

# Enhanced ESD, 3.0 kV rms/6.0 kV rms 10Mbps Triple-Channel Digital Isolators

# **Data Sheet**

# $\pi 130 M / \pi 131 M$

#### **FEATURES**

Ultra low power consumption (1Mbps):

0.65mA/Channel

High data rate: π13xAxx: 600Mbps

π13xExx: 200Mbps π13xMxx: 10Mbps

π13xUxx: 150kbps

High common-mode transient immunity: 75 kV/ $\mu s$  typical

High robustness to radiated and conducted noise

Low propagation delay:

8 ns typical for 5 V operation  $\,$ 

9 ns typical for 3.3 V operation

**Isolation voltages:** 

 $\pi$ 13xx3x: AC 3000Vrms  $\pi$ 13xx6x: AC 6000Vrms

High ESD rating:

ESDA/JEDEC JS-001-2017

Human body model (HBM) ±8kV, all pins

Safety and regulatory approvals (Pending):

UL certificate number: E494497

3000Vrms/6000Vrms for 1 minute per UL 1577

CSA Component Acceptance Notice 5A VDE certificate number: 40047929

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12

V<sub>IORM</sub> = 707V peak/1200V peak CQC certification per GB4943.1-2011

3 V to 5.5 V level translation

AEC-Q100 qualification

Wide temperature range: -40°C to 125°C

16-lead, RoHS-compliant, SOIC\_N, SOIC\_W and SSOP package

#### **APPLICATIONS**

General-purpose multichannel isolation

Industrial field bus isolation

#### **GENERAL DESCRIPTION**

The  $\pi 1xxxxx$  is a 2PaiSemi digital isolators product family that includes over hundreds of digital isolator products. By using maturated standard semiconductor CMOS technology and 2PaiSEMI *iDivider* technology, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators.

Intelligent voltage divider technology (*iDivider* technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit voltage signal directly cross the isolator capacitor without signal modulation and demodulation.

The  $\pi 1 xxxxx$  isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The fail-safe state is available in which the outputs transition to a preset state when the input power supply is not applied.

#### **FUNCTIONAL BLOCK DIAGRAMS**

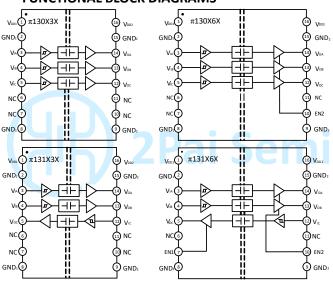



Figure 1.  $\pi$ 130xxx/ $\pi$ 131xxx functional Block Diagram

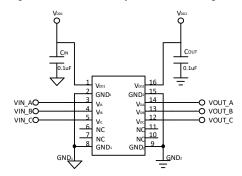



Figure 2.  $\pi$ 130x3x Typical Application Circuit

# PIN CONFIGURATIONS AND FUNCTIONS

#### **π130Mxx** Pin Function Descriptions

|         | VIXX I III Function Descriptions |                                                                                                                                                                           |  |  |  |  |  |  |
|---------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Pin No. | Name                             | Description                                                                                                                                                               |  |  |  |  |  |  |
| 1       | V <sub>DD1</sub>                 | Supply Voltage for Isolator Side 1.                                                                                                                                       |  |  |  |  |  |  |
| 2       | GND₁                             | Ground 1. This pin is the ground reference for Isolator Side 1.                                                                                                           |  |  |  |  |  |  |
| 3       | VIA                              | Logic Input A.                                                                                                                                                            |  |  |  |  |  |  |
| 4       | VIB                              | Logic Input B.                                                                                                                                                            |  |  |  |  |  |  |
| 5       | Vıc                              | Logic Input C.                                                                                                                                                            |  |  |  |  |  |  |
| 6       | NC                               | No connect.                                                                                                                                                               |  |  |  |  |  |  |
| 7       | NC                               | No connect.                                                                                                                                                               |  |  |  |  |  |  |
| 8       | $GND_1$                          | Ground 1. This pin is the ground reference for Isolator Side 1.                                                                                                           |  |  |  |  |  |  |
| 9       | GND <sub>2</sub>                 | Ground 2. This pin is the ground reference for Isolator Side 2.                                                                                                           |  |  |  |  |  |  |
| 10      | NC/EN2                           | No connect for $\pi 130M3X$ .<br>Output enable for $\pi 130M6X$ . Output pins on side 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low. |  |  |  |  |  |  |
| 11      | NC                               | No connect.                                                                                                                                                               |  |  |  |  |  |  |
| 12      | Voc                              | Logic Output C.                                                                                                                                                           |  |  |  |  |  |  |
| 13      | Vов                              | Logic Output B.                                                                                                                                                           |  |  |  |  |  |  |
| 14      | Voa                              | Logic Output A.                                                                                                                                                           |  |  |  |  |  |  |
| 15      | GND <sub>2</sub>                 | Ground 2. This pin is the ground reference for Isolator Side 2.                                                                                                           |  |  |  |  |  |  |
| 16      | V <sub>DD2</sub>                 | Supply Voltage for Isolator Side 2.                                                                                                                                       |  |  |  |  |  |  |

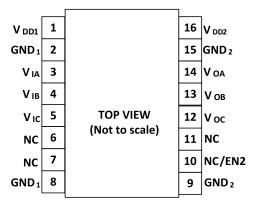



Figure 3  $\pi$ 130Mxx Pin Configuration

#### **π131Mxx** Pin Function Descriptions

| Pin No. | Name             | Description                                                                                                                                                               |
|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | $V_{DD1}$        | Supply Voltage for Isolator Side 1.                                                                                                                                       |
| 2       | GND <sub>1</sub> | Ground 1. This pin is the ground reference for Isolator Side 1.                                                                                                           |
| 3       | VIA              | Logic Input A.                                                                                                                                                            |
| 4       | VIB              | Logic Input B.                                                                                                                                                            |
| 5       | Voc              | Logic Output C.                                                                                                                                                           |
| 6       | NC               | No connect.                                                                                                                                                               |
| 7       | NC               | No connect for $\pi 131M3X$ .<br>Output enable for $\pi 131M6X$ . Output pins on side 1 are enabled when EN1 is high or open and in high-impedance state when EN1 is low. |
| 8       | GND₁             | Ground 1. This pin is the ground reference for Isolator Side 1.                                                                                                           |
| 9       | GND <sub>2</sub> | Ground 2. This pin is the ground reference for Isolator Side 2.                                                                                                           |
| 10      | NC               | No connect for $\pi 131M3X$ .<br>Output enable for $\pi 131M6X$ . Output pins on side 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low. |
| 11      | NC               | No connect.                                                                                                                                                               |
| 12      | Vıc              | Logic Input C.                                                                                                                                                            |
| 13      | Vов              | Logic Output B.                                                                                                                                                           |
| 14      | Voa              | Logic Output A.                                                                                                                                                           |
| 15      | $GND_2$          | Ground 2. This pin is the ground reference for Isolator Side 2.                                                                                                           |
| 16      | V <sub>DD2</sub> | Supply Voltage for Isolator Side 2.                                                                                                                                       |

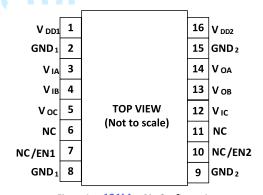



Figure 4.  $\pi$ 131Mxx Pin Configuration

## **ABSOLUTE MAXIMUM RATINGS**

 $T_A = 25$ °C, unless otherwise noted.

