feATURES

- Operates at Supply Voltages from 2V to 30V
- Works with Surface Mount Inductors
- 72kHz Oscillator
- Only Three External Components Required
- Step-Up or Step-Down Mode
- Low-Battery Detector Comparator On-Chip
- User Adjustable Current Limit
- Internal 1A Power Switch
- Fixed or Adjustable Output Voltage Versions
- Space Saving 8-Pin MiniDIP or S0-8 Package

APPLICATIONS

- 3 V to $5 \mathrm{~V}, 5 \mathrm{~V}$ to 12 V Converters
- 9 V to $5 \mathrm{~V}, 12 \mathrm{~V}$ to 5 V Converters
- Remote Controls
- Peripherals and Add-On Cards
- Battery Backup Supplies
- Uninterruptible Supplies
- Laptop and Palmtop Computers
- Celluar Telephones
- Portable Instruments
- Flash Memory VPP Generators

DESCRIPTION

The $\mathrm{LT}^{\circledR} 1111$ is a versatile micropower DC/DC converter. The device requires only three external components to deliver a fixed output of 5 V or 12 V . Supply voltage ranges from 2 V to 12 V in step-up mode and to 30 V in step-down mode. The LT1111 functions equally well in step-up, stepdown, or inverting applications.

The LT1111 oscillator is set at 72 kHz , optimizing the device to work with off-the-shelf surface mount inductors. The device can deliver 5 V at 100 mA from a 3 V input in step-up mode or 5 V at 200 mA from a 12 V input in stepdown mode.

Switch current limit can be programmed with a single resistor. An auxiliary open-collector gain block can be configured as a low-battery detector, linear post regulator, undervoltage lock-out circuit, or error amplifier.

For input sources of less than 2 V use the LT1110.
$\boldsymbol{\Omega}$, LTC and LT are registered trademarks of Linear Technology Corporation

TYPICAL APPLICATION
All Surface Mount 3V to 5V Step-Up Converter

Typical Load Regulation

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage ($\mathrm{V}_{\text {IN }}$)	36 V
SW1 Pin Voltage ($\mathrm{V}_{\text {SW1 }}$)	
SW2 Pin Voltage (V $\mathrm{SW}^{\text {L }}$)	-0.5 V to $\mathrm{V}_{\text {IN }}$
Feedback Pin Voltage (LT1111). 5.5V
Switch Current	
Maximum Power Dissi	500 mW

Operating Temperature Range
LT1111C.
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT11111.. $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
LT1111M (OBSOLETE) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

		ORDER PART NUMBER	TOP VIEW		ORDER PART NUMBER	
		LT1111CN8 LT1111CN8-5 LT1111CN8-12			LT1111CS8	
		ILIM VIN SW1 SW2	8 FB (SENSE)*	LT1111CS8-5		
		7 SET	LT1111CS8-12			
		6 AO	LT11111S8			
			5 GND	S8 PART MARKING		
			S8 PACKAGE 8-LEAD PLASTIC SO		1111	
$\begin{gathered} \text { J8 PACKAGE } \\ \text { 8-LEAD CERAMIC DIP } \\ \mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JAA}}=120^{\circ} \mathrm{C} / \mathrm{J}(\mathrm{~J}) \end{gathered}$			LT1111MJ8 LT1111MJ8-5 LT1111MJ8-12	$\mathrm{T}_{\text {Jmax }}=90^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W}$		
OBSOLETE PACKAGE Consider the N8 Package for Alternate Source						

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICPL CHARACTERISTG
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . V_{I N}=3 \mathrm{~V}$, Military or Commercial Version

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{0}	Quiescent Current	Switch OFF			300	400	$\mu \mathrm{A}$
$V_{\text {IN }}$	Input Voltage	Step-Up Mode Step-Down Mode	\bullet	2.0		$\begin{aligned} & 12.6 \\ & 30.0 \end{aligned}$	V
	Comparator Trip Point Voltage	LT1111 (Note 2)	\bullet	1.20	1.25	1.30	V
$V_{\text {OUT }}$	Output Sense Voltage	LT1111-5 (Note 3 LT1111-12 (Note 3)	\bullet	$\begin{array}{r} 4.75 \\ 11.40 \end{array}$	$\begin{array}{r} 5.00 \\ 12.00 \end{array}$	$\begin{array}{r} 5.25 \\ 12.60 \end{array}$	V
	Comparator Hysteresis	LT1111	\bullet		8	12.5	mV
	Output Hysteresis	LT1111-5 LT1111-12	\bullet		$\begin{aligned} & 32 \\ & 75 \end{aligned}$	$\begin{gathered} 50 \\ 120 \end{gathered}$	mV mV
$\underline{\mathrm{fosc}}$	Oscillator Frequency			54	72	88	kHz
DC	Duty Cycle: Step-Up Mode Step-Down Mode	Full Load		$\begin{aligned} & 43 \\ & 24 \end{aligned}$	$\begin{aligned} & 50 \\ & 34 \end{aligned}$	$\begin{aligned} & 59 \\ & 50 \end{aligned}$	\%
ton	Switch ON Time: Step-Up Mode Step-Down Mode	ILIM Tied to $\mathrm{V}_{\text {IN }}$ $\mathrm{V}_{\text {OUT, }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$		$\begin{gathered} 5 \\ 3.3 \end{gathered}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	$\begin{gathered} 9 \\ 7.8 \end{gathered}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$
$V_{\text {SAT }}$	SW Saturation Voltage, Step-Up Mode	$\begin{aligned} & V_{I N}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{SW}}=650 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=5.0 \mathrm{I}, \mathrm{I}_{\mathrm{SW}}=1 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 1.0 \end{aligned}$	V
	SW Saturation Voltage, Step-Down Mode	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {SW }}=650 \mathrm{~mA}$			1.1	1.5	V

