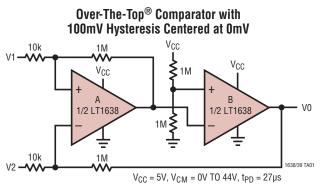
LT1638/LT1639

1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps

FEATURES

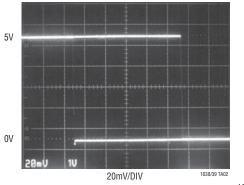

- Operates with Inputs Above V⁺
- Rail-to-Rail Input and Output
- Low Power: 230µA per Amplifier Max
- Gain Bandwidth Product: 1.2MHz
- Slew Rate: 0.4V/µs
- High Output Current: 25mA Min
- Specified on 3V, 5V and ±15V Supplies
- Reverse Battery Protection to 18V
- No Supply Sequencing Problems
- High Voltage Gain: 1500V/mV
- Single Supply Input Range: -0.4V to 44V
- High CMRR: 98dB
- No Phase Reversal
- Available in 14-Lead SO, 8-Lead MSOP and DFN Packages

APPLICATIONS

- Battery- or Solar-Powered Systems Portable Instrumentation Sensor Conditioning
- Supply Current Sensing
- Battery Monitoring
- Micropower Active Filters
- 4mA to 20mA Transmitters

∠7, LT, LTC, LTM, Over-The-Top, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

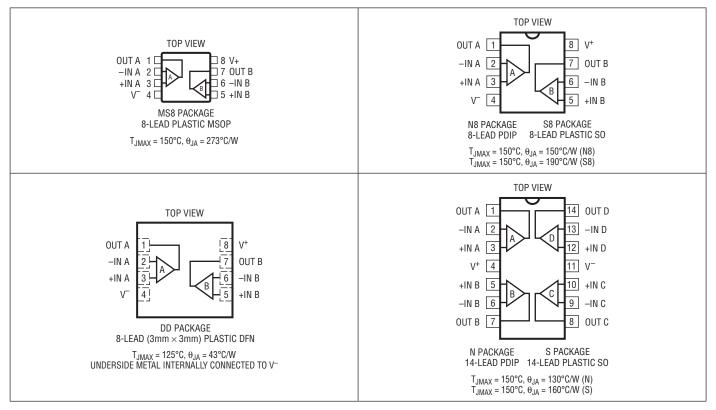

DESCRIPTION

The LT®1638 is a low p wer dual rail-to-rail input and output operational amplifier available in the standard 8-pin PDIP and SO packages as well as the 8-lead MSOP package. The LT1639 is a low power quad rail-to-rail input and output operational amplifier offered in the standard 14-pin PDIP and surface mount packages. For space limited applications the LT1638 is available in a 3mm x 3mm x 0.8mm dual fine pitch leadless package (DFN).

The LT1638/LT1639 op amps operate on all single and split supplies with a total voltage of 2.5V to 44V drawing only 170 μ A of quiescent current per amplifier. These amplifiers are reverse battery protected and draw no current for reverse supply up to 18V.

The input range of the LT1638/LT1639 includes both supplies, and a unique feature of this device is its capability to operate over the top with either or both of its inputs above V⁺. The inputs handle 44V, both differential and common mode, independent of supply voltage. The input stage incorporates phase reversal protection to prevent false outputs from occurring when the inputs are below the negative supply. Protective resistors are included in the input leads so that current does not become excessive when the inputs are forced below the negative supply. The LT1638/LT1639 can drive loads up to 25mA and still maintain rail-to-rail capability. The op amps are unity-gain stable and drive all capacitive loads up to 1000pF when optional output compensation is used.

Output Voltage vs Input Voltage


LINEAR TECHNOLOGY

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V ⁺ to V ⁻)	44V
Input Differential Voltage	44V
Input Current	±25mA
Output Short-Circuit Duration (Note 2).	Continuous
Operating Temperature Range (Note 3)	
LT1638C/LT1639C	40°C to 85°C
LT1638I/LT1639I	40°C to 85°C
LT1638H/LT1639H	40°C to 125°C

Specified Temperature Range (Note 4)	
LT1638C/LT1639C40°C to 85	5°C
LT1638I/LT1639I40°C to 85	5°C
LT1638H/LT1639H–40°C to 125	5°C
Junction Temperature150)°C
DD Package125	5°C
Storage Temperature Range65°C to 150)°C
DD Package65°C to 125	5°C
Lead Temperature (Soldering, 10 sec))°C

PIN CONFIGURATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LT1638CMS8#PBF	LT1638CMS8#TRPBF	LTCY	8-Lead Plastic MSOP	-40°C to 85°C
LT1638IMS8#PBF	LT1638IMS8#TRPBF	LTCY	8-Lead Plastic MSOP	-40°C to 85°C
LT1638CDD#PBF	LT1638CDD#TRPBF	LAAL	8-Lead ($3mm \times 3mm$) Plastic DFN	-40°C to 85°C
LT1638IDD#PBF	LT1638IDD#TRPBF	LAAL	8-Lead ($3mm \times 3mm$) Plastic DFN	-40°C to 85°C
LT1638CN8#PBF	LT1638CN8#TRPBF	LT1638CN8	8-Lead PDIP	-40°C to 85°C
LT1638IN8#PBF	LT1638IN8#TRPBF	LT1638IN8	8-Lead PDIP	-40°C to 85°C
LT1638CS8#PBF	LT1638CS8#TRPBF	1638	8-Lead Plastic SO	-40°C to 85°C
LT1638IS8#PBF	LT1638IS8#TRPBF	16381	8-Lead Plastic SO	-40°C to 85°C
LT1638HS8#PBF	LT1638HS8#TRPBF	1638H	8-Lead Plastic SO	-40°C to 125°C
LT1639CN#PBF	LT1639CN#TRPBF	LT1639CN	14-Lead PDIP	-40°C to 85°C
LT1639IN#PBF	LT1639IN#TRPBF	LT1639IN	14-Lead PDIP	-40°C to 85°C
LT1639CS#PBF	LT1639CS#TRPBF	LT1639CS	14-Lead Plastic SO	-40°C to 85°C
LT1639IS#PBF	LT1639IS#TRPBF	LT1639IS	14-Lead Plastic SO	-40°C to 85°C
LT1639HS#PBF	LT1639HS#TRPBF	LT1639HS	14-Lead Plastic SO	-40°C to 125°C

ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the specified temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = 3V$, 0V; $V_S = 5V$, 0V; $V_{CM} = V_{OUT} =$ half supply, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER CONDITIONS				T1639C, LT16 Typ	38I/LT1639I MAX	UNITS
V _{0S}	Input Offset Voltage	LT1638 N, S Packages $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		200	600 850 950	μV μV μV
		LT1639 N, S Packages $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		300	700 950 1050	μV μV μV
		LT1638 MS8 Package $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		350	900 1150 1450	μV μV μV
		LT1638 DD Package $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		400	1100 1350 1450	μV μV μV
	Input Offset Voltage Drift (Note 9)	LT1638/LT1639 N, S Packages LT1638MS8, LT1638DD	•		2 2.5	6 7	μV/°C μV/°C
l _{os}	Input Offset Current	V _{CM} = 44V (Note 5)	•		1	6 2.5	nA μA
IB	Input Bias Current	V _{CM} = 44V (Note 5) V _S = 0V	•		20 8 0.1	50 30	nA µA nA
	Input Noise Voltage	0.1Hz to 10Hz			1		μV _{P-P}
en	Input Noise Voltage Density	f = 1kHz			20		nV/√Hz
i _n	Input Noise Current Density	f = 1kHz			0.3		pA/√Hz
R _{IN}	Input Resistance	Differential Common Mode, V _{CM} = 0V to 44V		1 1.4	2.5 5.5		MΩ MΩ
CIN	Input Capacitance				5		pF
	Input Voltage Range		•	0		44	V
CMRR	Common Mode Rejection Ratio		•	88 80	98 88		dB dB
A _{VOL}	Large-Signal Voltage Gain	V_S = 3V, V_0 = 500mV to 2.5V, R_L = 10k 0°C \leq T_A \leq 70°C -40° C \leq T_A \leq 85°C	•	200 133 100	1500		V/mV V/mV V/mV
		V_S = 5V, V_0 = 500mV to 4.5V, R_L = 10k 0°C \leq T_A \leq 70°C -40° C \leq T_A \leq 85°C	•	400 250 200	1500		V/mV V/mV V/mV
V _{OL}	Output Voltage Swing Low	$V_{S} = 3V$, No Load $V_{S} = 3V$, I _{SINK} = 5mA	•		3 250	8 450	mV mV
		$V_S = 5V$, No Load $V_S = 5V$, I _{SINK} = 10mA	•		3 500	8 700	mV mV
V _{OH}	Output Voltage Swing High	V _S = 3V, No Load V _S = 3V, I _{SOURCE} = 5mA	•	2.94 2.25	2.98 2.40		V V
		$V_{S} = 5V$, No Load $V_{S} = 5V$, I _{SOURCE} = 10mA	•	4.94 3.8	4.98 4.0		V V
I _{SC}	Short-Circuit Current (Note 2)	$V_S = 3V$, Short to GND $V_S = 3V$, Short to V_{CC}		10 15	15 25		mA mA
		$V_S = 5V$, Short to GND $V_S = 5V$, Short to V_{CC}		15 15	20 25		mA mA

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the specified temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = 3V$, OV; $V_S = 5V$, OV; $V_{CM} = V_{OUT}$ = half supply, unless otherwise noted. (Note 4)

				LT1638C/LT	1639C, LT16	38I/LT1639I	
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
PSRR	Power Supply Rejection Ratio	$V_{S} = 3V$ to 12.5V, $V_{CM} = V_{0} = 1V$	٠	90	100		dB
	Reverse Supply Voltage	$I_{S} = -100 \mu A$ per Amplifier		18	27		V
	Minimum Operating Supply Voltage		٠		2.4	2.7	V
I _S	Supply Current per Amplifier (Note 6)		•		170	230 275	μΑ μΑ
GBW	Gain Bandwidth Product (Note 5)	f = 5kHz 0°C ≤ T _A ≤ 70°C −40°C ≤ T _A ≤ 85°C	•	650 550 500	1075		kHz kHz kHz
SR	Slew Rate (Note 7)	$\begin{array}{l} A_V = -1, \ R_L = \infty \\ 0^\circ C \leq T_A \leq 70^\circ C \\ -40^\circ C \leq T_A \leq 85^\circ C \end{array}$	•	0.210 0.185 0.170	0.38		V/µs V/µs V/µs

The \bullet denotes the specifications which apply over the specified temperature range, otherwise specifications are at T _A = 25°C).
$V_{S} = \pm 15V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, unless otherwise noted. (Note 4)	

