communication modes.

FUNCTIONAL DESCRIPTION

The $\pi 220N61/\pi 221N61$ devices are low-power bidirectional isolators compatible with the I²C interface and are based on iDivider® technology from 2PaiSemi. These devices have logic input and output buffers that are separated by using a silicon dioxide (SiO₂) barrier. These devices block high voltages and prevent noise currents from entering the control side ground, avoiding circuit interference and damaging sensitive components. Each channel output of the $\pi 220N61/\pi 221N61$ devices is made open-drain to comply with the open-drain technology of I²C. Serial data line (SDA)and serial clock line (SCL) need to add pull-up resistors to ensure normal operation of the system. It is recommended that side 1 of the I²C isolator be connected to the processor and sides 2 to the bus when there are multiple nodes on the I²C bus as side 2 support up to 400 pF capacitance load.

The $\pi 220N61/\pi 221N61$ devices feature two bidirectional channels that have open-drain outputs, As shown in Figure 20. As a logic low on one side causes the corresponding pin on the other side to be pulled low, to avoid data-latching within the device, The output logic low (VOL1)voltages of SDA1 and SCL1 are at least 60mV higher than the input threshold high (VIHT1) of SDA1 and SCL1, As shown in Figure 21.

Because the Side 2 logic levels/thresholds are standard I²C values, multiple $\pi 220N61/\pi 221N61$ devices connected to a bus by their Side 2 pins can communicate with each other and with other I²C compatible devices. However, because the Side 1 pin has a modified output level/ input threshold, this side of the $\pi 220N61/\pi 221N61$ can communicate only with devices that conform to the I²C standard.

The output low voltages of $\pi 220N61/\pi 221N61$ devices are guaranteed for sink currents of up to 35mA for side 2, and 3.5mA for side 1.

To enhance system reliability, it is recommended to connect the node with larger load capacitance and longer wires on side 2 for point-to-point communication.

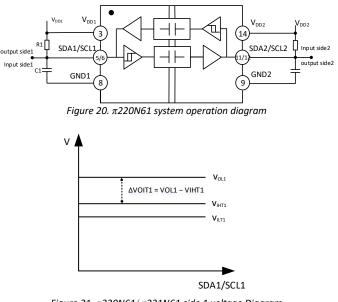


Figure 21. π 220N61/ π 221N61 side 1 voltage Diagram

TYPICAL APPLICATION DIAGRAM

Figure 22 shows a typical application circuit including the pull-up resistors required for both Side 1 and Side 2. Bypass capacitors with values from 0.1μ F to 10μ F are required between V_{DD1} and GND1 and between V_{DD2} and GND2. To enhance the robustness of a design, the user may connect a resistor (50-200 Ω) in series between R2 and C1 and between R3 and C2 if the system is excessively noisy.

The $\pi 220N61/\pi 221N61$ are designed for operation at speeds up to 2 MHZ. Due to the limited current available on side 1 and side2, operation at 2MHZ limits the capacitance that can be driven at the minimum pull-up value to 40pF and 400pF.

Most applications operate at 100 kbps in standard mode or 400 kbps in fast mode. At these lower operating speeds, the limitation on the load capacitance can be significantly relaxed. If larger values for the pull up resistor are used, the maximum supported capacitance must be scaled down proportionately so that the rise time does not increase beyond the values required by the standard.

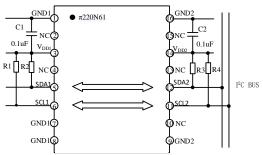
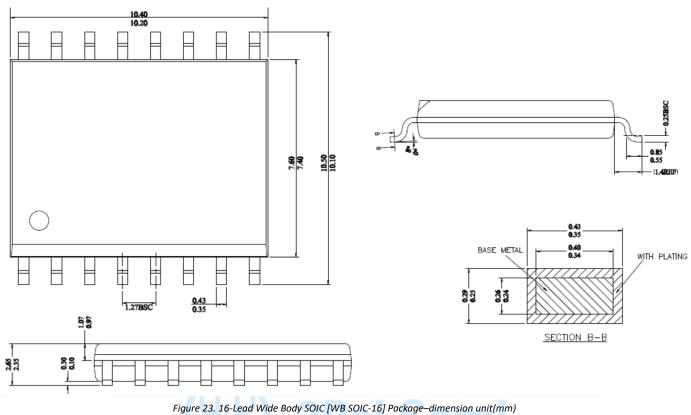



Figure 22. Typical Isolated I^2C Interface Using the π 220N61

OUTLINE DIMENSIONS

Land Patterns

16-Lead SOIC_W [WB SOIC-16]

The figure below illustrates the recommended land pattern details for the π 16xxxx in a 16-pin wide-body SOIC package. The table lists the values for the dimensions shown in the illustration.