Table 1. Absolute Maximum Ratings<sup>4</sup>

| Parameter                                                                                  | Rating                             |
|--------------------------------------------------------------------------------------------|------------------------------------|
| Supply Voltages (V <sub>DD1</sub> -GND <sub>1</sub> , V <sub>DD2</sub> -GND <sub>2</sub> ) | -0.5 V to +7.0 V                   |
| Input Voltages (V <sub>IA</sub> , V <sub>IB</sub> ) <sup>1</sup>                           | -0.5 V to V <sub>DDx</sub> + 0.5 V |
| Output Voltages (V <sub>OA</sub> , V <sub>OB</sub> ) <sup>1</sup>                          | -0.5 V to V <sub>DDx</sub> + 0.5 V |
| Average Output Current per Pin² Side 1 Output Current (I <sub>O1</sub> )                   | −10 mA to +10 mA                   |
| Average Output Current per Pin² Side 2 Output Current (I <sub>O2</sub> )                   | −10 mA to +10 mA                   |
| Common-Mode Transients Immunity <sup>3</sup>                                               | -150 kV/μs to +150 kV/μs           |
| Storage Temperature (T <sub>ST</sub> ) Range                                               | -65°C to +150°C                    |
| Ambient Operating Temperature (T <sub>A</sub> ) Range                                      | -40°C to +125°C                    |

#### Notes:

## RECOMMENDED OPERATING CONDITIONS

**Table 2. Recommended Operating Conditions** 

| Parameter                       | Symbol                        | Min                    | Тур Мах           | Unit |
|---------------------------------|-------------------------------|------------------------|-------------------|------|
| Supply Voltage                  | V <sub>DDx</sub> <sup>1</sup> | 3                      | 5.5               | ٧    |
| High Level Input Signal Voltage | $V_{IH}$                      | 0.7*V <sub>DDx</sub> 1 | $V_{DDx}^{1}$     | V    |
| Low Level Input Signal Voltage  | $V_{IL}$                      | 0                      | $0.3*V_{DDx}^{1}$ | V    |
| High Level Output Current       | Іон                           | -6                     |                   | mA   |
| Low Level Output Current        | Іоь                           |                        | 6                 | mA   |
| Maximum Data Rate               |                               | 0                      | 10                | Mbps |
| Junction Temperature            | TJ                            | -40                    | 150               | °C   |
| Ambient Operating Temperature   | T <sub>A</sub>                | -40                    | 125               | °C   |

#### Notes:

## **Truth Tables**

Table 3.  $\pi 130M3x/\pi 131M3x$  Truth Table

| V Innet1                           | V Ct-t-1                            | V Chanal                            | Default Low             | Default High            | Test Conditions  |
|------------------------------------|-------------------------------------|-------------------------------------|-------------------------|-------------------------|------------------|
| V <sub>Ix</sub> Input <sup>1</sup> | V <sub>DDI</sub> State <sup>1</sup> | V <sub>DDO</sub> State <sup>1</sup> | Vox Output <sup>1</sup> | Vox Output <sup>1</sup> | /Comments        |
| Low                                | Powered <sup>2</sup>                | Powered <sup>2</sup>                | Low                     | Low                     | Normal operation |
| High                               | Powered <sup>2</sup>                | Powered <sup>2</sup>                | High                    | High                    | Normal operation |
| Open                               | Powered <sup>2</sup>                | Powered <sup>2</sup>                | Low                     | High                    | Default output   |
| Don't Care <sup>4</sup>            | Unpowered <sup>3</sup>              | Powered <sup>2</sup>                | Low                     | High                    | Default output⁵  |
| Don't Care⁴                        | Powered <sup>2</sup>                | Unpowered <sup>3</sup>              | High Impedance          | High Impedance          |                  |

Notes:

 $<sup>^{1}</sup>$  V<sub>DDx</sub> is the side voltage power supply V<sub>DD</sub>, where x = 1 or 2.

 $<sup>^{2}\,\</sup>mbox{See}$  Figure 6 for the maximum rated current values for various temperatures.

<sup>&</sup>lt;sup>3</sup> See Figure 17 for Common-mode transient immunity (CMTI) measurement.

<sup>&</sup>lt;sup>4</sup>Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

 $<sup>^{1}</sup>$  V<sub>DDx</sub> is the side voltage power supply V<sub>DD</sub>, where x = 1 or 2.

 $<sup>^1</sup>V_{lx}/V_{DX}$  are the input/output signals of a given channel (A or B).  $V_{DDI}/V_{DDO}$  are the supply voltages on the input/output signal sides of this given channel.

Table 4.  $\pi 130 M6x/\pi 131 M6x$  Truth Table

| 1/. Immit1                         | FN1 /2 State | V State1                            | V State1                            | Default Low             | Default High            | Test Conditions  |
|------------------------------------|--------------|-------------------------------------|-------------------------------------|-------------------------|-------------------------|------------------|
| V <sub>Ix</sub> Input <sup>1</sup> | EN1/2 State  | V <sub>DDI</sub> State <sup>1</sup> | V <sub>DDO</sub> State <sup>1</sup> | Vox Output <sup>1</sup> | Vox Output <sup>1</sup> | /Comments        |
| Low                                | High or NC   | Powered <sup>2</sup>                | Powered <sup>2</sup>                | Low                     | Low                     | Normal operation |
| High                               | High or NC   | Powered <sup>2</sup>                | Powered <sup>2</sup>                | High                    | High                    | Normal operation |
| Don't Care⁴                        | L            | Powered <sup>2</sup>                | Powered <sup>2</sup>                | High Impedance          | High Impedance          | Disabled         |
| Open                               | High or NC   | Powered <sup>2</sup>                | Powered <sup>2</sup>                | Low                     | High                    | Default output⁵  |
| Don't Care⁴                        | High or NC   | Unpowered <sup>3</sup>              | Powered <sup>2</sup>                | Low                     | High                    | Default output⁵  |
| Don't Care⁴                        | L            | Unpowered <sup>3</sup>              | Powered <sup>2</sup>                | High Impedance          | High Impedance          |                  |
| Don't Care <sup>4</sup>            | Don't Care⁴  | Powered <sup>2</sup>                | Unpowered <sup>3</sup>              | High Impedance          | High Impedance          |                  |

Notes:

## **SPECIFICATIONS**

#### **ELECTRICAL CHARACTERISTICS**

**Table 5. Switching Specifications** 

 $V_{DD1}$  -  $V_{GND1}$  =  $V_{DD2}$  -  $V_{GND2}$  = 3.3 $V_{DC}$ ±10% or 5 $V_{DC}$ ±10%,  $T_A$ =25°C, unless otherwise noted.