ELECTRCPL CHARACTERSTICS The o denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . V_{\text {IN }}=3 \mathrm{~V}$, Military or Commercial Version| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\text {FB }}$ | Feedback Pin Bias Current | LT1111, $\mathrm{V}_{\text {FB }}=0 \mathrm{~V}$ | \bullet | | 70 | 120 | nA |
| $\underline{\text { SET }}$ | Set Pin Bias Current | $\mathrm{V}_{\text {SET }}=\mathrm{V}_{\text {REF }}$ | \bullet | | 70 | 300 | nA |
| $\mathrm{V}_{\text {OL }}$ | Gain Block Output Low | $\mathrm{I}_{\text {SINK }}=300 \mu \mathrm{~A}, \mathrm{~V}_{\text {SET }}=1.00 \mathrm{~V}$ | - | | 0.15 | 0.4 | V |
| | Reference Line Regulation | $\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V} \\ & 2 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5 \mathrm{~V} \end{aligned}$ | - | | $\begin{aligned} & 0.02 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 0.075 \\ & 0.400 \end{aligned}$ | $\begin{aligned} & \% / V \\ & \% / V \end{aligned}$ |
| A_{V} | Gain Block Gain | $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$ (Note 4) | \bullet | 1000 | 6000 | | V/V |
| ILIM | Current Limit | 220Ω from $\mathrm{L}_{\text {LIM }}$ to $\mathrm{V}_{\text {IN }}$ | | | 400 | | mA |
| | Current Limit Temperature Coefficient | | \bullet | | -0.3 | | $\% /{ }^{\circ} \mathrm{C}$ |
| | Switch OFF Leakage Current | Measured at SW1 Pin, $\mathrm{V}_{\text {SW } 1}=12 \mathrm{~V}$ | | | 1 | 10 | $\mu \mathrm{A}$ |
| | Maximum Excursion Below GND | $I_{\text {SW }} \leq 10 \mu \mathrm{~A}$, Switch OFF | | | -400 | -350 | mV |

The - denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $V_{I N}=3 V, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LT1111C			UNITS
				MIN	TYP	MAX	
I_{Q}	Quiescent Current	Switch OFF	-	300		450	$\mu \mathrm{A}$
$\mathrm{f}_{\text {OSC }}$	Oscillator Frequency		\bullet	54	72	95	kH
DC	Duty Cycle: Step-Up Mode Step-Down Mode	Full Load	\bullet	$\begin{aligned} & 43 \\ & 24 \end{aligned}$	$\begin{aligned} & 50 \\ & 34 \end{aligned}$	$\begin{aligned} & 59 \\ & 50 \end{aligned}$	\%
t_{ON}	Switch ON Time: Step-Up Mode Step-Down Mode	ILIM Tied to $V_{\text {IN }}$ $V_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$	\bullet	$\begin{aligned} & 5.0 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.8 \\ & \hline \end{aligned}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$
	Reference Line Regulation	$2 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5 \mathrm{~V}$	\bullet		0.2	0.7	\%/V
$V_{\text {SAT }}$	SW Saturation Voltage, Step-Up Mode SW Saturation Voltage, Step-Down Mode	$\begin{aligned} & V_{I N}=3 \mathrm{~V}, I_{\mathrm{SW}}=650 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, I_{\mathrm{SW}}=650 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.5 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 1.50 \end{aligned}$	V

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: This specification guarantees that both the high and low trip points of the comparator fall within the 1.20 V to 1.30 V range.

Note 3: The output voltage waveform will exhibit a sawtooth shape due to the comparator hysteresis. The output voltage on the fixed output versions will always be within the specified range.
Note 4: 100k resistor connected between a 5 V source and the A 0 pin.

TYPICAL PERFORMANCE CHARACTERISTICS

LT1111•TPC01

LT1111 •TPC04

LT1111•TPC07

LT1111•TPC02

LT1111•TPC05

LT1111•TPC08

LT111•TPC03

LT1111•TPC06

LT1111• TPC09

TYPICAL PERFORMANCE CHARACTERISTICS

PIn functions

lim $^{\text {LIN 1): Connect this pin to } \mathrm{V}_{\text {IN }} \text { for normal use. Where }}$ lower current limit is desired, connect a resistor between $l_{\text {LIM }}$ and $V_{\text {IN }}$. A 220Ω resistor will limit the switch current to approximately 400 mA .
$V_{\text {IN }}$ (Pin 2): Input Supply Voltage.
SW1 (Pin 3): Collector of Power Transistor. For step-up mode connect to inductor/diode. For step-down mode connect to $\mathrm{V}_{\text {IN }}$.
SW2 (Pin 4): Emitter of Power Transistor. For step-up mode connect to ground. For step-down mode connect to inductor/diode. This pin must never be allowed to go more than a Schottky diode drop below ground.

GND (Pin 5): Ground.
AO (Pin 6): Auxiliary Gain Block (GB) Output. Open collector, can sink $300 \mu \mathrm{~A}$.
SET (Pin 7): GB Input. GB is an op amp with positive input connected to SET pin and negative input connected to 1.25 V reference.

FB/SENSE (Pin 8): On the LT1111 (adjustable) this pin goes to the comparator input. On the LT1111-5 and LT1111-12, this pin goes to the internal application resistor that sets output voltage.

