

### 1. Global joint venture starts operations as WeEn Semiconductors

Dear customer,

As from November 9th, 2015 NXP Semiconductors N.V. and Beijing JianGuang Asset Management Co. Ltd established Bipolar Power joint venture (JV), **WeEn Semiconductors**, which will be used in future Bipolar Power documents together with new contact details.

In this document where the previous NXP references remain, please use the new links as shown below.

WWW - For www.nxp.com use www.ween-semi.com

Email - For salesaddresses@nxp.com use salesaddresses@ween-semi.com

For the copyright notice at the bottom of each page (or elsewhere in the document, depending on the version) "© NXP Semiconductors N.V. *{year}*. All rights reserved" becomes "© WeEn Semiconductors Co., Ltd. *{year}*. All rights reserved"

If you have any questions related to this document, please contact our nearest sales office via email or phone (details via <u>salesaddresses@ween-semi.com</u>).

Thank you for your cooperation and understanding,

WeEn Semiconductors



AC Thyristor power switch Rev. 5 — 13 July 2010

Product data sheet

#### **Product profile** 1.

### 1.1 General description

AC Thyristor power switch in a SOT223 surface-mountable plastic package with self-protective capabilities against low and high energy transients

### **1.2 Features and benefits**

- Common terminal on mounting base allows multiple ACTs on shared cooling pad
- Exclusive negative gate triggering
- Full cycle AC conduction
- Remote gate separates the gate driver from the effects of the load current

### 1.3 Applications

- Contactors, circuit breakers, valves, dispensers and door locks
- Fan motor circuits

### 1.4 Quick reference data

- Safe clamping of low energy over-voltage transients
- Self-protective turn-on during high energy voltage transients
- Surface-mountable package
- Very high noise immunity
- Lower-power highly inductive, resistive and safety loads
- Pump motor circuits

| Table 1.            | Quick reference da                   | ata                                                                                                            |      |     |     |      |
|---------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|------|-----|-----|------|
| Symbol              | Parameter                            | Conditions                                                                                                     | Min  | Тур | Max | Unit |
| V <sub>DRM</sub>    | repetitive peak<br>off-state voltage |                                                                                                                | -    | -   | 600 | V    |
| I <sub>GT</sub>     | gate trigger<br>current              | $V_D = 12 V; I_T = 100 mA;$<br>LD+ G-; T <sub>j</sub> = 25 °C;<br>see <u>Figure 10</u>                         | 1    | -   | 10  | mA   |
|                     |                                      | $V_D = 12 V; I_T = 100 mA;$<br>LD- G-; T <sub>j</sub> = 25 °C                                                  | 1    | -   | 10  | mA   |
| I <sub>T(RMS)</sub> | RMS on-state<br>current              | full sine wave; T <sub>sp</sub> ≤ 112 °C;<br>see <u>Figure 4</u> ; see <u>Figure 1;</u><br>see <u>Figure 2</u> | -    | -   | 0.8 | A    |
| dV <sub>D</sub> /dt | rate of rise of off-state voltage    | $V_{DM}$ = 402 V; $T_j$ = 125 °C; gate open circuit; see Figure 14                                             | 1000 | -   | -   | V/µs |



# ACT108W-600E

#### AC Thyristor power switch

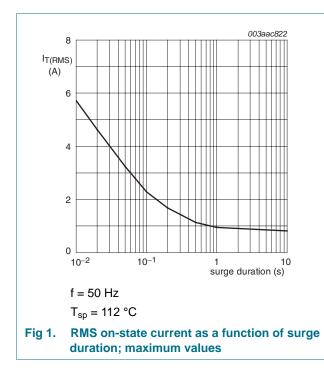
| Table 1.        | Quick reference data continued |                                                                                                   |     |     |     |      |
|-----------------|--------------------------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Symbol          | Parameter                      | Conditions                                                                                        | Min | Тур | Max | Unit |
| V <sub>CL</sub> | clamping voltage               | I <sub>CL</sub> = 100 μA; t <sub>p</sub> = 1 ms;<br>T <sub>j</sub> ≤ 125 °C; see <u>Figure 17</u> | 650 | -   | -   | V    |
| V <sub>PP</sub> | peak pulse<br>voltage          | T <sub>j</sub> = 25 °C; non-repetitive,<br>off-state; see <u>Figure 3</u>                         | -   | -   | 2   | kV   |
| V <sub>T</sub>  | on-state voltage               | I <sub>T</sub> = 1.1 A; see <u>Figure 13</u>                                                      | -   | -   | 1.3 | V    |

