

Enhanced ESD, 3.0 kV rms/5.0 kV rms 150Kbps Triple-Channel Digital Isolators

Data Sheet

$\pi 130U/\pi 131U$

FEATURES

Ultra-low power consumption (150Kbps): 0.62mA/Channel

High data rate: 150kbps

High common-mode transient immunity: 150 kV/μs typical

High robustness to radiated and conducted noise

Isolation voltages:

π13xx3x: AC 3000Vrms π13xx6x: AC 5000Vrms

High ESD rating:

ESDA/JEDEC JS-001-2017

Human body model (HBM) ±8kV, all pins Safety and regulatory approvals (Pending):

UL certificate number: E494497

3000Vrms/5000Vrms for 1 minute per UL 1577

CSA Component Acceptance Notice 5A VDE certificate number: 40047929

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12

V_{IORM} = 707V peak/1200V peak CQC certification per GB4943.1-2011

3 V to 5.5 V level translation

Wide temperature range: -40°C to 125°C

16-lead, RoHS-compliant, SOIC_N, SOIC_W and SSOP package

APPLICATIONS

General-purpose multichannel isolation Industrial field bus isolation Isolation Industrial automation systems Isolated switch mode supplies Isolated ADC, DAC Motor control

GENERAL DESCRIPTION

The $\pi 1xxxxx$ is a 2PaiSemi digital isolators product family that includes over hundreds of digital isolator products. By using maturated standard semiconductor CMOS technology and 2PaiSEMI *iDivider* technology, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators.

Intelligent voltage divider technology (*iDivider* technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit voltage signal directly cross the isolator capacitor without signal modulation and demodulation.

The $\pi 1xxxxx$ isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 5.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The devices operate with the

supply voltage on either side ranging from 3.0 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The fail-safe state is available in which the outputs transition to a preset state when the input power supply is not applied.

FUNCTIONAL BLOCK DIAGRAMS

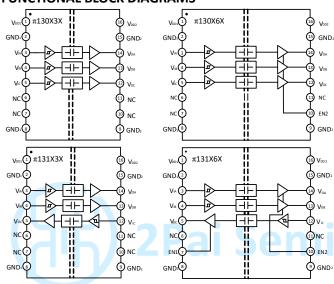


Figure $1.\pi 130xxx/\pi 131xxx$ functional Block Diagram

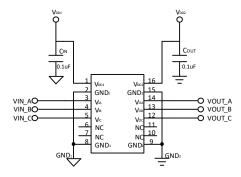


Figure 2.π130x3x Typical Application Circuit

http://www.rpsemi.com/

PIN CONFIGURATIONS AND FUNCTIONS

Table 1.π130Uxx Pin Function Descriptions

Pin No.	Name	Description						
1	V _{DD1}	Supply Voltage for Isolator Side 1.						
2	GND_1	Ground 1. This pin is the ground reference for Isolator Side						
3	VIA	Logic Input A.						
4	VIB	Logic Input B.						
5	Vıc	Logic Input C.						
6	NC	No connect.						
7	NC	No connect.						
8	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.						
9	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.						
10	NC/EN2	No connect for $\pi 130U3X$. Output enable for $\pi 130U6X$. Output pins on side 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low.						
11	NC	No connect.						
12	Voc	Logic Output C.						
13	Vов	Logic Output B.						
14	Voa	Logic Output A.						
15	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.						
16	V _{DD2}	Supply Voltage for Isolator Side 2.						

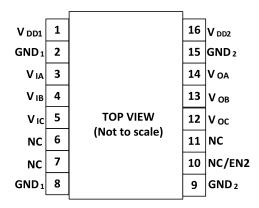


Figure $3.\pi 130 Uxx$ Pin Configuration

Table 2.π131Uxx Pin Function Descriptions

Pin No.	Name	Description						
1	V_{DD1}	Supply Voltage for Isolator Side 1.						
2	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.						
3	VIA	Logic Input A.						
4	VIB	Logic Input B.						
5	Voc	Logic Output C.						
6	NC	No connect.						
7	NC	No connect for $\pi 13103X$. Output enable for $\pi 13106X$. Output pins on side 1 are enabled when EN1 is high or open and in high-impedance state when EN1 is low.						
8	GND₁	Ground 1. This pin is the ground reference for Isolator Side 1.						
9	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.						
10	NC	No connect for $\pi 13103X$. Output enable for $\pi 13106X$. Output pins on side 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low.						
11	NC	No connect.						
12	Vıc	Logic Input C.						
13	Vов	Logic Output B.						
14	Voa	Logic Output A.						
15	GND_2	Ground 2. This pin is the ground reference for Isolator Side 2.						
16	V_{DD2}	Supply Voltage for Isolator Side 2.						

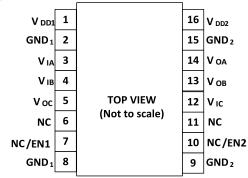


Figure 4. π 131Uxx Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Table 3.Absolute Maximum Ratings⁴ TA = 25°C, unless otherwise noted.