BLOCK DIAGRAMS

LT1111

LT1111-5/LT1111-12

OPERATION

The LT1111 is a gated oscillator switcher. This type architecture has very low supply current because the switch is cycled when the feedback pin voltage drops below the reference voltage. Circuit operation can best be understood by referring to the LT1111 block diagram. Comparator A1 compares the feedback (FB) pin voltage with the 1.25 V reference signal. When FB drops below 1.25 V , A1 switches on the 72 kHz oscillator. The driver amplifier boosts the signal level to drive the output NPN power switch. The switch cycling action raises the output voltage and FB pin voltage. When the FB voltage is sufficient to trip A1, the oscillator is gated off. A small amount of hysteresis built into A1 ensures loop stability without external frequency compensation. When the comparator output is low, the oscillator and all high current circuitry is turned off, lowering device quiescent current to just $300 \mu \mathrm{~A}$.
The oscillator is set internally for $7 \mu \mathrm{~s}$ ON time and $7 \mu \mathrm{~s}$ OFF time, optimizing the device for circuits where $\mathrm{V}_{\text {OUT }}$ and $\mathrm{V}_{\text {IN }}$ differ by roughly a factor of 2 . Examples include a 3 V to 5 V step-up converter or a 9 V to 5 V step-down converter.

Gain block A2 can serve as a low-battery detector. The negative input of A 2 is the 1.25 V reference. A resistor divider from $\mathrm{V}_{\text {IN }}$ to GND, with the mid-point connected to the SET pin provides the trip voltage in a low-battery detector application. AO can sink $300 \mu \mathrm{~A}$ (use a 22 k resistor pull-up to 5 V).
A resistor connected between the $\mathrm{I}_{\text {LIM }}$ pin and $\mathrm{V}_{\text {IN }}$ sets maximum switch current. When the switch current exceeds the set value, the switch cycle is prematurely terminated. If current limit is not used, ILIM should be tied directly to $\mathrm{V}_{\text {IN }}$. Propagation delay through the current limit circuitry is approximately $1 \mu \mathrm{~s}$.
In step-up mode the switch emitter (SW2) is connected to ground and the switch collector (SW1) drives the inductor; in step-down mode the collector is connected to $\mathrm{V}_{\text {IN }}$ and the emitter drives the inductor.
The LT1111-5 and LT1111-12 are functionally identical to the LT1111. The -5 and -12 versions have on-chip voltage setting resistors for fixed 5 V or 12 V outputs. Pin 8 on the fixed versions should be connected to the output. No external resistors are needed.

APPLICATIONS INFORMATION

Inductor Selection - General

A DC/DC converter operates by storing energy as magnetic flux in an inductor core, and then switching this energy into the load. Since it is flux, not charge, that is stored, the output voltage can be higher, lower, or opposite in polarity to the input voltage by choosing an appropriate switching topology. To operate as an efficient energy transfer element, the inductor must fulfill three requirements. First, the inductance must be low enough for the inductor to store adequate energy under the worst case condition of minimum input voltage and switch-on time. The inductance must also be high enough so maximum current ratings of the LT1111 and inductor are not exceeded at the other worst case condition of maximum input voltage and ON time. Additionally, the inductor core must be able to store the required flux; i.e., it must not saturate. At power levels generally encountered with LT1111 based designs, small surface mount ferrite core units with saturation current ratings in the 300 mA to 1 A range and DCR less than 0.4Ω (depending on application) are adequate. Lastly, the inductor must have sufficiently low DC resistance so excessive power is not lost as heat in the windings. An additional consideration is ElectroMagnetic Interference (EMI). Toroid and pot core type inductors are recommended in applications where EMI must be kept to a minimum; for example, where there are sensitive analog circuitry or transducers nearby. Rod core types are a less expensive choice where EMI is not a problem. Minimum and maximum input voltage, output voltage and output current must be established before an inductor can be selected.

Inductor Selection — Step-Up Converter

In a step-up, or boost converter (Figure 4), power generated by the inductor makes up the difference between input and output. Power required from the inductor is determined by:

$$
\begin{equation*}
P_{\mathrm{L}}=\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\text {IN MIN }}\right)\left(\mathrm{I}_{\text {OUT }}\right) \tag{1}
\end{equation*}
$$

where V_{D} is the diode drop (0.5 V for a 1 N 5818 Schottky). Energy required by the inductor per cycle must be equal or greater than:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{L}} / \mathrm{f}_{\mathrm{osc}} \tag{2}
\end{equation*}
$$

in order for the converter to regulate the output.
When the switch is closed, current in the inductor builds according to:

$$
\begin{equation*}
I_{L}(t)=\frac{V_{I N}}{R^{\prime}}\left(1-e^{\frac{-R^{\prime} t}{L}}\right) \tag{3}
\end{equation*}
$$

where R^{\prime} is the sum of the switch equivalent resistance (0.8Ω typical at $25^{\circ} \mathrm{C}$) and the inductor DC resistance. When the drop across the switch is small compared to $\mathrm{V}_{\text {IN }}$, the simple lossless equation:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{L}}(\mathrm{t})=\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~L}} \mathrm{t} \tag{4}
\end{equation*}
$$

can be used. These equations assume that at $t=0$, inductor current is zero. This situation is called "discontinuous mode operation" in switching regulator parlance. Setting " t " to the switch-on time from the LT1111 specification table (typically $7 \mu \mathrm{~s}$) will yield IPEAK for a specific "L" and VIN. Once IPEAK is known, energy in the inductor at the end of the switch-on time can be calculated as:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{L}}=\frac{1}{2} \mathrm{LI}{ }_{\mathrm{PEAK}} \tag{5}
\end{equation*}
$$

E_{L} must be greater than $P_{L} / f_{0 S C}$ for the converter to deliver the required power. For best efficiency $I_{\text {PEAK }}$ should be kept to 1A or less. Higher switch currents will cause excessive drop across the switch resulting in reduced efficiency. In general, switch current should be held to as Iow a value as possible in order to keep switch, diode and inductor losses at a minimum.