# 2. Pinning information

| Table 2. | Pinning | j information |                    |                |
|----------|---------|---------------|--------------------|----------------|
| Pin      | Symbol  | Description   | Simplified outline | Graphic symbol |
| 1        | LD      | load          |                    |                |
| 2        | CM      | common        |                    |                |
| 3        | G       | gate          |                    | G - OF         |
| 4        | CM      | common        |                    | CM             |
|          |         |               | SOT223 (SC-73)     | 001aaj924      |

# 3. Ordering information

| Table 3. Ordering | information |                                                                     |         |
|-------------------|-------------|---------------------------------------------------------------------|---------|
| Type number       | Package     |                                                                     |         |
|                   | Name        | Description                                                         | Version |
| ACT108W-600E      | SC-73       | plastic surface-mounted package with increased heatsink;<br>4 leads | SOT223  |


AC Thyristor power switch

### 4. Limiting values

#### Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Parameter                               | Conditions                                                                                                                                                                                                                                                                             | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Max                                                                                        | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| repetitive peak off-state voltage       |                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 600                                                                                        | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RMS on-state current                    | full sine wave; T <sub>sp</sub> ≤ 112 °C;<br>see <u>Figure 4</u> ; see <u>Figure 1</u> ; see <u>Figure 2</u>                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8                                                                                        | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| non-repetitive peak on-state<br>current | full sine wave; T <sub>j(init)</sub> = 25 °C;<br>t <sub>p</sub> = 16.7 ms                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.8                                                                                        | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | full sine wave; T <sub>j(init)</sub> = 25 °C;<br>t <sub>p</sub> = 20 ms; see <u>Figure 5</u> ; see <u>Figure 6</u>                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                          | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I <sup>2</sup> t for fusing             | t <sub>p</sub> = 10 ms; sine-wave pulse                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.32                                                                                       | A <sup>2</sup> s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| rate of rise of on-state current        | $I_{T} = 1 \text{ A}; I_{G} = 20 \text{ mA}; dI_{G}/dt = 0.2 \text{ A}/\mu\text{s}$                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                        | A/µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| peak gate current                       | t = 20 µs                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                          | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| peak gate voltage                       | positive applied gate voltage                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                                                         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| average gate power                      | over any 20 ms period                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1                                                                                        | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| storage temperature                     |                                                                                                                                                                                                                                                                                        | -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150                                                                                        | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| junction temperature                    |                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125                                                                                        | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| peak pulse voltage                      | $T_j = 25 \text{ °C}$ ; non-repetitive, off-state;<br>see <u>Figure 3</u>                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                          | kV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | repetitive peak off-state voltage<br>RMS on-state current<br>non-repetitive peak on-state<br>current<br>I <sup>2</sup> t for fusing<br>rate of rise of on-state current<br>peak gate current<br>peak gate voltage<br>average gate power<br>storage temperature<br>junction temperature | $\label{eq:repetitive peak off-state voltage} \end{picture} RMS on-state current $ full sine wave; $T_{sp} \leq 112 °C;$ see Figure 1; see Figure 2$ full sine wave; $T_{j(init)} = 25 °C;$ t_p = 16.7 ms$ full sine wave; $T_{j(init)} = 25 °C;$ t_p = 20 ms; see Figure 5$; see Figure 6$ full sine wave; $T_{j(init)} = 25 °C;$ t_p = 20 ms; see Figure 5$; see Figure 6$ full sine wave; $T_{j(init)} = 25 °C;$ t_p = 10 ms; sine-wave pulse$ full sine wave; $T_{j(init)} = 25 °C;$ t_p = 10 ms; sine-wave pulse$ full sine wave; $T_{j(init)} = 25 °C;$ t_p = 10 ms; sine-wave pulse$ full sine wave; $T_{j(init)} = 25 °C;$ t_p = 20 ms; see Figure 6$ full sine wave; $T_{j(init)} = 25 °C;$ t_p = 20 ms; sine-wave pulse$ full sine wave; $T_{j=1} = 1 A; I_G = 20 mA; dI_G/dt = 0.2 A/\mu s$ full sine wave; $T_{j=1} = 1 A; I_G = 20 mA; dI_G/dt = 0.2 A/\mu s$ full sine wave; $T_{j=1} = 20 \mu s$ full sine wave; $T_{j=1} = 25 °C; non-repetitive, off-state;$ full sine wave; $T_{j=25} °C; non-repetitive, off-state; $T_{j=25} °C; non-repetitive, off-state; $T_{j=25} °C; non-repetitive, off-state; $T_{j=25} °C; non-repetitive, non-repetitive,$ | $\label{eq:repetitive peak off-state voltage} \qquad - $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ | repetitive peak off-state voltage-600RMS on-state currentfull sine wave; $T_{sp} \le 112 ^{\circ}C$ ;<br>see Figure 4; see Figure 1; see Figure 2-0.8non-repetitive peak on-state<br>currentfull sine wave; $T_{j(init)} = 25 ^{\circ}C$ ;<br>full sine wave; $T_{p} = 10 ^{\circ}$ ms8.8l²t for fusing $t_p = 10 ^{\circ}$ ms; sine-wave pulse-0.32rate of rise of on-state current $I_T = 1 ^{\circ}A; I_G = 20 ^{\circ}A; dI_G/dt = 0.2 ^{\circ}A/\mu$ -100peak gate currentt = 20 $\mu$ s-1peak gate voltagepositive applied gate voltage-15average gate powerover any 20 ms period-0.1storage temperature40150junction temperatureT_j = 25 ^{\circ}C; non-repetitive, off-state;-2 |