SYMBOL	PARAMETER	CONDITIONS		LT1638C/LT Min	F1639C, LT163 Typ	38I/LT1639I MAX	UNITS
V _{OS}	Input Offset Voltage	LT1638 N, S Packages $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		250	800 1000 1100	μV μV μV
		LT1639 N, S Packages $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		350	900 1100 1200	μV μV μV
		LT1638 MS8 Package $0^{\circ}C \le T_A \le 70^{\circ}C -40^{\circ}C \le T_A \le 85^{\circ}C$	•		400	1050 1250 1550	μV μV μV
		LT1638 DDPackage $0^{\circ}C \leq T_A \leq 70^{\circ}C -40^{\circ}C \leq T_A \leq 85^{\circ}C$	•		450	1250 1450 1550	μV μV μV
	Input Offset Voltage Drift (Note 9)	LT1638/LT1639 N, S Packages LT1638MS8, LT1638DD	•		2 2.5	6 7	μV/°C μV/°C
l _{os}	Input Offset Current		•		1	6	nA
I _B	Input Bias Current		•		20	50	nA
	Input Noise Voltage	0.1Hz to 10Hz			1		μV _{P-P}
e _n	Input Noise Voltage Density	f = 1kHz			20		nV/√Hz
i _n	Input Noise Current Density	f = 1kHz			0.3		pA/√Hz
R _{IN}	Input Resistance	Differential Common Mode, V _{CM} = –15V to 14V		1	2.5 500		MΩ MΩ
CIN	Input Capacitance				4.5		pF
	Input Voltage Range		•	-15		29	V
CMRR	Common Mode Rejection Ratio	V _{CM} = -15V to 29V	•	80	88		dB
A _{VOL}	Large-Signal Voltage Gain	$ \begin{array}{l} V_{0} = \pm 14V, R_{L} = 10k \\ 0^{\circ}C \leq T_{A} \leq 70^{\circ}C \\ -40^{\circ}C \leq T_{A} \leq 85^{\circ}C \end{array} \end{array} $		200 125 100	500		V/mV V/mV V/mV
V ₀	Output Voltage Swing	No Load I _{OUT} = ±10mA	•	±14.9 ±13.7	±14.95 ±14.0		V V

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the specified temperature range, otherwise specifications are at T_A = 25°C. V_S = ±15V, V_{CM} = 0V, V_{OUT} = 0V, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER			LT1638C/LT Min	1639C, LT16 TYP	38I/LT1639I MAX	UNITS
I _{SC}	Short-Circuit Current (Note 2)	Short to GND $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•	25 20 15	40		mA mA mA
PSRR	Power Supply Rejection Ratio	V _S = ±1.5V to ±22V	•	90	100		dB
I _S	Supply Current per Amplifier		•		205	280 350	μΑ μΑ
GBW	Gain Bandwidth Product	$ f = 5kHz 0°C \le T_A \le 70°C -40°C \le T_A \le 85°C $	•	750 650 600	1200		kHz kHz kHz
SR	Slew Rate	$ \begin{array}{l} A_V = -1, \ R_L = \infty, \ V_0 = \pm 10V \\ 0^\circ C \leq T_A \leq 70^\circ C \\ -40^\circ C \leq T_A \leq 85^\circ C \end{array} $:	0.225 0.2 0.18	0.4		V/µs V/µs V/µs

The \bullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}C \le T_A \le 125^{\circ}C$. V_S = 3V, 0V; V_S = 5V, 0V; V_{CM} = V_{OUT} = Half Supply unless otherwise specified. (Note 4)

					1638H/LT16	39H	
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1638S8	•		200	650 3	μV mV
		LT1639S	•		300	750 3.2	μV mV
	Input Offset Voltage Drift (Note 9)					15	μV/°C
I _{OS}	Input Offset Current	V _{CM} = 44V (Note 5)	•			15 10	nA µA
IB	Input Bias Current	V _{CM} = 44V (Note 5)	•			150 100	nA μA
	Input Voltage Range			0.3		44	V
CMRR	Common Mode Rejection Ratio	$\label{eq:VCM} \begin{array}{l} V_{CM} = 0.3V \text{ to } V_{CC} - 1V \\ V_{CM} = 0.3V \text{ to } 44V \end{array}$	•	76 72			dB dB
A _{VOL}	Large-Signal Voltage Gain	$V_{S} = 3V, V_{0} = 500 \text{mV}$ to 2.5V, $R_{L} = 10 \text{k}$	•	200 20	1500		V/mV V/mV
		$V_{S} = 5V, V_{0} = 500 \text{mV}$ to 4.5V, $R_{L} = 10 \text{k}$	•	400 35	1500		V/mV V/mV
V _{OL}	Output Voltage Swing Low	No Load $I_{SINK} = 5mA$ $V_{S} = 5V$, $I_{SINK} = 10mA$	•			15 900 1500	mV mV mV
V _{OH}	Output Voltage Swing High	$V_{S} = 3V$, No Load $V_{S} = 3V$, I _{SOURCE} = 5mA	•	2.9 2			V V
		$V_{S} = 5V$, No Load $V_{S} = 5V$, I _{SOURCE} = 10mA	•	4.9 3.5			V V
PSRR	Power Supply Rejection Ratio	$V_{S} = 3V$ to 12.5V, $V_{CM} = V_{0} = 1V$		80			dB
	Minimum Supply Voltage			2.7			V
	Reverse Supply Voltage	I _S = -100μA	•	18			V
Is	Supply Current (Note 6)		•		170	230 450	μΑ μΑ
GBW	Gain Bandwidth Product (Note 5)	f = 5kHz	•	650 350	1075		kHz kHz
SR	Slew Rate (Note 7)	$A_V = -1, R_L = \infty$	•	0.21 0.1	0.38		V/µs V/µs