Parameter	Rating		
Supply Voltages (V _{DD1} -GND ₁ , V _{DD2} -GND ₂)	−0.5 V to +7.0 V		
Input Voltages $(V_{IA}, V_{IB})^1$	$-0.5 \text{ V to V}_{DDx} + 0.5 \text{ V}$		
Output Voltages (V _{OA} , V _{OB}) ¹	$-0.5 \text{ V to V}_{DDx} + 0.5 \text{ V}$		
Average Output Current per Pin ² Side 1 Output Current (I _{O1})	−10 mA to +10 mA		
Average Output Current per Pin ² Side 2 Output Current (I _{O2})	−10 mA to +10 mA		
Common-Mode Transients Immunity ³	–200 kV/μs to +200 kV/μs		
Storage Temperature (T _{ST}) Range	−65°C to +150°C		
Ambient Operating Temperature (T _A) Range	-40°C to +125°C		

Notes:

RECOMMENDED OPERATING CONDITIONS

Table 4.Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{DDx} ¹	3		5.5	V
High Level Input Signal Voltage	V _{IH}	0.7*V _{DDx} ¹		V_{DDx}^{1}	V
Low Level Input Signal Voltage	V _{IL}	0		0.3*V _{DDx} ¹	V
High Level Output Current	Іон	-6			mA
Low Level Output Current	Іог			6	mA
Maximum Data Rate		0		150	Kbps
Junction Temperature	TJ	-40		150	°C
Ambient Operating Temperature	T _A	-40		125	°C

Notes:

Truth Tables

Table $5.\pi130U3x/\pi131U3x$ Truth Table

V _{Ix} Input ¹	V _{DDI} State ¹	V _{DDO} State ¹	Default Low	Default High	Test Conditions /Comments
			Vox Output ¹	Vox Output ¹	
Low	Powered ²	Powered ²	Low	Low	Normal operation
High	Powered ²	Powered ²	High	High	Normal operation
Open	Powered ²	Powered ²	Low	High	Default output
Don't Care ⁴	Unpowered ³	Powered ²	Low	High	Default output⁵
Don't Care ⁴	Powered ²	Unpowered ³	High Impedance	High Impedance	

Notes:

 $^{^{1}}$ V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2.

 $^{^{2}\,\}mbox{See}$ Figure 5 for the maximum rated current values for various temperatures.

³ See *Figure 15* for Common-mode transient immunity (CMTI) measurement.

⁴Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

 $^{^{1}}$ V_{DDx} is the side voltage power supply V_{DD} , where x = 1 or 2.

¹ Vix/Vox are the input/output signals of a given channel (A or B). VDDI/VDDO are the supply voltages on the input/output signal sides of this given channel.

² Powered means V_{DDx}≥ 2.9 V

 $^{^{3}}$ Unpowered means V_{DDx} < 2.3V

 $^{^4}$ Input signal (V_{Ix}) must be in a low state to avoid powering the given $V_{DDI}{}^1$ through its ESD protection circuitry.

⁵ If the V_{DDI} goes into unpowered status, the channel outputs the default logic signal after around 1us. If the V_{DDI} goes into powered status, the channel outputs the input status logic signal after around 3us.

Table $6.\pi130U6x/\pi131U6x$ Truth Table

V _{Ix} Input ¹	EN1/2 State	V _{DDI} State ¹	V _{DDO} State ¹	Default Low	Default High	Test Conditions /Comments	
Vix Input-	EN1/2 State	V _{DDI} State-	V _{DDO} State-	Vox Output1	Vox Output1	rest conditions / comments	
Low	High or NC	Powered ²	Powered ²	Low	Low	Normal operation	
High	High or NC	Powered ²	Powered ²	High High		Normal operation	
Don't Care ⁴	L	Powered ²	Powered ²	High Impedance	High Impedance	Disabled	
Open	High or NC	Powered ²	Powered ²	Low	High	Default output⁵	
Don't Care ⁴	High or NC	Unpowered ³	Powered ²	Low	High	Default output⁵	
Don't Care ⁴	L	Unpowered ³	Powered ²	High Impedance	High Impedance		
Don't Care ⁴	Don't Care ⁴	Powered ²	Unpowered ³	High Impedance	High Impedance		

Notes:

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

Table 7.Switching Specifications

 V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 V_{DC} ±10% or 5 V_{DC} ±10%, T_A =25°C, unless otherwise noted.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Minimum Pulse Width	PW			6.5	us	Within pulse width distortion (PWD) limit
Maximum Data Rate		150			Kbps	Within PWD limit
Propagation Delay Time ^{1,4}	tpHL, tpLH	'I)	3.0	4.5	us	The different time between 50% input signal to 50% output signal 50% @ 5V _{DC} supply
			3.2	4.8	us	@ 3.3V _{DC} supply
Pulse Width Distortion ⁴	PWD	0	0.02	0.2	us	The max different time between tphL and tpLH@ 5VDC supply. And The value is tphL - tpLH
		0	0.02	0.2	us	@ 3.3V _{DC} supply
Part to Part Propagation Delay Skew ⁴	t psk			0.3	us	The max different propagation delay time between any two devices at the same temperature, load and voltage @ 5V _{DC} supply
				0.3	us	@ 3.3V _{DC} supply
Channel to Channel Propagation Delay Skew ⁴	t csk		0	0.2	us	The max amount propagation delay time differs between any two output channels in the single device @ 5V _{DC} supply.
			0	0.2	us	@ 3.3V _{DC} supply
Output Signal Rise/Fall Time ⁴	t _r /t _f		1.5		ns	10% to 90% signal terminated 50 Ω , See Figure 12.
Common-Mode Transient Immunity ³	CMTI	100	150		kV/μs	$V_{IN} = V_{DDx}^2$ or 0V, $V_{CM} = 1000 \text{ V}$
ESD(HBM - Human body model)	ESD		±8		kV	All pins

Notes:

Table 8.DC Specifications

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5\\ V_{DC} \pm 10\%, \\ T_A = 25 ^{\circ}\text{C}, \text{ unless otherwise noted.}$

¹V_{Ix}/V_{Ox} are the input/output signals of a given channel (A or B). V_{DDI}/V_{DDO} are the supply voltages on the input/output signal sides of this given channel.