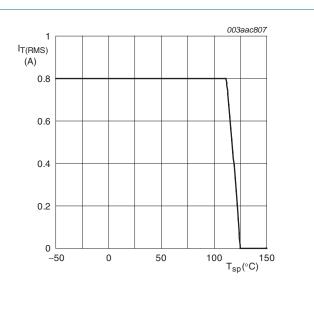
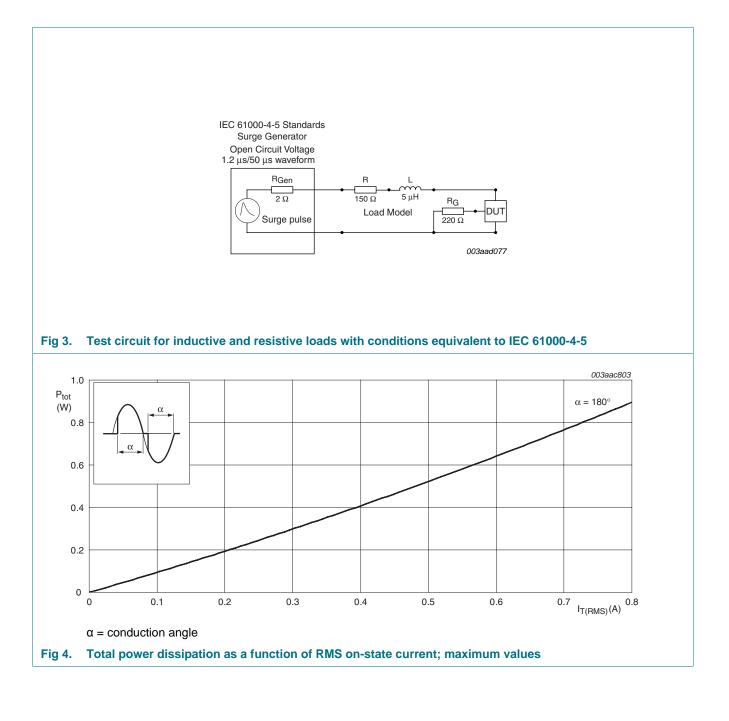
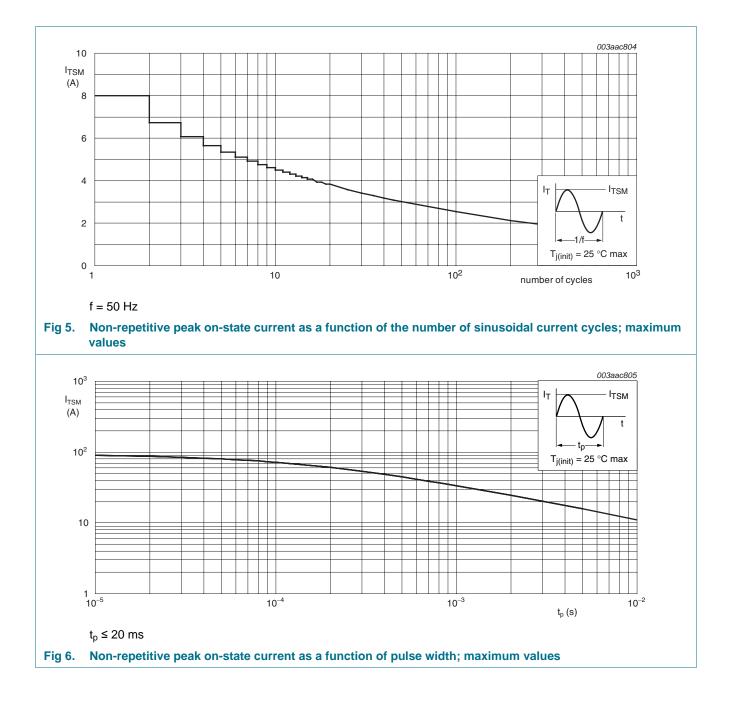
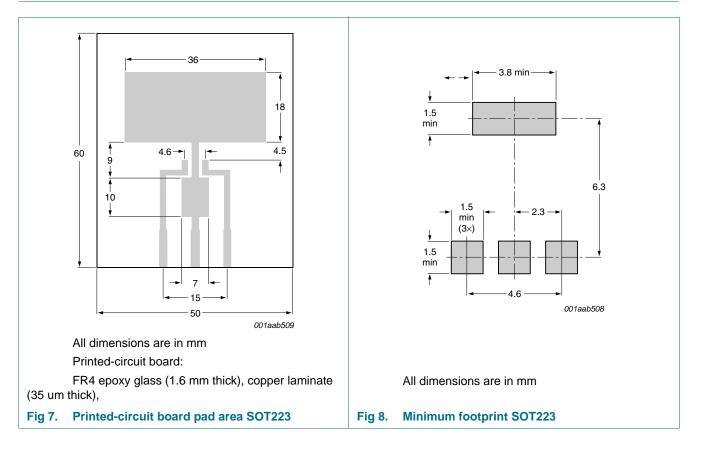