As an example, suppose 12 V at 60 mA is to be generated from a 4.5 V to 8 V input. Recalling equation (1),

$$
\begin{equation*}
P_{\mathrm{L}}=(12 \mathrm{~V}+0.5 \mathrm{~V}-4.5 \mathrm{~V})(60 \mathrm{~mA})=480 \mathrm{~mW} \tag{6}
\end{equation*}
$$

Energy required from the inductor is

$$
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{L}}}{\mathrm{f}_{\mathrm{OSC}}}=\frac{480 \mathrm{~mW}}{72 \mathrm{kHz}}=6.7 \mu \mathrm{~J} \tag{7}
\end{equation*}
$$

APPLICATIONS InFORMATION

Picking an inductor value of $47 \mu \mathrm{H}$ with 0.2Ω DCR results in a peak switch current of:

$$
\begin{equation*}
\mathrm{I}_{\text {PEAK }}=\frac{4.5 \mathrm{~V}}{1.0 \Omega}\left(1-\mathrm{e}^{\frac{-1.0 \Omega \bullet 7 \mu \mathrm{~s}}{47 \mu \mathrm{H}}}\right)=623 \mathrm{~mA} \tag{8}
\end{equation*}
$$

Substituting $I_{\text {PEAK }}$ into Equation 4 results in:

$$
\begin{equation*}
E_{L}=\frac{1}{2}(47 \mu \mathrm{H})(0.623 \mathrm{~A})^{2}=9.1 \mu \mathrm{~J} \tag{9}
\end{equation*}
$$

Since $9.1 \mu \mathrm{~J}>6.7 \mu \mathrm{~J}$, the $47 \mu \mathrm{H}$ inductor will work. This trial-and-error approach can be used to select the optimum inductor. Keep in mind the switch current maximum rating of 1.5A. If the calculated peak current exceeds this, consider using the LT1110. The 70\% duty cycle of the LT1110 allows more energy per cycle to be stored in the inductor, resulting in more output power.

A resistor can be added in series with the $\mathrm{I}_{\text {LIM }}$ pin to invoke switch current limit. The resistor should be picked so the calculated $I_{\text {PEAK }}$ at minimum $V_{\text {IN }}$ is equal to the Maximum Switch Current (from Typical Performance Characteristic curves). Then, as $V_{\text {IN }}$ increases, switch current is held constant, resulting in increasing efficiency.

Inductor Selection - Step-Down Converter

The step-down case (Figure 5) differs from the step-up in that the inductor current flows through the load during both the charge and discharge periods of the inductor. Current through the switch should be limited to $\sim 650 \mathrm{~mA}$ in this mode. Higher current can be obtained by using an external switch (see Figure 6). The I LIM pin is the key to successful operation over varying inputs.
After establishing output voltage, output current and input voltage range, peak switch current can be calculated by the formula:

$$
\begin{equation*}
I_{\text {PEAK }}=\frac{2 I_{\text {OUT }}}{D C}\left[\frac{V_{\text {OUT }}+V_{D}}{V_{\text {IN }}-V_{S W}+V_{D}}\right] \tag{10}
\end{equation*}
$$

where $D C=$ duty cycle (0.50)
$V_{S W}=$ switch drop in step-down mode

$$
\begin{aligned}
& V_{D}=\text { diode drop }(0.5 \mathrm{~V} \text { for a } 1 \mathrm{~N} 5818) \\
& \mathrm{I}_{\text {OUT }}=\text { output current } \\
& \mathrm{V}_{\text {OUT }}=\text { output voltage } \\
& \mathrm{V}_{\text {IN }}=\text { minimum input voltage }
\end{aligned}
$$

$V_{\text {SW }}$ is actually a function of switch current which is in turn a function of $\mathrm{V}_{\text {IN }}$, L , time, and $\mathrm{V}_{\text {OUT. }}$ To simplify, 1.5 V can be used for $V_{\text {SW }}$ as a very conservative value.
Once IPEAK is known, inductor value can be derived from:

$$
\begin{equation*}
L=\frac{V_{\text {IN MIN }}-V_{\text {SW }}-V_{\text {OUT }}}{I_{\text {PEAK }}} \bullet \mathrm{t}_{\text {ON }} \tag{11}
\end{equation*}
$$

where $\mathrm{t}_{\mathrm{ON}}=$ switch-on time $(7 \mu \mathrm{~s})$.
Next, the current limit resistor $R_{\text {LIM }}$ is selected to give IPEAK from the R LIM Step-Down Mode curve. The addition of this resistor keeps maximum switch current constant as the input voltage is increased.
As an example, suppose 5 V at 300 mA is to be generated from a 12 V to 24 V input. Recalling Equation (10),

$$
\begin{equation*}
I_{\text {PEAK }}=\frac{2(300 \mathrm{~mA})}{0.50}\left[\frac{5+0.5}{12-1.5+0.5}\right]=600 \mathrm{~mA} \tag{12}
\end{equation*}
$$

Next, inductor value is calculated using Equation (11):

$$
\begin{equation*}
\mathrm{L}=\frac{12-1.5-5}{600 \mathrm{~mA}} 7 \mu \mathrm{~s}=64 \mu \mathrm{H} \tag{13}
\end{equation*}
$$

Use the next lowest standard value $(56 \mu \mathrm{H})$.
Then pick RIIM from the curve. For $I_{\text {PEAK }}=600 \mathrm{~mA}, \mathrm{R}_{\text {LII }}$ $=56 \Omega$.