²Powered means V_{DDx}≥ 2.9 V

 $^{^{3}}$ Unpowered means V_{DDx} < 2.3V

⁴Input signal (V_{ix}) must be in a low state to avoid powering the given V_{DDI}^{1} through its ESD protection circuitry.

⁵If the V_{DDI} goes into unpowered status, the channel outputs the default logic signal after around 1us. If the V_{DDI} goes into powered status, the channel outputs the input status logic signal after around 3us.

 $^{^{1}}$ t_{pLH} = low-to-high propagation delay time, t_{pHL} = high-to-low propagation delay time. See *Figure 13*.

 $^{^2\,}V_{DDx}$ is the side voltage power supply $V_{DD},$ where x = 1 or 2.

³ See Figure 15 for Common-mode transient immunity (CMTI) measurement.

 $^{^4\,\}text{Output}$ Signal Terminated 50Ω

	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Rising Input Signal Voltage Threshold	V _{IT+}		0.6*V _{DDx} 1	0.7*V _{DDx} 1	V	
Falling Input Signal Voltage Threshold	$V_{\text{IT-}}$	0.3* V _{DDX} ¹	$0.4* V_{DDX}^1$		V	
High Level Output Voltage	Von ¹	V _{DDx} - 0.1	V_{DDx}		V	–20 μA output current
		V _{DDx} - 0.2	$V_{\text{DDx}} - 0.1$		V	-2 mA output current
Low Level Output Voltage	Vol		0	0.1	V	20 μA output current
			0.1	0.2	V	2 mA output current
Input Current per Signal Channel	I _{IN}	-10	0.5	10	μΑ	0 V ≤ Signal voltage ≤ V _{DDX} ¹
V _{DDx} ¹ Undervoltage Rising Threshold	V_{DDxUV+}	2.5	2.8	2.95	V	
V _{DDx} ¹ Undervoltage Falling Threshold	V _{DDxUV} -	2.4	2.65	2.75	V	
V _{DDx} ¹ Hysteresis	V_{DDxUVH}		0.15		V	

Notes:

Table 9. Quiescent Supply Current

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 V_{DC} \pm 10\%$ or $5V_{DC} \pm 10\%$, $T_A = 25^{\circ}$ C, $C_L = 0$ pF, unless otherwise noted.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
	DD1 (Q)	0.28	0.35	0.45	mA	0V Input signal
π130Uxx Quiescent Supply Current	IDD2 (Q)	1.12	1.40	1.83	mA	0V Input signal
@ 5V _{DC} Supply	DD1 (Q)	0.11	0.14	0.18	mA	5V Input signal
	DD2 (Q)	1.21	1.51	1.96	mA	5V Input signal
	DD1 (Q)	0.21	0.27	0.35	mA	0V Input signal
π130Uxx Quiescent Supply Current	DD2 (Q)	1.10	1.38	1.79	mA	0V Input signal
@ 3.3V _{DC} Supply	DD1 (Q)	0.10	0.13	0.17	mA	3.3V Input signal
/ (I _{DD2} (Q)	1.19	1.49	1.94	mA	3.3V Input signal
	DD1 (Q)	0.56	0.70	0.90	mA	0V Input signal
π131Uxx Quiescent Supply Current	IDD2 (Q)	0.85	1.06	1.38	mA	0V Input signal
@ 5V _{DC} Supply	IDD1 (Q)	0.49	0.61	0.79	mA	5V Input signal
	DD2 (Q)	0.85	1.07	1.39	mA	5V Input signal
	DD1 (Q)	0.51	0.63	0.82	mA	0V Input signal
π131Uxx Quiescent Supply Current	IDD2 (Q)	0.81	1.01	1.32	mA	0V Input signal
@ 3.3V _{DC} Supply	DD1 (Q)	0.48	0.61	0.79	mA	3.3V Input signal
	DD2 (Q)	0.84	1.05	1.37	mA	3.3V Input signal

Table 10.Total Supply Current vs. Data Throughput (CL = 0 pF)

 $\underline{V_{DD1}} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 V_{DC} \pm 10\% \text{ or } 5V_{DC} \pm 10\%, T_A = 25^{\circ}\text{C}, \ C_L = 0 \text{ pF, unless otherwise noted.}$

Parameter	Symbol	2 Kbps			50Kbps				Unit		
rarameter	Syllibol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
=120Lby Cumbly Current@ FV	I _{DD1}		0.24	0.36		0.24	0.36		0.25	0.38	mA
π130Uxx Supply Current@ 5V _{DC}	I _{DD2}		1.45	2.18		1.47	2.21		1.49	2.24	mA
@ 2.21/	I _{DD1}		0.18	0.27		0.18	0.27		0.18	0.27	mA
@ 3.3V _{DC}	I _{DD2}		1.41	2.12		1.42	2.13		1.43	2.15	mA
π131Uxx Supply Current@ 5V _{DC}	I _{DD1}		0.60	0.90		0.61	0.92		0.62	0.93	mA
7(1310XX 3upply Current@ 3VDC	I _{DD2}		1.05	1.58		1.07	1.61		1.09	1.64	mA
@ 3.3V _{DC}	I _{DD1}		0.55	0.83		0.56	0.84		0.57	0.86	mA
	I _{DD2}		1.03	1.55		1.05	1.58		1.07	1.61	mA

 $^{^{1}\,}V_{DDx}$ is the side voltage power supply $V_{DD},$ where x = 1 or 2.