16389fg

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}C \le TA \le 125^{\circ}C$, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, $V_{SHDN} = V^-$ unless otherwise specified. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		LT [.] MIN	1638H/LT163 TYP	9H MAX	UNITS
V _{OS}	Input Offset Voltage	LT1638S8	•		250	850 3.4	μV mV
		LT1639S	•		350	950 3.6	μV mV
	Input Offset Voltage Drift (Note 9)		•			15	μV/°C
I _{OS}	Input Offset Current		•			25	nA
I _B	Input Bias Current		•			250	nA
CMRR	Common Mode Rejection Ratio	V _{CM} = -14.7V to 29V	•	72			dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 14V, R_L = 10k$	•	200 15	500		V/mV V/mV
V ₀	Output Voltage Swing	No Load $I_{OUT} = \pm 5mA$ $I_{OUT} = \pm 10mA$	•	±14.8 ±14 ±13.4			V V V
PSRR	Power Supply Rejection Ratio	V _S = ±1.5V to ±22V	•	84			dB
	Minimum Supply Voltage		•	±1.35			V
I _S	Supply Current		•		205	280 550	μΑ μΑ
GBW	Gain Bandwidth Product	f = 5kHz	•	750 400	1200		kHz kHz
SR	Slew Rate	$A_V = -1$, $R_L = \infty$, $V_0 = \pm 10V$, Measured at $V_0 = \pm 5V$	•	0.225 0.1	0.4		V/µs V/µs

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

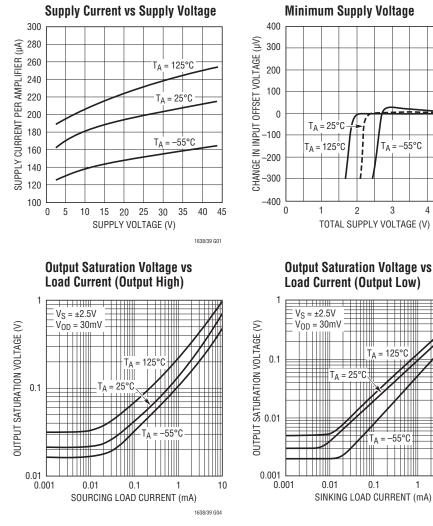
Note 2: A heat sink may be required to keep the junction temperature below absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted.

Note 3: The LT1638C/LT1639C and LT1638I/LT1639I are guaranteed functional over the operating temperature range of -40° C to 85°C The LT1638H/LT1639H are guaranteed functional over the operating temperature range of -40° C to 125°C.

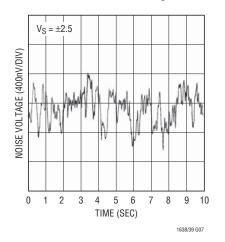
Note 4: The LT1638C/LT1639C are guaranteed to meet specified performance from 0°C to 70°C and are designed, characterized and expected to meet specified performance from -40°C to 85°C but not

tested or QA sampled at these temperatures. The LT1638I/LT1639I are guaranteed to meet specified performance from -40° C to 85° C. The LT1638H/LT1639H are guaranteed to meet specified performance from -40° C to 125° C.

Note 5: $V_S = 5V$ limits are guaranteed by correlation to $V_S = 3V$ and $V_S = \pm 15V$ or $V_S = \pm 22V$ tests.


Note 6: $V_S = 3V$ limits are guaranteed by correlation to $V_S = 5V$ and $V_S = \pm 15V$ or $V_S = \pm 22V$ tests.

Note 7: Guaranteed by correlation to slew rate at V_S = ±15V, and GBW at V_S = 3V and V_S = ±15V tests.


Note 8: This specification implies a typical input offset voltage of 2mV at $V_{CM} = 44V$ and a maximum input offset voltage of 5mV at $V_{CM} = 44V$. **Note 9:** This parameter is not 100% tested.

