R32C/117 Group

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

- The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

About This Manual

1. Purpose and Target User

This manual is designed to be read primarily by application developers who have an understanding of this microcomputer (MCU) including its hardware functions and electrical characteristics. The user should have a basic understanding of electric circuits, logic circuits and, MCUs.
This manual consists of 29 chapters covering six main categories: Overview, CPU, System Control, Peripherals, Electrical Characteristics, and Usage Notes.

Carefully read all notes in this document prior to use. Notes are found throughout each chapter, at the end of each chapter, and in the dedicated Usage Notes chapter.

The Revision History at the end of this manual summarizes primary modifications and additions to the previous versions. For details, please refer to the relative chapters or sections of this manual.

The R32C/117 Group includes the documents listed below. Verify this manual is the latest version by visiting the Renesas Electronics website.

Type of Document	Contents	Document Name	Document Number
Datasheet	Overview of Hardware and Electrical Characteristics	R32C/117 Group Datasheet	REJ03B0254-0110
User's Manual: Hardware	Specifications and detailed descriptions of: -pin layout -memory map -peripherals -electrical characteristics -timing characteristics Refer to the Application Manual for peripheral usage.	R32C/117 Group User's Manual: Hardware	This publication
User's Manual: Software/Software Manual	Descriptions of instruction set	R32C/100 Series Software Manual	REJ09B0267-0100
Application Note	-Usages -Applications -Sample programs -Programing technics using Assembly language or C programming language	Available on the Renesas Electronics website.	
Renesas Technical Update	Bulletins on product specifications, documents, etc.		

2. Numbers and Symbols

The following explains the denotations used in this manual for registers, bits, pins and various numbers.
(1) Registers, bits, and pins

Registers, bits, and pins are indicated by symbols. Each symbol has a register/bit/pin identifier after the symbol.
Example: PM03 bit in the PM0 register
P3_5 pin, VCC pin
(2) Numbers

A binary number has the suffix "b" except for a 1-bit value.
A hexadecimal number has the suffix "h".
A decimal number has no suffix.
Example: Binary notation: 11b
Hexadecimal notation: EFAOh
Decimal notation: 1234

3. Registers

The following illustration describes registers used throughout this manual.

4. Abbreviations and Acronyms

The following acronyms and terms are used throughout this manual.

Abbreviation/Acronym	Meaning
ACIA	Asynchronous Communication Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment Bus
I/O	Input/Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connection
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator

All trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

1. Overview 1
1.1 Features 1
1.1.1 Applications 1
1.1.2 Performance Overview 2
1.2 Product Information 6
1.3 Block Diagram 9
1.4 Pin Assignments 10
1.5 Pin Definitions and Functions 19
2. Central Processing Unit (CPU) 24
2.1 General Purpose Registers 25
2.1.1 Data Registers (R2R0, R3R1, R6R4, and R7R5) 25
2.1.2 Address Registers (A0, A1, A2, and A3) 25
2.1.3 Static Base Register (SB) 25
2.1.4 Frame Base Register (FB) 25
2.1.5 Program Counter (PC) 25
2.1.6 Interrupt Vector Table Base Register (INTB) 25
2.1.7 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP) 25
2.1.8 Flag Register (FLG) 25
2.2 Fast Interrupt Registers 27
2.2.1 Save Flag Register (SVF) 27
2.2.2 Save PC Register (SVP) 27
2.2.3 Vector Register (VCT) 27
2.3 DMAC-associated Registers 27
2.3.1 DMA Mode Registers (DMD0, DMD1, DMD2, and DMD3) 27
2.3.2 DMA Terminal Count Registers (DCT0, DCT1, DCT2, and DCT3) 27
2.3.3 DMA Terminal Count Reload Registers (DCR0, DCR1, DCR2, and DCR3) 27
2.3.4 DMA Source Address Registers (DSA0, DSA1, DSA2, and DSA3) 27
2.3.5 DMA Source Address Reload Registers (DSR0, DSR1, DSR2, and DSR3) 27
2.3.6 DMA Destination Address Registers (DDA0, DDA1, DDA2, and DDA3) 27
2.3.7 DMA Destination Address Reload Registers (DDR0, DDR1, DDR2, and DDR3) 27
3. Memory 28
4. Special Function Registers (SFRs) 29
5. Resets 68
5.1 Hardware Reset 68
5.2 Software Reset 71
5.3 Watchdog Timer Reset 71
5.4 Reset Vector 71
6. Power Management 72
6.1 Voltage Regulators for Internal Logic 72
6.1.1 Decoupling Capacitor 73
6.2 Low Voltage Detector 74
6.2.1 Operational State of Low Voltage Detector 77
6.2.2 Low Voltage Detection Interrupt 77
6.2.3 An Application of Low Voltage Detector 78
7. Processor Mode 79
7.1 Types of Processor Modes 79
7.2 Processor Mode Setting 79
8. Clock Generator 82
8.1 Clock Generator Types 82
8.1.1 Main Clock 91
8.1.2 Sub Clock (fC) 92
8.1.3 PLL Clock 93
8.1.4 On-chip Oscillator Clock 96
8.2 Oscillator Stop Detection 97
8.2.1 How to Use Oscillator Stop Detection 97
8.3 Base Clock 97
8.4 CPU Clock and Peripheral Bus Clock 98
8.5 Peripheral Clock 98
8.6 Clock Output Function 99
8.7 Power Control 100
8.7.1 Normal Operating Mode 101
8.7.2 Wait Mode 106
8.7.3 Stop Mode 109
8.8 System Clock Protection 111
8.9 Notes on Clock Generator 112
8.9.1 Sub Clock 112
8.9.2 Power Control 112
9. Bus 113
9.1 Bus Setting 113
9.2 Peripheral Bus Timing Setting 114
9.3 External Bus Setting 115
9.3.1 External Address Space Setting 115
9.3.2 External Data Bus Width Setting 121
9.3.3 Separate Bus/Multiplexed Bus Selection 123
9.3.4 Read and Write Signals 126
9.3.5 External Bus Timing 128
9.3.6 ALE Signal 132
9.3.7 $\quad \overline{R D Y}$ Signal 133
9.3.8 HOLD Signal. 136
9.3.9 BCLK Output 136
9.4 External Bus Status when Accessing Internal Space 136
9.5 Notes on Bus 137
9.5.1 Notes on System Designing 137
9.5.2 Notes on Register Settings 137
10. Protection 138
10.1 Protect Register (PRCR Register) 138
10.2 Protect Register 2 (PRCR2 Register) 139
10.3 Protect Register 3 (PRCR3 Register) 139
10.4 Protect Release Register (PRR Register) 140
11. Interrupts 141
11.1 Interrupt Types 141
11.2 Software Interrupt 142
11.3 Hardware Interrupt 143
11.3.1 Special Interrupt 143
11.3.2 Peripheral Interrupt 143
11.4 Fast Interrupt 144
11.5 Interrupt Vectors 144
11.5.1 Fixed Vector Table 145
11.5.2 Relocatable Vector Table 145
11.6 Interrupt Request Acceptance 150
11.6.1 I Flag and IPL 150
11.6.2 Interrupt Control Register 151
11.6.3 Wake-up IPL Setting Register 154
11.6.4 Interrupt Sequence 155
11.6.5 Interrupt Response Time 156
11.6.6 IPL After Interrupt Request Acceptance 157
11.6.7 Register Saving 157
11.7 Register Restoring from Interrupt Handler 158
11.8 Interrupt Priority 158
11.9 Priority Resolver 158
11.10 External Interrupt 160
11.11 NMI 161
11.12 Key Input Interrupt 162
11.13 Intelligent I/O Interrupt 163
11.14 Notes on Interrupts 166
11.14.1 ISP Setting 166
11.14.2 NMI 166
11.14.3 External Interrupt 166
12. Watchdog Timer 167
13. DMAC 169
13.1 Transfer Cycle 178
13.1.1 Effect of Transfer Address and Data Bus Width 178
13.1.2 Effect of Bus Timing 179
13.1.3 Effect of $\overline{R D Y}$ Signal 179
13.2 DMA Transfer Cycle 181
13.3 Channel Priority and DMA Transfer Timing 182
13.4 Notes on DMAC 183
13.4.1 DMAC-associated Register Settings 183
13.4.2 Read from DMAC-associated Registers 183
14. DMAC II 184
14.1 DMAC II Settings 184
14.1.1 Registers RIPL1 and RIPL2 185
14.1.2 DMAC II Index 186
14.1.3 Interrupt Control Register of the Peripheral Function 189
14.1.4 Relocatable Vector Table of the Peripheral Function 189
14.1.5 IRLT Bit in the IIOiIE Register ($\mathrm{i}=0$ to 11). 189
14.2 DMAC II Performance 189
14.3 Transfer Types 189
14.3.1 Memory-to-memory Transfer 189
14.3.2 Immediate Data Transfer 190
14.3.3 Calculation Transfer 190
14.4 Transfer Modes 190
14.4.1 Single Transfer 190
14.4.2 Burst Transfer 190
14.4.3 Multiple Transfer 190
14.5 Chained Transfer 191
14.6 DMA II Transfer Complete Interrupt 191
14.7 Execution Time 192
15. Programmable I/O Ports 193
15.1 Port Pi Register (Pi register, $\mathrm{i}=0$ to 15) 195
16. Timers 196
16.1 Timer A 198
16.1.1 Timer Mode 205
16.1.2 Event Counter Mode 207
16.1.3 One-shot Timer Mode 211
16.1.4 Pulse-width Modulation Mode 213
16.2 Timer B 216
16.2.1 Timer Mode 219
16.2.2 Event Counter Mode 221
16.2.3 Pulse Period/Pulse-width Measure Mode 223
16.3 Notes on Timers 226
16.3.1 Timer A and Timer B 226
16.3.2 Timer A 226
16.3.3 Timer B 228
17. Three-phase Motor Control Timers 229
17.1 Modulation Modes of Three-phase Motor Control Timers 236
17.2 Timer B2 237
17.3 Timers A4, A1, and A2 239
17.4 Simultaneous Conduction Prevention and Dead Time Timer 242
17.5 Three-phase Motor Control Timer Operation 243
17.6 Notes on Three-phase Motor Control Timers 246
17.6.1 Shutdown 246
17.6.2 Register setting 246
18. Serial Interface 247
18.1 Synchronous Serial Interface Mode 264
18.1.1 Reset Procedure on Transmit/Receive Error 269
18.1.2 CLK Polarity 269
18.1.3 LSB First and MSB First Selection 270
18.1.4 Continuous Receive Mode 270
18.1.5 Serial Data Logical Inversion 271
18.1.6 CTS/RTS Function 271
18.2 Asynchronous Serial Interface Mode (UART Mode) 272
18.2.1 Bit Rate 277
18.2.2 Reset Procedure on Transmit/Receive Error 278
18.2.3 LSB First and MSB First Selection 278
18.2.4 Serial Data Logical Inversion 279
18.2.5 TXD and RXD I/O Polarity Inversion 280
18.2.6 CTS/RTS Function 280
18.3 Special Mode 1 (${ }^{2}$ C Mode) 281
18.3.1 Start Condition and Stop Condition Detection 287
18.3.2 Start Condition and Stop Condition Generation 287
18.3.3 Arbitration 288
18.3.4 SCL Control and Clock Synchronization 289
18.3.5 SDA Output 291
18.3.6 SDA Input 291
18.3.7 Acknowledge 291
18.3.8 Initialization of Transmit/Receive Operation 291
18.4 Special Mode 2 292
18.4.1 $\overline{\text { SSi }}$ Input Pin Function ($\mathrm{i}=0$ to 6) 294
18.4.2 Clock Phase Setting 295
18.5 Notes on Serial Interface 297
18.5.1 Changing the UiBRG Register ($\mathrm{i}=0$ to 8) 297
18.5.2 Synchronous Serial Interface Mode 297
18.5.3 Special Mode 1 (${ }^{2}$ C Mode) 297
18.5.4 Reset Procedure on Communication Error 298
19. A/D Converter 299
19.1 Mode Descriptions 307
19.1.1 One-shot Mode 307
19.1.2 Repeat Mode 308
19.1.3 Single Sweep Mode 309
19.1.4 Repeat Sweep Mode 0 310
19.1.5 Repeat Sweep Mode 1 311
19.1.6 Multi-port Single Sweep Mode 312
19.1.7 Multi-port Repeat Sweep Mode 0 313
19.2 Functions 314
19.2.1 Resolution Selection 314
19.2.2 Sample and Hold Function 314
19.2.3 Trigger Selection 314
19.2.4 DMAC Operating Mode 314
19.2.5 Function-extended Analog Input Pins 315
19.2.6 External Operating Amplifier (Op-AMP) Connection Mode 315
19.2.7 Power Saving 316
19.2.8 Output Impedance of Sensor Equivalent Circuit under A/D Conversion 316
19.3 Notes on A/D Converter 318
19.3.1 Notes on Designing Boards 318
19.3.2 Notes on Programming 319
20. D/A Converter 320
21. CRC Calculator 322
22. X-Y Conversion 325
22.1 Data Conversion on Reading 326
22.2 Data Conversion on Writing 328
23. Intelligent I/O 329
23.1 Base Timer (for Groups 0 to 2) 344
23.2 Time Measurement (for Groups 0 and 1) 350
23.3 Waveform Generation (for Groups 0 to 2) 354
23.3.1 Single-phase Waveform Output Mode (for Groups 0 to 2) 355
23.3.2 Inverted Waveform Output Mode (for Groups 0 to 2) 357
23.3.3 Set/Reset Waveform Output Mode (SR Waveform Output Mode) (for Groups 0 to 2) 359
23.3.4 Bit Modulation PWM Output Mode (for Group 2) 362
23.3.5 Real-Time Port Output Mode (RTP Output Mode) (for Group 2) 364
23.3.6 Parallel Real-Time Port Output Mode (RTP Output Mode) (for Group 2) 366
23.4 Group 2 Serial Interface 368
23.4.1 Variable Synchronous Serial Interface Mode (for Group 2) 373
24. Multi-master $\mathrm{I}^{2} \mathrm{C}$-bus Interface 376
24.1 Multi-master $\mathrm{I}^{2} \mathrm{C}$-bus Interface-associated Registers 378
24.1.1 $\quad{ }^{2} \mathrm{C}$-bus Transmit/Receive Shift Register (I2CTRSR) 378
24.1.2 $\quad{ }^{2} \mathrm{C}$-bus Slave Address Register (I2CSAR) 379
24.1.3 $\quad \mathrm{I}^{2} \mathrm{C}$-bus Control Register 0 (I2CCR0) 380
24.1.4 $\quad \mathrm{I}^{2} \mathrm{C}$-bus Clock Control Register (I2CCCR) 382
24.1.5 $\quad I^{2} \mathrm{C}$-bus START and STOP Conditions Control Register (I2CSSCR) 384
24.1.6 $\quad \mathrm{I}^{2} \mathrm{C}$-bus Control Register 1 (I2CCR1) 385
24.1.7 $\quad \mathrm{I}^{2} \mathrm{C}$-bus Control Register 2 (I2CCR2) 388
24.1.8 $\quad \mathrm{I}^{2} \mathrm{C}$-bus Status Register (I2CSR) 390
24.1.9 $\quad I^{2} \mathrm{C}$-bus Mode Register (I2CMR) 394
24.2 Generating a START Condition 395
24.3 Generating a STOP Condition 397
24.4 START Condition Redundancy Prevention Function 398
24.5 Detecting START and STOP Conditions 399
24.6 Data Transmission and Reception 401
24.6.1 Master Transmission 402
24.6.2 Slave Reception 403
24.7 Notes on Using Multi-master $\mathrm{I}^{2} \mathrm{C}$-bus Interface 404
24.7.1 Accessing Multi-master $I^{2} \mathrm{C}$-bus Interface-Associated Registers 404
24.7.2 Generating a Repeated START condition 406
25. CAN Module 407
25.1 CAN SFRs 410
25.1.1 CANO Control Register (COCTLR Register) 411
25.1.2 CANO Clock Select Register (COCLKR Register) 415
25.1.3 CANO Bit Configuration Register (COBCR Register) 416
25.1.4 CANO Mask Register k (COMKRk Register) (k=0 to 7) 418
25.1.5 CAN0 FIFO Received ID Compare Register n (Registers COFIDCR0 and C0FIDCR1)
($\mathrm{n}=0,1$) 419
25.1.6 CANO Mask Invalid Register (COMKIVLR Register) 421
25.1.7 CANO Mailbox (COMBj Register) ($=0$ to 31) 422
25.1.8 CANO Mailbox Interrupt Enable Register (COMIER Register) 426
25.1.9 CANO Message Control Register j (COMCTLj Register) (j = 0 to 31) 427
25.1.10 CANO Receive FIFO Control Register (CORFCR Register) 430
25.1.11 CANO Receive FIFO Pointer Control Register (CORFPCR Register) 433
25.1.12 CANO Transmit FIFO Control Register (COTFCR Register) 434
25.1.13 CANO Transmit FIFO Pointer Control Register (COTFPCR Register) 436
25.1.14 CANO Status Register (COSTR Register) 437
25.1.15 CANO Mailbox Search Mode Register (COMSMR Register) 440
25.1.16 CANO Mailbox Search Status Register (COMSSR Register) 441
25.1.17 CANO Channel Search Support Register (COCSSR Register) 443
25.1.18 CANO Acceptance Filter Support Register (COAFSR Register) 444
25.1.19 CANO Error Interrupt Enable Register (COEIER Register) 445
25.1.20 CANO Error Interrupt Factor Judge Register (COEIFR Register) 447
25.1.21 CANO Receive Error Count Register (CORECR Register) 450
25.1.22 CANO Transmit Error Count Register (COTECR Register) 451
25.1.23 CANO Error Code Store Register (COECSR Register) 452
25.1.24 CANO Time Stamp Register (COTSR Register) 454
25.1.25 CANO Test Control Register (COTCR Register) 455
25.2 Operating Mode 458
25.2.1 CAN Reset Mode 459
25.2.2 CAN Halt Mode 460
25.2.3 CAN Sleep Mode 461
25.2.4 CAN Operation Mode (Excluding Bus-Off State) 462
25.2.5 CAN Operation Mode (Bus-Off State) 463
25.3 CAN Communication Speed Configuration 464
25.3.1 CAN Clock Configuration. 464
25.3.2 Bit Timing Configuration 464
25.3.3 Bit rate 465
25.4 Mailbox and Mask Register Structure 466
25.5 Acceptance Filtering and Masking Function 468
25.6 Reception and Transmission 471
25.6.1 Reception 472
25.6.2 Transmission 474
25.7 CAN Interrupt 475
26. I/O Pins 476
26.1 Port Pi Direction Register (PDi Register, i=0 to 15) 477
26.2 Output Function Select Register 478
26.3 Input Function Select Register 496
26.4 Pull-up Control Registers 0 to 4 (Registers PUR0 to PUR4) 501
26.5 Port Control Register (PCR Register) 504
26.6 How To Configure Unused Pins 505
27. Flash Memory 508
27.1 Overview 508
27.2 Flash Memory Protection 510
27.2.1 Lock Bit Protection 510
27.2.2 ROM Code Protection 510
27.2.3 ID Code Protection 511
27.2.4 Forcible Erase Function 512
27.2.5 Standard Serial I/O Mode Disable Function 513
27.3 CPU Rewrite Mode 514
27.3.1 CPU Operating Mode and Flash Memory Rewrite 522
27.3.2 Flash Memory Rewrite Bus Timing 523
27.3.3 Software Commands 527
27.3.4 Mode Transition 528
27.3.5 How to Issue Software Commands 529
27.3.6 Status Check 535
27.4 Standard Serial I/O Mode 536
27.5 Parallel I/O mode 539
27.6 Notes on Flash Memory Rewriting 540
27.6.1 Note on Power Supply 540
27.6.2 Note on Hardware Reset 540
27.6.3 Note on Flash Memory Protection 540
27.6.4 Notes on Programming 540
27.6.5 Notes on Interrupts 540
27.6.6 Notes on Rewrite Control Program 541
27.6.7 Notes on Number of Programming/Erasure and Software Command Execution Time 541
27.6.8 Other Notes 541
28. Electrical Characteristics 542
29. Usage Notes 583
29.1 Notes on Board Designing 583
29.1.1 Power Supply Pins 583
29.1.2 Supply Voltage 583
29.2 Notes on Register Setting 584
29.2.1 Registers with Write-only Bits 584
29.3 Notes on Clock Generator 586
29.3.1 Sub Clock 586
29.3.2 Power Control 586
29.4 Notes on Bus 587
29.4.1 Notes on System Designing 587
29.4.2 Notes on Register Settings 587
29.5 Notes on Interrupts 588
29.5.1 ISP Setting 588
29.5.2 NMI 588
29.5.3 External Interrupt 588
29.6 Notes on DMAC 589
29.6.1 DMAC-associated Register Settings 589
29.6.2 Read from DMAC-associated Registers 589
29.7 Notes on Timers 590
29.7.1 Timer A and Timer B 590
29.7.2 Timer A 590
29.7.3 Timer B 592
29.8 Notes on Three-phase Motor Control Timers 593
29.8.1 Shutdown 593
29.8.2 Register setting 593
29.9 Notes on Serial Interface 594
29.9.1 Changing the UiBRG Register ($\mathrm{i}=0$ to 8) 594
29.9.2 Synchronous Serial Interface Mode 594
29.9.3 Special Mode 1 (${ }^{2}$ C Mode) 594
29.9.4 Reset Procedure on Communication Error 595
29.10 Notes on A/D Converter 596
29.10.1 Notes on Designing Boards 596
29.10.2 Notes on Programming 597
29.11 Notes on Flash Memory Rewriting 598
29.11.1 Note on Power Supply 598
29.11.2 Note on Hardware Reset 598
29.11.3 Note on Flash Memory Protection 598
29.11.4 Notes on Programming 598
29.11.5 Notes on Interrupts 598
29.11.6 Notes on Rewrite Control Program 599
29.11.7 Notes on Number of Programming/Erasure and Software Command Execution Time 599
29.11.8 Other Notes 599
Appendix 1. Package Dimensions 600
INDEX 601

R32C/117 Group
RENESAS MCU

1. Overview

1.1 Features

The M16C Family offers a robust platform of 32-/16-bit CISC microcomputers (MCUs) featuring high ROM code efficiency, extensive EMI/EMS noise immunity, ultra-low power consumption, high-speed processing in actual applications, and numerous and varied integrated peripherals. Extensive device scalability from low- to high-end, featuring a single architecture as well as compatible pin assignments and peripheral functions, provides support for a vast range of application fields.