| Parameter                                                 | Symbol                         | Min | Тур | Max  | Unit        | Test Conditions/Comments                                                                                                             |
|-----------------------------------------------------------|--------------------------------|-----|-----|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Minimum Pulse Width                                       | PW                             |     |     | 100  | ns          | Within pulse width distortion (PWD) limit                                                                                            |
| Maximum Data Rate                                         |                                | 10  |     |      | Mbps        | Within PWD limit                                                                                                                     |
| Propagation Delay Time <sup>1,4</sup>                     | <b>t</b> рнг, <b>t</b> ргн     | 5.5 | 8   | 12.5 | ns          | The different time between 50% input signal to 50% output signal 50% @ 5V <sub>DC</sub> supply                                       |
|                                                           |                                | 6.5 | 9   | 13.5 | ns          | @ 3.3V <sub>DC</sub> supply                                                                                                          |
| Pulse Width Distortion <sup>4</sup>                       | ortion <sup>4</sup> PWD        |     | 0.3 | 0.8  | ns          | The max different time between tphL and tplh@<br>5VDC supply. And The value is   tphL - tplh                                         |
|                                                           |                                | 0   | 0.3 | 0.8  | ns          | @ 3.3V <sub>DC</sub> supply                                                                                                          |
| Part to Part Propagation Delay<br>Skew <sup>4</sup>       | <b>t</b> psk                   |     |     | 1    | ns          | The max different propagation delay time between any two devices at the same temperature, load and voltage @ 5V <sub>DC</sub> supply |
|                                                           |                                |     |     | 1    | ns          | @ 3.3V <sub>DC</sub> supply                                                                                                          |
| Channel to Channel Propagation<br>Delay Skew <sup>4</sup> | tcsк                           |     | 0   | 1    | ns          | The max amount propagation delay time differs between any two output channels in the single device @ 5V <sub>DC</sub> supply.        |
|                                                           |                                |     | 0   | 8.0  | ns          | @ 3.3V <sub>DC</sub> supply                                                                                                          |
| Output Signal Rise/Fall Time <sup>4</sup>                 | t <sub>r</sub> /t <sub>f</sub> |     | 1.5 |      | ns          | 10% to 90% signal terminated 50 $\Omega$ , See figure 13.                                                                            |
| Dynamic Input Supply Current per<br>Channel               | Iddi (d)                       |     | 9   |      | μΑ<br>/Mbps | Inputs switching, 50% duty cycle square wave, CL = 0 pF @ $5V_{\rm DC}$ Supply                                                       |

<sup>&</sup>lt;sup>2</sup> Powered means V<sub>DDx</sub>≥ 2.9 V

 $<sup>^{3}</sup>$  Unpowered means  $V_{DDx}$  < 2.3V

 $<sup>^4</sup>$  Input signal ( $V_{IX}$ ) must be in a low state to avoid powering the given  $V_{DDI}$  through its ESD protection circuitry.

<sup>&</sup>lt;sup>5</sup> If the V<sub>DDI</sub> goes into unpowered status, the channel outputs the default logic signal after around 1us. If the V<sub>DDI</sub> goes into powered status, the channel outputs the input status logic signal after around 1us.

 $<sup>^1</sup>V_{lx}/V_{Ox}$  are the input/output signals of a given channel (A or B).  $V_{DDI}/V_{DDO}$  are the supply voltages on the input/output signal sides of this given channel.

<sup>&</sup>lt;sup>2</sup>Powered means V<sub>DDx</sub>≥ 2.9 V

<sup>&</sup>lt;sup>3</sup>Unpowered means V<sub>DDx</sub> < 2.3V

<sup>&</sup>lt;sup>4</sup>Input signal ( $V_{Ix}$ ) must be in a low state to avoid powering the given  $V_{DDI}^{1}$  through its ESD protection circuitry.

<sup>&</sup>lt;sup>5</sup>If the V<sub>DDI</sub> goes into unpowered status, the channel outputs the default logic signal after around 1us. If the V<sub>DDI</sub> goes into powered status, the channel outputs the input status logic signal after around 1us.

| Dynamic Output Supply Current per Channel      | Iddo (d) | 38  | μΑ<br>/Mbps | Inputs switching, 50% duty cycle square wave, CL = 0 pF @ $5V_{DC}$ Supply   |
|------------------------------------------------|----------|-----|-------------|------------------------------------------------------------------------------|
| Dynamic Input Supply Current per<br>Channel    | Iddi (d) | 5   | μΑ<br>/Mbps | Inputs switching, 50% duty cycle square wave, CL = 0 pF @ $3.3V_{DC}$ Supply |
| Dynamic Output Supply Current per Channel      | Iddo (d) | 23  | μΑ<br>/Mbps | Inputs switching, 50% duty cycle square wave, CL = 0 pF @ $3.3V_{DC}$ Supply |
| Common-Mode Transient<br>Immunity <sup>3</sup> | CMTI     | 75  | kV/μs       | $V_{IN} = V_{DDx}^2$ or 0V, $V_{CM} = 1000 \text{ V}$                        |
| Jitter                                         |          | 120 | ps p-p      | See the Jitter Measurement section                                           |
|                                                |          | 20  | ps rms      | See the Jitter Measurement section                                           |
| ESD(HBM - Human body model)                    | ESD      | ±8  | kV          | All pins                                                                     |

Notes:

**Table 6. DC Specifications** 

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, \\ T_A = 25 \\ ^{\circ}C, \text{ unless otherwise noted.}$ 

|                                                                 | Symbol               | Min                                | Тур                                | Max                               | Unit | Test Conditions/Comments                                                        |
|-----------------------------------------------------------------|----------------------|------------------------------------|------------------------------------|-----------------------------------|------|---------------------------------------------------------------------------------|
| Rising Input Signal Voltage                                     | V <sub>IT+</sub>     |                                    | 0.6*V <sub>DDx</sub> <sup>1</sup>  | 0.7*V <sub>DDx</sub> <sup>1</sup> | V    |                                                                                 |
| Threshold                                                       |                      | 0.04.1/                            | 0.441.1                            |                                   | l    |                                                                                 |
| Falling Input Signal Voltage<br>Threshold                       | V <sub>IT</sub> -    | 0.3* V <sub>DDX</sub> <sup>1</sup> | 0.4* V <sub>DDX</sub> <sup>1</sup> |                                   | V    | •                                                                               |
| High Level Output Voltage                                       | Von <sup>1</sup>     | $V_{DDx} - 0.1$                    | $V_{DDx}$                          |                                   | V    | -20 μA output current                                                           |
|                                                                 |                      | V <sub>DDx</sub> - 0.2             | V <sub>DDx</sub> - 0.1             |                                   | V    | -2 mA output current                                                            |
| Low Level Output Voltage                                        | Vol                  |                                    | 0                                  | 0.1                               | V    | 20 μA output current                                                            |
|                                                                 |                      |                                    | 0.1                                | 0.2                               | V    | 2 mA output current                                                             |
| Input Current per Signal<br>Channel                             | I <sub>IN</sub>      | -10                                | 0.5                                | 10                                | μΑ   | $0 \text{ V} \leqslant \text{Signal voltage} \leqslant \text{V}_{\text{DDX}}^1$ |
| V <sub>DDx</sub> <sup>1</sup> Undervoltage Rising<br>Threshold  | V <sub>DDxUV+</sub>  | 2.45                               | 2.65                               | 2.9                               | V    |                                                                                 |
| V <sub>DDx</sub> <sup>1</sup> Undervoltage Falling<br>Threshold | V <sub>DDxUV</sub> - | 2.3                                | 2.5                                | 2.75                              | V    |                                                                                 |
| V <sub>DDx</sub> <sup>1</sup> Hysteresis                        | VDDxUVH              |                                    | 0.15                               |                                   | V    |                                                                                 |