TYPICAL PERFORMANCE CHARACTERISTICS

0.1Hz to 10Hz Noise Voltage

Noise Voltage Density vs Frequency

 $T_A = -55^{\circ}C$

3

4

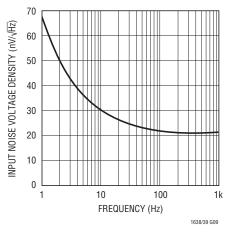
5

10

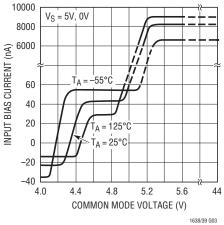
1638/39 G05

1

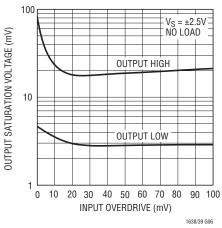
1638/39 G02

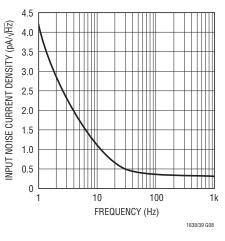

ł

2

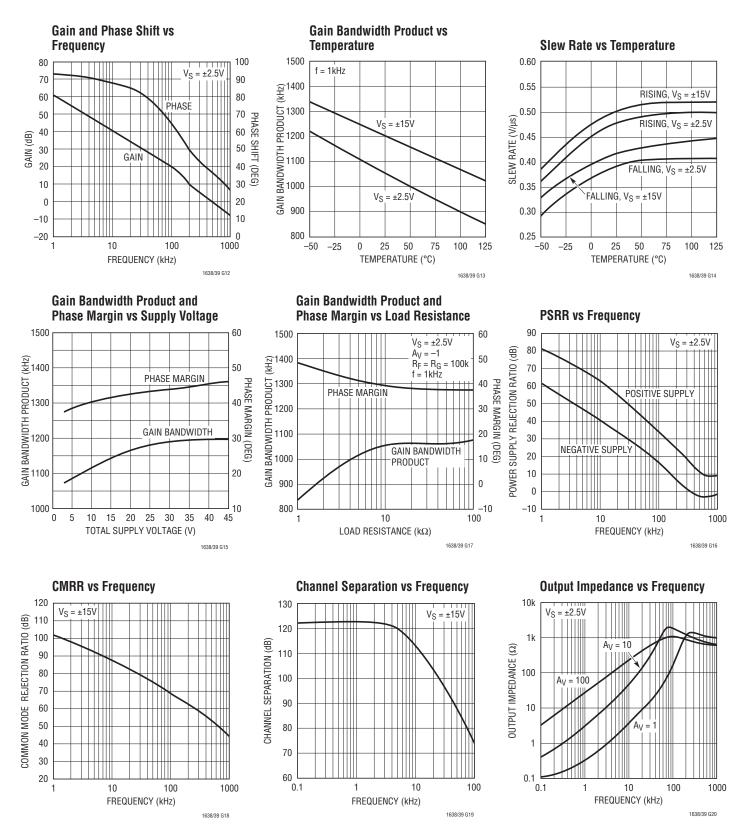

Tμ 125°C

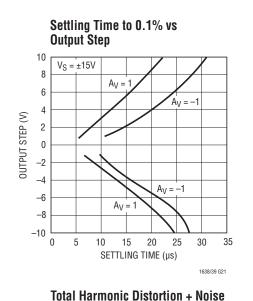
0.1


= 25°C


Input Bias Current vs Common Mode Voltage

Output Saturation Voltage vs Input Overdrive


Input Noise Current Density vs Frequency



TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

vs Frequency

V_S = 3V, 0V

 $V_{OUT} = 2V_{P-P}$

 $A_{V} =$

 $A_V = 1$

0.1

Open-Loop Gain

 $R_1 = 2k$

50 Ri =

-10V

0V

OUTPUT VOLTAGE (5V/DIV)

10V

20V

1638/39 G27

1

FREQUENCY (kHz)

= 10k R

10

100

1638/39 G24

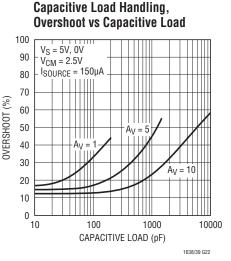
 $V_S = \pm 15V$

 $V_{CM} = 1.2V$ $E_{R_{L}} = 20k$

₩

10

1


0.1

0.01

0.001

0.01

THD + NOISE (%)

Total Harmonic Distortion + Noise

vs Load Resistance

VIN = 2VP-P AT 1kHz

 $V_{\rm S} = \pm 1.5 V$

 $V_{IN} = \pm 1V$

 $V_{\rm S} = 3V, 0V$

V_S = 3V, 0V

1

пітні

V_{IN} = 0.5V TO 2.5V

V_{IN} = 0.2V TO 2.2V

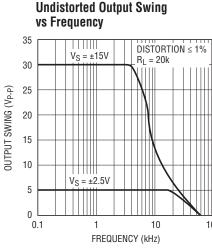
LOAD RESISTANCE TO GROUND (kΩ)

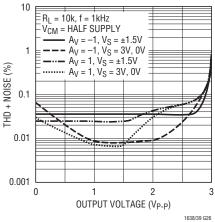
V_S = 3V TOTAL

 $A_V = 1$

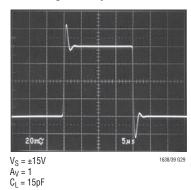
10

1

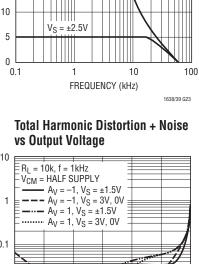

0.1


0.01

0.001


0.1

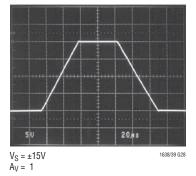
THD + NOISE (%)



Small-Signal Response

16389fg

100


1638/39 G25

10

-20V

CHANGE IN INPUT OFFSET VOLTAGE (50µV/DIV)

Large-Signal Response

APPLICATIONS INFORMATION

Supply Voltage

The positive supply pin of the LT1638/LT1639 should be bypassed with a small capacitor (typically 0.1μ F) within an inch of the pin. When driving heavy loads an additional 4.7 μ F electrolytic capacitor should be used. When using split supplies, the same is true for the negative supply pin.

The LT1638/LT1639 are protected against reverse battery voltages up to 18V. In the event a reverse battery condition occurs, the supply current is less than 1nA.