The R32C/100 Series is a high-end microcontroller series in the M16C Family. With a 4-Gbyte memory space, it achieves maximum code efficiency and high-speed processing with 32-bit CISC architecture, multiplier, multiply-accumulate unit, and floating point unit. The selection from the broadest choice of onchip peripheral devices - UART, CRC, DMAC, A/D and D/A converters, timers, $I^{2} \mathrm{C}$, and watchdog timer enables to minimize external components.

The R32C/117 Group is the standard MCU within the R32C/100 Series. This product, provided as 100-pin and 144-pin plastic molded LQFP packages, configures nine channels of serial interface, one channel of multi-master $\mathrm{I}^{2} \mathrm{C}$-bus interface, and one channel of CAN module.

1.1.1 Applications

Car audio, audio, printer, office/industrial equipment, etc.

1.1.2 Performance Overview

Table 1.1 to Table 1.4 list the performance overview of the R32C/117 Group.
Table 1.1 Performance Overview for the 144 pin-Package (1/2)

Unit	Function	Explanation
CPU	Central processing unit	R32C/100 Series CPU Core - Basic instructions: 108 - Minimum instruction execution time: $15.625 \mathrm{~ns}(f(C P U)=64 \mathrm{MHz})$ - Multiplier: 32-bit $\times 32$-bit $\rightarrow 64$-bit - Multiply-accumulate unit: 32 -bit $\times 32$-bit +64 -bit $\rightarrow 64$-bit - IEEE-754 floating point standard: Single precision - 32-bit barrel shifter - Operating mode: Single-chip mode, memory expansion mode, microprocessor mode (optional (1))
Memory		Flash memory: 384 Kbytes to 1 Mbyte RAM: 40 K/48 K/63 Kbytes Data flash: 4 Kbytes $\times 2$ blocks Refer to Table 1.5 for each product's memory size
Voltage Detector	Low voltage detector	Optional (1) Low voltage detection interrupt
Clock	Clock generator	- 4 circuits (main clock, sub clock, PLL, on-chip oscillator) - Oscillation stop detector: Main clock oscillator stop/restart detection - Frequency divide circuit: Divide-by-2 to divide-by-24 selectable - Low power modes: Wait mode, stop mode
External Bus Expansion	Bus and memory expansion	- Address space: 4 Gbytes (of which up to 64 Mbytes is user accessible) - External bus Interface: Support for wait-state insertion, 4 chip select outputs - Bus format: Separate bus/Multiplexed bus selectable, data bus width selectable (8/16/32 bits)
Interrupts		Interrupt vectors: 261 External interrupt inputs: $\overline{\mathrm{NMI}}, \overline{\mathrm{INT}} \times 9$, key input $\times 4$ Interrupt priority levels: 7
Watchdog Timer		15 bits $\times 1$ (selectable input frequency from prescaler output)
DMA	DMAC	4 channels - Cycle-steal transfer mode - Request sources: 57 - 2 transfer modes: Single transfer, repeat transfer
	DMAC II	- Can be activated by any peripheral interrupt source - 3 transfer functions: Immediate data transfer, calculation transfer, chained transfer
I/O Ports	Programmable I/O ports	- 2 input-only ports - 120 CMOS I/O ports (of which 32 are 5 V tolerant) - A pull-up resistor is selectable for every 4 input ports (except 5 V tolerant inputs)

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

Table 1.2 Performance Overview for the 144-pin Package (2/2)

Unit	Function	Explanation
Timer	Timer A	16 -bit timer $\times 5$ Timer mode, event counter mode, one-shot timer mode, pulse-width modulation (PWM) mode Two-phase pulse signal processing in event counter mode (twophase encoder input) $\times 3$
	Timer B	$\begin{aligned} & \text { 16-bit timer } \times 6 \\ & \text { Timer mode, event counter mode, pulse frequency measurement } \\ & \text { mode, pulse-width measurement mode } \end{aligned}$
	Three-phase motor control timer	Three-phase motor control timer $\times 1$ (timers A1, A2, A4, and B2 used) 8 -bit programmable dead time timer
Serial Interface	UART0 to UART8	Asynchronous/synchronous serial interface $\times 9$ channels - ${ }^{2}$ ²-bus (UART0 to UART6) - Special mode 2 (UART0 to UART6) - IEBus (optional ${ }^{(1)}$) (UART0 to UART6)
A/D Converter		10-bit resolution $\times 34$ channels Sample and hold functionality integrated
D/A Converter		8-bit resolution $\times 2$
CRC Calculator		CRC-CCITT ($\left.\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{5}+1\right)$
X-Y Converter		16 bits $\times 16$ bits
Intelligent I/O		Time measurement (input capture): 16 bits $\times 16$ Waveform generation (output compare): 16 bits $\times 24$ Serial interface: Variable-length synchronous serial I/O mode, IEBus mode (optional (1))
Multi-master ${ }^{2} \mathrm{C}$ C-bus Interface		1 channel
CAN Module		1 channel CAN functionality compliant with ISO11898-1 32 mailboxes
Flash Memory		Programming and erasure supply voltage: $\mathrm{VCC}=3.0$ to 5.5 V Minimum endurance: 1,000 program/erase cycles Security protection: ROM code protect, ID code protect Debugging: On-chip debug, on-board flash programming
Operating Frequency/Supply Voltage		64 MHz (high speed version)/VCC $=3.0$ to 5.5 V 50 MHz (normal speed version)/ $\mathrm{VCC}=3.0$ to 5.5 V
Operating Temperature		$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
Current Consumption		$\begin{aligned} & 45 \mathrm{~mA}(\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{f}(\mathrm{CPU})=64 \mathrm{MHz}) \\ & 35 \mathrm{~mA}(\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{f}(\mathrm{CPU})=50 \mathrm{MHz}) \\ & 8 \mu \mathrm{~A}(\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz} \text {, in wait mode }) \end{aligned}$
Package		144-pin plastic molded LQFP (PLQP0144KA-A)

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

Table 1.3 Performance Overview for the 100-pin Package (1/2)

Unit	Function	Explanation
CPU	Central processing unit	R32C/100 Series CPU Core - Basic instructions: 108 - Minimum instruction execution time: $15.625 \mathrm{~ns}(f(C P U)=64 \mathrm{MHz})$ - Multiplier: 32 -bit $\times 32$-bit $\rightarrow 64$-bit - Multiply-accumulate unit: 32 -bit $\times 32$-bit +64 -bit $\rightarrow 64$-bit - IEEE-754 floating point standard: Single precision -32-bit barrel shifter - Operating mode: Single-chip mode, memory expansion mode, microprocessor mode (optional ${ }^{(1)}$)
Memory		Flash memory: 128 Kbytes to 1 Mbyte RAM: 20 K/40 K/48 K/63 Kbytes Data flash: 4 Kbytes $\times 2$ blocks Refer to Table 1.5 for each product's memory size
Voltage Detector	Low voltage detector	Optional (1) Low voltage detection interrupt
Clock	Clock generator	- 4 circuits (main clock, sub clock, PLL, on-chip oscillator) - Oscillation stop detector: Main clock oscillator stop/restart detection - Frequency divide circuit: Divide-by-2 to divide-by-24 selectable - Low power modes: Wait mode, stop mode
External Bus Expansion	Bus and memory expansion	- Address space: 4 Gbytes (of which up to 64 Mbytes is user accessible) - External bus Interface: Support for wait-state insertion, 4 chip select outputs - Bus format: Separate bus/Multiplexed bus selectable, data bus width selectable (8/16 bits)
Interrupts		Interrupt vectors: 261 External interrupt inputs: $\overline{\mathrm{NMI}}, \overline{\mathrm{INT}} \times 6$, key input $\times 4$ Interrupt priority levels: 7
Watchdog Timer		15 bits $\times 1$ (selectable input frequency from prescaler output)
DMA	DMAC	4 channels - Cycle-steal transfer mode - Request sources: 51 - 2 transfer modes: Single transfer, repeat transfer
	DMAC II	- Can be activated by any peripheral interrupt source - 3 transfer functions: Immediate data transfer, calculation transfer, chained transfer
I/O Ports	Programmable I/O ports	- 2 input-only ports - 84 CMOS I/O ports (of which 32 are 5 V tolerant) - A pull-up resistor is selectable for every 4 input ports (except 5 V tolerant inputs)

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

Table 1.4 Performance Overview for the 100-pin Package (2/2)

Unit	Function	Explanation
Timer	Timer A	16 -bit timer $\times 5$ Timer mode, event counter mode, one-shot timer mode, pulse-width modulation (PWM) mode Two-phase pulse signal processing in event counter mode (twophase encoder input) $\times 3$
	Timer B	$\begin{aligned} & \text { 16-bit timer } \times 6 \\ & \text { Timer mode, event counter mode, pulse frequency measurement } \\ & \text { mode, pulse-width measurement mode } \end{aligned}$
	Three-phase motor control timer	Three-phase motor control timer $\times 1$ (timers A1, A2, A4, and B2 used) 8 -bit programmable dead time timer
Serial Interface	UART0 to UART8	Asynchronous/synchronous serial interface $\times 9$ channels - ${ }^{2}$ ²-bus (UART0 to UART6) - Special mode 2 (UART0 to UART6) - IEBus (optional ${ }^{(1)}$) (UART0 to UART6)
A/D Converter		10-bit resolution $\times 26$ channels Sample and hold functionality integrated
D/A Converter		8-bit resolution $\times 2$
CRC Calculator		CRC-CCITT ($\left.\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{5}+1\right)$
X-Y Converter		16 bits $\times 16$ bits
Intelligent I/O		Time measurement (input capture): 16 bits $\times 16$ Waveform generation (output compare): 16 bits $\times 19$ Serial interface: Variable-length synchronous serial I/O mode, IEBus mode (optional (1))
Multi-master ${ }^{2} \mathrm{C}$ C-bus Interface		1 channel
CAN Module		1 channel CAN functionality compliant with ISO11898-1 32 mailboxes
Flash Memory		Programming and erasure supply voltage: $\mathrm{VCC}=3.0$ to 5.5 V Minimum endurance: 1,000 program/erase cycles Security protection: ROM code protect, ID code protect Debugging: On-chip debug, on-board flash programming
Operating Frequency/Supply Voltage		64 MHz (high speed version)/VCC $=3.0$ to 5.5 V 50 MHz (normal speed version)/ $\mathrm{VCC}=3.0$ to 5.5 V
Operating Temperature		$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
Current Consumption		$\begin{aligned} & 45 \mathrm{~mA}(\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{f}(\mathrm{CPU})=64 \mathrm{MHz}) \\ & 35 \mathrm{~mA}(\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{f}(\mathrm{CPU})=50 \mathrm{MHz}) \\ & 8 \mu \mathrm{~A}(\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz} \text {, in wait mode }) \end{aligned}$
Package		100-pin plastic molded LQFP (PLQP0100KB-A)

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

1.2 Product Information

Table 1.5 and Table 1.6 list the product information and Figure 1.1 shows the details of the part number.
Table 1.5 R32C/117 Group Product List for Normal Speed Version (1/2) As of September, 2010

Part Number	Package Code ${ }^{(1)}$	ROM Capacity (2)	RAM Capacity	Remarks
R5F6417BNFB (P)			20 Kbytes	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F6417BDFB	PLQP0100KB-A	128 Kbytes		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F6417BPFB (P)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F6417ANFB (P)	PLQP0100KB-A	256 Kbytes + 8 Kbytes		$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F6417ADFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F6417APFB (P)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64175NFD (P)	PLQP0144KA-A	384 Kbytes + 8 Kbytes	40 Kbytes	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64175DFD				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64175PFD				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64175NFB (P)	PLQP0100KB-A			$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64175DFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64175PFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64176NFD (P)		512 Kbytes + 8 Kbytes		$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64176DFD	PLQP0144KA-A			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64176PFD				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64176NFB (P)	PLQP0100KB-A			$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64176DFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64176PFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64177NFD (P)		640 Kbytes + 8 Kbytes	48 Kbytes	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64177DFD	PLQP0144KA-A			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64177PFD				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64177NFB (P)	PLQP0100KB-A			$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64177DFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64177PFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64178NFD (P)	PLQP0144KA-A	768 Kbytes + 8 Kbytes	63 Kbytes	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64178DFD				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64178PFD				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64178NFB (P)	PLQP0100KB-A			$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64178DFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64178PFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64179NFD (P)	PLQP0144KA-A	$\begin{aligned} & 1 \text { Mbyte } \\ & +8 \text { Kbytes } \end{aligned}$		$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64179DFD				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64179PFD				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64179NFB (P)	PLQP0100KB-A			$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64179DFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64179PFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)

(D): Under development (P): On planning phase

Notes:

1. The old package codes are as follows:PLQP0100KB-A: 100P6Q-A; PLQP0144KA-A: 144P6Q-A
2. Data flash memory provides an additional 8 Kbytes of ROM.

Table 1.6 R32C/117 Group Product List for High Speed Version (2/2)
As of September, 2010

Part Number	Package Code (1)	ROM Capacity (2)	RAM Capacity	Remarks
R5F6417BHNFB (P)			20 Kbytes	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F6417BHDFB	PLQP0100KB-A	128 Kbytes		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F6417BHPFB (P)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F6417AHNFB (P)	PLQP0100KB-A	$\begin{aligned} & 256 \text { Kbytes } \\ & +8 \text { Kbytes } \end{aligned}$		$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F6417AHDFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F6417AHPFB (P)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64175HNFD (P)	PLQP0144KA-A	384 Kbytes + 8 Kbytes	40 Kbytes	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64175HDFD				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64175HPFD (D)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64175HNFB (P)	PLQP0100KB-A			$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64175HDFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64175HPFB (D)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64176HNFD (P)		512 Kbytes + 8 Kbytes		$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64176HDFD	PLQP0144KA-A			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64176HPFD (D)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64176HNFB (P)	PLQP0100KB-A			$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64176HDFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64176HPFB (D)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64177HNFD (P)	PLQP0144KA-A	640 Kbytes + 8 Kbytes	48 Kbytes	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64177HDFD				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64177HPFD (D)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64177HNFB (P)	PLQP0100KB-A			$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64177HDFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64177HPFB (D)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64178HNFD (P)	PLQP0144KA-A	768 Kbytes + 8 Kbytes	63 Kbytes	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64178HDFD				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64178HPFD (D)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64178HNFB (P)	PLQP0100KB-A			$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64178HDFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64178HPFB (D)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64179HNFD (P)	PLQP0144KA-A	$\begin{aligned} & 1 \text { Mbyte } \\ & +8 \text { Kbytes } \end{aligned}$		$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64179HDFD				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64179HPFD (D)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)
R5F64179HNFB (P)	PLQP0100KB-A			$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (N version)
R5F64179HDFB				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (D version)
R5F64179HPFB (D)				$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (P version)

(D): Under development (P): On planning phase

Notes:

1. The old package codes are as follows:PLQP0100KB-A: 100P6Q-A; PLQP0144KA-A: 144P6Q-A
2. Data flash memory provides an additional 8 Kbytes of ROM.

Figure 1.1 Part Numbering

1.3 Block Diagram

Figure 1.2 shows the block diagram for the R32C/117 Group.

Figure 1.2 R32C/117 Group Block Diagram

1.4 Pin Assignments

Figure 1.3 and Figure 1.4 show the pin assignments (top view) and Table 1.7 to Table 1.13 list the pin characteristics.

Figure 1.3 Pin Assignment for the 144-pin Package (top view)

Table 1.7 Pin Characteristics for the 144-pin Package (1/4)

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Module Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
1		P9_6			TXD4/SDA4/SRXD4		ANEX1	
2		P9_5			CLK4		ANEXO	
3		P9_4		TB4IN	CTS4/RTS4/ $\overline{\text { SS4 }}$		DA1	
4		P9_3		TB3IN	CTS3/RTS3/5S3		DA0	
5		P9_2		TB2IN	TXD3/SDA3/SRXD3	OUTC2_0/ISTXD2/ IEOUT		
6		P9_1		TB1IN	RXD3/SCL3/STXD3	ISRXD2/IEIN		
7		P9_0		TBOIN	CLK3			
8		P14_6	$\overline{\text { INT8 }}$					
9		P14_5	INT7					
10		P14_4	INT6					
11		P14_3						
12	VDC0							
13		P14_1						
14	VDC1							
15	NSD							
16	CNVSS							
17	XCIN	P8_7						
18	XCOUT	P8_6						
19	$\overline{\text { RESET }}$							
20	XOUT							
21	VSS							
22	XIN							
23	VCC							
24		P8_5	$\overline{\text { NMI }}$					
25		P8_4	$\overline{\mathrm{NT} 2}$					
26		P8_3	$\overline{\text { INT1 }}$		CANOIN/('CANOWU			
27		P8_2	$\overline{\text { INTO }}$		CANOOUT			
28		P8_1		TA4IN/U	CTS5/RTS5/SS5	IIO1_5/UD0B/UD1B		
29		P8_0		TA4OUT/U	RXD5/SCL5/STXD5	UD0A/UD1A		
30		P7_7		TA3IN	$\begin{aligned} & \text { CLK5/CANOIN/ } \\ & \text { CANOWU } \end{aligned}$	IIO1_4/UD0B/UD1B		
31		P7_6		TA3OUT	TXD5/SDA5/SRXD5/ CTS8/RTS8/CAN0OUT	IIO1_3/UD0A/UD1A		
32		P7_5		TA2IN/ \bar{W}	RXD8	IIO1_2		
33		P7_4		TA2OUT/W	CLK8	IIO1_1		
34		P7_3		TA1IN/V	CTS2/RTS2/SS2/TXD8	IIO1_0		
35		P7_2		TA1OUT/V	CLK2			
36		P7_1		TB5IN/ TAOIN	$\begin{aligned} & \text { RXD2/SCL2/STXD2/ } \\ & \text { MSCL } \end{aligned}$	IIO1_7/OUTC2_2/ ISRXD2/IEIN		

Table 1.8 Pin Characteristics for the 144-pin Package (2/4)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Module Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
37		P7_0		TA00UT	TXD2/SDA2/SRXD2/ MSDA	IIO1_6/OUTC2_0/ ISTXD2/IEOUT		
38		P6_7			TXD1/SDA1/SRXD1			
39	VCC							
40		P6_6			RXD1/SCL1/STXD1			
41	VSS							
42		P6_5			CLK1			
43		P6_4			$\overline{\mathrm{CTS1}} / \overline{\mathrm{RTS}} 1 / \overline{\mathrm{SS} 1}$	OUTC2_1/ISCLK2		
44		P6_3			TXD0/SDA0/SRXD0			
45		P6_2		TB2IN	RXD0/SCL0/STXD0			
46		P6_1		TB1IN	CLK0			
47		P6_0		TBOIN	$\overline{\mathrm{CTSO}} / \overline{\mathrm{RTSO}} / \overline{\mathrm{SSO}}$			
48		P13_7				OUTC2_7		D31
49		P13_6				OUTC2_1/ISCLK2		D30
50		P13_5				$\begin{aligned} & \text { OUTC2_2/ISRXD2/ } \\ & \text { IEIN } \end{aligned}$		D29
51		P13_4				OUTC2_0/ISTXD2/ IEOUT		D28
52		P5_7			$\overline{\text { CTS7/RTS7 }}$			$\overline{\mathrm{RDY} / \overline{\mathrm{CS}} 3}$
53		P5_6			RXD7			ALE/CS2
54		P5_5			CLK7			$\overline{\text { HOLD }}$
55		P5_4			TXD7			$\overline{\mathrm{HLDA}} / \overline{\mathrm{CS} 1}$
56		P13_3				OUTC2_3		D27
57	VSS							
58		P13_2				OUTC2_6		D26
59	VCC							
60		P13_1				OUTC2_5		D25
61		P13_0				OUTC2_4		D24
62		P5_3						CLKOUT/ BCLK
63		P5_2						$\overline{\mathrm{RD}}$
64		P5_1						$\overline{\text { WR1/ }} \overline{\text { BC1 }}$
65		P5_0						$\overline{\mathrm{WRO}} / \overline{\mathrm{WR}}$
66		P12_7						D23
67		P12_6						D22
68		P12_5						D21
69		P4_7			TXD6/SDA6/SRXD6			CSO/A23
70		P4_6			RXD6/SCL6/STXD6			CS1/A22
71		P4_5			CLK6			CS2/A21
72		P4_4			$\overline{\text { CTS6/RTS6/SS6 }}$			CS3/A20
73		P4_3			TXD3/SDA3/SRXD3	OUTC2_0/ISTXD2/ IEOUT		A19
74	VCC							