Fig 2. RMS on-state current as a function of solder point temperature; maximum values

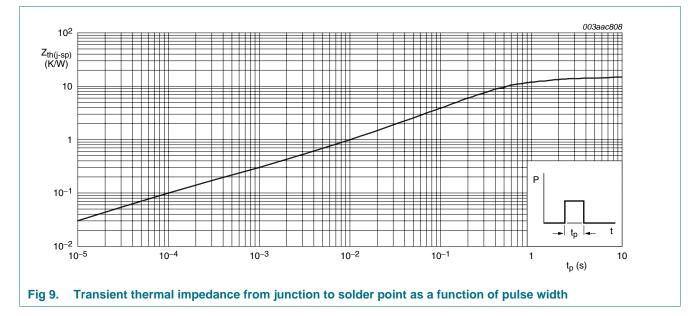
# ACT108W-600E




# ACT108W-600E



AC Thyristor power switch

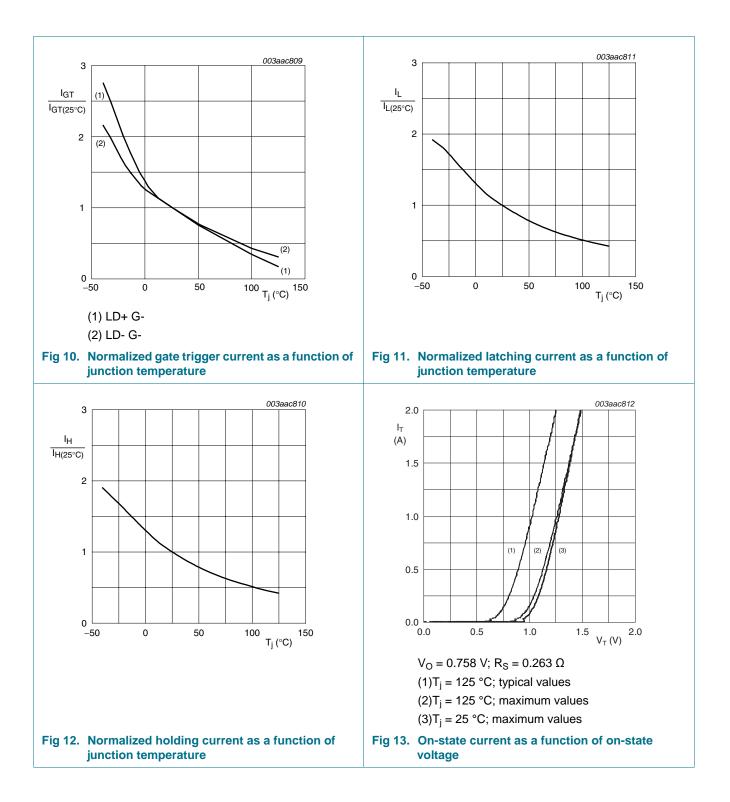

### 5. Thermal characteristics

| Table 5.                                                              | Thermal characteristics                                |                                                                               |     |     |     |      |
|-----------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|-----|-----|-----|------|
| Symbol                                                                | Parameter                                              | Conditions                                                                    | Min | Тур | Max | Unit |
| R <sub>th(j-sp)</sub>                                                 | thermal resistance<br>from junction to solder<br>point | full cycle with heatsink compound;<br>see <u>Figure 9</u>                     | -   | -   | 15  | K/W  |
| R <sub>th(j-a)</sub> thermal resistant<br>from junction to<br>ambient | -                                                      | full cycle; printed-circuit board mounted for pad area; see Figure 7          | -   | 70  | -   | K/W  |
|                                                                       | ambient                                                | full cycle; printed-circuit board mounted for minimum footprint; see Figure 8 | -   | 156 | -   | K/W  |