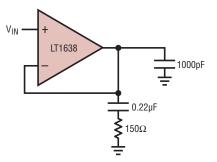
The LT1638/LT1639 can be shut down by removing V⁺. In this condition the input bias current is less than 0.1nA, even if the inputs are 44V above the negative supply.

When operating the LT1638/LT1639 on total supplies of 10V or more, the supply must not be brought up faster than $1V/\mu s$. Increasing the bypass capacitor and/or add-ing a small resistor in series with the supply will limit the rise time.

Inputs

The LT1638/LT1639 have two input stages, NPN and PNP (see the Simplified Schematic), resulting in three distinct operating regions as shown in the Input Bias Current vs Common Mode typical performance curve.

For input voltages about 0.8V or more below V⁺, the PNP input stage is active and the input bias current is typically -20nA. When the input common mode voltage is within 0.5V of the positive rail, the NPN stage is operating and the input bias current is typically 40nA. Increases in temperature will cause the voltage at which operation switches from the PNP input stage to the NPN input stage to move towards V⁺. The input offset voltage of the NPN stage is untrimmed and is typically 600 μ V.


A Schottky diode in the collector of each NPN transistor allow the LT1638/LT1639 to operate over the top, with either or both of its inputs above V⁺. At about 0.3V above V⁺ the NPN input transistor is fully saturated and the input bias current is typically 8µA at room temperature. The input offset voltage is typically 2mV when operating above V⁺. The LT1638/LT1639 will operate with its inputs 44V above V⁻ regardless of V⁺. The inputs are protected against excursions of 2V below V^- by an internal 1k resistor in series with each input and a diode from the input to the negative supply. If the inputs can go more than 2V below V^- , an additional external resistor is required. A 10k resistor will protect the input against excursions as much as 10V below V^- . The input stage of the LT1638/LT1639 incorporates phase reversal protection to prevent the output from phase reversing for inputs below V^- . There are no clamping diodes between the inputs and the maximum differential input voltage is 44V.

Output

The output of the LT1638/LT1639 can swing within 20mV of the positive rail with no load, and within 3mV of the negative rail with no load. When monitoring voltages within 20mV of the positive rail or within 3mV of the negative rail, gain should be taken to keep the output from clipping. The LT1638/LT1639 are capable of sinking and sourcing over 40mA on \pm 15V supplies; sourcing current capability is reduced to 20mA at 5V total supplies as noted in the electrical characteristics.

The LT1638/LT1639 are internally compensated to drive at least 200pF of capacitance under any output loading conditions. A 0.22μ F capacitor in series with a 150Ω resistor between the output and ground will compensate these amplifiers for larger capacitive loads, up to 1000pF, at all output currents.

Optional Output Compensation for Capacitive Loads Greater than 200pF

Distortion

There are two main contributors of distortion in op amps: output crossover distortion as the output transitions from sourcing to sinking current and distortion caused by 16389fg

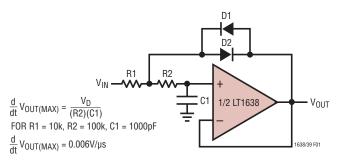
APPLICATIONS INFORMATION

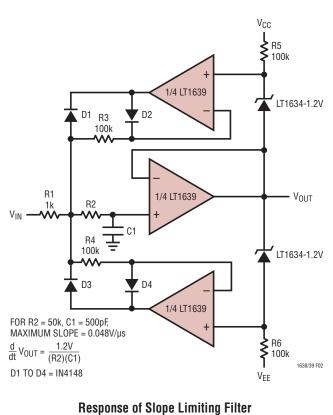
nonlinear common mode rejection. If the op amp is operating inverting there is no common mode induced distortion. If the op amp is operating in the PNP input stage (input is not within 0.8V of V⁺), the CMRR is very good, typically 98dB. When the LT1638 switches between input stages there is significant nonlinearity in the CMRR. Lower load resistance increases the output crossover distortion, but has no effect on the input stage transition distortion. For lowest distortion the LT1638/LT1639 should be operated single supply, with the output always sourcing

TYPICAL APPLICATIONS

With 1.2MHz bandwidth, Over-The-Top capability, reversebattery protection and rail-to-rail input and output features, the LT1638/LT1639 are ideal candidates for general purpose applications.

The lowpass slope limiting filter in Figure 1 limits the maximum dV/dT (not frequency) that it passes. When the input signal differs from the output by one forward diode drop, D1 or D2 will turn on. With a diode on, the voltage across R2 will be constant and a fixed current, $V_{DIODE}/R2$, will flow through capacitor C1, charging it linearly instead of exponentially. The maximum slope that the circuit will pass is equal to V_{DIODE} divided by (R2)(C1). No matter how fast the input changes the output will never change any faster than the dV/dT set by the diodes and (R2)(C).



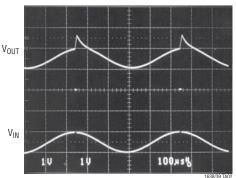

Figure 1. Lowpass Slope Limiting Filter

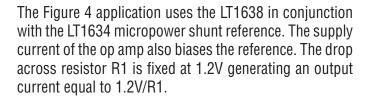
A modification of this application is shown in Figure 2 using references instead of diodes to set the maximum slope. By using references, the slope is independent of temperature. A scope photo shows a $1V_{P-P}$, 2kHz input signal with a 2V pulse added to the sine wave; the circuit passes the 2kHz signal but limits the slope of the pulse.

current and with the input voltage swing between ground and (V⁺ - 0.8V). See the Typical Performance Characteristics curves.