Table 1.9 Pin Characteristics for the 144-pin Package (3/4)

Pin No.	Control Pin	Port	$\begin{array}{\|c\|} \hline \text { Interrupt } \\ \text { Pin } \end{array}$	Timer Pin	UART/CAN Module Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
75		P4_2			RXD3/SCL3/STXD3	ISRXD2/IEIN		A18
76	VSS							
77		P4_1			CLK3			A17
78		P4_0			$\overline{\mathrm{CTS3}} / \overline{\mathrm{RTS3}} / \overline{\mathrm{SS3}}$			A16
79		P3_7		TA4IN/U				A15(/D15)
80		P3_6		TA4OUT/U				A14(/D14)
81		P3_5		TA2IN/W				A13(/D13)
82		P3_4		TA2OUT/W				A12(/D12)
83		P3_3		TA1IN/V				A11(/D11)
84		P3_2		TA1OUT/V				A10(/D10)
85		P3_1		TA3OUT		UD0B/UD1B		A9(ID9)
86		P12_4						D20
87		P12_3			CTS6/RTS6/SS6			D19
88		P12_2			RXD6/SCL6/STXD6			D18
89		P12_1			CLK6			D17
90		P12_0			TXD6/SDA6/SRXD6			D16
91	VCC							
92		P3_0		TA0OUT		UD0A/UD1A		A8(ID8)
93	VSS							
94		P2_7					AN2_7	A7(ID7)
95		P2_6					AN2_6	A6(/D6)
96		P2_5					AN2_5	A5(/D5)
97		P2_4					AN2_4	A4(ID4)
98		P2_3					AN2_3	A3(ID3)
99		P2_2					AN2_2	A2(ID2)
100		P2_1					AN2_1	$\begin{array}{\|l\|} \hline \mathrm{A} 1(/ \mathrm{D} 1) / \\ \hline \mathrm{BC2}(/ \mathrm{D} 1) \\ \hline \end{array}$
101		P2_0					AN2_0	$\begin{array}{\|l\|} \hline \mathrm{AO}(/ \mathrm{D} 0) / \\ \hline \mathrm{BCO}(/ \mathrm{DO} 0) \end{array}$
102		P1_7	$\overline{\text { INT5 }}$			IIO0_7/IIO1_7		D15
103		P1_6	$\overline{\text { INT4 }}$			IIO0_6/IIO1_6		D14
104		P1_5	$\overline{\text { INT3 }}$			IIO0_5/IIO1_5		D13
105		P1_4				IIOO_4/IIO1_4		D12
106		P1_3				IIO0_3/IIO1_3		D11
107		P1_2				IIOO_2/IIO1_2		D10
108		P1_1				IIO0_1/IIO1_1		D9
109		P1_0				IIO0_0/IIO1_0		D8
110		P0_7					ANO_7	D7
111		P0_6					ANO_6	D6
112		P0_5					ANO_5	D5
113		P0_4					ANO_4	D4
114		P11_4						$\overline{\mathrm{BC}} / \overline{\text { WR3 }}$

Table 1.10 Pin Characteristics for the 144-pin Package (4/4)

Pin No.	Control Pin	Port	$\begin{gathered} \hline \text { Interrupt } \\ \text { Pin } \end{gathered}$	Timer Pin	UART/CAN Module Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
115		P11_3			CTS8/RTS8	IIO1_3		CS3/WR2
116		P11_2			RXD8	IIO1_2		$\overline{\mathrm{CS} 2}$
117		P11_1			CLK8	IIO1_1		$\overline{\text { CS1 }}$
118		P11_0			TXD8	IIO1_0		$\overline{\text { CSO }}$
119		P0_3					ANO_3	D3
120		PO_2					ANO_2	D2
121		P0_1					ANO_1	D1
122		PO_0					ANO_0	D0
123		P15_7			CTS6/RTS6/SS6	IIO0_7	AN15_7	
124		P15_6			CLK6	IIO0_6	AN15_6	
125		P15_5			RXD6/SCL6/STXD6	IIO0_5	AN15_5	
126		P15_4			TXD6/SDA6/SRXD6	IIO0_4	AN15_4	
127		P15_3			CTS7/RTS7	IIO0_3	AN15_3	
128		P15_2			RXD7	IIO0_2	AN15_2	
129		P15_1			CLK7	IIO0_1	AN15_1	
130	VSS							
131		P15_0			TXD7	IIOO_0	AN15_0	
132	VCC							
133		P10_7	$\overline{\mathrm{KI} 3}$				AN_7	
134		P10_6	$\overline{\mathrm{KI} 2}$				AN_6	
135		P10_5	$\overline{\mathrm{KI} 1}$				AN_5	
136		P10_4	$\overline{\mathrm{KIO}}$				AN_4	
137		P10_3					AN_3	
138		P10_2					AN_2	
139		P10_1					AN_1	
140	AVSS							
141		P10_0					AN_0	
142	VREF							
143	AVCC							
144		P9_7			RXD4/SCL4/STXD4		$\overline{\text { ADTRG }}$	

Figure 1.4 Pin Assignment for the 100-pin Package (top view)

Table 1.11 Pin Characteristics for the 100-pin Package (1/3)

Pin No.	$\begin{aligned} & \text { Control } \\ & \text { Pin } \end{aligned}$	Port	$\begin{array}{\|c} \hline \text { Interrupt } \\ \text { Pin } \end{array}$	Timer Pin	UART/CAN Module Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
1		P9_4		TB4IN	CTS4/RTS4/SS4		DA1	
2		P9_3		TB3IN			DAO	
3	VDC0							
4		P9_1						
5	VDC1							
6	NSD							
7	CNVSS							
8	XCIN	P8_7						
9	XCOUT	P8_6						
10	RESET							
11	XOUT							
12	VSS							
13	XIN							
14	VCC							
15		P8_5	$\overline{\text { NMI }}$					
16		P8_4	$\overline{\mathrm{NT} 2}$					
17		P8_3	$\overline{\text { INT1 }}$		CANOIN/CANOWU			
18		P8_2	$\overline{\text { INTO }}$		CANOOUT			
19		P8_1		TA4IN/U	CTS5/RTS5/SS5	IIO1_5/UD0B/UD1B		
20		P8_0		TA4OUT/U	RXD5/SCL5/STXD5	UD0A/UD1A		
21		P7_7		TA3IN	$\begin{aligned} & \text { CLK55/CANOIN/ } \\ & \hline \text { CANOWU } \end{aligned}$	IIO1_4/UD0B/UD1B		
22		P7_6		TA3OUT	TXD5/SDA5/SRXD5/ CTS8/RTS8/CAN0OUT	IIO1_3/UD0A/UD1A		
23		P7_5		TA2IN/ W	RXD8	IIO1_2		
24		P7_4		TA2OUT/W	CLK8	IIO1_1		
25		P7_3		TA1IN/V	CTS2/RTS2/SS2/TXD8	IIO1_0		
26		P7_2		TA1OUT/V	CLK2			
27		P7_1		TB5IN/	RXD2/SCL2/STXD2/ MSCL	IIO1_7/OUTC2_2/ ISRXD2/IEIN		
28		P7_0		TA0OUT	TXD2/SDA2/SRXD2/ MSDA	IIO1_6/OUTC2_0/ ISTXD2/IEOUT		
29		P6_7			TXD1/SDA1/SRXD1			
30		P6_6			RXD1/SCL1/STXD1			
31		P6_5			CLK1			
32		P6_4			CTS1/RTS1/SS1	OUTC2_1/ISCLK2		
33		P6_3			TXD0/SDA0/SRXD0			
34		P6_2		TB2IN	RXDO/SCLO/STXD0			
35		P6_1		TB1IN	CLKO			
36		P6_0		TBOIN	CTS0/RTS0/SS0			
37		P5_7			$\overline{\text { CTS7/RTS7 }}$			$\overline{\mathrm{RDY} / \overline{\mathrm{CS}} 3}$
38		P5_6			RXD7			ALE/CS2

Table 1.12 Pin Characteristics for the 100-pin Package (2/3)

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Control } \\ & \text { Pin } \end{aligned}$	Port	$\begin{array}{\|c\|} \hline \text { Interrupt } \\ \text { Pin } \end{array}$	Timer Pin	UART/CAN Module Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
39		P5_5			CLK7			HOLD
40		P5_4			TXD7			$\overline{\text { HLDA/ }} \overline{\mathrm{CS1}}$
41		P5_3						CLKOUT/ BCLK
42		P5_2						$\overline{\mathrm{RD}}$
43		P5_1						$\overline{\text { WR1/ }} \overline{\mathrm{BC} 1}$
44		P5_0						$\overline{\mathrm{WRO}} / \overline{\mathrm{WR}}$
45		P4_7			TXD6/SDA6/SRXD6			CSO/A23
46		P4_6			RXD6/SCL6/STXD6			CS1/A22
47		P4_5			CLK6			CS2/A21
48		P4_4			CTS6/RTS6/SS6			CS3/A20
49		P4_3			TXD3/SDA3/SRXD3	OUTC2_0/ISTXD2/ IEOUT		A19
50		P4_2			RXD3/SCL3/STXD3	ISRXD2/IEIN		A18
51		P4_1			CLK3			A17
52		P4_0			$\overline{\mathrm{CTS3}} / \overline{\mathrm{RTS} 3} / \overline{\mathrm{SS}} 3$			A16
53		P3_7		TA4IN/U				A15(/D15)
54		P3_6		TA4OUT/U				A14(/D14)
55		P3_5		TA2IN/W				A13(/D13)
56		P3_4		TA2OUT/W				A12(/D12)
57		P3_3		TA1IN/V				A11(/D11)
58		P3_2		TA1OUT/V				A10(/D10)
59		P3_1		TA3OUT		UD0B/UD1B		A9(ID9)
60	VCC							
61		P3_0		TA0OUT		UD0A/UD1A		A8(/D8)
62	VSS							
63		P2_7					AN2_7	A7(ID7)
64		P2_6					AN2_6	A6(ID6)
65		P2_5					AN2_5	A5(ID5)
66		P2_4					AN2_4	A4(ID4)
67		P2_3					AN2_3	A3(ID3)
68		P2_2					AN2_2	A2(ID2)
69		P2_1					AN2_1	A1(/D1)
70		P2_0					AN2_0	$\begin{array}{\|l\|} \hline \mathrm{AO}(/ \mathrm{DO}) / \\ \hline \mathrm{BCO}(/ \mathrm{DO} 0) \end{array}$
71		P1_7	$\overline{\text { INT5 }}$			IIO0_7/IIO1_7		D15
72		P1_6	$\overline{\text { INT4 }}$			IIO0_6/IIO1_6		D14
73		P1_5	$\overline{\mathrm{NT} 3}$			IIOO_5/IIO1_5		D13
74		P1_4				IIO0_4/IIO1_4		D12
75		P1_3				IIO0_3/IIO1_3		D11

Table 1.13 Pin Characteristics for the 100-pin Package (3/3)

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Control } \\ & \text { Pin } \end{aligned}$	Port	Interrupt Pin	Timer Pin	UART/CAN Module Pin	Intelligent I/O Pin	Analog Pin	$\begin{array}{\|c} \hline \begin{array}{c} \text { Bus Control } \\ \text { Pin } \end{array} \\ \hline \end{array}$
76		P1_2				IIOO_2/IIO1_2		D10
77		P1_1				IIO0_1/IO1_1		D9
78		P1_0				IIOO_0/IIO1_0		D8
79		P0_7					ANO_7	D7
80		P0_6					ANO_6	D6
81		P0_5					ANO_5	D5
82		PO_4					ANO_4	D4
83		P0_3					ANO_3	D3
84		P0_2					ANO_2	D2
85		P0_1					ANO_1	D1
86		P0_0					ANO_0	D0
87		P10_7	$\overline{\mathrm{K} 13}$				AN_7	
88		P10_6	$\overline{\mathrm{K} 12}$				AN_6	
89		P10_5	$\overline{\mathrm{KI1}}$				AN_5	
90		P10_4	$\overline{\mathrm{KIO}}$				AN_4	
91		P10_3					AN_3	
92		P10_2					AN_2	
93		P10_1					AN_1	
94	AVSS							
95		P10_0					AN_0	
96	VREF							
97	AVCC							
98		P9_7			RXD4/SCL4/STXD4		$\overline{\text { ADTRG }}$	
99		P9_6			TXD4/SDA4/SRXD4		ANEX1	
100		P9_5			CLK4		ANEXO	

1.5 Pin Definitions and Functions

Table 1.14 to Table 1.18 list the pin definitions and functions.
Table 1.14 Pin Definitions and Functions (1/4)

Function	Symbol	I/O	
Power supply	VCC, VSS	I	Applicable as follows: VCC = 3.0 to 5.5 V, VSS = 0 V
Connecting pins for decoupling capacitor	VDC0, VDC1	-	A decoupling capacitor for internal voltage should be connected between VDC0 and VDC1
Analog power supply	AVCC, AVSS	I	Power supply for the A/D converter. AVCC and AVSS should be connected to VCC and VSS, respectively
Reset input	$\overline{\text { RESET }}$	I	The MCU is reset when this pin is driven low

Notes:

1. Pins $\overline{\mathrm{INT}}$ to $\overline{\mathrm{INT}}$ are available in the 144-pin package only.
2. Pins D16 to D31 are available in the 144-pin package only.

Table 1.15 Pin Definitions and Functions (2/4)

Function	Symbol	I/O	Description
Bus control pins	BC0/DO, $\overline{B C 2} / D 1$ (1)	I/O	Output of byte control ($\overline{\mathrm{BCO}}$ and $\overline{\mathrm{BC}}$) and input/output of data (D0 and D1) by time-division while accessing an external memory space with multiplexed bus
	$\overline{\overline{C S O}}$ to $\overline{\mathrm{CS3}}$	O	Chip select output
	$\overline{\mathrm{WRO}} / \overline{\mathrm{WR} 1 / \overline{\mathrm{WR} 2} /}$ $\mathrm{WR3}$, $\mathrm{WR} / \overline{\mathrm{BCO}} / \overline{\mathrm{BC} 1 /}$ $\overline{\mathrm{BC} 2 / \overline{\mathrm{BC} 3},}$ RD (1)	O	Output of write, byte control, and read signals. Either WRx or $\overline{\mathrm{WR}}$ and $\overline{\mathrm{BCx}}$ can be selected by a program. Data is read when $\overline{R D}$ is low. - When $\overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}, \overline{\mathrm{WR2}}, \overline{\mathrm{WR3}}$, and $\overline{\mathrm{RD}}$ are selected, data is written to the following address: $4 n+0$, when $\overline{W R 0}$ is low $4 n+1$, when $\overline{W R 1}$ is low $4 \mathrm{n}+2$, when $\overline{\mathrm{WR} 2}$ is low $4 n+3$, when $\overline{W R 3}$ is low on 32-bit external data bus or an even address, when $\overline{\mathrm{WRO}}$ is low an odd address, when $\overline{W R 1}$ is low on 16-bit external data bus - When $\overline{\mathrm{WR}}, \overline{\mathrm{BCO}}, \overline{\mathrm{BC} 1}, \overline{\mathrm{BC} 2}, \overline{\mathrm{BC} 3}$, and $\overline{\mathrm{RD}}$ are selected, data is written, when $\overline{W R}$ is low and the following address is accessed: $4 n+0$, when $\overline{B C O}$ is low $4 n+1$, when $\overline{B C 1}$ is low $4 n+2$, when $\overline{B C 2}$ is low $4 n+3$, when $\overline{B C 3}$ is low on 32-bit external data bus or an even address, when $\overline{\mathrm{BCO}}$ is low an odd address, when $\overline{\mathrm{BC} 1}$ is low on 16-bit external data bus
	ALE	0	Latch enable signal in multiplexed bus format
	$\overline{\text { HOLD }}$	1	The MCU is in a hold state while this pin is held low
	$\overline{\text { HLDA }}$	0	This pin is driven low while the MCU is held in a hold state
	$\overline{\text { RDY }}$	1	Bus cycle is extended by the CPU if this pin is low on the falling edge of BCLK

Note:

1. Pins $\overline{\mathrm{BC} 2} / \mathrm{D} 1, \overline{\mathrm{WR2}}, \overline{\mathrm{WR3}}, \overline{\mathrm{BC} 2}$, and $\overline{\mathrm{BC} 3}$ are available in the 144-pin package only.

Table 1.16 Pin Definitions and Functions (3/4)

Function	Symbol	I/O	Description
I/O port (1, 2)		I/O	I/O ports in CMOS. Each port can be programmed to input or output under the control of the direction register. Some ports are 5 V tolerant inputs. Pull-up resistors and N -channel open drain setting can be enabled on some ports. Refer to Table 1.18 "Pin Specifications" for details
Input port (2)	P9_1 (for 100-pin package) P14_1 (for 144pin package)	I	Input port in CMOS Pull-up resistor is selectable. Refer to Table 1.18 "Pin Specifications" for details
Timer A	TA0OUT to TA4OUT	I/O	Timers A0 to A4 input/output
	TAOIN to TA4IN	I	Timers A0 to A4 input
Timer B	TB0IN to TB5IN	1	Timers B0 to B5 input
Three-phase motor control timer output	U, $\bar{U}, \mathrm{~V}, \overline{\mathrm{~V}}, \mathrm{~W}, \overline{\mathrm{~W}}$	0	Three-phase motor control timer output
Serial interface	$\overline{\mathrm{CTS}}$ to $\overline{\mathrm{CTS}}$	1	Handshake input
	$\overline{\mathrm{RTS0}}$ to $\overline{\mathrm{RTS8}}$	O	Handshake output
	CLK0 to CLK8	I/O	Transmit/receive clock input/output
	RXD0 to RXD8	I	Serial data input
	TXD0 to TXD8	O	Serial data output
${ }^{12}$ C-bus (simplified)	SDA0 to SDA6	I/O	Serial data input/output
	SCL0 to SCL6	I/O	Transmit/receive clock input/output
Serial interface special functions	$\begin{aligned} & \text { STXD0 to } \\ & \text { STXD6 } \end{aligned}$	0	Serial data output in slave mode
	SRXD0 to SRXD6	I	Serial data input in slave mode
	$\overline{\overline{S S 0}}$ to $\overline{\mathrm{SS6}}$	I	Input to control serial interface special functions

Notes:

1. Port P9_1 in the 100-pin package is an input-only port.
2. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only.

Table 1.17 Pin Definitions and Functions (4/4)

Function	Symbol	I/O	Description
A/D converter	AN_0 to AN_7, ANO_0 to ANO_7, AN2_0 to AN2_7, AN15_0 to AN15_7 (1)	1	Analog input for the A/D converter
	$\overline{\text { ADTRG }}$	1	External trigger input for the A/D converter
	ANEXO	I/O	Expanded analog input for the A/D converter and output in external op-amp connection mode
	ANEX1	1	Expanded analog input for the A/D converter
D/A converter	DA0, DA1	O	Output for the D/A converter
Reference voltage input	VREF	1	Reference voltage input for the A/D converter and D/A converter
Intelligent I/O	IIO0_0 to IIO0_7	I/O	Input/output for the Intelligent I/O group 0. Either input capture or output compare is selectable
	IIO1_0 to IIO1_7	I/O	Input/output for the Intelligent I/O group 1. Either input capture or output compare is selectable
	UDOA, UDOB, UD1A, UD1B	1	Input for the two-phase encoder
	OUTC2_0 to OUTC2_7 (2)	O	Output for OC (output compare) of the Intelligent I/O group 2
	ISCLK2	I/O	Clock input/output for the serial interface
	ISRXD2	1	Receive data input for the serial interface
	ISTXD2	O	Transmit data output for the serial interface
	IEIN	I	Receive data input for the serial interface
	IEOUT	O	Transmit data output for the serial interface
Multi-master $\mathrm{I}^{2} \mathrm{C}$ bus	MSDA	I/O	Serial data input/output
	MSCL	I/O	Transmit/receive clock input/output
CAN Module	CANOIN	1	Receive data input for the CAN communications
	CANOOUT	O	Transmit data output for the CAN communications
	CANOWU	1	Input for the CAN wake-up interrupt

Notes:

1. Pins AN15_0 to AN15_7 are available in the 144-pin package only.
2. Pins OUTC2_3 to OUTC2_7 are available in the 144-pin package only.

Table 1.18 Pin Specifications

Pin Names	Package		Selectable Functions		5 V Tolerant Input (3)
	$144-$ pin	$100-$ pin	Pull-up resistor (1)	N-channel open drain (2)	
P0_0 to P0_7	\checkmark	\checkmark	\checkmark		
P1_0 to P1_7	\checkmark	\checkmark	\checkmark		
P2_0 to P2_7	\checkmark	\checkmark	\checkmark		
P3_0 to P3_7	\checkmark	\checkmark	\checkmark		
P4_0 to P4_7	\checkmark	\checkmark		\checkmark	\checkmark
P5_0 to P5_3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
P5_4 to P5_7	\checkmark	\checkmark		\checkmark	\checkmark
P6_0 to P6_7	\checkmark	\checkmark			
P7_0 to P7_7	\checkmark	\checkmark			
P8_0 to P8_3	\checkmark	\checkmark		\checkmark	\checkmark
P8_4, P8_6, P8_7	\checkmark	\checkmark	\checkmark		
P9_0 to P9_3 (144-pin)	\checkmark		\checkmark		
P9_1, P9_3 (100-pin)		\checkmark	\checkmark		
P9_4 to P9_7	\checkmark	\checkmark	\checkmark		
P10_0 to P10_7	\checkmark	\checkmark	\checkmark		
P11_0 to P11_3	\checkmark		\checkmark	\checkmark	
P11_4	\checkmark		\checkmark		
P12_0 to P12_3	\checkmark		\checkmark		
P12_4 to P12_7	\checkmark		\checkmark		
P13_0 to P13_7	\checkmark		\checkmark		
P14_1, P14_3	\checkmark		\checkmark		
P14_4 to P14_6	\checkmark		\checkmark		
P15_0 to P15_7	\checkmark		\checkmark		

Notes:

1. Pull-up resistors are selected in 4-pin units, but are only enabled for those pins set as input ports.
2. N-channel open drain output can be enabled on the applicable pins on a discrete pin basis.
3. 5 V tolerant input is enabled when an applicable pin is set as an input port. When it is set as an I/O port, to enable 5 V tolerant input, this pin should be set as N -channel open drain output.