INSULATION AND SAFETY RELATED SPECIFICATIONS

Table 11.Insulation Specifications

Parameter	Symbol	Value		Unit	Test Conditions/Comments
Parameter	π13xU3x π13xU6x		rest Conditions/Comments		
Rated Dielectric Insulation Voltage		3000	5000	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L (CLR)	4	8	mm min	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L (CRP)	4	8	mm min	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		11	21	μm min	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	СТІ	>600	>600	V	DIN EN 60112 (VDE 0303-11):2010-05
Material Group		I	I		IEC 60112:2003 + A1:2009

PACKAGE CHARACTERISTICS

Table 12.Package Characteristics

Parameter	Symbol	Typica	l Value	Unit	Test Conditions/Comments	
Parameter	Symbol	π13xU3x	π13xU6x	Unit		
Resistance (Input to Output) ¹	R _{I-O}	10 ¹¹	10 11	Ω		
Capacitance (Input to Output) ¹	C _{I-O}	1.5	1.5	рF	@1MHz	
Input Capacitance ²	Cı	3	3	pF	@1MHz	
IC Junction to Ambient Thermal Resistance	θја	100	45	°C/W	Thermocouple located at center of package underside	

Notes:

REGULATORY INFORMATION

See Table 13 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels.

Table 13.Regulatory

Regulatory	π13xU3x	π13xU6x	
UL	Recognized under UL 1577	Recognized under UL 1577	
	Component Recognition Program ¹	Component Recognition Program ¹	
	Single Protection, 3000 V rms Isolation Voltage	Single Protection, 5000 V rms Isolation Voltage	
	File (E494497)	File (pending)	
	Approved under CSA Component Acceptance Notice 5A	Approved under CSA Component Acceptance Notice 5A	
	CSA 60950-1-07+A1+A2 and	CSA 60950-1-07+A1+A2 and	
	IEC 60950-1, second edition, +A1+A2:	IEC 60950-1, second edition, +A1+A2:	
CSA	Basic insulation at 500 V rms (707 V peak)	Basic insulation at 845 V rms (1200 V peak)	
	Reinforced insulation at 250 V rms	Reinforced insulation at 422 V rms	
	(353 V peak)	(600 V peak)	
	File (pending)	File (pending)	
	DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ²	DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ²	
VDE	Basic insulation, V _{IORM} = 707 V peak, V _{IOSM} = 4615 V peak	Basic insulation, V _{IORM} = 1200 V peak, V _{IOSM} = 7000V peak	
	File (40047929)	File (pending)	
cqc	Certified under	Certified under	
	CQC11-471543-2012	CQC11-471543-2012	

¹The device is considered a 2-terminal device; SOIC-16 Pin 1 - Pin 8(WSOIC-16 Pin 1-Pin8 and SSOP16 Pin 1-Pin8) are shorted together as the one terminal, and SOIC-16 Pin 9-Pin 16(WSOIC-16 Pin 9-Pin16 and SSOP16 Pin 9-Pin16) are shorted together as the other terminal.

²Testing from the input signal pin to ground.

Regulatory	π13xU3x	π13xU6x
	GB4943.1-2011	GB4943.1-2011
	Basic insulation at 500 V rms (707 V peak) working voltage	Basic insulation at 845 V rms (1200 V peak) working voltage
	Reinforced insulation at	Reinforced insulation at
	250 V rms (353 V peak)	422 V rms (600 V peak)
	File (pending)	File (pending)

Notes:

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The * marking on packages denotes DIN V VDE V 0884-10 approval.

Table 14.VDE Insulation Characteristics

Description	Test Conditions/Comments	Symbol	Characteristic		Unit	
Description	rest conditions/comments	Syllibol	π13xU3x	π13xU6x	Jiiit	
Installation Classification per DIN VDE 0110						
For Rated Mains Voltage ≤ 150 V rms			I to IV	I to IV		
For Rated Mains Voltage ≤ 300 V rms			l to III	I to III		
For Rated Mains Voltage ≤ 400 V rms			l to III	I to III		
Climatic Classification			40/105/21	40/105/21		
Pollution Degree per DIN VDE 0110, Table 1			2	2		
Maximum Working Insulation Voltage	\mathbf{D}	VIORM	707	1200	V peak	
	$V_{IORM} \times 1.875 = V_{pd (m)}$, 100% production	m				
Input to Output Test Voltage, Method B1	test, tini = t _m = 1 sec, partial discharge <	V _{pd (m)}	1326	2250	V peak	
	5 pC					
Input to Output Test Voltage, Method A						
46 5	$V_{IORM} \times 1.5 = V_{pd (m)}, t_{ini} = 60 \text{ sec}, t_m = 10$		4064	4000	,, ,	
After Environmental Tests Subgroup 1	sec, partial discharge < 5 pC	V _{pd} (m)	1061	1800	V peak	
After Input and/or Safety Test Subgroup 2	$V_{IORM} \times 1.2 = V_{pd (m)}, t_{ini} = 60 \text{ sec}, t_m = 10$		0.40	4440	,, ,	
and Subgroup 3	sec, partial discharge < 5 pC		849	1440	V peak	
Highest Allowable Overvoltage		VIOTM	4200	7071	V peak	
Surge Isolation Voltage Basic	Basic insulation, 1.2 μs rise time, 50 μs,	Viosm	4615		V peak	
Surge isolation voltage basic	50% fall time	VIOSM	4013		у реак	
Surge Isolation Voltage Reinforced	Reinforced insulation, 1.2 μs rise time,	Viosm			V peak	
Surge isolation voltage Keililoiteu	50 μs, 50% fall time	VIOSM			v peak	
Cafatul imiting Values	Maximum value allowed in the event of					
Safety Limiting Values	a failure (see Figure 5)					
Maximum Junction Temperature		T _S	150	150	°C	
Total Power Dissipation at 25°C		Ps	1.67	2.78	W	
Insulation Resistance at T _S	V _{IO} = 800 V	Rs	>109	>109	Ω	

¹ In accordance with UL 1577, each π 130U3X/ π 131U3X is proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec; each π 130U6X/ π 131U6X is proof tested by applying an isulation test voltage ≥ 7200 V rms for 1 sec

² In accordance with DIN V VDE V 0884-10, each π 130U3X/ π 131U3X is proof tested by applying an insulation test voltage ≥ 1326 V peak for 1 sec (partial discharge detection limit = 5 pC); each π 130U6X/ π 131U6X is proof tested by ≥ 2250 V peak for 1 sec. The * marking branded on the component designates DIN V VDE V 0884-10 approval.