Inductor Selection — Positive-to-Negative Converter

Figure 7 shows hookup for positive-to-negative conversion. All of the output power must come from the inductor. In this case,

$$
\begin{equation*}
P_{L}=\left(\left|V_{\text {OUT }}\right|+V_{D}\right)\left(I_{\text {OUT }}\right) \tag{14}
\end{equation*}
$$

In this mode the switch is arranged in common collector or step-down mode. The switch drop can be modeled as a 0.75 V source in series with a 0.65Ω resistor. When the

APPLICATIONS INFORMATION

switch closes, current in the inductor builds according to

$$
\begin{equation*}
I_{L}(t)=\frac{V_{L}}{R^{\prime}}\left(1-e^{\frac{-R^{\prime} t}{L}}\right) \tag{15}
\end{equation*}
$$

where $R^{\prime}=0.65 \Omega+$ DCR $_{L}$

$$
V_{L}=V_{I N}-0.75 \mathrm{~V}
$$

As an example, suppose -5 V at 50 mA is to be generated from a 4.5 V to 5.5 V input. Recalling Equation (14),

$$
\begin{equation*}
P_{\mathrm{L}}=(|-5 \mathrm{~V}|+0.5 \mathrm{~V})(50 \mathrm{~mA})=275 \mathrm{~mW} \tag{16}
\end{equation*}
$$

Energy required from the inductor is:

$$
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{L}}}{\mathrm{f}_{\text {OSC }}}=\frac{275 \mathrm{~mW}}{72 \mathrm{kHz}}=3.8 \mu \mathrm{~J} . \tag{17}
\end{equation*}
$$

Picking an inductor value of $56 \mu \mathrm{H}$ with 0.2Ω DCR results in a peak switch current of:

$$
I_{\text {PEAK }}=\frac{(4.5 \mathrm{~V}-0.75 \mathrm{~V})}{(0.65 \Omega+0.2 \Omega)}\left(1-e^{\frac{-0.85 \Omega \times 7 \mu \mathrm{~s}}{56 \mu \mathrm{H}}}\right)=445 \mathrm{~mA}
$$

Substituting IPEAK into Equation (4) results in:

$$
\begin{equation*}
E_{\mathrm{L}}=\frac{1}{2}(56 \mu \mathrm{H})(0.445 \mathrm{~A})^{2}=5.54 \mu \mathrm{~J} . \tag{19}
\end{equation*}
$$

Since $5.54 \mu \mathrm{~J}>3.82 \mu \mathrm{~J}$, the $56 \mu \mathrm{H}$ inductor will work.
With this relatively small input range, $\mathrm{R}_{\text {LIM }}$ is not usually necessary and the $\mathrm{I}_{\text {LIM }}$ pin can be tied directly to $\mathrm{V}_{\text {IN }}$. As in the step-down case, peak switch current should be limited to $\sim 650 \mathrm{~mA}$.

Capacitor Selection

Selecting the right output capacitor is almost as important as selecting the right inductor. A poor choice for a filter capacitor can result in poor efficiency and/or high output ripple. Ordinary aluminum electrolytics, while inexpensive and readily available, may have unacceptably poor equivalent series resistance (ESR) and ESL (inductance). There are low ESR aluminum capacitors on the market
specifically designed for switch mode DC/DC converters which work much better than general-purpose units. Tantalum capacitors provide still better performance at more expense. We recommend OS-CON capacitors from Sanyo Corporation (San Diego, CA). These units are physically quite small and have extremely low ESR. To illustrate, Figures 1, 2, and 3 show the output voltage of an LT1111 based converter with three $100 \mu \mathrm{~F}$ capacitors. The peak switch current is 500 mA in all cases. Figure 1 shows a Sprague 501D, 25 V aluminum capacitor. $\mathrm{V}_{\text {Out }}$ jumps by over 120 mV when the switch turns off, followed by a drop in voltage as the inductor dumps into the capacitor. This works out to be an ESR of over 0.24Ω. Figure 2 shows the same circuit, but with a Sprague 150D, 20V tantalum capacitor replacing the aluminum unit. Output jump is now about 35 mV , corresponding to an ESR of 0.07Ω. Figure 3 shows the circuit with a 16V OS-CON unit. ESR is now only 0.02Ω.

Figure 1. Aluminum

Figure 2. Tantalum

Figure 3. OS-CON

APPLICATIONS INFORMATION

Diode Selection

Speed, forward drop, and leakage current are the three main considerations in selecting a catch diode for LT1111 converters. General purpose rectifiers such as the 1N4001 are unsuitable for use in any switching regulator application. Although they are rated at 1 A , the switching time of a 1 N 4001 is in the $10 \mu \mathrm{~s}$ to $50 \mu \mathrm{~s}$ range. At best, efficiency will be severely compromised when these diodes are used; at worst, the circuit may not work at all. Most LT1111 circuits will be well served by a 1N5818 Schottky diode, or its surface mount equivalent, the MBRS130T3. The combination of 500 mV forward drop at 1 A current, fast turn ON and turn OFF time, and $4 \mu \mathrm{~A}$ to $10 \mu \mathrm{~A}$ leakage current fit nicely with LT1111 requirements. At peak switch currents of 100 mA or less, a 1N4148 signal diode may be used. This diode has leakage current in the 1 nA to 5 nA range at $25^{\circ} \mathrm{C}$ and lower cost than a 1 N 5818 . (You can also use them to get your circuit up and running, but beware of destroying the diode at 1A switch currents.)