2. Central Processing Unit (CPU)

The CPU contains registers as shown below. There are two register banks each consisting of registers R2R0, R3R1, R6R4, R7R5, A0 to A3, SB, and FB.

Save flag register
Save PC register
Vector register

DMA mode register
DMA terminal count register
DMA terminal count reload register
DMA source address register
DMA source address reload register
DMA destination address register
DMA destination address reload register

Notes:

1. There are two banks of these registers.
2. There are four identical sets of DMAC-associated registers.

Figure 2.1 CPU Registers

2.1 General Purpose Registers

2.1.1 Data Registers (R2R0, R3R1, R6R4, and R7R5)

These 32-bit registers are primarily used for transfers and arithmetic/logic operations.
Each of the registers can be divided into upper and lower 16-bit registers, e.g. R2R0 can be divided into R2 and R0, R3R0 can be divided into R3 and R1, etc.
Moreover, data registers R2R0 and R3R1 can be divided into four 8-bit data registers: upper (R2H and $R 3 H$), mid-upper (R2L and R3L), mid-lower (R0H and R1H), and lower (R0L and R1L).

2.1.2 Address Registers (A0, A1, A2, and A3)

These 32-bit registers have functions similar to data registers. They are also used for address register indirect addressing and address register relative addressing.

2.1.3 Static Base Register (SB)

This 32-bit register is used for SB relative addressing.

2.1.4 Frame Base Register (FB)

This 32-bit register is used for FB relative addressing.

2.1.5 Program Counter (PC)

This 32-bit counter indicates the address of the instruction to be executed next.

2.1.6 Interrupt Vector Table Base Register (INTB)

This 32-bit register indicates the start address of a relocatable vector table.

2.1.7 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Two types of 32-bit stack pointers (SPs) are provided: user stack pointer (USP) and interrupt stack pointer (ISP).
Use the stack pointer select flag (U flag) to select either the user stack pointer (USP) or the interrupt stack pointer (ISP). The U flag is bit 7 in the flag register (FLG). Refer to 2.1.8 "Flag Register (FLG)" for details.
To minimize the overhead of interrupt sequence due to less memory access, set the user stack pointer (USP) or the interrupt stack pointer (ISP) to a multiple of 4.

2.1.8 Flag Register (FLG)

This 32-bit register indicates the CPU status.

2.1.8.1 Carry Flag (C flag)

This flag becomes 1 when any of the carry, borrow, shifted-out bit, etc. is generated in the arithmetic logic unit (ALU).

2.1.8.2 Debug Flag (D flag)

This flag is only for debugging. Only set this bit to 0 .

2.1.8.3 Zero Flag (Z flag)

This flag becomes 1 when the result of an operation is 0 ; otherwise it is 0 .

2.1.8.4 Sign Flag (S flag)

This flag becomes 1 when the result of an operation is a negative value; otherwise it is 0 .

2.1.8.5 Register Bank Select Flag (B flag)

This flag selects a register bank. It indicates 0 when the register bank 0 is selected, and 1 when the register bank 1 is selected.

2.1.8.6 Overflow Flag (O flag)

This flag becomes 1 if an overflow occurs in an operation; otherwise it is 0 .

2.1.8.7 Interrupt Enable Flag (I flag)

This flag enables maskable interrupts. To disable maskable interrupts, set this flag to 0 . To enable them, set this flag to 1 . When an interrupt is accepted, the flag becomes 0 .

2.1.8.8 Stack Pointer Select Flag (U flag)

To select the interrupt stack pointer (ISP), set this flag to 0 . To select the user stack pointer (USP), set this flag to 1.
It becomes 0 when a hardware interrupts is accepted or when an INT instruction designated by a software interrupt number from 0 to 127 is executed.

2.1.8.9 Floating-point Underflow Flag (FU flag)

This flag becomes 1 when an underflow occurs in a floating-point operation; otherwise it is 0 . It also becomes 1 when the operand has invalid numbers (subnormal numbers).

2.1.8.10 Floating-point Overflow Flag (FO flag)

This flag becomes 1 when an overflow occurs in a floating-point operation; otherwise it is 0 . It also becomes 1 when the operand has invalid numbers (subnormal numbers).

2.1.8.11 Processor Interrupt Priority Level (IPL)

The processor interrupt priority level (IPL), consisting of three bits, selects a processor interrupt priority level from level 0 to 7 . An interrupt is acceptable when the interrupt request level is higher than the selected IPL.
When the processor interrupt priority level (IPL) is set to 111 (level 7), all interrupts are disabled.

2.1.8.12 Fixed-point Radix Point Designation Bit (DP bit)

This bit designates the radix point. It also specifies which portion of the fixed-point multiplication result to take. It is used in the MULX instruction.

2.1.8.13 Floating-point Rounding Mode (RND)

The 2-bit floating-point rounding mode selects a rounding mode for floating-point calculation results.

2.1.8.14 Reserved

Only set this bit to 0 . The read value is undefined.

2.2 Fast Interrupt Registers

The following three registers are provided to minimize the overhead of interrupt sequence. Refer to 11.4 "Fast Interrupt" for details.

2.2.1 Save Flag Register (SVF)

This 32-bit register is used to save the flag register when a fast interrupt is generated.

2.2.2 Save PC Register (SVP)

This 32-bit register is used to save the program counter when a fast interrupt is generated.

2.2.3 Vector Register (VCT)

This 32-bit register is used to indicate a jump address when a fast interrupt is generated.

2.3 DMAC-associated Registers
 There are seven types of DMAC-associated registers. Refer to 13. "DMAC" for details.

2.3.1 DMA Mode Registers (DMD0, DMD1, DMD2, and DMD3)

These 32-bit registers are used to set DMA transfer mode, bit rate, etc.

2.3.2 DMA Terminal Count Registers (DCT0, DCT1, DCT2, and DCT3)
 These 24-bit registers are used to set DMA transfer counting.

2.3.3 DMA Terminal Count Reload Registers (DCR0, DCR1, DCR2, and DCR3)
 These 24-bit registers are used to set the reloaded values for DMA terminal count registers.

2.3.4 DMA Source Address Registers (DSA0, DSA1, DSA2, and DSA3)
 These 32-bit registers are used to set DMA source addresses.

2.3.5 DMA Source Address Reload Registers (DSR0, DSR1, DSR2, and DSR3)

These 32-bit registers are used to set the reloaded value for DMA source address register.

2.3.6 DMA Destination Address Registers (DDA0, DDA1, DDA2, and DDA3)
 These 32-bit registers are used to set DMA destination address.

2.3.7 DMA Destination Address Reload Registers (DDR0, DDR1, DDR2, and DDR3)
These 32-bit registers are used to set reloaded values for DMA destination address registers.

3. Memory

Figure 3.1 shows the memory map of the R32C/117 Group.
The R32C/117 Group provides a 4-Gbyte address space from 00000000h to FFFFFFFFh.
The internal ROM is mapped to the end of the memory map with the ending address fixed at FFFFFFFFFh. Therefore, the 1-Mbyte internal ROM is mapped from FFF00000h to FFFFFFFFFh.
The fixed interrupt vector table which contains each start address of interrupt handlers is mapped from FFFFFFFDCh to FFFFFFFFFh.
The internal RAM is mapped to the beginning of the memory map with the starting address fixed at 00000400h. Therefore, the 63-Kbyte internal RAM is mapped from 00000400h to 0000FFFFh. Besides being used for data storage, the internal RAM functions as a stack(s) for subroutines and/or interrupt handlers.

Special Function Registers (SFRs), which are control registers for peripheral functions, are mapped from 00000000h to 000003FFh, and from 00040000h to 0004FFFFh. Unoccupied SFR locations are reserved. No access is allowed.

In memory expansion mode or microprocessor mode, some spaces are reserved for internal use and should not be accessed.

Internal RAM	
Capacity	XXXXXXXXh
20 Kbytes	00005400 h
40 Kbytes	0000 A400h
48 Kbytes	0000 C 400 h
63 Kbytes	00010000 h

Notes:

1. Additional two 4-Kbyte spaces (blocks A and B) for storing data are provided in the flash memory version.
2. This space can be used in memory expansion mode or microprocessor mode. Addresses from 02000000h to FDFFFFFFFh are inaccessible.
3. This space is reserved in memory expansion mode. It can be external space in microprocessor mode.
4. This space can be used in single-chip mode or memory expansion mode. It can be external space in microprocessor mode.
5. The watchdog timer interrupt shares the vector table with the oscillator stop detection interrupt and low voltage detection interrupt.

Figure 3.1 Memory Map

4. Special Function Registers (SFRs)

SFRs are memory-mapped peripheral registers that control the operation of peripherals. Table 4.1 SFR List (1) to Table 4.39 SFR List (39) list the SFR details.

Table 4.1 SFR List (1)

Address	Register	Symbol	Reset Value
000000h			
000001h			
000002h			
000003h			
000004h	Clock Control Register	CCR	0001 1000b
000005h			
000006h	Flash Memory Control Register	FMCR	0000 0001b
000007h	Protect Release Register	PRR	00h
000008h			
000009h			
00000Ah			
00000Bh			
00000Ch			
00000Dh			
00000Eh			
00000Fh			
000010h	External Bus Control Register 3/Flash Memory Rewrite Bus	EBC3/FEBC3	0000h
000011h	Control Register 3		
000012h	Chip Selects 2 and 3 Boundary Setting Register	CB23	00h
000013h			
000014h	External Bus Control Register 2	EBC2	0000h
000015h			
000016h	Chip Selects 1 and 2 Boundary Setting Register	CB12	00h
000017h			
000018h	External Bus Control Register 1	EBC1	0000h
000019h			
00001Ah	Chip selects 0 and 1 Boundary Setting Register	CB01	00h
00001Bh			
00001Ch	External Bus Control Register 0/Flash Memory Rewrite Bus	EBC0/FEBC0	0000h
00001Dh	Control Register 0		
00001Eh	Peripheral Bus Control Register	PBC	0504h
00001Fh			
$\begin{gathered} \text { 000020h to } \\ \text { 00005Fh } \end{gathered}$			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.2 SFR List (2)

Address	Register	Symbol	Reset Value
000060h			
000061h	Timer B5 Interrupt Control Register	TB5IC	XXXX X000b
000062h	UART5 Transmit/NACK Interrupt Control Register	S5TIC	XXXX X000b
000063h	UART2 Receive/ACK Interrupt Control Register//²C-bus Line Interrupt Control Register	S2RIC/I2CLIC	XXXX X000b
000064h	UART6 Transmit/NACK Interrupt Control Register	S6TIC	XXXX X000b
000065h	UART3 Receive/ACK Interrupt Control Register	S3RIC	XXXX X000b
000066h	UART5/6 Bus Collision, Start Condition/Stop Condition Detection Interrupt Control Register	BCN5IC/BCN6IC	XXXX X000b
000067h	UART4 Receive/ACK Interrupt Control Register	S4RIC	XXXX X000b
000068h	DMAO Transfer Complete Interrupt Control Register	DMOIC	XXXX X000b
000069h	UARTO/3 Bus Collision, Start Condition/Stop Condition Detection Interrupt Control Register	BCNOIC/BCN3IC	XXXX X000b
00006Ah	DMA2 Transfer Complete Interrupt Control Register	DM2IC	XXXX X000b
00006Bh	A/D Converter 0 Convert Completion Interrupt Control Register	ADOIC	XXXX X000b
00006Ch	Timer A0 Interrupt Control Register	TAOIC	XXXX X000b
00006Dh	Intelligent I/O Interrupt Control Register 0	IIOOIC	XXXX X000b
00006Eh	Timer A2 Interrupt Control Register	TA2IC	XXXX X000b
00006Fh	Intelligent I/O Interrupt Control Register 2	IIO2IC	XXXX X000b
000070h	Timer A4 Interrupt Control Register	TA4IC	XXXX X000b
000071h	Intelligent I/O Interrupt Control Register 4	IIO4IC	XXXX X000b
000072h	UART0 Receive/ACK Interrupt Control Register	SORIC	XXXX X000b
000073h	Intelligent I/O Interrupt Control Register 6	IIO6IC	XXXX X000b
000074h	UART1 Receive/ACK Interrupt Control Register	S1RIC	XXXX X000b
000075h	Intelligent I/O Interrupt Control Register 8	IIO8IC	XXXX X000b
000076h	Timer B1 Interrupt Control Register	TB1IC	XXXX X000b
000077h	Intelligent I/O Interrupt Control Register 10	IIO10IC	XXXX X000b
000078h	Timer B3 Interrupt Control Register	TB3IC	XXXX X000b
000079h			
00007Ah	INT5 Interrupt Control Register	INT5IC	XX00 X000b
00007Bh	CANO Wake-up Interrupt Control Register	COWIC	XXXX X000b
00007Ch	INT3 Interrupt Control Register	INT3IC	XX00 X000b
00007Dh			
00007Eh	INT1 Interrupt Control Register	INT1IC	XX00 X000b
00007Fh			
000080h			
000081h	UART2 Transmit/NACK Interrupt Control Register// ${ }^{2} \mathrm{C}$-bus Interrupt Control Register	S2TIC/I2CIC	XXXX X000b
000082h	UART5 Receive/ACK Interrupt Control Register	S5RIC	XXXX X000b
000083h	UART3 Transmit/NACK Interrupt Control Register	S3TIC	XXXX X000b
000084h	UART6 Receive/ACK Interrupt Control Register	S6RIC	XXXX X000b
000085h	UART4 Transmit/NACK Interrupt Control Register	S4TIC	XXXX X000b
000086h			
000087h	UART2 Bus Collision, Start Condition/Stop Condition Detection Interrupt Control Register	BCN2IC	XXXX X000b

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.3 SFR List (3)

Address	Register	Symbol	Reset Value
000088h	DMA1 Transfer Complete Interrupt Control Register	DM1IC	XXXX X000b
000089h	UART1/4 Bus Collision, Start Condition/Stop Condition Detection Interrupt Control Register	BCN1IC/BCN4IC	XXXX X000b
00008Ah	DMA3 Transfer Complete Interrupt Control Register	DM3IC	XXXX X000b
00008Bh	Key Input Interrupt Control Register	KUPIC	XXXX X000b
00008Ch	Timer A1 Interrupt Control Register	TA1IC	XXXX X000b
00008Dh	Intelligent I/O Interrupt Control Register 1	IIO1IC	XXXX X000b
00008Eh	Timer A3 Interrupt Control Register	TA3IC	XXXX X000b
00008Fh	Intelligent I/O Interrupt Control Register 3	IIO3IC	XXXX X000b
000090h	UARTO Transmit/NACK Interrupt Control Register	SOTIC	XXXX X000b
000091h	Intelligent I/O Interrupt Control Register 5	IIO5IC	XXXX X000b
000092h	UART1 Transmit/NACK Interrupt Control Register	S1TIC	XXXX X000b
000093h	Intelligent I/O Interrupt Control Register 7	IIO7IC	XXXX X000b
000094h	Timer B0 Interrupt Control Register	TBOIC	XXXX X000b
000095h	Intelligent l/O Interrupt Control Register 9	IIO9IC	XXXX X000b
000096h	Timer B2 Interrupt Control Register	TB2IC	XXXX X000b
000097h	Intelligent I/O Interrupt Control Register 11	IIO11IC	XXXX X000b
000098h	Timer B4 Interrupt Control Register	TB4IC	XXXX X000b
000099h			
00009Ah	INT4 Interrupt Control Register	INT4IC	XX00 X000b
00009Bh			
00009Ch	INT2 Interrupt Control Register	INT2IC	XX00 X000b
00009Dh			
00009Eh	INT0 Interrupt Control Register	INTOIC	XX00 X000b
00009Fh			
0000AOh	Intelligent I/O Interrupt Request Register 0	IIOOIR	0000 0XX1b
0000A1h	Intelligent I/O Interrupt Request Register 1	IIO1IR	0000 0XX1b
0000A2h	Intelligent I/O Interrupt Request Register 2	IIO2IR	0000 0X01b
0000A3h	Intelligent I/O Interrupt Request Register 3	IIO3IR	0000 XXX1b
0000A4h	Intelligent I/O Interrupt Request Register 4	IIO4IR	000X 0XX1b
0000A5h	Intelligent I/O Interrupt Request Register 5	IIO5IR	000X 0XX1b
0000A6h	Intelligent I/O Interrupt Request Register 6	IIO6IR	000X 0XX1b
0000A7h	Intelligent I/O Interrupt Request Register 7	IIO7IR	X00X 0XX1b
0000A8h	Intelligent I/O Interrupt Request Register 8	IIO8IR	XX0X 0XX1b
0000A9h	Intelligent I/O Interrupt Request Register 9	IIO91R	0X00 0XX1b
0000AAh	Intelligent I/O Interrupt Request Register 10	IIO10IR	0X00 0XX1b
0000ABh	Intelligent I/O Interrupt Request Register 11	IIO11IR	0X00 0XX1b
0000ACh			
0000ADh			
0000AEh			
0000AFh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.4 SFR List (4)

Address	Register	Symbol	Reset Value
0000B0h	Intelligent I/O Interrupt Enable Register 0	IIOOIE	00h
0000B1h	Intelligent I/O Interrupt Enable Register 1	IIO1IE	00h
0000B2h	Intelligent I/O Interrupt Enable Register 2	IIO2IE	00h
0000B3h	Intelligent I/O Interrupt Enable Register 3	IIO3IE	00h
0000B4h	Intelligent I/O Interrupt Enable Register 4	IIO4IE	00h
0000B5h	Intelligent I/O Interrupt Enable Register 5	IIO5IE	00h
0000B6h	Intelligent I/O Interrupt Enable Register 6	IIO6IE	00h
0000B7h	Intelligent I/O Interrupt Enable Register 7	IIO7IE	00h
0000B8h	Intelligent I/O Interrupt Enable Register 8	IIO8IE	00h
0000B9h	Intelligent I/O Interrupt Enable Register 9	IIO9IE	00h
0000BAh	Intelligent I/O Interrupt Enable Register 10	IIO10IE	00h
0000BBh	Intelligent I/O Interrupt Enable Register 11	IIO11IE	00h
0000BCh			
0000BDh			
0000BEh			
0000BFh			
0000COh			
0000C1h	CANO Transmit Interrupt Control Register	COTIC	XXXX X000b
0000C2h			
0000C3h	CANO Error Interrupt Control Register	COEIC	XXXX X000b
0000C4h			
0000C5h			
0000C6h			
0000C7h			
0000C8h			
0000C9h			
0000CAh			
0000CBh			
0000CCh			
0000CDh			
0000CEh			
0000CFh			
0000D0h	CANO Transmit FIFO Interrupt Control Register	COFTIC	XXXX X000b
0000D1h			
0000D2h			
0000D3h			
0000D4h			
0000D5h			
0000D6h			
0000D7h			
0000D8h			
0000D9h			
0000DAh			
0000DBh			
0000DCh			
0000DDh	UART7 Transmit Interrupt Control Register	S7TIC	XXXX X000b
0000DEh	INT7 Interrupt Control Register	INT7IC	XX00 X000b
0000DFh	UART8 Transmit Interrupt Control Register	S8TIC	XXXX X000b

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.5 SFR List (5)

Address	Register	Symbol	Reset Value
0000E0h			
0000E1h	CANO Receive Interrupt Control Register	CORIC	XXXX X000b
0000E2h			
0000E3h			
0000E4h			
0000E5h			
0000E6h			
0000E7h			
0000E8h			
0000E9h			
0000EAh			
0000EBh			
0000ECh			
0000EDh			
0000EEh			
0000EFh			
0000FOh	CANO Receive FIFO Interrupt Control Register	COFRIC	XXXX X000b
0000F1h			
0000F2h			
0000F3h			
0000F4h			
0000F5h			
0000F6h			
0000F7h			
0000F8h			
0000F9h			
0000FAh			
0000FBh			
0000FCh	INT8 Interrupt Control Register	INT8IC	XX00 X000b
0000FDh	UART7 Receive Interrupt Control Register	S7RIC	XXXX X000b
0000FEh	INT6 Interrupt Control Register	INT6IC	XX00 X000b
0000FFh	UART8 Receive Interrupt Control Register	S8RIC	XXXX X000b
000100h	Group 1 Time Measurement/Waveform Generation Register 0	G1TM0/G1PO0	XXXXh
000101h			
000102h	Group 1 Time Measurement/Waveform Generation Register 1	G1TM1/G1PO1	XXXXh
000103h			
000104h	Group 1 Time Measurement/Waveform Generation Register 2	G1TM2/G1PO2	XXXXh
000105h			
000106h	Group 1 Time Measurement/Waveform Generation Register 3	G1TM3/G1PO3	XXXXh
000107h			