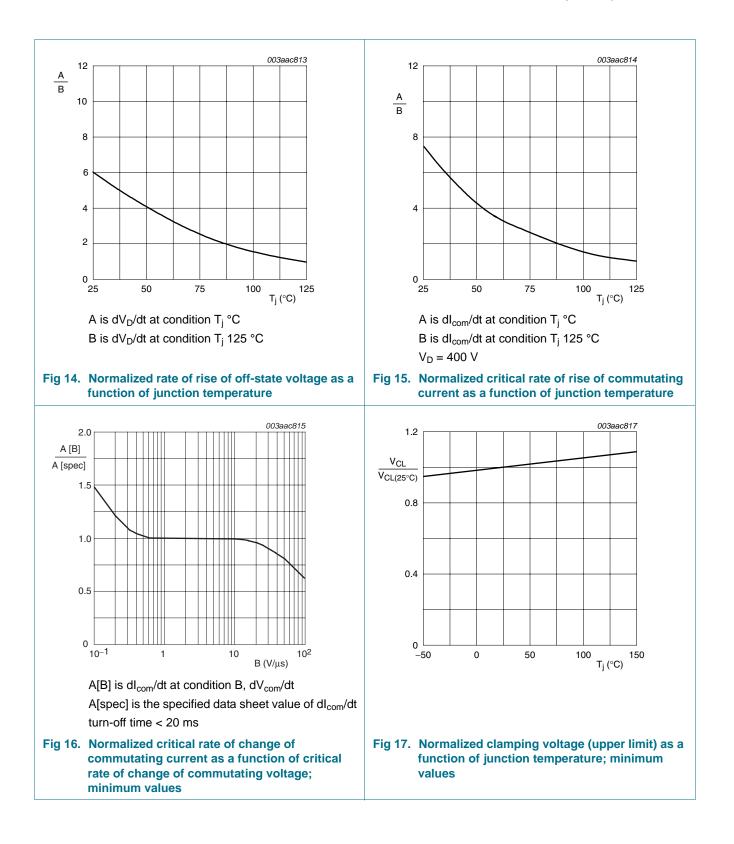


# ACT108W-600E

AC Thyristor power switch




### 6. Characteristics


| Table 6.              | Characteristics                       |                                                                                                                                                                                                 |      |     |     |      |
|-----------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|------|
| Symbol                | Parameter                             | Conditions                                                                                                                                                                                      | Min  | Тур | Max | Unit |
| I <sub>GT</sub>       | gate trigger current                  | V <sub>D</sub> = 12 V; I <sub>T</sub> = 100 mA; LD+ G-;<br>T <sub>j</sub> = 25 °C; see <u>Figure 10</u>                                                                                         | 1    | -   | 10  | mA   |
|                       |                                       | $V_D$ = 12 V; I <sub>T</sub> = 100 mA; LD- G-;<br>T <sub>j</sub> = 25 °C                                                                                                                        | 1    | -   | 10  | mA   |
| IL                    | latching current                      | V <sub>D</sub> = 12 V; I <sub>G</sub> = 12 mA; T <sub>j</sub> = 25 °C;<br>see <u>Figure 11</u>                                                                                                  | -    | -   | 30  | mA   |
| I <sub>H</sub>        | holding current                       | V <sub>D</sub> = 12 V; T <sub>j</sub> = 25 °C; see <u>Figure 12</u>                                                                                                                             | -    | 9   | 25  | mA   |
| V <sub>T</sub>        | on-state voltage                      | I <sub>T</sub> = 1.1 A; see <u>Figure 13</u>                                                                                                                                                    | -    | -   | 1.3 | V    |
| V <sub>GT</sub>       | gate trigger voltage                  | $V_D = 12 \text{ V}; \text{ I}_T = 100 \text{ mA}; \text{ T}_j \le 125 \text{ °C}$                                                                                                              | 0.15 | -   | -   | V    |
|                       |                                       | $V_D = 12 \text{ V}; \text{ I}_T = 100 \text{ mA}; \text{ T}_j = 25 \text{ °C}$                                                                                                                 | -    | -   | 1   | V    |
| I <sub>D</sub>        | off-state current                     | V <sub>D</sub> = 600 V; T <sub>j</sub> ≤ 125 °C                                                                                                                                                 | -    | -   | 0.2 | mA   |
|                       |                                       | $V_{D} = 600 \text{ V}; \text{ T}_{j} \le 25 \text{ °C}$                                                                                                                                        | -    | -   | 2   | μA   |
| dV <sub>D</sub> /dt   | rate of rise of off-state voltage     | $V_{DM}$ = 402 V; T <sub>j</sub> = 125 °C; gate open circuit; see Figure 14                                                                                                                     | 1000 | -   | -   | V/µs |
| dl <sub>com</sub> /dt | rate of change of commutating current | $V_D = 400 \text{ V}; \text{ T}_j = 125 \text{ °C}; \text{ I}_{T(RMS)} = 1 \text{ A};$<br>$dV_{com}/dt = 15 \text{ V}/\mu s;$ gate open circuit;<br>see <u>Figure 15</u> ; see <u>Figure 16</u> | 0.3  | -   | -   | A/ms |
| V <sub>CL</sub>       | clamping voltage                      | I <sub>CL</sub> = 100 μA; t <sub>p</sub> = 1 ms; T <sub>j</sub> ≤ 125 °C;<br>see <u>Figure 17</u>                                                                                               | 650  | -   | -   | V    |

| ACT108W-600 | DE   |       |
|-------------|------|-------|
| Product     | data | sheet |