Step-Up (Boost Mode) Operation

A step-up DC/DC converter delivers an output voltage higher than the input voltage. Step-up converters are not short-circuit protected since there is a DC path from input to output.
The usual step-up configuration for the LT1111 is shown in Figure 4. The LT1111 first pulls SW1 low causing $\mathrm{V}_{\text {IN }}-$ $V_{\text {CESAT }}$ to appear across L1. A current then builds up in L1.

Figure 4. Step-Up Mode Hookup. Refer to Table 1 for Component Values.

At the end of the switch ON time the current in L 1 is 1 :

$$
\begin{equation*}
I_{\text {PEAK }}=\frac{V_{I N}}{L} t_{0 N} \tag{20}
\end{equation*}
$$

Immediately after switch turn-off, the SW1 voltage pin starts to rise because current cannot instantaneously stop flowing in L1. When the voltage reaches $V_{\text {OUT }}+V_{D}$, the inductor current flows through D1 into C1, increasing $V_{\text {OUT }}$. This action is repeated as needed by the LT1111 to keep $\mathrm{V}_{\text {FB }}$ at the internal reference voltage of 1.25 V . R1 and R2 set the output voltage according to the formula

$$
\begin{equation*}
V_{\text {OUT }}=\left(1+\frac{R 2}{R 1}\right)(1.25 \mathrm{~V}) \tag{21}
\end{equation*}
$$

Step-Down (Buck Mode) Operation

A step-down DC/DC converter converts a higher voltage to a lower voltage. The usual hookup for an LT1111 based step-down converter is shown in Figure 5.

Figure 5. Step-Down Mode Hookup
When the switch turns on, SW2 pulls up to $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {SW }}$. This puts a voltage across $L 1$ equal to $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {SW }}-\mathrm{V}_{\text {OUT }}$, causing a current to build up in L1. At the end of the switch ON time, the current in L1 is equal to:

$$
\begin{equation*}
I_{\text {PEAK }}=\frac{V_{I N}-V_{S W}-V_{O U T}}{L} t_{O N} \tag{22}
\end{equation*}
$$

Note 1: This simple expression neglects the effect of switch and coil resistance. This is taken into account in the "Inductor Selection" section.

APPLICATIONS INFORMATION

When the switch turns off, the SW2 pin falls rapidly and actually goes below ground. D1 turns on when SW2 reaches 0.4 V below ground. D1 MUST BE A SCHOTTKY DIODE. The voltage at SW2 must never be allowed to go below -0.5V. A silicon diode such as the 1 N 4933 will allow SW2 to go to -0.8 V , causing potentially destructive power dissipation inside the LT1111. Output voltage is determined by:

$$
\begin{equation*}
V_{\text {OUT }}=\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)(1.25 \mathrm{~V}) \tag{23}
\end{equation*}
$$

R3 programs switch current limit. This is especially important in applications where the input varies over a wide range. Without R3, the switch stays on for a fixed time each cycle. Under certain conditions the current in L1 can build up to excessive levels, exceeding the switch rating and/or saturating the inductor. The 100Ω resistor programs the switch to turn off when the current reaches approximately 700 mA . When using the LT1111 in step-down mode, output voltage should be limited to 6.2 V or less. Higher output voltages can be accommodated by inserting a 1N5818 diode in series with the SW2 pin (anode connected to SW2).

Higher Current Step-Down Operation

Output current can be increased by using a discrete PNP pass transistor as shown in Figure 6. R1 serves as a current limit sense. When the voltage drop across R1 equals a $V_{B E}$, the switch turns off. For temperature compensation a Schottky diode can be inserted in series with the limp pin. This also lowers the maximum drop across R1 to $V_{B E}-V_{D}$, increasing efficiency. As shown, switch current is limited to 2 A . Inductor value can be calculated based on formulas in the "Inductor Selection - StepDown Converter" section with the following conservative expression for $\mathrm{V}_{\text {SW }}$:

$$
\begin{equation*}
V_{S W}=V_{R 1}+V_{\text {Q1SAT }} \approx 1.0 \mathrm{~V} \tag{24}
\end{equation*}
$$

R2 provides a current path to turn off Q1. R3 provides base drive to Q1. R4 and R5 set output voltage. A PMOS FET can be used in place of Q 1 when $\mathrm{V}_{\mathbb{I N}}$ is between 10 V and 20 V .

Figure 6. Q1 Permits Higher Current Switching. LT1111 Functions as Controller.

Inverting Configurations

The LT1111 can be configured as a positive-to-negative converter (Figure 7), or a negative-to-positive converter (Figure 8). In Figure 7, the arrangement is very similar to a step-down, except that the high side of the feedback is referred to ground. This level shifts the output negative. As in the step-down mode, D1 must be a Schottky diode, and $\left|V_{\text {OUT }}\right|$ should be less than 6.2V. More negative output voltages can be accommodated as in the prior section.

Figure 7. Positive-to-Negative Converter

In Figure 8, the input is negative while the output is positive. In this configuration, the magnitude of the input voltage can be higher or lower than the output voltage. A level shift, provided by the PNP transistor, supplies proper polarity feedback information to the regulator.