Notes:

**Table 7. Quiescent Supply Current** 

 $V_{DD\underline{1}} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, T_A = 25 \\ ^{\circ}C, C_L = 0 \text{ pF, unless otherwise noted.}$ 

| Parameter                                                  | Symbol               | Min  | Тур  | Max  | Unit | Test Conditions   |
|------------------------------------------------------------|----------------------|------|------|------|------|-------------------|
|                                                            | I <sub>DD1</sub> (Q) | 125  | 156  | 203  | μΑ   | 0V Input signal   |
| =120Myry Ovigsoont Symply Cymront @ 5V Symply              | I <sub>DD2</sub> (Q) | 1249 | 1562 | 2030 | μΑ   | 0V Input signal   |
| π130Mxx Quiescent Supply Current @ 5V <sub>DC</sub> Supply | I <sub>DD1</sub> (Q) | 310  | 387  | 503  | μΑ   | 5V Input signal   |
|                                                            | I <sub>DD2</sub> (Q) | 1181 | 1477 | 1920 | μΑ   | 5V Input signal   |
|                                                            | IDD1 (Q)             | 123  | 154  | 200  | μΑ   | 0V Input signal   |
| @ 3.3V <sub>DC</sub> Supply                                | I <sub>DD2</sub> (Q) | 1235 | 1544 | 2007 | μΑ   | 0V Input signal   |
|                                                            | IDD1 (Q)             | 228  | 285  | 371  | μΑ   | 3.3V Input signal |

 $<sup>^{1}</sup>$  t<sub>pLH</sub> = low-to-high propagation delay time, t<sub>pHL</sub> = high-to-low propagation delay time. See figure 14.

 $<sup>^{2}</sup>$  V<sub>DDx</sub> is the side voltage power supply V<sub>DD</sub>, where x = 1 or 2.

<sup>&</sup>lt;sup>3</sup> See Figure 17 for Common-mode transient immunity (CMTI) measurement.

 $<sup>^4</sup>$  Output Signal Terminated 50  $\!\Omega.$ 

 $<sup>^{1}</sup>$  V<sub>DDx</sub> is the side voltage power supply V<sub>DD</sub>, where x = 1 or 2.

|                                                            | I <sub>DD2</sub> (Q) | 1134 | 1418 | 1843 | μΑ | 3.3V Input signal |
|------------------------------------------------------------|----------------------|------|------|------|----|-------------------|
|                                                            | I <sub>DD1</sub> (Q) | 480  | 600  | 780  | μΑ | 0V Input signal   |
| =121Mvv Ovicecent Symply Coment @ 5V Symply                | I <sub>DD2</sub> (Q) | 888  | 1110 | 1442 | μΑ | 0V Input signal   |
| π131Mxx Quiescent Supply Current @ 5V <sub>DC</sub> Supply | I <sub>DD1</sub> (Q) | 588  | 735  | 956  | μΑ | 5V Input signal   |
|                                                            | I <sub>DD2</sub> (Q) | 879  | 1099 | 1428 | μΑ | 5V Input signal   |
|                                                            | I <sub>DD1</sub> (Q) | 474  | 593  | 771  | μΑ | 0V Input signal   |
| G 2 2 V                                                    | I <sub>DD2</sub> (Q) | 878  | 1097 | 1426 | μΑ | 0V Input signal   |
| @ 3.3V <sub>DC</sub> Supply                                | I <sub>DD1</sub> (Q) | 520  | 650  | 845  | μΑ | 3.3V Input signal |
|                                                            | I <sub>DD2</sub> (Q) | 833  | 1042 | 1354 | μΑ | 3.3V Input signal |

Table 8. Total Supply Current vs. Data Throughput ( $C_L = 0 pF$ )

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, \\ T_A = 25 \\ ^{\circ}C, \\ C_L = 0 \text{ pF, unless otherwise noted.}$ 

| Damanatan                                     | Comple al        | 150 Kbps |      |      | 1 Mbps |      |      |     |      |      |      |
|-----------------------------------------------|------------------|----------|------|------|--------|------|------|-----|------|------|------|
| Parameter                                     | Symbol           | Min      | Тур  | Max  | Min    | Тур  | Max  | Min | Тур  | Max  | Unit |
| $\pi$ 130Mxx Supply Current@ 5V <sub>DC</sub> | I <sub>DD1</sub> |          | 0.26 | 0.39 |        | 0.28 | 0.42 |     | 0.44 | 0.66 | mA   |
|                                               | I <sub>DD2</sub> |          | 1.52 | 2.28 |        | 1.63 | 2.45 |     | 2.82 | 4.22 | mA   |
|                                               | I <sub>DD1</sub> |          | 0.21 | 0.32 |        | 0.23 | 0.35 |     | 0.34 | 0.51 | mA   |
| @ 3.3V <sub>DC</sub>                          | I <sub>DD2</sub> |          | 1.49 | 2.23 |        | 1.55 | 2.33 |     | 2.29 | 3.43 | mA   |
| =121Mov Cupply Current@ EV                    | I <sub>DD1</sub> |          | 0.66 | 0.99 |        | 0.71 | 1.07 |     | 1.17 | 1.76 | mA   |
| π131Mxx Supply Current@ 5V <sub>DC</sub>      | I <sub>DD2</sub> |          | 1.11 | 1.67 |        | 1.19 | 1.79 |     | 2.03 | 3.04 | mA   |
| @ 2 2V                                        | I <sub>DD1</sub> |          | 0.62 | 0.93 |        | 0.65 | 0.98 |     | 0.93 | 1.40 | mA   |
| @ 3.3V <sub>DC</sub>                          | I <sub>DD2</sub> |          | 1.08 | 1.62 |        | 1.12 | 1.68 |     | 1.63 | 2.44 | mA   |

# **INSULATION AND SAFETY RELATED SPECIFICATIONS**

**Table 9. Insulation Specifications** 

| Parameter                                        | Symbol   | Value   |         | Unit   | Test Conditions/Comments                                                             |
|--------------------------------------------------|----------|---------|---------|--------|--------------------------------------------------------------------------------------|
| Parameter                                        | Syllibol | π13xM3x | π13xM6x | Oilit  | rest conditions/ comments                                                            |
| Rated Dielectric Insulation Voltage              |          | 3000    | 6000    | V rms  | 1-minute duration                                                                    |
| Minimum External Air Gap (Clearance)             | L (CLR)  | 4       | 8       | mm min | Measured from input terminals to output terminals, shortest distance through air     |
| Minimum External Tracking (Creepage)             | L (CRP)  | 4       | 8       | mm min | Measured from input terminals to output terminals, shortest distance path along body |
| Minimum Internal Gap (Internal Clearance)        |          | 11      | 21      | μm min | Insulation distance through insulation                                               |
| Tracking Resistance (Comparative Tracking Index) | СТІ      | >400    | >400    | V      | DIN IEC 112/VDE 0303 Part 1                                                          |
| Material Group                                   |          | II      | II      |        | Material Group (DIN VDE 0110, 1/89, Table 1)                                         |