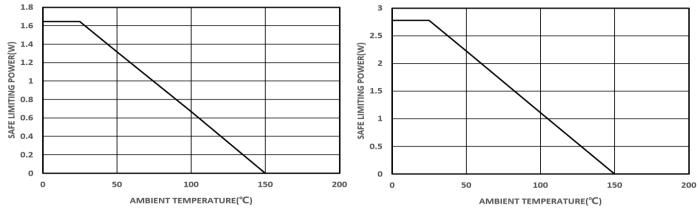


Figure 5.Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per VDE (left: π13xU3x; right: π13xU6x)

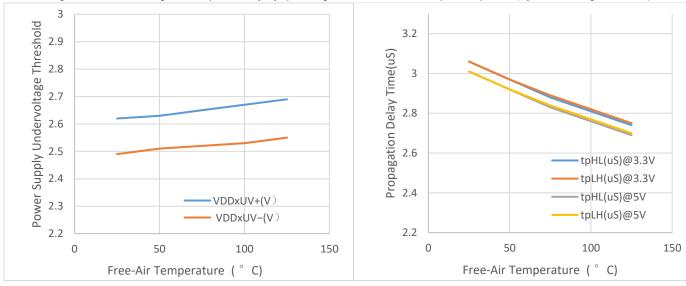


Figure 6.UVLO vs. Free-Air Temperature

Figure 7.Propagation Delay Time vs. Free-Air Temperature

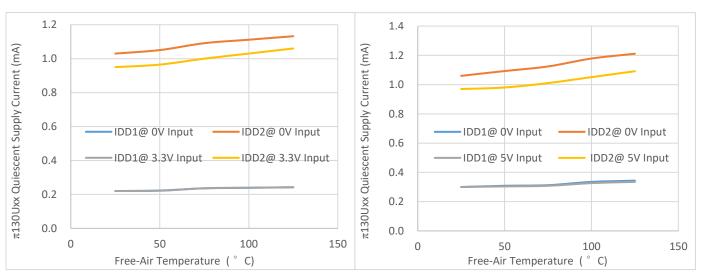


Figure $8.\pi130$ Uxx Quiescent Supply Current with 3.3V Supply vs. Free-Air Temperature

Figure $9.\pi130$ Uxx Quiescent Supply Current with 5V Supply vs. Free-Air Temperature

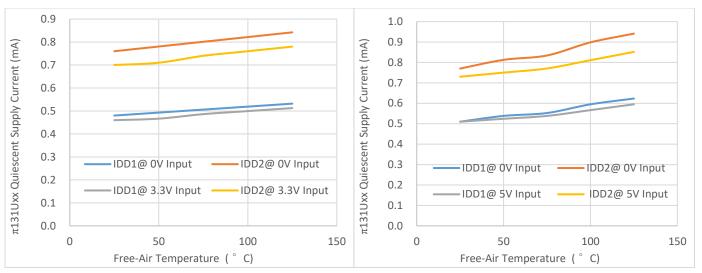


Figure $10.\pi131Uxx$ Quiescent Supply Current with 3.3V Supply vs. Free-Air Temperature

Figure 11. π 131Uxx Quiescent Supply Current with 5V Supply vs. Free-Air Temperature

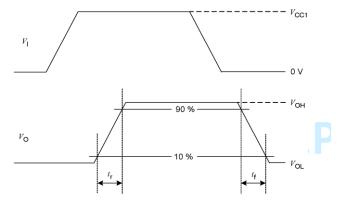


Figure 12.Transition time waveform measurement

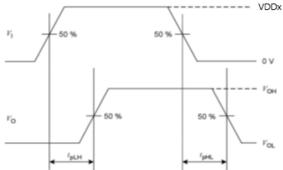


Figure 13. Propagation delay time waveform measurement

APPLICATIONS INFORMATION

OVERVIEW

The $\pi 1 \times \times \times \times$ are 2PaiSemi digital isolators product family based on 2PaiSEMI unique *iDivider* technology. Intelligent voltage *Divider* technology (*iDivider* technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit signal directly cross the isolator capacitor without signal modulation and demodulation. Compare to the traditional Opto-couple technology, icoupler technology, OOK technology, *iDivider* is a more essential and concise isolation signal transmit technology which leads to greatly simplification on circuit design and therefore significantly improves device performance, such as lower power consumption, faster speed, enhanced anti-interference ability, lower noise.

By using maturated standard semiconductor CMOS technology and the innovative *i*Divider design, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators. The $\pi1xxxxx$ isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 5.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide).

The $\pi 130 Uxx/\pi 131 Uxx$ are the outstanding 150Kbps Triple-channel digital isolators with the enhanced ESD capability. the devices transmit data across an isolation barrier by layers of silicon dioxide isolation.