APPLICATIONS INFORMATION

Figure 8. Negative-to-Positive Converter

Using the $\mathrm{I}_{\text {LIM }}$ Pin

The LT1111 switch can be programmed to turn off at a set switch current, a feature not found on competing devices. This enables the input to vary over a wide range without exceeding the maximum switch rating or saturating the inductor. Consider the case wh ere analysis shows the LT1111 must operate at an 800 mA peak switch current with a 2 V input. If $\mathrm{V}_{\text {IN }}$ rises to 4 V , the peak switch current will rise to 1.6 A , exceeding the maximum switch current rating. With the proper resistor selected (see the "Maximum Switch Current vs $I_{\text {LIM" }}$ characteristic), the switch current will be limited to 800 mA , even if the input voltage increases.

Another situation where the $l_{\text {LIM }}$ feature is useful occurs when the device goes into continuous mode operation. This occurs in step-up mode when:

$$
\begin{equation*}
\frac{V_{O U T}+V_{\text {DIODE }}}{V_{I N}-V_{S W}}<\frac{1}{1-D C} \tag{25}
\end{equation*}
$$

When the input and output voltages satisfy this relationship, inductor current does not go to zero during the switch OFF time. When the switch turns on again, the current ramp starts from the non-zero current level in the inductor just prior to switch turn-on. As shown in Figure 9 , the inductor current increases to a high level before the comparator turns off the oscillator. This high current can cause excessive output ripple and requires oversizing the output capacitor and inductor. With the $\mathrm{I}_{\text {LIM }}$ feature, however, the switch current turns off at a programmed level as shown in Figure 10, keeping output ripple to a minimum.

Figure 9. No Current Limit Causes Large Inductor Current Build-Up

Figure 10. Current Limit Keeps Inductor Current Under Control
Figure 11 details current limit circuitry. Sense transistor Q1, whose base and emitter are paralleled with power switch Q2, is ratioed such that approximately 0.5% of Q2's collector current flows in Q1's collector. This current is passed through internal 80Ω resistor R1 and out through the $\mathrm{I}_{\text {LIM }}$ pin. The value of the external resistor connected between $\mathrm{I}_{\mathrm{LIM}}$ and $\mathrm{V}_{\text {IN }}$ sets the current limit. When sufficient switch current flows to develop a V_{BE} across R1 + $R_{\text {LIM, }}$ Q3 turns on and injects current into the oscillator, turning off the switch. Delay through this circuitry is approximately $1 \mu \mathrm{~s}$. The current trip point becomes less accurate for switch ON times less than $3 \mu \mathrm{~s}$. Resistor values programming switch ON time for 1μ s or less will cause spurious response in the switch circuitry although the device will still maintain output regulation.

Figure 11. LT1111 Current Limit Circuitry

APPLICATIONS INFORMATION

Using the Gain Block

The gain block (GB) on the LT1111 can be used as an error amplifier, low-battery detector or linear post regulator. The gain block itself is a very simple PNP input op amp with an open collector NPN output. The negative input of the gain block is tied internally to the 1.25 V reference. The positive input comes out on the SET pin.
Arrangement of the gain block as a low-battery detector is straightforward. Figure 12 shows hookup. R1 and R2 need only be low enough in value so that the bias current of the SET input does not cause large errors. 33k for R2 is adequate. R3 can be added to introduce a small amount of hysteresis. This will cause the gain block to "snap"
when the trip point is reached. Values in the 1M to 10M range are optimal. However, the addition of R3 will change the trip point.

Figure 12. Setting Low-Battery Detector Trip Point

Table 1. Component Selection for Common Converters

INPUT VOLTAGE	OUTPUT VOLTAGE	OUTPUT CURRENT (MIN)	CIRCUIT FIGURE	INDUCTOR VALUE	INDUCTOR PART NUMBER	CAPACITOR VALUE	NOTES

S = Sumida * Add 47Ω from ILIM to $V_{\text {IN }}$
C = Coiltronics ** Add 220Ω from $\mathrm{I}_{\text {LIM }}$ to $\mathrm{V}_{\text {IN }}$

Table 2. Inductor Manufacturers

MANUFACTURER	PART NUMBERS
Coiltronics Incorporated	CTX100-4 Series
6000 Park of Commerce Blvd.	Surface Mount
Boca Raton, FL 33487	
$407-241-7876$	Type 8RBS
Toko America Incorporated	
1250 Feehanville Drive	
Mount Prospect, IL 60056	
312-297-0070	CD54
Sumida Electric Co. USA	CDR74
$708-956-0666$	CDR105
	Surface Mount

Table 3. Capacitor Manufacturers

MANUFACTURER	PART NUMBERS
Sanyo Video Components	OS-CON Series
1201 Sanyo Avenue	
San Diego, CA 92073	
619-661-6322 PL Series Nichicon America Corporation 927 East State Parkway Schaumberg, IL 60173 $708-843-7500$ 150D Solid Tantalums Sprague Electric Company $550 D$ Tantalex Lower Main Street Sanford, ME 04073 207-324-4140	
Matsu0	Surface Mount

13

TYPICAL APPLICATIONS

5 V to -5V Converter

* L1 = SUMIDA CD54-330K

LT1111-TA05

20V to 5V Step-Down Converter

LT1111•TA07

PACKAGE DESCRIPTION

J8 Package

8-Lead CERDIP (Narrow . 300 Inch, Hermetic)
(Reference LTC DWG \# 05-08-1110)

OBSOLETE PACKAGE

> N8 Package
> 8-Lead PDIP (Narrow .300 Inch)
> (Reference LTC DWG \# 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