#### **PACKAGE CHARACTERISTICS**

**Table 10. Package Characteristics** 

| Dougnation                                 | Symbol           | Туріса           | l Value | Unit | Test Conditions/Comments |  |
|--------------------------------------------|------------------|------------------|---------|------|--------------------------|--|
| Parameter                                  | Symbol           | π13xM3x          | π13xM6x | Unit | rest conditions/comments |  |
| Resistance (Input to Output) <sup>1</sup>  | Rı-o             | 10 <sup>11</sup> | 10 11   | Ω    |                          |  |
| Capacitance (Input to Output) <sup>1</sup> | C <sub>I-O</sub> | 0.6              | 0.6     | pF   | @1MHz                    |  |
| Input Capacitance <sup>2</sup>             | Cı               | 3                | 3       | рF   | @1MHz                    |  |

| IC Junction to Ambient Thermal | 0   | 100 | 45 | °C /\A/ | Thermocouple located at center |
|--------------------------------|-----|-----|----|---------|--------------------------------|
| Resistance                     | ΘJA | 100 | 45 | C/ VV   | of package underside           |

#### Notes

#### **REGULATORY INFORMATION**

See Table 11 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels.

#### Table 11. Regulatory

| Regulatory | π13xM3x                                                                           | π13xM6x                                                                           |  |  |
|------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| UL         | Recognized under UL 1577                                                          | Recognized under UL 1577                                                          |  |  |
|            | Component Recognition Program <sup>1</sup>                                        | Component Recognition Program <sup>1</sup>                                        |  |  |
|            | Single Protection, 3000 V rms Isolation Voltage                                   | Single Protection, 6000 V rms Isolation Voltage                                   |  |  |
|            | File (E494497)                                                                    | File (pending)                                                                    |  |  |
| CSA        | Approved under CSA Component Acceptance Notice 5A                                 | Approved under CSA Component Acceptance Notice 5A                                 |  |  |
|            | CSA 60950-1-07+A1+A2 and                                                          | CSA 60950-1-07+A1+A2 and                                                          |  |  |
|            | IEC 60950-1, second edition, +A1+A2:                                              | IEC 60950-1, second edition, +A1+A2:                                              |  |  |
|            | Basic insulation at 500 V rms (707 V peak)                                        | Basic insulation at 845 V rms (1200 V peak)                                       |  |  |
|            | Reinforced insulation at 250 V rms                                                | Reinforced insulation at 422 V rms                                                |  |  |
|            | (353 V peak)                                                                      | (600 V peak)                                                                      |  |  |
|            | File (pending)                                                                    | File (pending)                                                                    |  |  |
| VDE        | DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 <sup>2</sup>                          | DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 <sup>2</sup>                          |  |  |
|            | Basic insulation, V <sub>IORM</sub> = 707 V peak, V <sub>IOSM</sub> = 4615 V peak | Basic insulation, V <sub>IORM</sub> = 1200 V peak, V <sub>IOSM</sub> = 7000V peak |  |  |
|            | File (40047929)                                                                   | File (pending)                                                                    |  |  |
| cqc        | Certified under                                                                   | Certified under                                                                   |  |  |
|            | CQC11-471543-2012                                                                 | CQC11-471543-2012                                                                 |  |  |
|            | GB4943.1-2011                                                                     | GB4943.1-2011                                                                     |  |  |
|            | Basic insulation at 500 V rms (707 V peak) working voltage                        | Basic insulation at 845 V rms (1200 V peak) working voltage                       |  |  |
|            | Reinforced insulation at                                                          | Reinforced insulation at                                                          |  |  |
|            | 250 V rms (353 V peak)                                                            | 422 V rms (600 V peak)                                                            |  |  |
|            | File (pending)                                                                    | File (pending)                                                                    |  |  |

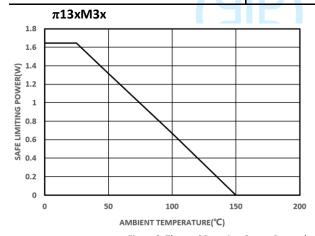
#### Notes:

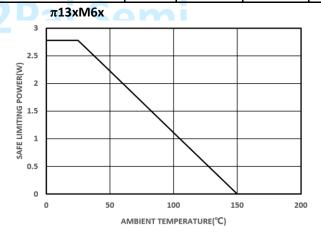
#### DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The \* marking on packages denotes DIN V VDE V 0884-10 approval.

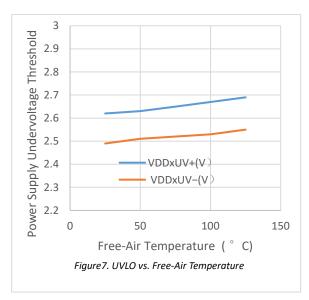
#### **Table 12. VDE Insulation Characteristics**

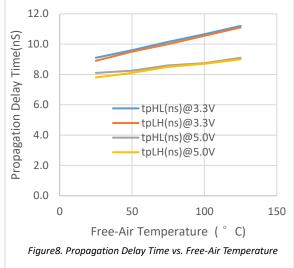
| Description                                  | Test Conditions/Comments | Symbol   | Charac  | Unit    |       |
|----------------------------------------------|--------------------------|----------|---------|---------|-------|
| Description                                  | rest conditions/comments | Syllibol | π13xM3x | π13xM6x | Oilit |
| Installation Classification per DIN VDE 0110 |                          |          |         |         |       |


<sup>&</sup>lt;sup>1</sup>The device is considered a 2-terminal device; SOIC-16 Pin 1 - Pin 8(WSOIC-16 Pin 1-Pin8 and SSOP16 Pin 1-Pin8) are shorted together as the one terminal, and SOIC-16 Pin 9-Pin 16(WSOIC-16 Pin 9-Pin16 and SSOP16 Pin 9-Pin16) are shorted together as the other terminal.


<sup>&</sup>lt;sup>2</sup>Testing from the input signal pin to ground.