Gain

The open-loop gain is almost independent of load when the output is sourcing current. This optimizes performance in single supply applications where the load is returned to ground. The typical performance curve of Open-Loop Gain for various loads shows the details.




Figure 2. Lowpass Slope Limiting Filter with 0 TC

16389fg

TYPICAL APPLICATIONS

The application in Figure 3 utilizes the Over-The-Top capabilities of the LT1638. The 0.2Ω resistor senses the load current while the op amp and NPN transistor form a closed loop making the collector current of Q1 proportional to the load current. As a convenient monitor, the 2k load resistor converts the current into a voltage. The positive supply rail, V⁺, is not limited to the 5V supply of the op amp and could be as high as 44V.

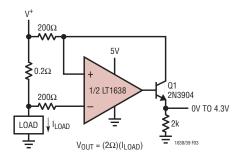
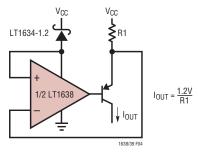
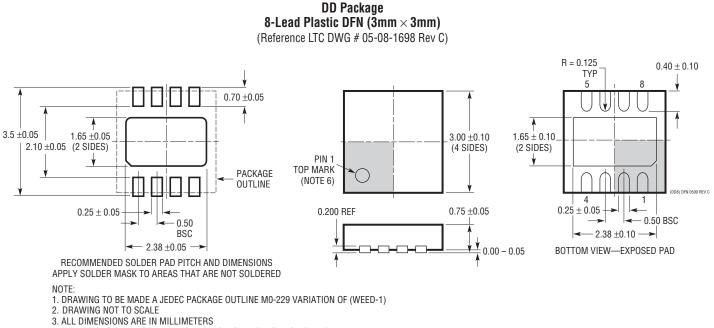



Figure 3. Positive Supply Rail Current Sense

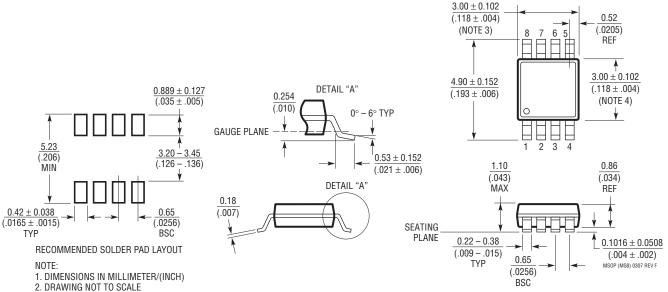
SIMPLIFIED SCHEMATIC

Figure 4. Current Source


V+ Q2 Q1 Q3 Q22 **D**1 2 D2 D3 R1 R2 6k Q19 1k Q4 Q17 Q20 Q12 Q11 OUT Q7 Q8 R3 Q16 Q18 (\mathbf{f}) 10µA +IN ~~~ Q15 Q9 Q10 Q13 Q14 Q21 **≹**R4 **₹**^{R5} 8k D4 🛣 D5 Q6 Q5 8k ONE AMPLIFIER 1638/39 SS

V

PACKAGE DESCRIPTION


Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

- 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
- 5. EXPOSED PAD SHALL BE SOLDER PLATED
- 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION
- ON TOP AND BOTTOM OF PACKAGE

MS8 Package 8-Lead Plastic MSOP

(Reference LTC DWG # 05-08-1660 Rev F)

- DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
- DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE

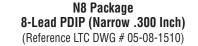
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX

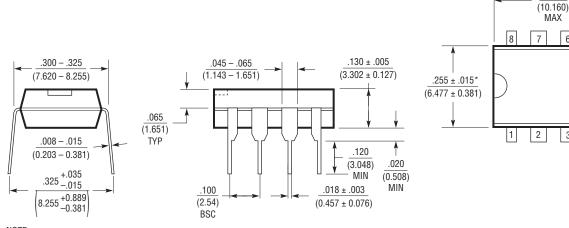
16389fg

.400*

6

3

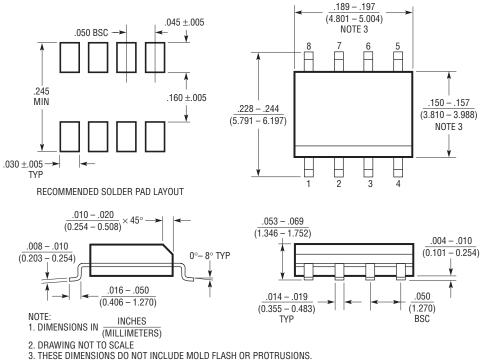

5


4

N8 1002

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.



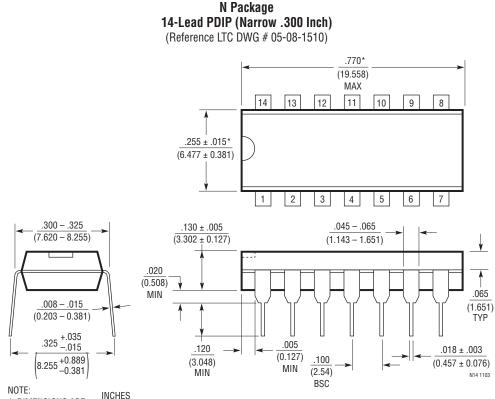
NOTE:

INCHES

1. DIMENSIONS ARE <u>INCHES</u> 1. DIMENSIONS ARE <u>MILLIMETERS</u> *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610)