[^0]Table 4.6 SFR List (6)

Address	Register	Symbol	Reset Value
000108h	Group 1 Time Measurement/Waveform Generation Register 4	G1TM4/G1PO4	XXXXh
000109h			
00010Ah	Group 1 Time Measurement/Waveform Generation Register 5	G1TM5/G1PO5	XXXXh
00010Bh			
00010Ch	Group 1 Time Measurement/Waveform Generation Register 6	G1TM6/G1PO6	XXXXh
00010Dh			
00010Eh	Group 1 Time Measurement/Waveform Generation Register 7	G1TM7/G1PO7	XXXXh
00010Fh			
000110h	Group 1 Waveform Generation Control Register 0	G1POCR0	$0000 \times 000 \mathrm{~b}$
000111h	Group 1 Waveform Generation Control Register 1	G1POCR1	0X00 X000b
000112h	Group 1 Waveform Generation Control Register 2	G1POCR2	0X00 X000b
000113h	Group 1 Waveform Generation Control Register 3	G1POCR3	0X00 X000b
000114h	Group 1 Waveform Generation Control Register 4	G1POCR4	0X00 X000b
000115h	Group 1 Waveform Generation Control Register 5	G1POCR5	0X00 X000b
000116h	Group 1 Waveform Generation Control Register 6	G1POCR6	0X00 X000b
000117h	Group 1 Waveform Generation Control Register 7	G1POCR7	0X00 X000b
000118h	Group 1 Time Measurement Control Register 0	G1TMCR0	00h
000119h	Group 1 Time Measurement Control Register 1	G1TMCR1	00h
00011Ah	Group 1 Time Measurement Control Register 2	G1TMCR2	00h
00011Bh	Group 1 Time Measurement Control Register 3	G1TMCR3	00h
00011Ch	Group 1 Time Measurement Control Register 4	G1TMCR4	00h
00011Dh	Group 1 Time Measurement Control Register 5	G1TMCR5	00h
00011Eh	Group 1 Time Measurement Control Register 6	G1TMCR6	00h
00011Fh	Group 1 Time Measurement Control Register 7	G1TMCR7	00h
000120h	Group 1 Base Timer Register	G1BT	XXXXh
000121h			
000122h	Group 1 Base Timer Control Register 0	G1BCR0	00h
000123h	Group 1 Base Timer Control Register 1	G1BCR1	0000 0000b
000124h	Group 1 Time Measurement Prescaler Register 6	G1TPR6	00h
000125h	Group 1 Time Measurement Prescaler Register 7	G1TPR7	00h
000126h	Group 1 Function Enable Register	G1FE	00h
000127h	Group 1 Function Select Register	G1FS	00h
000128h			
000129h			
00012Ah			
00012Bh			
00012Ch			
00012Dh			
00012Eh			
00012Fh			
$\begin{array}{\|c\|} \hline 000130 \mathrm{~h} \text { to } \\ \text { 00013Fh } \end{array}$			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.7 SFR List (7)

Address	Register	Symbol	Reset Value
000140h	Group 2 Waveform Generation Register 0	G2PO0	XXXXh
000141h			
000142h	Group 2 Waveform Generation Register 1	G2PO1	XXXXh
000143h			
000144h	Group 2 Waveform Generation Register 2	G2PO2	XXXXh
000145h			
000146h	Group 2 Waveform Generation Register 3	G2PO3	XXXXh
000147h			
000148h	Group 2 Waveform Generation Register 4	G2PO4	XXXXh
000149h			
00014Ah	Group 2 Waveform Generation Register 5	G2PO5	XXXXh
00014Bh			
00014Ch	Group 2 Waveform Generation Register 6	G2PO6	XXXXh
00014Dh			
00014Eh	Group 2 Waveform Generation Register 7	G2PO7	XXXXh
00014Fh			
000150h	Group 2 Waveform Generation Control Register 0	G2POCR0	0000 0000b
000151h	Group 2 Waveform Generation Control Register 1	G2POCR1	0000 0000b
000152h	Group 2 Waveform Generation Control Register 2	G2POCR2	0000 0000b
000153h	Group 2 Waveform Generation Control Register 3	G2POCR3	0000 0000b
000154h	Group 2 Waveform Generation Control Register 4	G2POCR4	0000 0000b
000155h	Group 2 Waveform Generation Control Register 5	G2POCR5	0000 0000b
000156h	Group 2 Waveform Generation Control Register 6	G2POCR6	0000 0000b
000157h	Group 2 Waveform Generation Control Register 7	G2POCR7	0000 0000b
000158h			
000159h			
00015Ah			
00015Bh			
00015Ch			
00015Dh			
00015Eh			
00015Fh			
000160h	Group 2 Base Timer Register	G2BT	XXXXh
000161h			
000162h	Group 2 Base Timer Control Register 0	G2BCR0	00h
000163h	Group 2 Base Timer Control Register 1	G2BCR1	0000 0000b
000164h	Base Timer Start Register	BTSR	XXXX 0000b
000165h			
000166h	Group 2 Function Enable Register	G2FE	00h
000167h	Group 2 RTP Output Buffer Register	G2RTP	00h
000168h			
000169h			
00016Ah	Group 2 Serial Interface Mode Register	G2MR	00XX X000b
00016Bh	Group 2 Serial Interface Control Register	G2CR	0000 X110b
00016Ch	Group 2 SI/O Transmit Buffer Register	G2TB	XXXXh
00016Dh			
00016Eh	Group 2 SI/O Receive Buffer Register	G2RB	XXXXh
00016Fh			

X: Undefined
Blanks are reserved. No access is allowed.

Table $4.8 \quad$ SFR List (8)

Address	Register	Symbol	Reset Value
000170h	Group 2 IEBus Address Register	IEAR	XXXXh
000171h			
000172h	Group 2 IEBus Control Register	IECR	00XX X000b
000173h	Group 2 IEBus Transmit Interrupt Source Detect Register	IETIF	XXX0 0000b
000174h	Group 2 IEBus Receive Interrupt Source Detect Register	IERIF	XXX0 0000b
000175h			
000176h			
000177h			
000178h			
000179h			
00017Ah			
00017Bh			
00017Ch			
00017Dh			
00017Eh			
00017Fh			
000180h	Group 0 Time Measurement/Waveform Generation Register 0	GOTM0/GOPOO	XXXXh
000181h			
000182h	Group 0 Time Measurement/Waveform Generation Register 1	G0TM1/GOPO1	XXXXh
000183h			
000184h	Group 0 Time Measurement/Waveform Generation Register 2	G0TM2/GOPO2	XXXXh
000185h			
000186h	Group 0 Time Measurement/Waveform Generation Register 3	G0TM3/G0PO3	XXXXh
000187h			
000188h	Group 0 Time Measurement/Waveform Generation Register 4	G0TM4/GOPO4	XXXXh
000189h			
00018Ah	Group 0 Time Measurement/Waveform Generation Register 5	G0TM5/G0PO5	XXXXh
00018Bh			
00018Ch	Group 0 Time Measurement/Waveform Generation Register 6	G0TM6/G0PO6	XXXXh
00018Dh			
00018Eh	Group 0 Time Measurement/Waveform Generation Register 7	G0TM7/G0PO7	XXXXh
00018Fh			
000190h	Group 0 Waveform Generation Control Register 0	GOPOCR0	0000 X000b
000191h	Group 0 Waveform Generation Control Register 1	G0POCR1	0X00 X000b
000192h	Group 0 Waveform Generation Control Register 2	G0POCR2	0X00 X000b
000193h	Group 0 Waveform Generation Control Register 3	G0POCR3	0X00 X000b
000194h	Group 0 Waveform Generation Control Register 4	GOPOCR4	0X00 X000b
000195h	Group 0 Waveform Generation Control Register 5	GOPOCR5	0X00 X000b
000196h	Group 0 Waveform Generation Control Register 6	GOPOCR6	0X00 X000b
000197h	Group 0 Waveform Generation Control Register 7	GOPOCR7	0X00 X000b
000198h	Group 0 Time Measurement Control Register 0	GOTMCR0	00h
000199h	Group 0 Time Measurement Control Register 1	G0TMCR1	00h
00019Ah	Group 0 Time Measurement Control Register 2	G0TMCR2	00h
00019Bh	Group 0 Time Measurement Control Register 3	G0TMCR3	00h
00019Ch	Group 0 Time Measurement Control Register 4	GOTMCR4	00h
00019Dh	Group 0 Time Measurement Control Register 5	G0TMCR5	00h
00019Eh	Group 0 Time Measurement Control Register 6	G0TMCR6	00h
00019Fh	Group 0 Time Measurement Control Register 7	G0TMCR7	00h

X: Undefined
Blanks are reserved. No access is allowed.

Table $4.9 \quad$ SFR List (9)

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.10 SFR List (10)

Address	Register	Symbol	Reset Value
0001D0h			
0001D1h			
0001D2h			
0001D3h			
0001D4h	UART6 Special Mode Register 4	U6SMR4	00h
0001D5h	UART6 Special Mode Register 3	U6SMR3	00h
0001D6h	UART6 Special Mode Register 2	U6SMR2	00h
0001D7h	UART6 Special Mode Register	U6SMR	00h
0001D8h	UART6 Transmit/Receive Mode Register	U6MR	00h
0001D9h	UART6 Bit Rate Register	U6BRG	XXh
0001DAh	UART6 Transmit Buffer Register	U6TB	XXXXh
0001DBh			
0001DCh	UART6 Transmit/Receive Control Register 0	U6C0	0000 1000b
0001DDh	UART6 Transmit/Receive Control Register 1	U6C1	0000 0010b
0001DEh	UART6 Receive Buffer Register	U6RB	XXXXh
0001DFh			
0001E0h	UART7 Transmit/Receive Mode Register	U7MR	00h
0001E1h	UART7 Bit Rate Register	U7BRG	XXh
0001E2h	UART7 Transmit Buffer Register	U7TB	XXXXh
0001E3h			
0001E4h	UART7 Transmit/Receive Control Register 0	U7C0	00X0 1000b
0001E5h	UART7 Transmit/Receive Control Register 1	U7C1	XXXX 0010b
0001E6h	UART7 Receive Buffer Register	U7RB	XXXXh
0001E7h			
0001E8h	UART8 Transmit/Receive Mode Register	U8MR	00h
0001E9h	UART8 Bit Rate Register	U8BRG	XXh
0001EAh	UART8 Transmit Buffer Register	U8TB	XXXXh
0001EBh			
0001ECh	UART8 Transmit/Receive Control Register 0	U8C0	00X0 1000b
0001EDh	UART8 Transmit/Receive Control Register 1	U8C1	XXXX 0010b
0001EEh	UART8 Receive Buffer Register	U8RB	XXXXh
0001EFh			
0001F0h	UART7, UART8 Transmit/Receive Control Register 2	U78CON	X000 0000b
0001F1h			
0001F2h			
0001F3h			
0001F4h			
0001F5h			
0001F6h			
0001F7h			
0001F8h			
0001F9h			
0001FAh			
0001FBh			
0001FCh			
0001FDh			
0001FEh			
0001FFh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.11 SFR List (11)

Address	Register	Symbol	Reset Value
$\begin{array}{r} \hline 000200 \mathrm{~h} \text { to } \\ \text { 0002BFh } \end{array}$			
0002C0h	X0 Register/Y0 Register	XOR/YOR	XXXXh
0002C1h			
0002C2h	X1 Register/Y1 Register	X1R/Y1R	XXXXh
0002C3h			
0002C4h	X2 Register/Y2 Register	X2R/Y2R	XXXXh
0002C5h			
0002C6h	X3 Register/Y3 Register	X3R/Y3R	XXXXh
0002C7h			
0002C8h	X4 Register/Y4 Register	X4R/Y4R	XXXXh
0002C9h			
0002CAh	X5 Register/Y5 Register	X5R/Y5R	XXXXh
0002CBh			
0002CCh	X6 Register/Y6 Register	X6R/Y6R	XXXXh
0002CDh			
0002CEh	X7 Register/Y7 Register	X7R/Y7R	XXXXh
0002CFh			
0002D0h	X8 Register/Y8 Register	X8R/Y8R	XXXXh
0002D1h			
0002D2h	X9 Register/Y9 Register	X9R/Y9R	XXXXh
0002D3h			
0002D4h	X10 Register/Y10 Register	X10R/Y10R	XXXXh
0002D5h			
0002D6h	X11 Register/Y11 Register	X11R/Y11R	XXXXh
0002D7h			
0002D8h	X12 Register/Y12 Register	X12R/Y12R	XXXXh
0002D9h			
0002DAh	X13 Register/Y13 Register	X13R/Y13R	XXXXh
0002DBh			
0002DCh	X14 Register/Y14 Register	X14R/Y14R	XXXXh
0002DDh			
0002DEh	X15 Register/Y15 Register	X15R/Y15R	XXXXh
0002DFh			
0002E0h	X-Y Control Register	XYC	XXXX XX00b
0002E1h			
0002E2h			
0002E3h			
0002E4h	UART1 Special Mode Register 4	U1SMR4	00h
0002E5h	UART1 Special Mode Register 3	U1SMR3	00h
0002E6h	UART1 Special Mode Register 2	U1SMR2	00h
0002E7h	UART1 Special Mode Register	U1SMR	00h
0002E8h	UART1 Transmit/Receive Mode Register	U1MR	OOh
0002E9h	UART1 Bit Rate Register	U1BRG	XXh
0002EAh	UART1 Transmit Buffer Register	U1TB	XXXXh
0002EBh			
0002ECh	UART1 Transmit/Receive Control Register 0	U1C0	0000 1000b
0002EDh	UART1 Transmit/Receive Control Register 1	U1C1	0000 0010b
0002EEh	UART1 Receive Buffer Register	U1RB	XXXXh
0002EFh			

X: Undefined

Blanks are reserved. No access is allowed.

Table 4.12 SFR List (12)

Address	Register	Symbol	Reset Value
0002F0h			
0002F1h			
0002F2h			
0002F3h			
0002F4h	UART4 Special Mode Register 4	U4SMR4	00h
0002F5h	UART4 Special Mode Register 3	U4SMR3	00h
0002F6h	UART4 Special Mode Register 2	U4SMR2	00h
0002F7h	UART4 Special Mode Register	U4SMR	00h
0002F8h	UART4 Transmit/Receive Mode Register	U4MR	00h
0002F9h	UART4 Bit Rate Register	U4BRG	XXh
0002FAh	UART4 Transmit Buffer Register	U4TB	XXXXh
0002FBh			
0002FCh	UART4 Transmit/Receive Control Register 0	U4C0	0000 1000b
0002FDh	UART4 Transmit/Receive Control Register 1	U4C1	0000 0010b
0002FEh	UART4 Receive Buffer Register	U4RB	XXXXh
0002FFh			
000300h	Count Start Register for Timers B3, B4, and B5	TBSR	000X XXXXb
000301h			
000302h	Timer A1-1 Register	TA11	XXXXh
000303h			
000304h	Timer A2-1 Register	TA21	XXXXh
000305h			
000306h	Timer A4-1 Register	TA41	XXXXh
000307h			
000308h	Three-phase PWM Control Register 0	INVC0	00h
000309h	Three-phase PWM Control Register 1	INVC1	00h
00030Ah	Three-phase Output Buffer Register 0	IDB0	XX11 1111b
00030Bh	Three-phase Output Buffer Register 1	IDB1	XX11 1111b
00030Ch	Dead Time Timer	DTT	XXh
00030Dh	Timer B2 Interrupt Generating Frequency Set Counter	ICTB2	XXh
00030Eh			
00030Fh			
000310h	Timer B3 Register	TB3	XXXXh
000311h			
000312h	Timer B4 Register	TB4	XXXXh
000313h			
000314h	Timer B5 Register	TB5	XXXXh
000315h			
000316h			
000317h			
000318h			
000319h			
00031Ah			
00031Bh	Timer B3 Mode Register	TB3MR	00XX 0000b
00031Ch	Timer B4 Mode Register	TB4MR	00XX 0000b
00031Dh	Timer B5 Mode Register	TB5MR	00XX 0000b
00031Eh			
00031Fh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.13 SFR List (13)

Address	Register	Symbol	Reset Value
000320h			
000321h			
000322h			
000323h			
000324h	UART3 Special Mode Register 4	U3SMR4	00h
000325h	UART3 Special Mode Register 3	U3SMR3	00h
000326h	UART3 Special Mode Register 2	U3SMR2	00h
000327h	UART3 Special Mode Register	U3SMR	00h
000328h	UART3 Transmit/Receive Mode Register	U3MR	00h
000329h	UART3 Bit Rate Register	U3BRG	XXh
00032Ah	UART3 Transmit Buffer Register	U3TB	XXXXh
00032Bh			
00032Ch	UART3 Transmit/Receive Control Register 0	U3C0	0000 1000b
00032Dh	UART3 Transmit/Receive Control Register 1	U3C1	0000 0010b
00032Eh	UART3 Receive Buffer Register	U3RB	XXXXh
00032Fh			
000330h			
000331h			
000332h			
000333h			
000334h	UART2 Special Mode Register 4	U2SMR4	00h
000335h	UART2 Special Mode Register 3	U2SMR3	00h
000336h	UART2 Special Mode Register 2	U2SMR2	00h
000337h	UART2 Special Mode Register	U2SMR	00h
000338h	UART2 Transmit/Receive Mode Register	U2MR	OOh
000339h	UART2 Bit Rate Register	U2BRG	XXh
00033Ah	UART2 Transmit Buffer Register	U2TB	XXXXh
00033Bh			
00033Ch	UART2 Transmit/Receive Control Register 0	U2C0	0000 1000b
00033Dh	UART2 Transmit/Receive Control Register 1	U2C1	0000 0010b
00033Eh	UART2 Receive Buffer Register	U2RB	XXXXh
00033Fh			
000340h	Count Start Register	TABSR	0000 0000b
000341h	Clock Prescaler Reset Register	CPSRF	0XXX XXXXb
000342h	One-shot Start Register	ONSF	0000 0000b
000343h	Trigger Select Register	TRGSR	0000 0000b
000344h	Increment/Decrement Counting Select Register	UDF	0000 0000b
000345h			
000346h	Timer A0 Register	TA0	XXXXh
000347h			
000348h	Timer A1 Register	TA1	XXXXh
000349h			
00034Ah	Timer A2 Register	TA2	XXXXh
00034Bh			
00034Ch	Timer A3 Register	TA3	XXXXh
00034Dh			
00034Eh	Timer A4 Register	TA4	XXXXh
00034Fh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.14 SFR List (14)

Address	Register	Symbol	Reset Value
000350h	Timer B0 Register	TB0	XXXXh
000351h			
000352h	Timer B1 Register	TB1	XXXXh
000353h			
000354h	Timer B2 Register	TB2	XXXXh
000355h			
000356h	Timer A0 Mode Register	TAOMR	0000 0000b
000357h	Timer A1 Mode Register	TA1MR	0000 0000b
000358h	Timer A2 Mode Register	TA2MR	0000 0000b
000359h	Timer A3 Mode Register	TA3MR	0000 0000b
00035Ah	Timer A4 Mode Register	TA4MR	0000 0000b
00035Bh	Timer B0 Mode Register	TBOMR	00XX 0000b
00035Ch	Timer B1 Mode Register	TB1MR	00XX 0000b
00035Dh	Timer B2 Mode Register	TB2MR	00XX 0000b
00035Eh	Timer B2 Special Mode Register	TB2SC	XXXX XXX0b
00035Fh	Count Source Prescaler Register	TCSPR	0000 0000b
000360h			
000361h			
000362h			
000363h			
000364h	UART0 Special Mode Register 4	U0SMR4	00h
000365h	UART0 Special Mode Register 3	U0SMR3	00h
000366h	UART0 Special Mode Register 2	U0SMR2	00h
000367h	UART0 Special Mode Register	U0SMR	00h
000368h	UART0 Transmit/Receive Mode Register	UOMR	00h
000369h	UART0 Bit Rate Register	U0BRG	XXh
00036Ah	UART0 Transmit Buffer Register	UOTB	XXXXh
00036Bh			
00036Ch	UART0 Transmit/Receive Control Register 0	U0C0	0000 1000b
00036Dh	UART0 Transmit/Receive Control Register 1	U0C1	0000 0010b
00036Eh	UART0 Receive Buffer Register	U0RB	XXXXh
00036Fh			
000370h			
000371h			
000372h			
000373h			
000374h			
000375h			
000376h			
000377h			
000378h			
000379h			
00037Ah			
00037Bh			
00037Ch	CRC Data Register	CRCD	XXXXh
00037Dh			
00037Eh	CRC Input Register	CRCIN	XXh
00037Fh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.15 SFR List (15)

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.16 SFR List (16)