¹ In accordance with UL 1577, each  $\pi$ 130M3X/ $\pi$ 131M3X is proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec; each  $\pi$ 130M6X/ $\pi$ 131M6X is proof tested by applying an isulation test voltage ≥ 7200 V rms for 1 sec


<sup>&</sup>lt;sup>2</sup> In accordance with DIN V VDE V 0884-10, each  $\pi$ 130M3X/ $\pi$ 131M3X is proof tested by applying an insulation test voltage ≥ 1326 V peak for 1 sec (partial discharge detection limit = 5 pC); each  $\pi$ 130M6X/ $\pi$ 131M6X is proof tested by ≥ 2250 V peak for 1 sec. The \* marking branded on the component designates DIN V VDE V 0884-10 approval.


| For Rated Mains Voltage $\leq$ 150 V rms                 |                                                                                                             |                     | I to IV          | I to IV          |        |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------|------------------|------------------|--------|
| For Rated Mains Voltage ≤ 300 V rms                      |                                                                                                             |                     | I to III         | I to III         |        |
| For Rated Mains Voltage ≤ 400 V rms                      |                                                                                                             |                     | I to III         | I to III         |        |
| Climatic Classification                                  |                                                                                                             |                     | 40/105/21        | 40/105/21        |        |
| Pollution Degree per DIN VDE 0110, Table 1               |                                                                                                             |                     | 2                | 2                |        |
| Maximum Working Insulation Voltage                       |                                                                                                             | VIORM               | 707              | 1200             | V peak |
| Input to Output Test Voltage, Method B1                  | $V_{IORM} \times 1.875 = V_{pd (m)}$ , 100% production test, tini = $t_m$ = 1 sec, partial discharge < 5 pC | V <sub>pd</sub> (m) | 1326             | 2250             | V peak |
| Input to Output Test Voltage, Method A                   |                                                                                                             |                     |                  |                  |        |
| After Environmental Tests Subgroup 1                     | $V_{IORM} \times 1.5 = V_{pd (m)}$ , $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC           | V <sub>pd</sub> (m) | 1061             | 1800             | V peak |
| After Input and/or Safety Test Subgroup 2 and Subgroup 3 | $V_{IORM} \times 1.2 = V_{pd (m)}$ , $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC           |                     | 849              | 1440             | V peak |
| Highest Allowable Overvoltage                            |                                                                                                             | VIOTM               | 4200             | 8500             | V peak |
| Surge Isolation Voltage Basic                            | Basic insulation, 1.2 μs rise time, 50 μs, 50% fall time                                                    | Viosm               | 4615             | 7000             | V peak |
| Surge Isolation Voltage Reinforced                       | Reinforced insulation, 1.2 μs rise time,<br>50 μs, 50% fall time                                            | Viosm               |                  |                  | V peak |
| Safety Limiting Values                                   | Maximum value allowed in the event of a failure (see Figure 6)                                              |                     |                  |                  |        |
| Maximum Junction Temperature                             |                                                                                                             | Ts                  | 150              | 150              | °C     |
| Total Power Dissipation at 25°C                          |                                                                                                             | Ps                  | 1.56             | 2.78             | W      |
| Insulation Resistance at T <sub>S</sub>                  | V <sub>IO</sub> = 800 V                                                                                     | Rs                  | >10 <sup>9</sup> | >10 <sup>9</sup> | Ω      |





 $\textit{Figure 6. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per \textit{VDE}}$ 





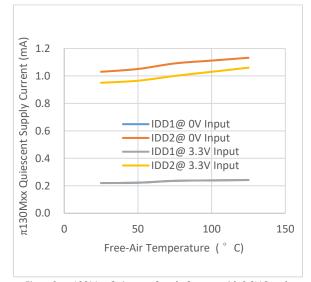



Figure 9 π130Mxx Quiescent Supply Current with 3.3V Supply vs.Free-Air Temperature

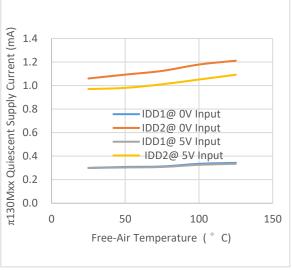



Figure 10  $\pi$ 130Mxx Quiescent Supply Current with 5V Supply vs. Free-Air Temperature

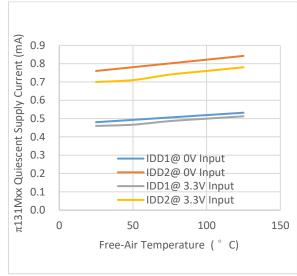



Figure 11 π131Mxx Quiescent Supply Current with 3.3V Supply vs.Free-Air Temperature

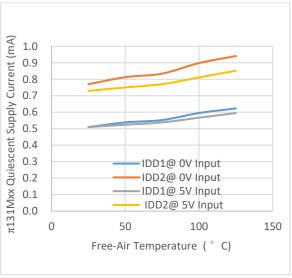



Figure 12 π131Mxx Quiescent Supply Current with 5V Supply vs.Free-Air Temperature

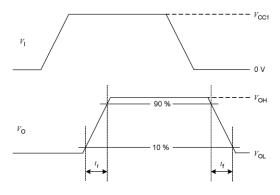



Figure 13. Transition time waveform measurement

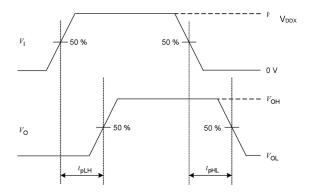



Figure14. Propagation delay time waveform measurement



## **APPLICATIONS INFORMATION**

#### **OVERVIEW**

The \$\pi 1 xxxxx\$ are 2PaiSemi digital isolators product family based on 2PaiSEMI unique *iDivider* technology. Intelligent voltage **Divider** technology (*iDivider* technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit signal directly cross the isolator capacitor without signal modulation and demodulation. Compare to the traditional Opto-couple technology, icoupler technology, OOK technology, *iDivider* is a more essential and concise isolation signal transmit technology which leads to greatly simplification on circuit design and therefore significantly improves device performance, such as lower power consumption, faster speed, enhanced anti-interference ability, lower noise.

By using maturated standard semiconductor CMOS technology and the innovative *i*Divider design, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators. The  $\pi$ 1xxxxx isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide).

The  $\pi 130 \text{Mxx}/\pi 131 \text{Mxx}$  are the outstanding 10 Mbps Triple-channel digital isolators with the enhanced ESD capability. the devices transmit data across an isolation barrier by layers of silicon dioxide isolation.

The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, offering voltage translation of 3.3 V, and 5 V logic.

The  $\pi 130 Mxx/\pi 131 Mxx$  have very low propagation delay and high speed. The input/output design techniques allow logic and supply voltages over a wide range from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference.

See the Ordering Guide for the model numbers that have the failsafe output state of low or high.

#### **PCB LAYOUT**

The low-ESR ceramic bypass capacitors must be connected between  $V_{DD1}$  and  $GND_1$  and between  $V_{DD2}$  and  $GND_2$ . The bypass capacitors are placed on the PCB as close to the isolator device as possible. The recommended bypass capacitor value is between  $0.1~\mu F$  and  $10~\mu F$ . To enhance the robustness of a design,

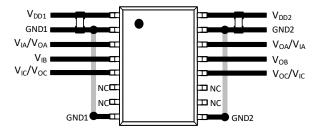



Figure 15. Recommended Printed Circuit Board Layout

the user may also include resistors (50–300  $\Omega$ ) in series with the inputs and outputs if the system is excessively noisy.

Avoid reducing the isolation capability, Keep the space underneath the isolator device free from metal such as planes, pads, traces and vias.

To minimize the impedance of the signal return loop, keep the solid ground plane directly underneath the high-speed signal path, the closer the better. The return path will couple between the nearest ground plane to the signal path. Keep suitable trace width for controlled impedance transmission lines interconnect.

To reduce the rise time degradation, keep the length of input/output signal traces as short as possible, and route low inductance loop for the signal path and It's return path.