The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, offering voltage translation of 3.3 V, and 5 V logic. The $\pi 130 \text{Uxx}/\pi 131 \text{Uxx}$ have very low propagation delay and high speed. The input/output design techniques allow logic and supply voltages over a wide range from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference.

See the Ordering Guide for the model numbers that have the fail-safe output state of low or high.

PCB LAYOUT

The low-ESR ceramic bypass capacitors must be connected between V_{DD1} and GND_1 and between V_{DD2} and GND_2 . The bypass capacitors are placed on the PCB as close to the isolator device as possible. The recommended bypass capacitor value is between 0.1 μF and 10 μF . The user may also include resistors (50–300 Ω) in series with the inputs and outputs if the system is excessively noisy, or in order to enhance the anti ESD ability of the system.

Avoid reducing the isolation capability, Keep the space underneath the isolator device free from metal such as planes, pads, traces and vias.

To minimize the impedance of the signal return loop, keep the solid ground plane directly underneath the high-speed signal path, the closer the better. The return path will couple between the nearest ground plane to the signal path. Keep suitable trace width for controlled impedance transmission lines interconnect.

To reduce the rise time degradation, keep the length of input/output signal traces as short as possible, and route low inductance loop for the signal path and It's return path.

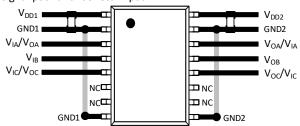


Figure 14.Recommended Printed Circuit Board Layout

CMTI MEASUREMENT

To measure the Common-Mode Transient Immunity (CMTI) of $\pi 1xxxxx$ isolator under specified common-mode pulse magnitude (V_{CM}) and specified slew rate of the common-mode pulse (dV_{CM}/dt) and other specified test or ambient conditions, The common-mode pulse generator (G_1) will be capable of providing fast rising and falling pulses of specified magnitude and duration of the common-mode pulse (V_{CM}) and the maximum common-mode slew rates (dV_{CM}/dt) can be applied to $\pi 1xxxxx$ isolator coupler under measurement. The common-mode pulse is applied between one side ground GND1 and the other side ground GND2 of $\pi 1xxxxx$ isolator and shall be capable of providing positive transients as well as negative transients.

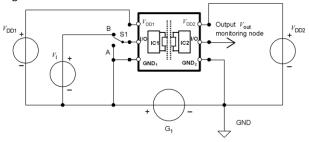


Figure 15.Common-mode transient immunity (CMTI) measurement

OUTLINE DIMENSIONS

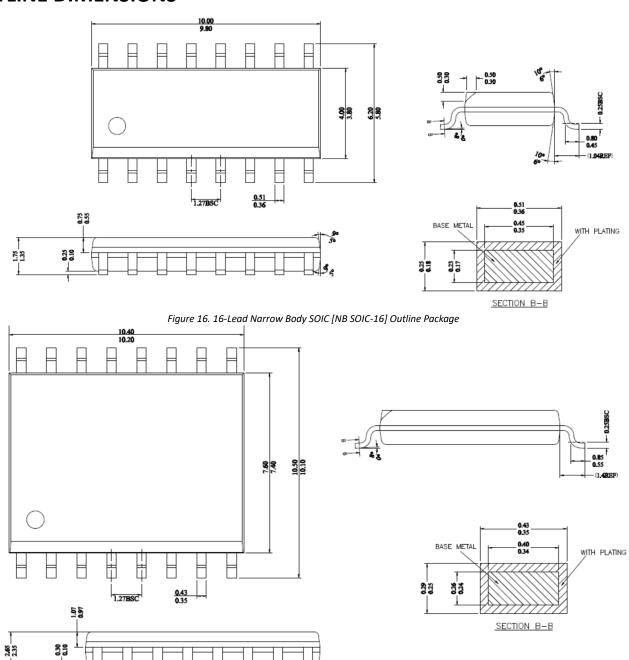
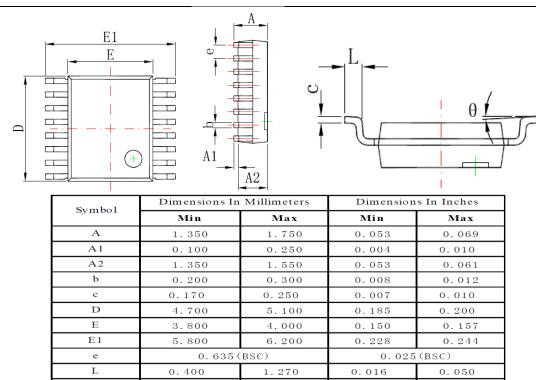



Figure 17.16-Lead Wide Body Outline Package [16-Lead SOIC_W]

8° Figure 18.16-Lead SSOP Outline Package [SSOP16]

0°

8°

o°

Land Patterns

16-Lead Narrow Body SOIC [NB SOIC-16]

The figure below illustrates the recommended land pattern details for the π1xxxxx in a 16-pin narrow-body SOIC. The table below lists the values for the dimensions shown in the illustration.

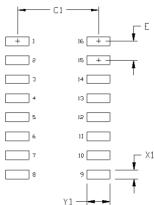


Figure 19.16-Lead Narrow Body SOIC [NB SOIC-16] Land Pattern

Table 15.16-Lead Narrow Body SOIC [NB SOIC-16] Land Pattern Dimensions

Dimension	Feature	Parameter	Unit
C1	Pad column spacing	5.40	mm
E	Pad row pitch	1.27	mm
X1	Pad width	0.60	mm
Y1	Pad length	1.55	mm

Note:

1. This land pattern design is based on IPC -7351

2.All feature sizes shown are at maximum material condition and a card fabrication tolerance of 0.05 mm is assumed.