Address	Register	Symbol	Reset Value
0003B0h			
0003B1h			
0003B2h			
0003B3h			
0003B4h			
0003B5h			
0003B6h			
0003B7h			
0003B8h			
0003B9h			
0003BAh			
0003BBh			
0003BCh			
0003BDh			
0003BEh			
0003BFh			
0003C0h	Port P0 Register	P0	XXh
0003C1h	Port P1 Register	P1	XXh
0003C2h	Port P0 Direction Register	PD0	0000 0000b
0003C3h	Port P1 Direction Register	PD1	0000 0000b
0003C4h	Port P2 Register	P2	XXh
0003C5h	Port P3 Register	P3	XXh
0003C6h	Port P2 Direction Register	PD2	0000 0000b
0003C7h	Port P3 Direction Register	PD3	0000 0000b
0003C8h	Port P4 Register	P4	XXh
0003C9h	Port P5 Register	P5	XXh
0003CAh	Port P4 Direction Register	PD4	0000 0000b
0003CBh	Port P5 Direction Register	PD5	0000 0000b
0003CCh	Port P6 Register	P6	XXh
0003CDh	Port P7 Register	P7	XXh
0003CEh	Port P6 Direction Register	PD6	0000 0000b
0003CFh	Port P7 Direction Register	PD7	0000 0000b
0003D0h	Port P8 Register	P8	XXh
0003D1h	Port P9 Register	P9	XXh
0003D2h	Port P8 Direction Register	PD8	00X0 0000b
0003D3h	Port P9 Direction Register	PD9	0000 0000b
0003D4h	Port P10 Register	P10	XXh
0003D5h	Port P11 Register	P11	XXh
0003D6h	Port P10 Direction Register	PD10	0000 0000b
0003D7h	Port P11 Direction Register	PD11	XXX0 0000b
0003D8h	Port P12 Register	P12	XXh
0003D9h	Port P13 Register	P13	XXh
0003DAh	Port P12 Direction Register	PD12	0000 0000b
0003DBh	Port P13 Direction Register	PD13	0000 0000b
0003DCh	Port P14 Register	P14	XXh
0003DDh	Port P15 Register	P15	XXh
0003DEh	Port P14 Direction Register	PD14	X000 0000b
0003DFh	Port P15 Direction Register	PD15	0000 0000b

[^1]Table 4.17 SFR List (17)

Address	Register	Symbol	Reset Value
0003E0h			
0003E1h			
0003E2h			
0003E3h			
0003E4h			
0003E5h			
0003E6h			
0003E7h			
0003E8h			
0003E9h			
0003EAh			
0003EBh			
0003ECh			
0003EDh			
0003EEh			
0003EFh			
0003FOh	Pull-up Control Register 0	PUR0	0000 0000b
0003F1h	Pull-up Control Register 1	PUR1	XXXX X0XXb
0003F2h	Pull-up Control Register 2	PUR2	000X XXXXb
0003F3h	Pull-up Control Register 3	PUR3	0000 0000b
0003F4h	Pull-up Control Register 4	PUR4	XXXX 0000b
0003F5h			
0003F6h			
0003F7h			
0003F8h			
0003F9h			
0003FAh			
0003FBh			
0003FCh			
0003FDh			
0003FEh			
0003FFh	Port Control Register	PCR	0XXX XXX0b

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.18 SFR List (18)

Address	Register	Symbol	Reset Value
040000h	Flash Memory Control Register 0	FMR0	0X01 XX00b
040001h	Flash Memory Status Register 0	FMSR0	1000 0000b
040002h			
040003h			
040004h			
040005h			
040006h			
040007h			
040008h	Flash Register Protection Unlock Register 0	FPR0	00h
040009h	Flash Memory Control Register 1	FMR1	0000 0010b
04000Ah	Block Protect Bit Monitor Register 0	FBPM0	??X? ????b (1)
04000Bh	Block Protect Bit Monitor Register 1	FBPM1	XXX? ????b ${ }^{(1)}$
04000Ch			
04000Dh			
04000Eh			
04000Fh			
040010h			
040011h	Block Protect Bit Monitor Register 2	FBPM2	???? ????b (1)
040012h			
040013h			
040014h			
040015h			
040016h			
040017h			
040018h			
040019h			
04001Ah			
04001Bh			
04001Ch			
04001Dh			
04001Eh			
04001Fh			
040020h	PLL Control Register 0	PLC0	0000 0001b
040021h	PLL Control Register 1	PLC1	0001 1111b
040022h			
040023h			
040024h			
040025h			
040026h			
040027h			
040028h			
040029h			
04002Ah			
04002Bh			
04002Ch			
04002Dh			
04002Eh			
04002Fh			

X : Undefined

Blanks are reserved. No access is allowed.
Note:

1. The status of protect bit of each block in flash memory is reflected.

Table 4.19 SFR List (19)

Address	Register	Symbol	Reset Value
$\begin{array}{\|r\|} \hline 040030 \mathrm{~h} \text { to } \\ 04003 \mathrm{Fh} \end{array}$			
040040h			
040041h			
040042h			
040043h			
040044h	Processor Mode Register $0{ }^{(1)}$	PM0	$\begin{aligned} & 1000 \text { 0000b } \\ & \text { (CNVSS pin = Low) } \\ & 0000 \text { 0011b } \\ & \text { (CNVSS pin = High) } \end{aligned}$
040045h			
040046h	System Clock Control Register 0	CM0	0000 1000b
040047h	System Clock Control Register 1	CM1	0010 0000b
040048h	Processor Mode Register 3	PM3	00h
040049h			
04004Ah	Protect Register	PRCR	XXXX X000b
04004Bh			
04004Ch	Protect Register 3	PRCR3	0000 0000b
04004Dh	Oscillator Stop Detection Register	CM2	00h
04004Eh			
04004Fh			
040050h			
040051h			
040052h			
040053h	Processor Mode Register 2	PM2	00h
040054h	Chip Select Output Pin Setting Register 0	CSOP0	1000 XXXXb
040055h	Chip Select Output Pin Setting Register 1	CSOP1	01X0 XXXXb
040056h	Chip Select Output Pin Setting Register 2	CSOP2	XXXX 0000b
040057h			
040058h			
040059h			
04005Ah	Low Speed Mode Clock Control Register	CM3	XXXX XX00b
04005Bh			
04005Ch			
04005Dh			
04005Eh			
04005Fh			
040060h	Voltage Regulator Control Register	VRCR	0000 0000b
040061h			
040062h	Low Voltage Detector Control Register	LVDC	0000 XX00b
040063h			
040064h	Detection Voltage Configuration Register	DVCR	0000 XXXXb
040065h			
040066h			
040067h			
$\begin{array}{r} \text { 040068h to } \\ 040093 \mathrm{~h} \end{array}$			

X: Undefined
Blanks are reserved. No access is allowed.
Note:

1. The value in the PMO register remains unchanged even after a software reset or watchdog timer reset.

Table 4.20 SFR List (20)

Address	Register	Symbol	Reset Value
040094h			
040095h			
040096h			
040097h	Three-phase Output Buffer Control Register	IOBC	OXXX XXXXb
040098h	Input Function Select Register 0	IFS0	X000 0000b
040099h	Input Function Select Register 1	IFS1	XXXX XOXOb
04009Ah	Input Function Select Register 2	IFS2	0000 00X0b
04009Bh	Input Function Select Register 3	IFS3	XXXX XX00b
04009Ch			
04009Dh			
04009Eh			
04009Fh			
0400A0h	Port P0_0 Function Select Register	PO_0S	0XXX X000b
0400A1h	Port P1_0 Function Select Register	P1_0S	XXXX X000b
0400A2h	Port P0_1 Function Select Register	P0_1S	0XXX X000b
0400A3h	Port P1_1 Function Select Register	P1_1S	XXXX X000b
0400A4h	Port P0_2 Function Select Register	P0_2S	0XXX X000b
0400A5h	Port P1_2 Function Select Register	P1_2S	XXXX X000b
0400A6h	Port P0_3 Function Select Register	P0_3S	0XXX X000b
0400A7h	Port P1_3 Function Select Register	P1_3S	XXXX X000b
0400A8h	Port P0_4 Function Select Register	PO_4S	0XXX X000b
0400A9h	Port P1_4 Function Select Register	P1_4S	XXXX X000b
0400AAh	Port P0_5 Function Select Register	P0_5S	0XXX X000b
0400ABh	Port P1_5 Function Select Register	P1_5S	XXXX X000b
0400ACh	Port P0_6 Function Select Register	P0_6S	0XXX X000b
0400ADh	Port P1_6 Function Select Register	P1_6S	XXXX X000b
0400AEh	Port P0_7 Function Select Register	P0_7S	0XXX X000b
0400AFh	Port P1_7 Function Select Register	P1_7S	XXXX X000b
0400B0h	Port P2_0 Function Select Register	P2_0S	0XXX X000b
0400B1h	Port P3_0 Function Select Register	P3_0S	XXXX X000b
0400B2h	Port P2_1 Function Select Register	P2_1S	0XXX X000b
0400B3h	Port P3_1 Function Select Register	P3_1S	XXXX X000b
0400B4h	Port P2_2 Function Select Register	P2_2S	OXXX X000b
0400B5h	Port P3_2 Function Select Register	P3_2S	XXXX X000b
0400B6h	Port P2_3 Function Select Register	P2_3S	0XXX X000b
0400B7h	Port P3_3 Function Select Register	P3_3S	XXXX X000b
0400B8h	Port P2_4 Function Select Register	P2_4S	0XXX X000b
0400B9h	Port P3_4 Function Select Register	P3_4S	XXXX X000b
0400BAh	Port P2_5 Function Select Register	P2_5S	0XXX X000b
0400BBh	Port P3_5 Function Select Register	P3_5S	XXXX X000b
0400BCh	Port P2_6 Function Select Register	P2_6S	0XXX X000b
0400BDh	Port P3_6 Function Select Register	P3_6S	XXXX X000b
0400BEh	Port P2_7 Function Select Register	P2_7S	0XXX X000b
0400BFh	Port P3_7 Function Select Register	P3_7S	XXXX X000b

X : Undefined
Blanks are reserved. No access is allowed.

Table 4.21 SFR List (21)

Address	Register	Symbol	Reset Value
0400COh	Port P4_0 Function Select Register	P4_0S	X0XX X000b
0400C1h	Port P5_0 Function Select Register	P5_0S	XXXX X000b
0400C2h	Port P4_1 Function Select Register	P4_1S	X0XX X000b
0400C3h	Port P5_1 Function Select Register	P5_1S	XXXX X000b
0400C4h	Port P4_2 Function Select Register	P4_2S	X0XX X000b
0400C5h	Port P5_2 Function Select Register	P5_2S	XXXX X000b
0400C6h	Port P4_3 Function Select Register	P4_3S	X0XX X000b
0400C7h	Port P5_3 Function Select Register	P5_3S	XXXX X000b
0400C8h	Port P4_4 Function Select Register	P4_4S	X0XX X000b
0400C9h	Port P5_4 Function Select Register	P5_4S	X0XX X000b
0400CAh	Port P4_5 Function Select Register	P4_5S	X0XX X000b
0400CBh	Port P5_5 Function Select Register	P5_5S	X0XX X000b
0400CCh	Port P4_6 Function Select Register	P4_6S	X0XX X000b
0400CDh	Port P5_6 Function Select Register	P5_6S	X0XX X000b
0400CEh	Port P4_7 Function Select Register	P4_7S	X0XX X000b
0400CFh	Port P5_7 Function Select Register	P5_7S	X0XX X000b
0400D0h	Port P6_0 Function Select Register	P6_0S	X0XX X000b
0400D1h	Port P7_0 Function Select Register	P7_0S	X0XX X000b
0400D2h	Port P6_1 Function Select Register	P6_1S	X0XX X000b
0400D3h	Port P7_1 Function Select Register	P7_1S	X0XX X000b
0400D4h	Port P6_2 Function Select Register	P6_2S	X0XX X000b
0400D5h	Port P7_2 Function Select Register	P7_2S	X0XX X000b
0400D6h	Port P6_3 Function Select Register	P6_3S	X0XX X000b
0400D7h	Port P7_3 Function Select Register	P7_3S	X0XX X000b
0400D8h	Port P6_4 Function Select Register	P6_4S	X0XX X000b
0400D9h	Port P7_4 Function Select Register	P7_4S	X0XX X000b
0400DAh	Port P6_5 Function Select Register	P6_5S	X0XX X000b
0400DBh	Port P7_5 Function Select Register	P7_5S	X0XX X000b
0400DCh	Port P6_6 Function Select Register	P6_6S	X0XX X000b
0400DDh	Port P7_6 Function Select Register	P7_6S	X0XX X000b
0400DEh	Port P6_7 Function Select Register	P6_7S	X0XX X000b
0400DFh	Port P7_7 Function Select Register	P7_7S	X0XX X000b
0400EOh	Port P8_0 Function Select Register	P8_0S	X0XX X000b
0400E1h	Port P9_0 Function Select Register	P9_0S	X0XX X000b
0400E2h	Port P8_1 Function Select Register	P8_1S	X0XX X000b
0400E3h	Port P9_1 Function Select Register	P9_1S	X0XX X000b
0400E4h	Port P8_2 Function Select Register	P8_2S	X0XX X000b
0400E5h	Port P9_2 Function Select Register	P9_2S	X0XX X000b
0400E6h	Port P8_3 Function Select Register	P8_3S	X0XX X000b
0400E7h	Port P9_3 Function Select Register	P9_3S	00XX X000b
0400E8h	Port P8_4 Function Select Register	P8_4S	XXXX X000b
0400E9h	Port P9_4 Function Select Register	P9_4S	00XX X000b
0400EAh			
0400EBh	Port P9_5 Function Select Register	P9_5S	00XX X000b
0400ECh	Port P8_6 Function Select Register	P8_6S	XXXX X000b
0400EDh	Port P9_6 Function Select Register	P9_6S	00XX X000b
0400EEh	Port P8_7 Function Select Register	P8_7S	XXXX X000b
0400EFh	Port P9_7 Function Select Register	P9_7S	X0XX X000b

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.22 SFR List (22)

Address	Register	Symbol	Reset Value
0400F0h	Port P10_0 Function Select Register	P10_0S	0XXX X000b
0400F1h	Port P11_0 Function Select Register	P11_0S	X0XX X000b
0400F2h	Port P10_1 Function Select Register	P10_1S	OXXX X000b
0400F3h	Port P11_1 Function Select Register	P11_1S	X0XX X000b
0400F4h	Port P10_2 Function Select Register	P10_2S	0XXX X000b
0400F5h	Port P11_2 Function Select Register	P11_2S	X0XX X000b
0400F6h	Port P10_3 Function Select Register	P10_3S	0XXX X000b
0400F7h	Port P11_3 Function Select Register	P11_3S	X0XX X000b
0400F8h	Port P10_4 Function Select Register	P10_4S	0XXX X000b
0400F9h	Port P11_4 Function Select Register	P11_4S	XXXX X000b
0400FAh	Port P10_5 Function Select Register	P10_5S	0XXX X000b
0400FBh			
0400FCh	Port P10_6 Function Select Register	P10_6S	0XXX X000b
0400FDh			
0400FEh	Port P10_7 Function Select Register	P10_7S	0XXX X000b
0400FFh			
040100h	Port P12_0 Function Select Register	P12_0S	X0XX X000b
040101h	Port P13_0 Function Select Register	P13_0S	XXXX X000b
040102h	Port P12_1 Function Select Register	P12_1S	X0XX X000b
040103h	Port P13_1 Function Select Register	P13_1S	XXXX X000b
040104h	Port P12_2 Function Select Register	P12_2S	X0XX X000b
040105h	Port P13_2 Function Select Register	P13_2S	XXXX X000b
040106h	Port P12_3 Function Select Register	P12_3S	X0XX X000b
040107h	Port P13_3 Function Select Register	P13_3S	XXXX X000b
040108h	Port P12_4 Function Select Register	P12_4S	XXXX X000b
040109h	Port P13_4 Function Select Register	P13_4S	XXXX X000b
04010Ah	Port P12_5 Function Select Register	P12_5S	XXXX X000b
04010Bh	Port P13_5 Function Select Register	P13_5S	XXXX X000b
04010Ch	Port P12_6 Function Select Register	P12_6S	XXXX X000b
04010Dh	Port P13_6 Function Select Register	P13_6S	XXXX X000b
04010Eh	Port P12_7 Function Select Register	P12_7S	XXXX X000b
04010Fh	Port P13_7 Function Select Register	P13_7S	XXXX X000b
040110h			
040111h	Port P15_0 Function Select Register	P15_0S	00XX X000b
040112h			
040113h	Port P15_1 Function Select Register	P15_1S	00XX X000b
040114h			
040115h	Port P15_2 Function Select Register	P15_2S	00XX X000b
040116h	Port P14_3 Function Select Register	P14_3S	XXXX X000b
040117h	Port P15_3 Function Select Register	P15_3S	00XX X000b
040118h	Port P14_4 Function Select Register	P14_4S	XXXX X000b
040119h	Port P15_4 Function Select Register	P15_4S	00XX X000b
04011Ah	Port P14_5 Function Select Register	P14_5S	XXXX X000b
04011Bh	Port P15_5 Function Select Register	P15_5S	00XX X000b
04011Ch	Port P14_6 Function Select Register	P14_6S	XXXX X000b
04011Dh	Port P15_6 Function Select Register	P15_6S	00XX X000b
04011Eh			
04011Fh	Port P15_7 Function Select Register	P15_7S	00XX X000b

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.23 SFR List (23)

Address	Register	Symbol	Reset Value
040120h to			
04403Fh			
044040h			
044041h			
044042h			
044043h			
044044h			
044045h			
044046h			
044047h			
044048h			
044049h			
04404Ah			
04404Bh			
04404Ch			
04404Dh			
04404Eh	Watchdog Timer Start Register	WDTS	XXXX XXXXb
04404Fh	Watchdog Timer Control Register	WDC	000X XXXXb
044050h			
044051h			
044052h			
044053h			
044054h			
044055h			
044056h			
044057h			
044058h			
044059h			
04405Ah			
04405Bh			
04405Ch			
04405Dh			
04405Eh			
04405Fh	Protect Register 2	PRCR2	0XXX XXXXb

[^2]Table 4.24 SFR List (24)

Address	Register	Symbol	Reset Value
044060h			
044061h			
044062h			
044063h			
044064h			
044065h			
044066h			
044067h			
044068h			
044069h			
04406Ah			
04406Bh			
04406Ch			
04406Dh	External Interrupt Request Source Select Register 1	IFSR1	X0XX X000b
04406Eh			
04406Fh	External Interrupt Request Source Select Register 0	IFSR0	0000 0000b
044070h	DMA0 Request Source Select Register 2	DMOSL2	XX00 0000b
044071h	DMA1 Request Source Select Register 2	DM1SL2	XX00 0000b
044072h	DMA2 Request Source Select Register 2	DM2SL2	XX00 0000b
044073h	DMA3 Request Source Select Register 2	DM3SL2	XX00 0000b
044074h			
044075h			
044076h			
044077h			
044078h	DMA0 Request Source Select Register	DMOSL	XXX0 0000b
044079h	DMA1 Request Source Select Register	DM1SL	XXX0 0000b
04407Ah	DMA2 Request Source Select Register	DM2SL	XXX0 0000b
04407Bh	DMA3 Request Source Select Register	DM3SL	XXX0 0000b
04407Ch			
04407Dh	Wake-up IPL Setting Register 2	RIPL2	XX0X 0000b
04407Eh			
04407Fh	Wake-up IPL Setting Register 1	RIPL1	XX0X 0000b
044080h			
044081h			
044082h			
044083h			
044084h			
044085h			
044086h			
044087h			
044088h			
044089h			
04408Ah			
04408Bh			
04408Ch			
04408Dh			
04408Eh			
04408Fh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.25 SFR List (25)

Address	Register	Symbol	Reset Value
$\begin{array}{\|c\|} \hline 044090 \mathrm{~h} \text { to } \\ 0443 F F h \end{array}$			
044400h	${ }^{2} \mathrm{C}$ - bus Transmit/Receive Shift Register	I2CTRSR	XXh
044401h			
044402h	$1^{2} \mathrm{C}$-bus Slave Address Register	I2CSAR	00h
044403h	${ }^{2} \mathrm{C}$-bus Control Register 0	I2CCR0	0000 0000b
044404h	$1^{2} \mathrm{C}$-bus Clock Control Register	I2CCCR	0000 0000b
044405h	$1^{2} \mathrm{C}$-bus START and STOP Conditions Control Register	I2CSSCR	0001 1010b
044406h	$1^{2} \mathrm{C}$-bus Control Register 1	I2CCR1	0011 0000b
044407h	${ }^{2} \mathrm{C}$-bus Control Register 2	I2CCR2	0X00 0000b
044408h	$1^{2} \mathrm{C}$-bus Status Register	I2CSR	0001 000Xb
044409h			
04440Ah			
04440Bh			
04440Ch			
04440Dh			
04440Eh			
04440Fh			
044410h	$1^{2} \mathrm{C}$-bus Mode Register	I2CMR	XXXX 0000b
044411h			
044412h			
044413h			
044414h			
044415h			
044416h			
044417h			
044418h			
044419h			
04441Ah			
04441Bh			
04441Ch			
04441Dh			
04441Eh			
04441Fh			
$\begin{array}{\|c\|} \hline 044420 \mathrm{~h} \text { to } \\ 0467 \mathrm{FFh} \\ \hline \end{array}$			

[^3]Table 4.26 SFR List (26)

Address	Register	Symbol	Reset Value
$\begin{array}{\|c\|} \hline \text { 046800h to } \\ \text { 047BFFh } \end{array}$			
047C00h	CANO Mailbox 0: Message Identifier	COMB0	XXXX XXXXh
047C01h			
047C02h			
047C03h			
047C04h			
047C05h	CANO Mailbox 0: Data Length		XXh
047C06h	CANO Mailbox 0: Data Field		$\begin{aligned} & \text { XXXX XXXX } \\ & \text { XXXX XXXXh } \end{aligned}$
047C07h			
047C08h			
047C09h			
047C0Ah			
047C0Bh			
047C0Ch			
047C0Dh			
047C0Eh	CAN0 Mailbox 0: Time Stamp		XXXXh
047C0Fh			
047C10h	CAN0 Mailbox 1: Message Identifier	C0MB1	XXXX XXXXh
047C11h			
047C12h			
047C13h			
047C14h			
047C15h	CANO Mailbox 1: Data Length		$\begin{array}{\|l\|} \hline X X h \\ \hline X X X X X X X X \\ X X X X X X X X h \end{array}$
047C16h	CAN0 Mailbox 1: Data Field		
047C17h			
047C18h			
047C19h			
047C1Ah			
047C1Bh			
047C1Ch			
047C1Dh			
047C1Eh	CAN0 Mailbox 1: Time Stamp		XXXXh
047C1Fh			
047C20h	CAN0 Mailbox 2: Message Identifier	C0MB2	XXXX XXXXh
047C21h			
047C22h			
047C23h			
047C24h			
047C25h	CAN0 Mailbox 2: Data Length		XXh
047C26h	CAN0 Mailbox 2: Data Field		XXXX XXXX XXXX XXXXh
047C27h			
047C28h			
047C29h			
047C2Ah			
047C2Bh			
047C2Ch			
047C2Dh			
047C2Eh	CANO Mailbox 2: Time Stamp		XXXXh
047C2Fh			

X : Undefined
Blanks are reserved. No access is allowed.