#### JITTER MEASUREMENT

The eye diagram shown in the Figure 16 provides the jitter measurement result for the  $\pi 130 \text{Mxx}/\pi 131 \text{Mxx}$ . The Keysight 81160A pulse function arbitrary generator works as the data source for the  $\pi 130 \text{Mxx}/\pi 131 \text{Mxx}$ , which generates 100Mbps pseudo random bit sequence (PRBS). The Keysight DSOS104A digital storage oscilloscope captures the  $\pi 130 \text{Mxx}/\pi 131 \text{Mxx}$  output waveform and recoveries the eye diagram with the SDA tools and eye diagram analysis tools. The result shows a typical measurement 120ps p-p jitter.

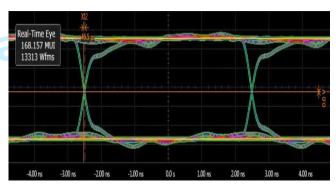



Figure 16.  $\pi$ 130Mxx/ $\pi$ 131Mxx Eye Diagram

#### **CMTI MEASUREMENT**

To measure the Common-Mode Transient Immunity (CMTI) of  $\pi 1xxxxx$  isolator under specified common-mode pulse magnitude ( $V_{CM}$ ) and specified slew rate of the common-mode pulse ( $dV_{CM}/dt$ ) and other specified test or ambient conditions, The

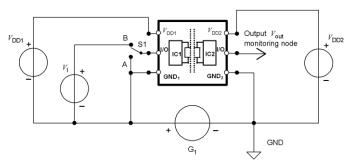



Figure 17 Common-mode transient immunity (CMTI) measurement

common-mode pulse generator ( $G_1$ ) will be capable of providing fast rising and falling pulses of specified magnitude and duration of the common-mode pulse ( $V_{CM}$ ) and the maximum common-mode slew rates ( $dV_{CM}/dt$ ) can be applied to  $\pi1xxxxxx$  isolator

coupler under measurement. The common-mode pulse is applied between one side ground GND1 and the other side ground GND2 of  $\pi 1 xxxxx$  isolator and shall be capable of providing positive transients as well as negative transients.

# **OUTLINE DIMENSIONS**

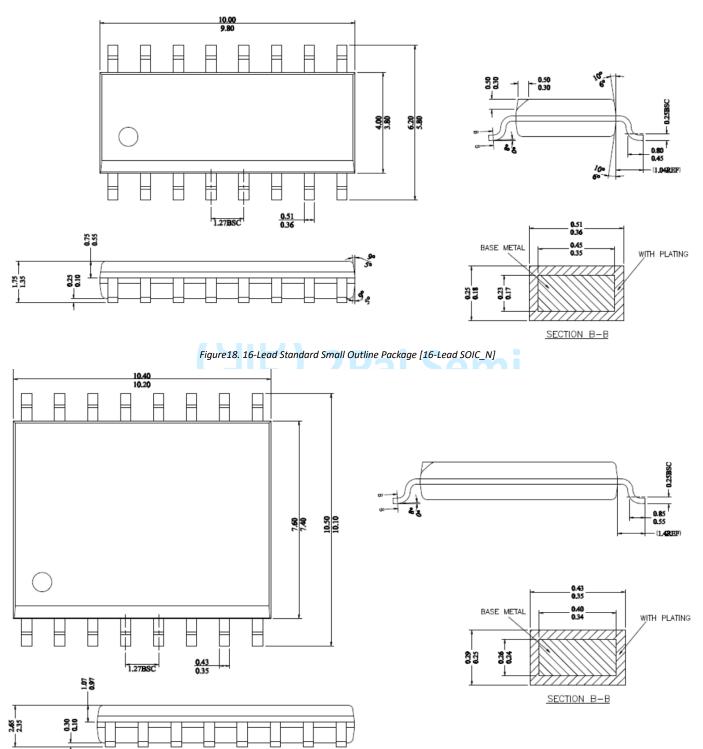
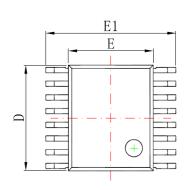
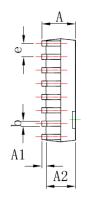
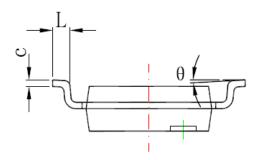





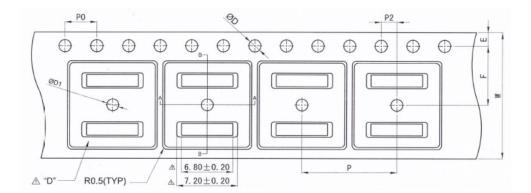

Figure 19. 16-Lead Wide Body Outline Package [16-Lead SOIC\_W]

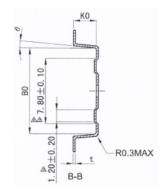


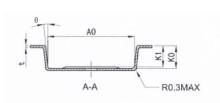





| Symbol | Dimensions In | Millimeters | Dimensions In Inches |       |  |  |
|--------|---------------|-------------|----------------------|-------|--|--|
| Symbol | Min           | Max         | Min                  | Max   |  |  |
| A      | 1.350         | 1.750       | 0.053                | 0.069 |  |  |
| Al     | 0.100         | 0.250       | 0.004                | 0.010 |  |  |
| A2     | 1.350         | 1.550       | 0.053                | 0.061 |  |  |
| ь      | 0.200         | 0.300       | 0.008                | 0.012 |  |  |
| c      | 0.170         | 0.250       | 0.007                | 0.010 |  |  |
| D      | 4.700         | 5.100       | 0.185                | 0.200 |  |  |
| E      | 3.800         | 4.000       | 0.150                | 0.157 |  |  |
| E1     | 5.800         | 6.200       | 0.228                | 0.244 |  |  |
| e      | 0.635         | (BSC)       | 0.025                | (BSC) |  |  |
| L      | 0.400         | 1.270       | 0.016                | 0.050 |  |  |
| θ      | 0 °           | 8°          | 0 °                  | 8°    |  |  |


Figure 20. 16-Lead SSOP Outline Package [SSOP16]


# **REEL INFORMATION**

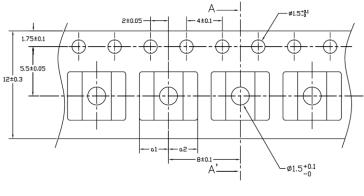

16-Lead SOIC\_N

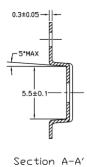


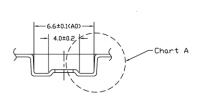
16-Lead SOIC\_W

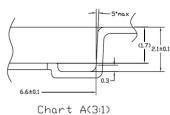








| Items | Size(mm)   |  |  |  |
|-------|------------|--|--|--|
| Е     | 1.75±0.10  |  |  |  |
| F     | 7.50±0.05  |  |  |  |
| P2    | 2.00±0.05  |  |  |  |
| D     | 1.55±0.05  |  |  |  |
| D1    | 1.5±0.10   |  |  |  |
| PO    | 4.00±0.10  |  |  |  |
| 10P0  | 40.00±0.20 |  |  |  |


| Size(mm)   |
|------------|
| 16.00±0.30 |
| 12.00±0.10 |
| 10.90±0.10 |
| 10.80±0.10 |
| 3.00±0.10  |
| 0.30±0.05  |
| 2.70±0.10  |
| 5° TYP     |
|            |