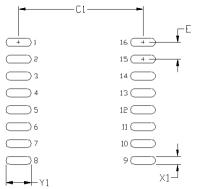


Figure 24.16-Lead Wide Body SOIC [WB SOIC-16] Land Pattern

Table 1.16-Lead SOIC W SOIC Land Pattern Dimensions

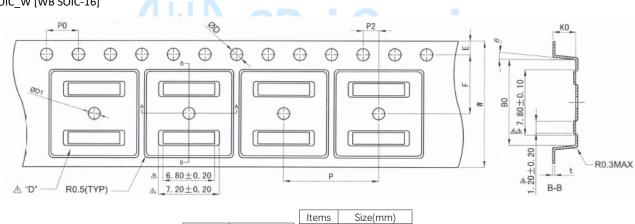
Dimension	Feature	Parameter	Unit
C1	Pad column spacing	9.40	mm
E	Pad row pitch	1.27	mm
X1	Pad width	0.60	mm
Y1	Pad length	1.90	mm

Note:

1. This land pattern design is based on IPC -7351

2.All feature sizes shown are at maximum material condition and a card fabrication tolerance of 0.05 mm is assumed.

Top Marking



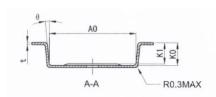
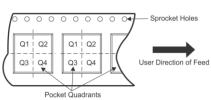

Line 1	π1xxxxx=Product name
Line 2	YY = Work Year
	WW = Work Week
	ZZ=Manufacturing code from assembly house
Line 3	XXXX, no special meaning

Figure 25. Top Marking


REEL INFORMATION

16-Lead SOIC_W [WB SOIC-16]

		Items	Size(mm)	
Items	Size(mm)	W	16.00±0.30	
Е	1.75±0.10	Р	12.00±0.10	
F	7.50±0.05	AO	10.90±0.10	
P2	2.00±0.05	BO	10.80±0.10	
D	1.55±0.05	KO	3.00±0.10	
D1	1.5±0.10	t	0.30±0.05	(
PO	4.00±0.10	K1	2.70±0.10	
10P0	40.00±0.20	θ	5° TYP	

Note: The Pin 1of the chip is in the quadrant Q1

Figure 26.16-Lead Wide Body SOIC [WB SOIC-16] Reel Information

ORDERING GUIDE

Mode	l Name ¹	Temperature Range	No. of Inputs, V _{DD1} Side	No. of Inputs, V _{DD2} Side	Isolation Rating (kV rms)	Maximum Data Rate (MHZ)	Package Description	MSL Peak Temp ²	MOQ/ Quantity per reel ³
π220N61	Pai220N61	–40°C to +125°C	2	2	5	2	WB SOIC-16	Level-3-260C-168 HR	1500
π221N61	Pai221N61	–40°C to +125°C	2	1	5	2	WB SOIC-16	Level-3-260C-168 HR	1500

Note:

 $^{\rm 1.}$ Pai2xxxxx is equals to $\pi 2 {\rm xxxxx}$ in the customer BOM

² MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

^{3.} MOQ, minimum ordering quantity.

PART NUMBER NAMED RULE

π (2) (2) (0) (N) (3) (1) (Q)
Series Number: 2
Interface Type:
N=2 I ² C Interface
Channel Type:
N=0 SCL Bidirectional channel N=1 SCL Unidirectional Channel
Data Rate: N=2MHZ
Isolation Voltages:
N=3 3kVrms AC N=6 5kVrms AC
Output Type:
N=1 Open-Drain
Optional:
Q:AEC-Q100 Qualified

Notes:

Pai22xxxx is equals to $\pi22xxxx$ in the customer BOM

IMPORTANT NOTICE AND DISCLAIMER

2Pai semi intends to provide customers with the latest, accurate, and in-depth documentation. However, no responsibility is assumed by 2Pai semi for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Characterization data, available modules, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. 2Pai semi reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. 2Pai semi shall have no liability for the consequences of use of the information supplied herein.

Trademarks and registered trademarks are the property of their respective owners. This document does not imply, or express copyright licenses granted hereunder to design or fabricate any integrated circuits.

Room 307-309, No.22, Boxia Road, Pudong New District, Shanghai, 201203, China 021-50850681

2Pai Semiconductor Co., Limited. All rights reserved.

http://www.rpsemi.com/

Figure 27. Part Number Named Rule

 $\pi 220N61/\pi 221N61$

REVISION HISTORY

Revision	Date	Page	Change Record
1.0	2020/02/24	All	Initial version
1.1	2021/05/17	Page6	Changed Regulatory Information

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 2Pai Semi manufacturer:

Other Similar products are found below :

<u>P142M31</u> <u>141M61</u> <u>142M61</u> <u>P141U31</u> <u>P131U31</u> <u>P142U31</u> <u>P162U31</u> <u>P161U31</u> <u>P141M30</u> <u>P163M31</u> <u>140U30</u> <u>P130M31</u> <u>P120M30</u> <u>120E31</u> P131M31 P141M31 P122M31 P121U31 P121M31 P120M31 P120U30 P120U31 P122U31