# ACT108W-600E



# ACT108W-600E



ACT108W-600E

AC Thyristor power switch

### 7. Package outline

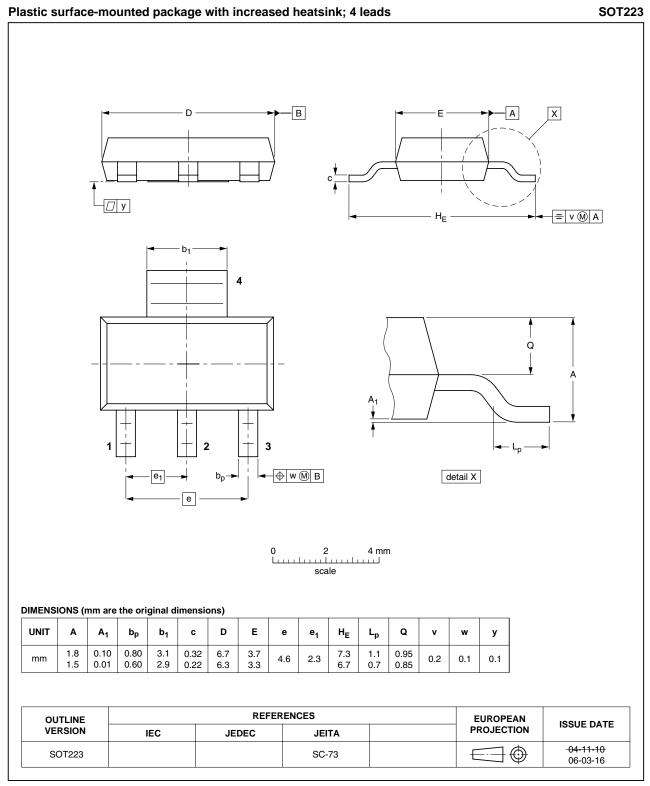



Fig 18. Package outline SOT223 (SC-73)

All information provided in this document is subject to legal disclaimers.

ACT108W-600E

AC Thyristor power switch

## 8. Revision history

| Table 7.Revision history |  |
|--------------------------|--|
|--------------------------|--|

| Document ID      | Release date                       | Data sheet status  | Change notice | Supersedes       |
|------------------|------------------------------------|--------------------|---------------|------------------|
| ACT108W-600E v.5 | 20100713                           | Product data sheet | -             | ACT108W-600E v.4 |
| Modifications:   | <ul> <li>Various change</li> </ul> | s to content.      |               |                  |
| ACT108W-600E v.4 | 20091209                           | Product data sheet | -             | -                |

### 9. Legal information

#### 9.1 Data sheet status

| Document status[1][2]          | Product status <sup>[3]</sup> | Definition                                                                            |
|--------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development                   | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification                 | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production                    | This document contains the product specification.                                     |

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

#### 9.2 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

### 9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

**Right to make changes** — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

#### AC Thyristor power switch

**Non-automotive qualified products** — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

### 9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I<sup>2</sup>C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

**HD Radio** and **HD Radio** logo — are trademarks of iBiquity Digital Corporation.

### **10. Contact information**

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: <a href="mailto:salesaddresses@nxp.com">salesaddresses@nxp.com</a>

ACT108W-600E

### **11. Contents**

| 1   | Product profile          |
|-----|--------------------------|
| 1.1 | General description1     |
| 1.2 | Features and benefits1   |
| 1.3 | Applications1            |
| 1.4 | Quick reference data1    |
| 2   | Pinning information2     |
| 3   | Ordering information2    |
| 4   | Limiting values3         |
| 5   | Thermal characteristics6 |
| 6   | Characteristics7         |
| 7   | Package outline10        |
| 8   | Revision history11       |
| 9   | Legal information12      |
| 9.1 | Data sheet status        |
| 9.2 | Definitions12            |
| 9.3 | Disclaimers              |
| 9.4 | Trademarks               |
| 10  | Contact information13    |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 13 July 2010 Document identifier: ACT108W-600E

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by WeEn Semiconductor manufacturer:

Other Similar products are found below :

 T2035H-6G
 BT137-600-0Q
 Z0409MF0AA2
 Z0109NA 2AL2
 ACST1635T-8FP
 BCR20RM-30LA#B00
 CMA60MT1600NHR
 NTE5611

 NTE5612
 NTE5613
 NTE5623
 NTE5629
 NTE5638-08
 NTE5688
 NTE5690
 T1235T-8I
 BTA312-600CT.127
 T1210T 

 8G-TR
 Z0109NN0,135
 T2535T-8I
 T2535T-8T
 TN4050-12WL
 MAC4DLM-1G
 BT137-600E,127
 BT137X-600D
 BT148W-600R,115

 BT258-500R,127
 BTA08-800BW3G
 BTA140-800,127
 BTA30-600CW3G
 BTB08-800BW3G
 BTB16-600CW3G

 BTB16-600CW3G
 Z0410MF0AA2
 Z0109MN,135
 T825T-6I
 T1635T-6I
 T1220T-6I
 NTE5638
 TYN612MRG
 TYN1225RG
 TPDV840RG

 ACST1235-8FP
 ACS302-6T3-TR
 BT134-600D,127
 BT134-600G,127
 BT136X-600E,127