16-Lead SSOP

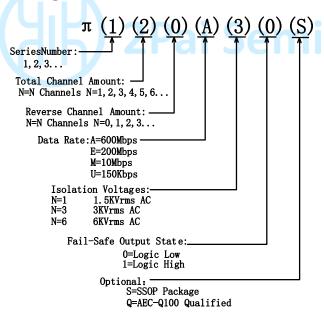
# (別片) 2Pai Semi










Rev. 1 | Page 14 of 16

# **ORDERING GUIDE**

| Mode     | el Name    | Temperature<br>Range | No. of<br>Input<br>s,<br>V <sub>DD1</sub><br>Side | No.<br>of<br>Inpu<br>ts,<br>V <sub>DD2</sub><br>Side | Withsta<br>nd<br>Voltage<br>Rating<br>(kV rms) | Fail-<br>Safe<br>Output<br>State | Package<br>Description | Package<br>Option | Quantity      |
|----------|------------|----------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------------|------------------------|-------------------|---------------|
| π130M31  | Pai130M31  | -40°C to +125°C      | 3                                                 | 0                                                    | 3                                              | High                             | 16-Lead SOIC_N         | S-16-N            | 2500 per reel |
| π130M30  | Pai130M30  | -40°C to +125°C      | 3                                                 | 0                                                    | 3                                              | Low                              | 16-Lead SOIC_N         | S-16-N            | 2500 per reel |
| π131M31  | Pai131M31  | -40°C to +125°C      | 2                                                 | 1                                                    | 3                                              | High                             | 16-Lead SOIC_N         | S-16-N            | 2500 per reel |
| π131M30  | Pai131M30  | -40°C to +125°C      | 2                                                 | 1                                                    | 3                                              | Low                              | 16-Lead SOIC_N         | S-16-N            | 2500 per reel |
| π130M61  | Pai130M61  | -40°C to +125°C      | 3                                                 | 0                                                    | 6                                              | High                             | 16-Lead SOIC_W         | S-16-W            | 1500 per reel |
| π130M60  | Pai130M60  | -40°C to +125°C      | 3                                                 | 0                                                    | 6                                              | Low                              | 16-Lead SOIC_W         | S-16-W            | 1500 per reel |
| π131M61  | Pai131M61  | -40°C to +125°C      | 2                                                 | 1                                                    | 6                                              | High                             | 16-Lead SOIC_W         | S-16-W            | 1500 per reel |
| π131M60  | Pai131M60  | -40°C to +125°C      | 2                                                 | 1                                                    | 6                                              | Low                              | 16-Lead SOIC_W         | S-16-W            | 1500 per reel |
| π130M31S | Pai130M31S | -40°C to +125°C      | 3                                                 | 0                                                    | 3                                              | High                             | 16-Lead SSOP           | SSOP16            | 4000 per reel |
| π130M30S | Pai130M30S | -40°C to +125°C      | 3                                                 | 0                                                    | 3                                              | Low                              | 16-Lead SSOP           | SSOP16            | 4000 per reel |
| π131M31S | Pai131M31S | -40°C to +125°C      | 2                                                 | 1                                                    | 3                                              | High                             | 16-Lead SSOP           | SSOP16            | 4000 per reel |
| π131M30S | Pai131M30S | -40°C to +125°C      | 2                                                 | 1                                                    | 3                                              | Low                              | 16-Lead SSOP           | SSOP16            | 4000 per reel |

Notes:

# PART NUMBER NAMED RULE



Notes:

Pai13xxxx is equals to  $\pi 13xxxx$  in the customer BOM  $\,$ 

# **REVISION HISTORY**

| Revision | Updated | Date       | Page   | Change Record                                                                                                                                      |
|----------|---------|------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Victory | 2018/09/20 | All    | Initial version                                                                                                                                    |
| 2        | Victory | 2018/11/28 | P1,P11 | Changed $C_{IN},\ C_{OUT}$ in Figure 2 from 0.1uF to 1uF. Changed the recommended bypass capacitor value from between 0.1 $\mu$ F and 1 $\mu$ F to |

 $<sup>^{\</sup>textbf{1}}\,\pi\textsc{1}\textsc{xxxxQ}$  special for Auto, qualified for AEC-Q100

| Data Sheet |       |            |                               | $\pi$ 130M/ $\pi$ 131M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|------------|-------|------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            |       |            |                               | between 0.1 μF and 10 μF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 3          | Devin | 2019/09/08 | P1,P7,P11<br>,P13,P14,<br>P15 | P1: Changed the address from 'Room 19307, Building 8, No.498, GuoShouJing Road' to 'Room 308-309, No.22, Boxia Road'; Changed '(W)SOIC package' to 'SOIC_N, SOIC_W and SSOP package'; Add <i>iDivider</i> technology description in General Description.  Changed propagation delay for 5V from 7.5ns to 8ns.  Changed CMTI from 50KV/us to 75KV/us.  Changed C <sub>IN</sub> , C <sub>OUT</sub> in Figure2 from 1uF to 0.1uF.  P7: Add 'and SSOP16 Pin 1-Pin8' and 'and SSOP16 Pin 9-Pin16' in note 1.  P11: Add <i>iDivider</i> technology description in overview.  P13: Add Figure20. 16-Lead SSOP Outline Package drawing  P14: Add 16-Lead SSOP Reel drawing; Updated 16-Lead SOIC_W reel drawing.  P15: Add character 'S' and 'Q' in part number named rule; Changed the SOIC_W quantity from '1000 per reel' to '1500 per reel'; Add 'π130M31S、 π130M30S、 π131M31S、 π131M30S' in ordering guide |  |  |



# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Isolators category:

Click to view products by 2Pai Semi manufacturer:

Other Similar products are found below:

ADUM1281WARZ ADUM3160WBRWZ ADUM1280WARZ ADUM1442ARSZ-RL7 ADUM5230WARWZ ADUM1285WARZ

ADUM1285WCRZ ADUM1286WCRZ ADUM1445ARSZ-RL7 ADUM1285WBRZ ADUM1280WCRZ ADN4652BRWZ-RL7

MAX14850ASE+T MAX14932AAWE ISO11813T ADUM2251WARWZ MAX14850AEE+T ADUM3471WARSZ ADUM3472WARSZ

ADUM2250WARWZ SI8380P-IUR MAX12931FASA+ ADUM3211TRZ-EP-RL7 ADP1032ACPZ-2-R7 ADUM7223ACCZ-R7

ADP1032ACPZ-4-R7 ADP1032ACPZ-1-R7 ADP1032ACPZ-5-R7 ADP1032ACPZ-3-R7 ADUM3301WARWZ SI8388P-IUR

ADUM141E0WBRQZ-RL7 ADUM141E0WBRQZ ADN4651BRWZ-RL7 ADUM1246ARZ-RL7 140U30 MCP2022A-330E/ST

MCP2022A-500E/ST MCP2021-500E/P MCW1001A-I/SS IL260-1E IL260VE IL261-1E IL261VE IL262E IL3122E IL3185-3E IL3485-3E IL3685E IL514E