16-Lead SOIC W

The figure below illustrates the recommended land pattern details for the $\pi 1xxxxx$ in a 16-pin wide-body SOIC package. The table lists the values for the dimensions shown in the illustration.

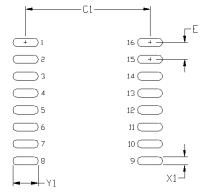


Figure 20.16-Lead Wide Body SOIC [WB SOIC-16] Land Pattern

Table 16. 16-Lead Wide Body SOIC Land Pattern Dimensions

Dimension	Feature	Parameter	Unit
C1	Pad column spacing	9.40	mm
E	Pad row pitch	1.27	mm
X1	Pad width	0.60	mm
Y1	Pad length	1.90	mm

Note:

- 1.This land pattern design is based on IPC -7351
- 2.All feature sizes shown are at maximum material condition and a card fabrication tolerance of 0.05 mm is assumed.

16-Lead SSOP

The figure below illustrates the recommended land pattern details for the $\pi1xxxxx$ in a 16-Lead SSOP package. The table lists the values for the dimensions shown in the illustration.

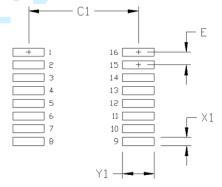


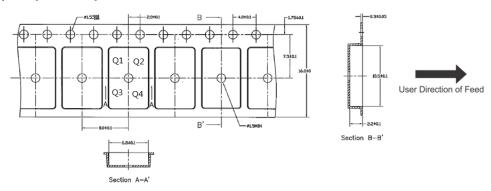
Figure 21. 16-Lead SSOP Land Pattern

Table 17. 16-Lead SSOP Land Pattern Dimensions

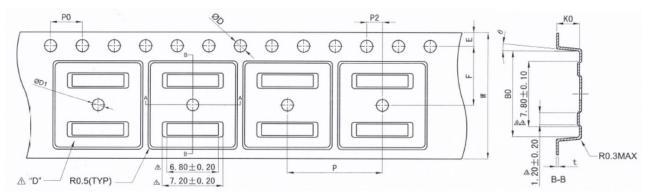
Dimension	Feature	Parameter	Unit	
C1	Pad column spacing	5.40	mm	
E	Pad row pitch	0.635	mm	
X1	Pad width	0.40	mm	
Y1	Y1 Pad length		mm	

Note:

- 1.This land pattern design is based on IPC -7351
- 2.All feature sizes shown are at maximum material condition and a card fabrication tolerance of 0.05 mm is assumed.

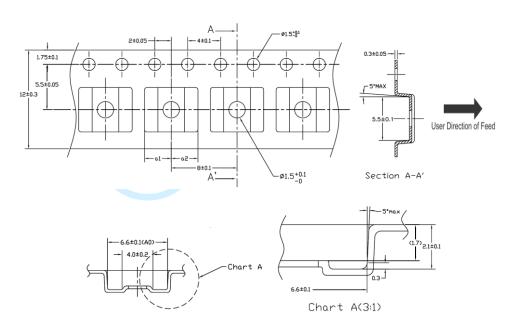

Top Marking

Line 1	π XXXXXX=Product name	
	YY = Work Year	
Line 2	WW = Work Week	
	ZZ=Manufacturing code from assembly house	
Line 3 XXXX, no special meaning		


REEL INFORMATION

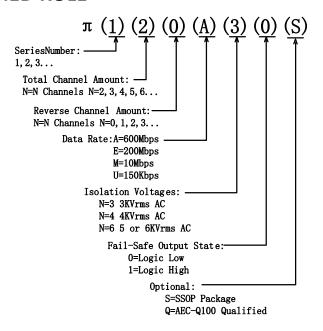
16-Lead Narrow Body SOIC [NB SOIC-16]

Note: The Pin 1 of the chip is in the quadrant Q1 $\,$


16-Lead Wide Body SOIC [WB SOIC-16]

Note: The Pin 1of the chip is in the quadrant Q1

16-Lead SSOP


ORDERING GUIDE

Model Name ¹	Temperature Range	No. of Inputs, V _{DD1} Side	No. of Inputs, V _{DD2} Side	Withstand Voltage Rating (kV rms)	Fail-Safe Output State	Package Description	MSL Peak Temp ²	Quantity per reel
π130U31	-40 to 125°C	3	0	3	High	NB SOIC-16	Level-3-260C-168 HR	2500
π130U30	-40 to 125°C	3	0	3	Low	NB SOIC-16	Level-3-260C-168 HR	2500
π131U31	-40 to 125°C	2	1	3	High	NB SOIC-16	Level-3-260C-168 HR	2500
π131U30	−40 to 125°C	2	1	3	Low	NB SOIC-16	Level-3-260C-168 HR	2500
π130U61	-40 to 125°C	3	0	5	High	WB SOIC-16	Level-3-260C-168 HR	1500
π130U60	−40 to 125°C	3	0	5	Low	WB SOIC-16	Level-3-260C-168 HR	1500
π131U61	-40 to 125°C	2	1	5	High	WB SOIC-16	Level-3-260C-168 HR	1500
π131U60	-40 to 125°C	2	1	5	Low	WB SOIC-16	Level-3-260C-168 HR	1500
π130U31S	-40 to 125°C	3	0	3	High	16-Lead SSOP	Level-3-260C-168 HR	4000
π130U30S	-40 to 125°C	3	0	3	Low	16-Lead SSOP	Level-3-260C-168 HR	4000
π131U31S	-40 to 125°C	2	1	3	High	16-Lead SSOP	Level-3-260C-168 HR	4000
π131U30S	-40 to 125°C	2	1	3	Low	16-Lead SSOP	Level-3-260C-168 HR	4000

 $^{^{1}}$ Pai1xxxxx is equals to π 1xxxxx in the customer BOM.

² MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PART NUMBER NAMED RULE

Notes:

Pai1xxxxx is equals to π 1xxxxx in the customer BOM

IMPORTANT NOTICE AND DISCLAIMER

2Pai semi intends to provide customers with the latest, accurate, and in-depth documentation. However, no responsibility is assumed by 2Pai semi for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Characterization data, available modules, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. 2Pai semi reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. 2Pai semi shall have no liability for the consequences of use of the information supplied herein.

Trademarks and registered trademarks are the property of their respective owners. This document does not imply, or express copyright licenses granted hereunder to design or fabricate any integrated circuits.

Room 308-309, No.22, Boxia Road, Pudong New District, Shanghai, 201203, China 021-50850681

2Pai Semiconductor Co., Limited. All rights reserved.

http://www.rpsemi.com/

REVISION HISTORY

Revision	Updated	Date	Page	Change Record		
1	Victory	2018/ 09/20	All	Initial version		
2	Victory	2018/ 11/28	P1,P11	Changed C _{IN} , C _{OUT} in Figure 2 from 0.1uF to 1uF. Changed the recommended bypass capacitor value from between 0.1 μ F and 1 μ F to between 0.1 μ F and 10 μ F.		
3	Devin	2019/ 09/08	P1,P7,P11,P13,P 14,P15	P1: Changed the address from 'Room 19307, Building 8, No.498, GuoShouJing Road' to 'Room 308-309, No.22, Boxia Road'; Changed '(W)SOIC package' to 'SOIC_N, SOIC_W and SSOP package'; Add <i>iDivider</i> technology description in General Description. Changed C _{IN} , C _{OUT} in Figure2 from 1uF to 0.1uF. P7: Add 'and SSOP16 Pin 1-Pin8' and 'and SSOP16 Pin 9-Pin16' in note 1. P11: Add <i>iDivider</i> technology description in overview. P13: Add Figure19. 16-Lead SSOP Outline Package drawing P14: Add 16-Lead SSOP Reel drawing; Updated 16-Lead SOIC_W reel drawing. P15: Add character 'S' and 'Q' in part number named rule; Changed the SOIC_W quantity from '1000 per reel' to '1500 per reel'; Add 'π130U31S、π130U30S、 π131U31S、π131U30S' in ordering guide		
			Page1,11,14	Changed the Isolation voltages ofπ12xx6x from 6kV to 5kV.		
		Mr. Han 2020/ 03/20	Page 5	Changed minimum" VDDx Undervoltage Rising Threshold" from 2.45V to 2.5V Changed typical" VDDx Undervoltage Rising Threshold" from 2.65V to 2.8V Changed maximum" VDDx Undervoltage Rising Threshold" from 2.9V to 2.95V Changed minimum" VDDx Undervoltage Falling Threshold" from 2.3V to 2.4V Changed typical" VDDx Undervoltage Falling Threshold" from 2.5V to 2.65V		
			Page 6	Change CTI from ">400" to ">600", changed "Material Group" from "II" to" I"		
			Page7	Changed" Capacitance (Input to Output)" from 0.6pF to 1.5pF		
4	Mr. Han		Mr Han	Page8	Old version: Single Protection,6000V rms Isolation Voltage New version: Single Protection, 5000V rms Isolation Voltage	
				Page 11	Old version: To enhance the robustness of a design, the user may also include resistors $(50-300~\Omega)$ in series with the inputs and outputs if the system is excessively noisy. New version: The user may also include resistors $(50-300~\Omega)$ in series with the inputs and outputs if the system is excessively noisy, or in order to enhance the anti ESD ability of the system.	
			Page 12	Added "Land Patterns"		
			Page 14	Added "Top Marking" Updated "REEL INFORMATION"		
			Page 15	Added "MSL peak temp" in tab ORDERING GUIDE		
			Page 16	Added "IMPORTANT NOTICE AND DISCLAIMER"		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Isolators category:

Click to view products by 2Pai Semi manufacturer:

Other Similar products are found below:

ADUM1281WARZ ADUM3160WBRWZ ADUM1280WARZ ADUM1442ARSZ-RL7 ADUM5230WARWZ ADUM1285WARZ

ADUM1285WCRZ ADUM1286WCRZ ADUM1445ARSZ-RL7 ADUM1285WBRZ ADUM1280WCRZ ADN4652BRWZ-RL7

MAX14850ASE+T MAX14932AAWE ISO11813T ADUM2251WARWZ MAX14850AEE+T ADUM3471WARSZ ADUM3472WARSZ

ADUM2250WARWZ SI8380P-IUR MAX12931FASA+ ADUM3211TRZ-EP-RL7 ADP1032ACPZ-2-R7 ADUM7223ACCZ-R7

ADP1032ACPZ-4-R7 ADP1032ACPZ-1-R7 ADP1032ACPZ-5-R7 ADP1032ACPZ-3-R7 ADUM3301WARWZ SI8388P-IUR

ADUM141E0WBRQZ-RL7 ADUM141E0WBRQZ ADN4651BRWZ-RL7 ADUM1246ARZ-RL7 140U30 MCP2022A-330E/ST

MCP2022A-500E/ST MCP2021-500E/P MCW1001A-I/SS IL260-1E IL260VE IL261-1E IL261VE IL262E IL3122E IL3185-3E IL3485-3E IL3685E IL514E