Table 4.27 SFR List (27)

Address	Register	Symbol	Reset Value
047C30h	CANO Mailbox 3: Message Identifier	C0MB3	XXXX XXXXh
047C31h			
047C32h			
047C33h			
047C34h			
047C35h	CANO Mailbox 3: Data Length		XXh
047C36h	CAN0 Mailbox 3: Data Field		$\begin{aligned} & X X X X X X X X \\ & X X X X X X X X h \end{aligned}$
047C37h			
047C38h			
047C39h			
047C3Ah			
047C3Bh			
047C3Ch			
047C3Dh			
047C3Eh	CAN0 Mailbox 3: Time Stamp		XXXXh
047C3Fh			
047C40h	CANO Mailbox 4: Message Identifier	C0MB4	XXXX XXXXh
047C41h			
047C42h			
047C43h			
047C44h			
047C45h	CANO Mailbox 4: Data Length		$\begin{array}{\|l\|} \hline X X h \\ \hline X X X X X X X X \\ X X X X X X X X \end{array}$
047C46h	CANO Mailbox 4: Data Field		
047C47h			
047C48h			
047C49h			
047C4Ah			
047C4Bh			
047C4Ch			
047C4Dh			
047C4Eh	CANO Mailbox 4: Time Stamp		XXXXh
047C4Fh			
047C50h	CAN0 Mailbox 5: Message Identifier	C0MB5	XXXX XXXXh
047C51h			
047C52h			
047C53h			
047C54h			
047C55h	CANO Mailbox 5: Data Length		XXh
047C56h	CAN0 Mailbox 5: Data Field		$\begin{aligned} & \text { XXXX XXXX } \\ & \text { XXXX XXXXh } \end{aligned}$
047C57h			
047C58h			
047C59h			
047C5Ah			
047C5Bh			
047C5Ch			
047C5Dh			
047C5Eh	CANO Mailbox 5: Time Stamp		XXXXh
047C5Fh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.28 SFR List (28)

Address	Register	Symbol	Reset Value
047C60h	CANO Mailbox 6: Message Identifier	C0MB6	XXXX XXXXh
047C61h			
047C62h			
047C63h			
047C64h			
047C65h	CANO Mailbox 6: Data Length		XXh
047C66h	CANO Mailbox 6: Data Field		$\begin{aligned} & X X X X X X X X \\ & X X X X X X X X h \end{aligned}$
047C67h			
047C68h			
047C69h			
047C6Ah			
047C6Bh			
047C6Ch			
047C6Dh			
047C6Eh	CANO Mailbox 6: Time Stamp		XXXXh
047C6Fh			
047C70h	CAN0 Mailbox 7: Message Identifier	C0MB7	XXXX XXXXh
047C71h			
047C72h			
047C73h			
047C74h			
047C75h	CAN0 Mailbox 7: Data Length		$\begin{array}{\|l\|} \hline X X h \\ \hline X X X X X X X X \\ X X X X X X X X \end{array}$
047C76h	CAN0 Mailbox 7: Data Field		
047C77h			
047C78h			
047C79h			
047C7Ah			
047C7Bh			
047C7Ch			
047C7Dh			
047C7Eh	CAN0 Mailbox 7: Time Stamp		XXXXh
047C7Fh			
047C80h	CAN0 Mailbox 8: Message Identifier	C0MB8	XXXX XXXXh
047C81h			
047C82h			
047C83h			
047C84h			
047C85h	CANO Mailbox 8: Data Length		XXh
047C86h	CAN0 Mailbox 8: Data Field		$\begin{aligned} & \text { XXXX XXXX } \\ & X X X X X X X X h \end{aligned}$
047C87h			
047C88h			
047C89h			
047C8Ah			
047C8Bh			
047C8Ch			
047C8Dh			
047C8Eh	CANO Mailbox 8: Time Stamp		XXXXh
047C8Fh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.29 SFR List (29)

Address	Register	Symbol	Reset Value
047C90h	CAN0 Mailbox 9: Message Identifier	C0MB9	XXXX XXXXh
047C91h			
047C92h			
047C93h			
047C94h			
047C95h	CANO Mailbox 9: Data Length		XXh
047C96h	CAN0 Mailbox 9: Data Field		$\begin{aligned} & \text { XXXX XXXX } \\ & \text { XXXX XXXXh } \end{aligned}$
047C97h			
047C98h			
047C99h			
047C9Ah			
047C9Bh			
047C9Ch			
047C9Dh			
047C9Eh	CAN0 Mailbox 9: Time Stamp		XXXXh
047C9Fh			
047CAOh	CANO Mailbox 10: Message Identifier	C0MB10	XXXX XXXXh
047CA1h			
047CA2h			
047CA3h			
047CA4h			
047CA5h	CANO Mailbox 10: Data Length		$\begin{array}{\|l\|} \hline X X h \\ \hline X X X X X X X X \\ X X X X X X X X h \end{array}$
047CA6h	CANO Mailbox 10: Data Field		
047CA7h			
047CA8h			
047CA9h			
047CAAh			
047CABh			
047CACh			
047CADh			
047CAEh	CANO Mailbox 10: Time Stamp		XXXXh
047CAFh			
047CB0h	CAN0 Mailbox 11: Message Identifier	C0MB11	XXXX XXXXh
047CB1h			
047CB2h			
047CB3h			
047CB4h			
047CB5h	CANO Mailbox 11: Data Length		XXh
047CB6h	CAN0 Mailbox 11: Data Field		$\begin{aligned} & \text { XXXX XXXX } \\ & \text { XXXX XXXXh } \end{aligned}$
047CB7h			
047CB8h			
047CB9h			
047CBAh			
047CBBh			
047CBCh			
047CBDh			
047CBEh	CAN0 Mailbox 11: Time Stamp		XXXXh
047CBFh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.30 SFR List (30)

Address	Register	Symbol	Reset Value
047CCOh	CANO Mailbox 12: Message Identifier	C0MB12	XXXX XXXXh
047CC1h			
047CC2h			
047CC3h			
047CC4h			
047CC5h	CANO Mailbox 12: Data Length		XXh
047CC6h	CANO Mailbox 12: Data Field		XXXX XXXX XXXX XXXXh
047CC7h			
047CC8h			
047CC9h			
047CCAh			
047CCBh			
047CCCh			
047CCDh			
047CCEh	CANO Mailbox 12: Time Stamp		XXXXh
047CCFh			
047CD0h	CAN0 Mailbox 13: Message Identifier	C0MB13	XXXX XXXXh
047CD1h			
047CD2h			
047CD3h			
047CD4h			
047CD5h	CANO Mailbox 13: Data Length		$\begin{aligned} & \text { XXh } \\ & \hline X X X X X X X X \\ & X X X X ~ X X X X h \end{aligned}$
047CD6h	CAN0 Mailbox 13: Data Field		
047CD7h			
047CD8h			
047CD9h			
047CDAh			
047CDBh			
047CDCh			
047CDDh			
047CDEh	CAN0 Mailbox 13: Time Stamp		XXXXh
047CDFh			
047CE0h	CAN0 Mailbox 14: Message Identifier	C0MB14	XXXX XXXXh
047CE1h			
047CE2h			
047CE3h			
047CE4h			
047CE5h	CANO Mailbox 14: Data Length		XXh
047CE6h	CAN0 Mailbox 14: Data Field		$\begin{aligned} & \text { XXXX XXXX } \\ & \text { XXXX XXXXh } \end{aligned}$
047CE7h			
047CE8h			
047CE9h			
047CEAh			
047CEBh			
047CECh			
047CEDh			
047CEEh	CANO Mailbox 14: Time Stamp		XXXXh
047CEFh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.31 SFR List (31)

Address	Register	Symbol	Reset Value
047CFOh	CAN0 Mailbox 15: Message Identifier	C0MB15	XXXX XXXXh
047CF1h			
047CF2h			
047CF3h			
047CF4h			
047CF5h	CANO Mailbox 15: Data Length		XXh
047CF6h	CANO Mailbox 15: Data Field		XXXX XXXX XXXX XXXXh
047CF7h			
047CF8h			
047CF9h			
047CFAh			
047CFBh			
047CFCh			
047CFDh			
047CFEh	CANO Mailbox 15: Time Stamp		XXXXh
047CFFh			
047D00h	CAN0 Mailbox 16: Message Identifier	C0MB16	XXXX XXXXh
047D01h			
047D02h			
047D03h			
047D04h			
047D05h	CANO Mailbox 16: Data Length		$\begin{aligned} & \text { XXh } \\ & \hline X X X X X X X X \\ & X X X X ~ X X X X h \end{aligned}$
047D06h	CAN0 Mailbox 16: Data Field		
047D07h			
047D08h			
047D09h			
047D0Ah			
047D0Bh			
047D0Ch			
047D0Dh			
047D0Eh	CAN0 Mailbox 16: Time Stamp		XXXXh
047D0Fh			
047D10h	CAN0 Mailbox 17: Message Identifier	C0MB17	XXXX XXXXh
047D11h			
047D12h			
047D13h			
047D14h			
047D15h	CAN0 Mailbox 17: Data Length		XXh
047D16h	CAN0 Mailbox 17: Data Field		$\begin{aligned} & \text { XXXX XXXX } \\ & \text { XXXX XXXXh } \end{aligned}$
047D17h			
047D18h			
047D19h			
047D1Ah			
047D1Bh			
047D1Ch			
047D1Dh			
047D1Eh	CANO Mailbox 17: Time Stamp		XXXXh
047D1Fh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.32 SFR List (32)

Address	Register	Symbol	Reset Value
047D20h	CANO Mailbox 18: Message Identifier	C0MB18	XXXX XXXXh
047D21h			
047D22h			
047D23h			
047D24h			
047D25h	CANO Mailbox 18: Data Length		XXh
047D26h	CANO Mailbox 18: Data Field		$\begin{aligned} & X X X X X X X X \\ & X X X X X X X X h \end{aligned}$
047D27h			
047D28h			
047D29h			
047D2Ah			
047D2Bh			
047D2Ch			
047D2Dh			
047D2Eh	CANO Mailbox 18: Time Stamp		XXXXh
047D2Fh			
047D30h	CAN0 Mailbox 19: Message Identifier	C0MB19	XXXX XXXXh
047D31h			
047D32h			
047D33h			
047D34h			
047D35h	CANO Mailbox 19: Data Length		$\begin{array}{\|l\|} \hline X X h \\ \hline X X X X X X X X \\ X X X X X X X X \end{array}$
047D36h	CANO Mailbox 19: Data Field		
047D37h			
047D38h			
047D39h			
047D3Ah			
047D3Bh			
047D3Ch			
047D3Dh			
047D3Eh	CAN0 Mailbox 19: Time Stamp		XXXXh
047D3Fh			
047D40h	CAN0 Mailbox 20: Message Identifier	C0MB20	XXXX XXXXh
047D41h			
047D42h			
047D43h			
047D44h			
047D45h	CANO Mailbox 20: Data Length		XXh
047D46h	CAN0 Mailbox 20: Data Field		$\begin{aligned} & \text { XXXX XXXX } \\ & \text { XXXX XXXXh } \end{aligned}$
047D47h			
047D48h			
047D49h			
047D4Ah			
047D4Bh			
047D4Ch			
047D4Dh			
047D4Eh	CANO Mailbox 20: Time Stamp		XXXXh
047D4Fh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.33 SFR List (33)

Address	Register	Symbol	Reset Value
047D50h	CANO Mailbox 21: Message Identifier	C0MB21	XXXX XXXXh
047D51h			
047D52h			
047D53h			
047D54h			
047D55h	CANO Mailbox 21: Data Length		XXh
047D56h	CAN0 Mailbox 21: Data Field		$\begin{aligned} & X X X X X X X X \\ & X X X X X X X X h \end{aligned}$
047D57h			
047D58h			
047D59h			
047D5Ah			
047D5Bh			
047D5Ch			
047D5Dh			
047D5Eh	CANO Mailbox 21: Time Stamp		XXXXh
047D5Fh			
047D60h	CAN0 Mailbox 22: Message Identifier	C0MB22	XXXX XXXXh
047D61h			
047D62h			
047D63h			
047D64h			
047D65h	CANO Mailbox 22: Data Length		$\begin{array}{\|l\|} \hline X X h \\ \hline X X X X X X X X \\ X X X X X X X X \end{array}$
047D66h	CANO Mailbox 22: Data Field		
047D67h			
047D68h			
047D69h			
047D6Ah			
047D6Bh			
047D6Ch			
047D6Dh			
047D6Eh	CAN0 Mailbox 22: Time Stamp		XXXXh
047D6Fh			
047D70h	CAN0 Mailbox 23: Message Identifier	C0MB23	XXXX XXXXh
047D71h			
047D72h			
047D73h			
047D74h			
047D75h	CANO Mailbox 23: Data Length		XXh
047D76h	CANO Mailbox 23: Data Field		$\begin{aligned} & X X X X X X X X \\ & X X X X X X X X h \end{aligned}$
047D77h			
047D78h			
047D79h			
047D7Ah			
047D7Bh			
047D7Ch			
047D7Dh			
047D7Eh	CANO Mailbox 23: Time Stamp		XXXXh
047D7Fh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.34 SFR List (34)

Address	Register	Symbol	Reset Value
047D80h	CAN0 Mailbox 24: Message Identifier	C0MB24	XXXX XXXXh
047D81h			
047D82h			
047D83h			
047D84h			
047D85h	CANO Mailbox 24: Data Length		XXh
047D86h	CAN0 Mailbox 24: Data Field		$\begin{aligned} & X X X X X X X X \\ & X X X X ~ X X X X h \end{aligned}$
047D87h			
047D88h			
047D89h			
047D8Ah			
047D8Bh			
047D8Ch			
047D8Dh			
047D8Eh	CANO Mailbox 24: Time Stamp		XXXXh
047D8Fh			
047D90h	CAN0 Mailbox 25: Message Identifier	C0MB25	XXXX XXXXh
047D91h			
047D92h			
047D93h			
047D94h			
047D95h	CANO Mailbox 25: Data Length		XXh
047D96h	CANO Mailbox 25: Data Field		XXXX XXXX XXXX XXXXh
047D97h			
047D98h			
047D99h			
047D9Ah			
047D9Bh			
047D9Ch			
047D9Dh			
047D9Eh	CANO Mailbox 25: Time Stamp		XXXXh
047D9Fh			
047DA0h	CANO Mailbox 26: Message Identifier	C0MB26	XXXX XXXXh
047DA1h			
047DA2h			
047DA3h			
047DA4h			
047DA5h	CANO Mailbox 26: Data Length		XXh
047DA6h	CANO Mailbox 26: Data Field		$\begin{aligned} & \text { XXXX XXXX } \\ & \text { XXXX XXXXh } \end{aligned}$
047DA7h			
047DA8h			
047DA9h			
047DAAh			
047DABh			
047DACh			
047DADh			
047DAEh	CANO Mailbox 26: Time Stamp		XXXXh
047DAFh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.35 SFR List (35)

Address	Register	Symbol	Reset Value
047DB0h	CANO Mailbox 27: Message Identifier	C0MB27	XXXX XXXXh
047DB1h			
047DB2h			
047DB3h			
047DB4h			
047DB5h	CANO Mailbox 27: Data Length		XXh
047DB6h	CANO Mailbox 27: Data Field		XXXX XXXX XXXX XXXXh
047DB7h			
047DB8h			
047DB9h			
047DBAh			
047DBBh			
047DBCh			
047DBDh			
047DBEh	CANO Mailbox 27: Time Stamp		XXXXh
047DBFh			
047DC0h	CAN0 Mailbox 28: Message Identifier	C0MB28	XXXX XXXXh
047DC1h			
047DC2h			
047DC3h			
047DC4h			
047DC5h	CANO Mailbox 28: Data Length		$\begin{array}{\|l\|} \hline X X h \\ \hline X X X X X X X \\ X X X X X X X X h \end{array}$
047DC6h	CAN0 Mailbox 28: Data Field		
047DC7h			
047DC8h			
047DC9h			
047DCAh			
047DCBh			
047DCCh			
047DCDh			
047DCEh	CANO Mailbox 28: Time Stamp		XXXXh
047DCFh			
047DD0h	CAN0 Mailbox 29: Message Identifier	C0MB29	XXXX XXXXh
047DD1h			
047DD2h			
047DD3h			
047DD4h			
047DD5h	CANO Mailbox 29: Data Length		XXh
047DD6h	CAN0 Mailbox 29: Data Field		$\begin{aligned} & \text { XXXX XXXX } \\ & \text { XXXX XXXXh } \end{aligned}$
047DD7h			
047DD8h			
047DD9h			
047DDAh			
047DDBh			
047DDCh			
047DDDh			
047DDEh	CANO Mailbox 29: Time Stamp		XXXXh
047DDFh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.36 SFR List (36)

Address	Register	Symbol	Reset Value
047DE0h	CAN0 Mailbox 30: Message Identifier	C0MB30	XXXX XXXXh
047DE1h			
047DE2h			
047DE3h			
047DE4h			
047DE5h	CANO Mailbox 30: Data Length		XXh
047DE6h	CANO Mailbox 30: Data Field		$\begin{aligned} & \text { XXXX XXXX } \\ & X X X X ~ X X X X h \end{aligned}$
047DE7h			
047DE8h			
047DE9h			
047DEAh			
047DEBh			
047DECh			
047DEDh			
047DEEh	CAN0 Mailbox 30: Time Stamp		XXXXh
047DEFh			
047DFOh	CANO Mailbox 31: Message Identifier	C0MB31	XXXX XXXXh
047DF1h			
047DF2h			
047DF3h			
047DF4h			
047DF5h	CANO Mailbox 31: Data Length		$\begin{array}{\|l\|} \hline X X h \\ \hline X X X X X X X X \\ X X X X X X X X h \end{array}$
047DF6h	CAN0 Mailbox 31: Data Field		
047DF7h			
047DF8h			
047DF9h			
047DFAh			
047DFBh			
047DFCh			
047DFDh			
047DFEh	CAN0 Mailbox 31: Time Stamp		XXXXh
047DFFh			
047E00h	CANO Acceptance Mask Register 0	COMKRO	XXXX XXXXh
047E01h			
047E02h			
047E03h			
047E04h	CANO Acceptance Mask Register 1	C0MKR1	XXXX XXXXh
047E05h			
047E06h			
047E07h			
047E08h	CANO Acceptance Mask Register 2	C0MKR2	XXXX XXXXh
047E09h			
047E0Ah			
047E0Bh			
047E0Ch	CANO Acceptance Mask Register 3	COMKR3	XXXX XXXXh
047E0Dh			
047E0Eh			
047E0Fh			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.37 SFR List (37)

Address	Register	Symbol	Reset Value
047E10h	CANO Acceptance Mask Register 4	COMKR4	XXXX XXXXh
047E11h			
047E12h			
047E13h			
047E14h	CANO Acceptance Mask Register 5	C0MKR5	XXXX XXXXh
047E15h			
047E16h			
047E17h			
047E18h	CANO Acceptance Mask Register 6	C0MKR6	XXXX XXXXh
047E19h			
047E1Ah			
047E1Bh			
047E1Ch	CANO Acceptance Mask Register 7	C0MKR7	XXXX XXXXh
047E1Dh			
047E1Eh			
047E1Fh			
047E20h	CANO FIFO Receive ID Compare Register 0	COFIDCR0	XXXX XXXXh
047E21h			
047E22h			
047E23h			
047E24h	CAN0 FIFO Receive ID Compare Register 1	C0FIDCR1	XXXX XXXXh
047E25h			
047E26h			
047E27h			
047E28h	CANO Mask Invalid Register	COMKIVLR	XXXX XXXXh
047E29h			
047E2Ah			
047E2Bh			
047E2Ch	CANO Mailbox Interrupt Enable Register	COMIER	XXXX XXXXh
047E2Dh			
047E2Eh			
047E2Fh			
047E30h			
047E31h			
047E32h			
047E33h			
047E34h			
047E35h			
047E36h			
047E37h			
047E38h			
047E39h			
047E3Ah			
047E3Bh			
047E3Ch			
047E3Dh			
047E3Eh			
047E3Fh			
$\begin{array}{r} \text { 047E40h to } \\ \text { 047F1Fh } \end{array}$			

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.38 SFR List (38)

Address	Register	Symbol	Reset Value
047F20h	CANO Message Control Register 0	COMCTLO	00h
047F21h	CAN0 Message Control Register 1	C0MCTL1	00h
047F22h	CANO Message Control Register 2	COMCTL2	00h
047F23h	CANO Message Control Register 3	COMCTL3	00h
047F24h	CANO Message Control Register 4	COMCTL4	00h
047F25h	CAN0 Message Control Register 5	COMCTL5	00h
047F26h	CAN0 Message Control Register 6	COMCTL6	00h
047F27h	CANO Message Control Register 7	C0MCTL7	00h
047F28h	CANO Message Control Register 8	COMCTL8	00h
047F29h	CANO Message Control Register 9	COMCTL9	00h
047F2Ah	CANO Message Control Register 10	C0MCTL10	00h
047F2Bh	CANO Message Control Register 11	C0MCTL11	00h
047F2Ch	CANO Message Control Register 12	C0MCTL12	00h
047F2Dh	CANO Message Control Register 13	C0MCTL13	00h
047F2Eh	CANO Message Control Register 14	C0MCTL14	00h
047F2Fh	CANO Message Control Register 15	C0MCTL15	00h
047F30h	CANO Message Control Register 16	C0MCTL16	00h
047F31h	CANO Message Control Register 17	C0MCTL17	00h
047F32h	CANO Message Control Register 18	C0MCTL18	00h
047F33h	CANO Message Control Register 19	C0MCTL19	00h
047F34h	CANO Message Control Register 20	C0MCTL20	00h
047F35h	CANO Message Control Register 21	C0MCTL21	00h
047F36h	CANO Message Control Register 22	C0MCTL22	00h
047F37h	CANO Message Control Register 23	C0MCTL23	00h
047F38h	CANO Message Control Register 24	C0MCTL24	00h
047F39h	CANO Message Control Register 25	C0MCTL25	00h
047F3Ah	CANO Message Control Register 26	C0MCTL26	00h
047F3Bh	CANO Message Control Register 27	C0MCTL27	00h
047F3Ch	CANO Message Control Register 28	C0MCTL28	00h
047F3Dh	CANO Message Control Register 29	C0MCTL29	00h
047F3Eh	CANO Message Control Register 30	C0MCTL30	00h
047F3Fh	CANO Message Control Register 31	C0MCTL31	00h

X: Undefined
Blanks are reserved. No access is allowed.