TYPICAL APPLICATIONS

High Power, Low Quiescent Current Step-Down Converter

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1070/LT1070HV	5A ISW, 40kHz, High Efficiency Switching Regulator	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to $40 \mathrm{~V} / 60 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=65 \mathrm{~V} / 75 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=6 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<50 \mu \mathrm{~A}$, Can be Used for Buck, Boost, Inverting Applications, TO220-5 Package
LT1071/LT1071HV	2.5A I Switching Regulator	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to $40 \mathrm{~V} / 60 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=65 \mathrm{~V} / 75 \mathrm{~V}, \mathrm{I}_{Q}=6 \mathrm{~mA}, \mathrm{I}_{\text {SD }}=<50 \mu \mathrm{~A}$, Can be Used for Buck, Boost, Inverting Applications, N8, S8, S16, T0220-5 Packages
LT1072/LT1072HV	$1.25 \mathrm{~A} \mathrm{I}_{\mathrm{sw}}, 40 \mathrm{kHz}$, High Efficiency Switching Regulator	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to $40 \mathrm{~V} / 60 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=65 \mathrm{~V} / 75 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=6 \mathrm{~mA}, \mathrm{I}_{\text {SD }}=<50 \mu \mathrm{~A}$, Can be Used for Buck, Boost, Inverting Applications, N8, S8, S16, T0220-5 Packages
LT1082	1A ISW, 60kHz, High Efficiency Switching Regulator	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to $75 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=4.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=\leq 120 \mu \mathrm{~A}$, Can be Used for Buck, Boost, Inverting Applications, DD, N8, T0220-5 Packages
LT1107	1A ISW, 63kHz, High Efficiency Switching Regulator	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=320 \mu \mathrm{~A}$, Can be Used for Buck, Boost, Inverting Applications, N8, S8 Packages
LT1170/LT1170HV	$5 \mathrm{~A} \mathrm{I}_{\mathrm{Sw}}, 100 \mathrm{kHz}$, High Efficiency Switching Regulator	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to $40 \mathrm{~V} / 60 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=65 \mathrm{~V} / 75 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=6 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<50 \mu \mathrm{~A}$, Can be Used for Buck, Boost, Inverting Applications, DD, N8, S16, T0220-5 Packages
LT1171/LT1171HV	$2.5 \mathrm{~A} \mathrm{I}_{\mathrm{SW}}, 100 \mathrm{kHz}$, High Efficiency Switching Regulator	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to $40 \mathrm{~V} / 60 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=65 \mathrm{~V} / 75 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=6 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<50 \mu \mathrm{~A}$, Can be Used for Buck, Boost, Inverting Applications, DD, N8, S16, T0220-5 Packages
LT1172/LT1172HV	$1.25 \mathrm{~A} \mathrm{I}_{\mathrm{Sw}}, 100 \mathrm{kHz}$, High Efficiency Switching Regulator	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to $40 \mathrm{~V} / 60 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=65 \mathrm{~V} / 75 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=6 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<100 \mu \mathrm{~A}$, Can be Used for Buck, Boost, Inverting Applications, DD, N8, S16, T0220-5 Packages
LT1307/LT1307B	$600 \mathrm{~mA} \mathrm{I}_{\mathrm{sw}}, 600 \mathrm{kHz}$, High Efficiency Step-Up Switching Regulator	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=50 \mu \mathrm{~A} / 1 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=\leq 1 \mu \mathrm{~A}$ Ideal for Single Cell Applications, Low Battery Detect, MS8, N8, S8 Packages
LT1317/LT1317B	$660 \mathrm{~mA} \mathrm{I}_{\mathrm{sW}}, 600 \mathrm{kHz}$, High Efficiency Step-Up Switching Regulator	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} / 4.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=\leq 30 \mu \mathrm{~A} / 28 \mu \mathrm{~A}$ Low Battery Detect, MS8, S8 Packages
LT1370/LT1370HV	6 A Isw, 500 kHz , High Efficiency Switching Regulator	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} / 42 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=4.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<12 \mu \mathrm{~A}$, Can be Used for Buck, Boost, Inverting Applications, DD, T0220-7 Packages
LT1371/LT1371HV	$3 \mathrm{~A} \mathrm{I}_{\mathrm{Sw}}, 500 \mathrm{kHz}$, High Efficiency Switching Regulator	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} / 42 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=4 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<12 \mu \mathrm{~A}$, Can be Used for Buck, Boost, Inverting Applications, DD, S20, TO220-7 Packages

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
TLF30682QVS01XUMA1 TPSM84209RKHR FAN53526UC106X FAN53526UC128X MP1587EN-LF FAN48610BUC33X FAN48617UC50X FAN53526UC89X MIC45116-1YMP-T1 NCV891234MW50R2G EN2342QI AST1S31PUR 16017 A6986FTR NCP81103MNTXG NCP81203PMNTXG MAX17242ETPA+ MAX16935RATEB/V+ MP2313GJ-Z NCP81208MNTXG MP8759GD-Z FAN53526UC100X FAN53526UC84X PCA9412AUKZ MP2314SGJ-Z AS1340A-BTDM-10 MP3421GG-P NCP81109GMNTXG MP6003DN-LF-Z MAX16935BAUES/V+ LT8315IFE\#PBF SCY1751FCCT1G NCP81109JMNTXG MAX16956AUBA/V+ AP3409ADNTR-G1 FAN48623UC36FX MPQ2454GH MPQ2454GH-AEC1 MP21148GQD-P AS3701B-BWLM-68 MPQ2143DJ-P MP9942AGJ-P MP8759GD-P MP5610GQG-P MP28200GG-P MP2451DJ-LF-Z MP2326GD-P MP2314SGJ-P MP2158AGQH-P MP2148GQD-18-P