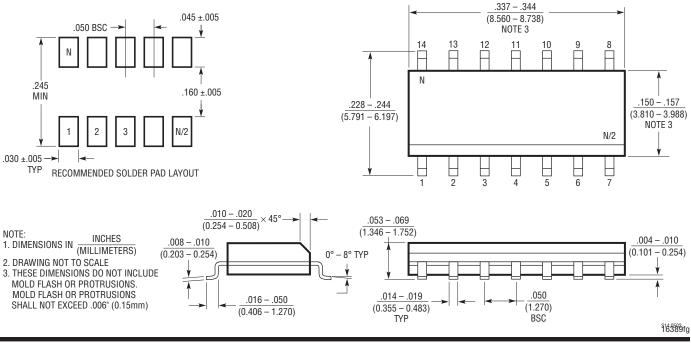
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)



16389fg

SO8 0303

PACKAGE DESCRIPTION


Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

1. DIMENSIONS ARE <u>INCHES</u> MILLIMETERS

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

16

REVISION HISTORY (Revision history begins at Rev E)

REV	DATE	DESCRIPTION	PAGE NUMBER
E	06/10	Updates to Supply Voltage section	11
F	09/10	Units on x-axis of G24 changed from Hz to kHz	10
G	10/11	Updated θ_{JA} values for MS8 and DD packages in Pin Configuration	2
		Corrected part numbers and revised column title to Specified Temperature Range in Order Information	3
		Deleted Note 10 from Electrical Characteristics	7

TYPICAL APPLICATION

The battery monitor in Figure 5 also demonstrates the LT1638's ability to operate with its inputs above the positive rail. In this application, a conventional amplifier would be limited to a battery voltage between 5V and ground, but the LT1638 can handle battery voltages as high as 44V. When the battery is charging, Amp B senses the voltage drop across R_S . The output of Amp B causes Q2 to drain sufficient current through R_B to balance the input of Amp B. Likewise, Amp A and Q1 form a closed

loop when the battery is discharging. The current through Q1 or Q2 is proportional to the current in R_S and this current flows into R_G and is converted into a voltage. Amp D buffers and amplifies the voltage across R_G . Amp C compares the output of Amp A and Amp B to determine the polarity of current through R_S . The scale factor for V_{OUT} with S1 open is 1V/A. With S1 closed the scale factor is 1V/100mA and currents as low as 500µA can be measured.

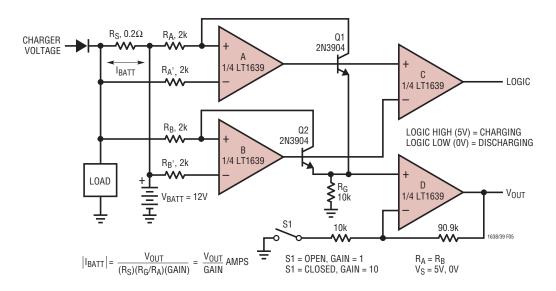


Figure 5. Battery Monitor

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1078/LT1079 LT2078/LT2079	Dual/Quad 55µA Max, Single Supply, Precision Op Amps	Input/Output Common Mode Includes Ground, 70µV V _{OS(MAX)} and 2.5µV/°C Drift (Max), 200kHz GBW, 0.07V/µs Slew Rate
LT1178/LT1179 LT2178/LT2179	Dual/Quad 17µA Max, Single Supply, Precison Op Amps	Input/Output Common Mode Includes Ground, 70µV V _{OS(MAX)} and 4µV/°C Drift (Max), 85kHz GBW, 0.04V/µs Slew Rate
LT1366/LT1367	Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps	475µV V _{OS(MAX)} , 500V/mV A _{VOL(MIN)} , 400kHz GBW
LT1490/LT1491	Dual/Quad Over-The-Top Micropower, Rail-to-Rail Input and Output Op Amps	Single Supply Input Range: –0.4V to 44V, Micropower 50µA per Amplifier, Rail-to-Rail Input and Output, 200kHz GBW
LT1636	Single Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp	55 μ A Supply Current, V _{CM} Extends 44V above V _{EE} , Independent of V _{CC} ; MSOP Package, Shutdown Function

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Precision Amplifiers category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

OPA4187IRUMT OPA202IDGKT 514327X 561681F 647876R 5962-9080901MCA* MAX410CPA MAX44241AUK+T LT6230IS6#TR LT1112S8#TR OP227GN#PBF LT6020IDD-1#PBF LT6023IDD#PBF LT6013AIDD#PBF LT6237IMS8#PBF LT1124CS8#TR LT1215CS8#TRPBF ADA4622-1ARZ-R7 NCS21871SQ3T2G NCS21871SN2T1G NCV21871SQ3T2G NCV21871SN2T1G AD8538WAUJZ-R7 NCS21912DMR2G MCP6V82-EMS MCP6V92-EMS TLC27L7CP TLE2022MD TLV2473CDR MCP6V34-E/ST MCP6V84-EST MCP6V94-EST LT1014DDWR 5962-89641012A 5962-8859301M2A 5962-89801012A 5962-9452101M2A LMC6064IN LT1013DDR TL034ACDR TLC2201AMDG4 TLC274MDRG4 TLE2021QDRG4Q1 TLE2024BMDWG4 AD8691WAUJZ-R7 AD8629TRZ-EP-R7 AD8604ARQZ TS507IYLT MAX4238AUT+T MAX4168EPD