Table 4.39 SFR List (39)

Address	Register	Symbol	Reset Value
047F40h	CANO Control Register	COCTLR	0000 0101b
047F41h			0000 0000b
047F42h	CANO Status Register	COSTR	0000 0101b
047F43h			0000 0000b
047F44h	CANO Bit Configuration Register	COBCR	00 0000h
047F45h			
047F46h			
047F47h	CANO Clock Select Register	COCLKR	000X 0000b
047F48h	CANO Receive FIFO Control Register	CORFCR	1000 0000b
047F49h	CANO Receive FIFO Pointer Control Register	CORFPCR	XXh
047F4Ah	CANO Transmit FIFO Control Register	COTFCR	1000 0000b
047F4Bh	CANO Transmit FIFO Pointer Control Register	COTFPCR	XXh
047F4Ch	CANO Error Interrupt Enable Register	COEIER	00h
047F4Dh	CANO Error Interrupt Factor Judge Register	COEIFR	00h
047F4Eh	CANO Receive Error Count Register	CORECR	00h
047F4Fh	CANO Transmit Error Count Register	COTECR	00h
047F50h	CANO Error Code Store Register	COECSR	00h
047F51h	CANO Channel Search Support Register	COCSSR	XXh
047F52h	CANO Mailbox Search Status Register	COMSSR	1000 0000b
047F53h	CANO Mailbox Search Mode Register	COMSMR	XXXX XX00b
047F54h	CANO Time Stamp Register	COTSR	0000h
047F55h			
047F56h	CANO Acceptance Filter Support Register	COAFSR	XXXXh
047F57h			
047F58h	CANO Test Control Register	COTCR	00h
047F59h			
047F5Ah			
047F5Bh			
047F5Ch			
047F5Dh			
047F5Eh			
047F5Fh			
$\begin{array}{r} \text { 047F60h to } \\ \text { 047FFFh } \end{array}$			
$\begin{array}{r} \text { 048000h to } \\ \text { 04FFFFh } \end{array}$			

X: Undefined
Blanks are reserved. No access is allowed.

5. Resets

Three types of reset operations can be used to reset the MCU: hardware reset, software reset, and watchdog timer reset.

5.1 Hardware Reset

A hardware reset is generated when a low signal is applied to the $\overline{\operatorname{RESET}}$ pin under the recommended operating conditions of supply voltage (refer to Table 5.1). When the $\overline{R E S E T}$ pin is driven low, all pins, and oscillators are initialized, and the main clock starts oscillating. The CPU and SFRs are initialized by a low-to-high transition on the $\overline{\text { RESET }}$ pin. Then, the CPU starts executing the program of the address indicated by the reset vector. The internal RAM is not affected by a hardware reset. However, if a hardware reset occurs during a write to the internal RAM, the content is undefined.
Figure 5.1 shows an example of the reset circuit. Figure 5.2 shows the reset sequence. Table 5.1 lists pin states while the RESET pin is held low. Figure 5.3 shows CPU register states after reset. For the SFR states after reset, refer to 4. "Special Function Registers (SFRs)".
A. Reset on a stable supply voltage
(1) Drive the $\overline{\text { RESET }}$ pin low.
(2) Provide 20 or more clock cycle inputs into the XIN pin.
(3) Drive the RESET pin high.
B. Power-on reset
(1) Drive the RESET pin low.
(2) Raise the supply voltage to the recommended operating voltage.
(3) Insert td(P-R) ms as wait time to stabilize the internal voltage.
(4) Provide 20 or more clock cycle inputs into the XIN pin.
(5) Drive the RESET pin high.

Figure 5.1 Reset Circuitry

Figure 5.2 Reset Sequence

Table 5.1 Pin States while $\overline{\text { RESET }}$ Pin is Held Low (1)

Pin Name	Pin States	
	CNVSS = VSS	
P0	Input port (high-impedance)	Inputs data
P1	Input port (high-impedance)	Input port (high-impedance)
P2, P3	Input port (high-impedance)	Output addresses (undefined)
P4_0 to P4_6	Input port (high-impedance)	Output addresses (undefined)
P4_7	Input port (high-impedance)	Outputs the $\overline{\text { CS0 }}$ signal (high)
P5_0	Input port (high-impedance)	Outputs the $\overline{\text { WR }}$ signal (high)
P5_1	Input port (high-impedance)	Outputs the $\overline{\text { BC1 }}$ signal (undefined)
P5_2	Input port (high-impedance)	Outputs the $\overline{\text { RD signal (high) }}$
P5_3	Input port (high-impedance)	Outputs the BCLK (2)
P5_4	Input port (high-impedance)	Outputs the $\overline{\text { HLDA }}$ signal (output signal depends on
an input signal to the $\overline{\text { HOLD pin) (2) }}$		
P5_5	Input port (high-impedance)	Inputs the $\overline{\text { HOLD signal (high-impedance) }}$
P5_6	Input port (high-impedance)	Outputs the $\overline{\text { CS2 } \text { signal (high) }}$
P5_7	Input port (high-impedance)	Inputs the $\overline{\text { RDY }}$ signal (high-impedance)
P6 to P10	Input port (high-impedance)	Input port (high-impedance)
P11 to P15 (3)	Input port (high-impedance)	Input port (high-impedance)

Notes:

1. Whether a pull-up resistor is enabled or not is undefined until the internal voltage has stabilized.
2. State after power is on and the internal voltage has stabilized. It is undefined until the internal voltage has stabilized
3. Ports P11 to P15 are available in the 144-pin package only.

Figure 5.3 CPU Registers after Reset

5.2 Software Reset

A software reset is generated when the PM03 bit in the PM0 register is set to 1 (MCU is reset). When a software reset is released, the CPU, SFRs, and pins are initialized. Then, the CPU starts executing the program from the address indicated by the reset vector.
The PM03 bit should be set to 1 while the PLL clock is selected as the CPU clock source and the main clock oscillation is completely stable.
Processor mode remains unchanged since bits PM01 and PM00 in the PM0 register are not affected by a software reset.

5.3 Watchdog Timer Reset

A watchdog timer reset is generated when the watchdog timer underflows while the CM06 bit in the CM0 register is 1 (the MCU is reset if the watchdog timer underflows). When the watchdog timer reset is released, the CPU, SFRs, and pins are initialized. Then, the CPU starts executing the program from the address indicated by the reset vector.
Processor mode remains unchanged since bits PM01 and PM00 in the PM0 register are not affected by a watchdog timer reset.

5.4 Reset Vector

The reset vector in the R32C/100 Series is configured as shown in Figure 5.4.
The 32-bit start address of a program must be a multiple of 4. Because of this, the address always ends with two zero bits. The reset vector contains the upper 30 bits of the start address in bits 2 to 31 . Bits 0 and 1 of the reset vector are used to select the external bus width in microprocessor mode. In single-chip mode, these bits should be set to 00b.

Figure 5.4 Reset Vector Configuration

6. Power Management

6.1 Voltage Regulators for Internal Logic

The supply voltage for internal logic is generated by reducing the input voltage from the VCC pin with the voltage regulators. Figure 6.1 shows a block diagram of the voltage regulators for internal logic, and Figure 6.2 shows the VRCR register.

Figure 6.1 Block Diagram of Voltage Regulators for Internal Logic

Voltage Regulator Control Register ${ }^{(1)}$

Notes:

1. Set the PRC31 bit in the PRCR3 register to 1 (write enabled) before rewriting this register.
2. This bit is fixed to 0 if the CM05 bit in the CM0 register is 0 (main clock oscillator enabled) or the CM10 bit in the CM1 register is 0 (PLL oscillator enabled) .
3. While the main regulator is stopped, do not rewrite the flash memory.

Figure 6.2 VRCR Register

6.1.1 Decoupling Capacitor

An external decoupling capacitor is required to stabilize internal voltage. The capacitor should be beneficially effective at higher frequencies and maintain more stable capacitance irrespective of temperature change. In general, ceramic capacitors are recommended. The capacitance varies by such conditions as operating temperature, DC bias, and aging. To select an appropriate capacitor, these conditions should be considered. Then refer to the recommended capacitor specifications listed in Table 6.1.
The traces for the capacitor and the VDC1/VDC0 pins should be as short and wide as physically possible.

Table 6.1 Recommended Capacitor Specifications

Temperature Characteristics				Rated Voltage (V)	Nominal Capacitance $(\mu \mathrm{F})$	Capacitance Tolerance (\%)
Applicable standard	Operating temperature range $\left({ }^{\circ} \mathrm{C}\right)$	Capacitance change (\%)	CIS			
B	JIS	-25 to 85	± 10	6.3 or higher	4.7	± 20 or better
R	JIS	-55 to 125	± 15	6.3 or higher	4.7	± 20 or better
X5R	EIA	-55 to 85	± 15	6.3 or higher	4.7	± 20 or better
X7R	EIA	-55 to 125	± 15	6.3 or higher	4.7	± 20 or better
X8R	EIA	-55 to 150	± 15	6.3 or higher	4.7	± 20 or better
X6S	EIA	-55 to 105	± 22	6.3 or higher	4.7	± 20 or better
X7S	EIA	-55 to 125	± 22	6.3 or higher	4.7	± 20 or better

6.2 Low Voltage Detector

The low voltage detector monitors the supply voltage of VCC pin.
This circuit is used to monitor the power supply upstream of the voltage regulators for internal logic and provide advanced warning that the power is about to fail. By providing a few milliseconds of advanced warning, the CPU can save any critical parameters to the flash memory and gracefully shut down.
Figure 6.3 shows a block diagram of the low voltage detector and Figure 6.4 and Figure 6.5 show registers associated with the circuit.

Figure 6.3 Low Voltage Detector Block Diagram

Low Voltage Detector Control Register ${ }^{(1)}$

Notes:

1. Set the PRC31 bit in the PRCR3 register to 1 (write enabled) before rewriting this register.
2. Before setting this bit to 1 , set the VDEN bit to 1 (low voltage detection enabled) first, and wait until the circuit has stabilized.
3. This bit is valid when the VDEN bit is set to 1 (low voltage detection enabled).
4. This bit becomes 0 if a 0 is written to (Writing a 1 to this bit has no effect).

Figure 6.4 LVDC Register

Detection Voltage Configuration Register ${ }^{(1)}$

Notes:

1. Set the PRC31 bit in the PRCR3 register to 1 (write enabled) before rewriting this register. The rewriting should be performed when the VDEN bit in the LVDC register is set to 0 (low voltage detection disabled).
2. Refer to the table below for detected voltages $\operatorname{Vdet}(\mathrm{F})$ and $\operatorname{Vdet}(\mathrm{R})$.

Reference Voltage	Low-detection Voltage Vdet(F)	Rise-detection Voltage Vdet(R)
4.65 V	4.55 V	4.77 V
4.50 V	4.40 V	4.62 V
4.35 V	4.24 V	4.46 V
4.20 V	4.09 V	4.31 V
4.05 V	3.95 V	4.17 V
3.90 V	3.80 V	4.02 V
3.75 V	3.65 V	3.87 V
3.60 V	3.50 V	3.72 V
3.45 V	3.35 V	3.57 V
3.30 V	3.20 V	3.42 V

Figure 6.5 DVCR register

6.2.1 Operational State of Low Voltage Detector

The low voltage detector starts running after $\operatorname{td}(\mathrm{E}-\mathrm{A})$ if the VDEN bit in the LVDC register is set to 1 (low voltage detection enabled).
When the input voltage to the VCC pin has dropped below Vdet(F), the VMF bit becomes 0 (VCC < Vdet) and the LVDF bit becomes 1 (low voltage detected (Vdet passed)). Then an interrupt request occurs if the LVDIEN bit is set to 1 (low voltage detection interrupt enabled). The LVDF bit should be set to 0 (low voltage undetected) by a program.
When the voltage has re-risen above $\operatorname{Vdet}(\mathrm{R})$, the VMF bit becomes to 1 (VCC $\geq \mathrm{Vdet}$) and the LVDF bit becomes 1 (low voltage detected (Vdet passed)). Then an interrupt request occurs if the LVDIEN bit is set to 1 (low voltage detection interrupt enabled).
Figure 6.6 shows the operational state of low voltage detector.

Figure 6.6 Operational State of Low Voltage Detector

6.2.2 Low Voltage Detection Interrupt

The low voltage detection interrupt occurs when the input voltage at the VCC pin rises to the Vdet(R) level and above, or falls below the $\operatorname{Vdet}(F)$ level if the LVDIEN bit in the LVDC register is set to 1 (low voltage detection interrupt enabled).
This interrupt shares the interrupt vector table with the watchdog timer interrupt and oscillator stop detection interrupt. In case of simultaneous use with other(s), it should be confirmed that the low voltage detection interrupt has occurred by reading the LVDF bit in the LVDC register in the interrupt handler.
The LVDF bit becomes 1 when the input voltage at the VCC pin has passed the $V \operatorname{det}(R)$ level or Vdet(F) level. When the LVDF bit changes from 0 to 1, a low voltage detection interrupt request occurs. This bit should be set to 0 (low voltage undetected) by a program.

6.2.3 An Application of Low Voltage Detector

Figure 6.7 shows an application of the low voltage detection interrupt.
The supply voltage for internal logic is generated by reducing the input voltage from the VCC pin with the voltage regulators. When the input voltage begins to fall, the internal voltage stays steady. Eventually, as the input voltage continues to fall, it begins to fall, which may affect the MCU operation. Consequently the system can be gracefully shut down from when the input voltage begins to fall until when the internal voltage begins to fall. The low voltage detection interrupt can be applied to detect the input voltage falling.

Figure 6.7 Low Voltage Detection Interrupt

7. Processor Mode

7.1 Types of Processor Modes

The R32C/100 Series supports three types of processor modes: single-chip mode, memory expansion mode, and microprocessor mode. Table 7.1 lists the characteristics of each processor mode.

Table 7.1 Processor Mode Characteristics

Processor Mode	Accessible Space	Pin State as I/O Ports
Single-chip mode	SFRs, internal RAM, internal ROM	All pins can be assigned to I/O ports or I/O pins for the peripheral functions
Memory expansion mode	SFRs, internal RAM, internal ROM, external space	Some pins are assigned to bus control pins (1)
Microprocessor mode	SFRs, internal RAM, external space	Some pins are assigned to bus control pins (1)

Note:

1. Refer to 9. "Bus" for details.

The R32C/117 Group supports two standard processor modes: single-chip mode and memory expansion mode. Microprocessor mode is optional. Contact a Renesas Electronics sales office to use this mode.

7.2 Processor Mode Setting

The processor mode to be used is selected by the CNVSS pin state and setting of bits PM01 and PM00 in the PMO register. After a hardware reset, the operation starts in single-chip mode or microprocessor mode as shown in Table 7.2.

Table 7.2 Processor Mode after Hardware Reset

Input Level into the CNVSS Pin (1)	Processor Mode
Low	Single-chip mode
High	Microprocessor mode

Note:

1. The CNVSS pin should be connected to VCC or VSS via a resistor.

To change to memory expansion mode after starting an operation in single-chip mode, set bits PM01 and PM00 in the PM0 register to 01b (memory expansion mode). Note that the microprocessor mode, selected to start an operation, can be also changed to another mode by setting the bits mentioned above. In this case, however, the internal ROM is inaccessible in every changed mode.

The notes on changing processor mode are as follows:

1. When rewriting bits PM01 and PM00 to 01b (memory expansion mode) or 11b (microprocessor mode), do not rewrite bits PM07 to PM02 at the same time.
2. When rewriting bits PM07 to PM02, hold the setting of bits PM01 and PM00.
3. Do not change the current mode to microprocessor mode while a program in the internal ROM is being executed.
4. Do not change the current mode to single-chip mode while a program in the external space is being executed.
5. Do not change the current mode to memory expansion mode while a program in the same address as that assigned to the internal ROM is being executed.

Figure 7.1 shows the PM0 register and Figure 7.2 shows the memory map for each processor mode.

Processor Mode Register $0{ }^{(1)}$

Notes:

1. This register should be rewritten after the PRC1 bit in the PRCR register is set to 1 (write enabled).
2. The processor mode is not changed even when the PMO3 bit is set to 1 (software reset).
3. Rewrite bits PM01 and PM00 with 01b or 11b after other bit(s) is/are rewritten. They should not be rewritten simultaneously.
4. In single-chip mode, the BCLK is not output even when the PM07 bit is set to 0 .

To stop clock output in memory expansion mode or microprocessor mode, the PM07 bit should be set to 1 and bits CM01 and CM00 in the CMO register should be set to 00b (I/O port P5_3). The I/O port P5_3 outputs a low signal.
5. When the PM07 bit is set to 0 (output BCLK), bits CM01 and CM00 should be set to 00b.

Figure 7.1 PMO Register

00000000h 00000400h	Single-chip Mode	Memory Expansion Mode	Microprocessor Mode
	SFRs	SFRs	SFRs
	Internal RAM	Internal RAM	Internal RAM
00040000h	Reserved (internal RAM)	Reserved (internal RAM)	Reserved (internal RAM)
	SFRs 2	SFRs 2	SFRs 2
00050000h	Reserved	Reserved	Reserved
$00062000 \mathrm{~h}$	Data ROM	Data ROM	Data ROM
	Reserved (Internal ROM)	Reserved (Internal ROM)	Reserved (Internal ROM)
00080000h	Not used ${ }^{(1)}$	External space 31.5 MB	External space 31.5 MB
02000000h		Not used ${ }^{(2)}$	Not used ${ }^{(2)}$
FE000000h		External space 30 MB	External space 32 MB
FFE00000h	Reserved (Internal ROM)	Reserved (Internal ROM)	
FFFFFFFFh	Internal ROM	Internal ROM	
Notes: 1. This sp 2. This sp	e cannot be externally cannot be used in	ded in single-chip mode. essor mode.	

Figure 7.2 Memory Map of Each Processor Mode

8. Clock Generator

8.1 Clock Generator Types

Four circuits are included to generate a system clock signal:

- Main clock oscillator
- Sub clock oscillator
- PLL frequency synthesizer
- On-chip oscillator

Table 8.1 lists specifications of clock generators. Figure 8.1 shows a block diagram of the clock generator and Figure 8.2 to Figure 8.10 show registers associated with clock control.

Table 8.1 Clock Generator Specifications

Item	Main Clock Oscillator	Sub Clock Oscillator	PLL Frequency Synthesizer	On-chip Oscillator
Used as	- PLL reference clock source - Peripheral clock source	- CPU clock source - Clock source for timers A and B	- CPU clock source - Peripheral clock source	- CPU clock source - Clock source for timers A and B
Clock frequency	4 to 16 MHz	32.768 kHz	$\mathrm{f}_{\mathrm{SO}(\mathrm{PLL})}$ or $\mathrm{f}_{(\mathrm{PLL}}$	Approx. 125 kHz
Connectable oscillators or additional circuits	Ceramic resonator Crystal oscillator	Crystal oscillator	-	-
Pins for oscillators or additional circuits	XIN, XOUT	XCIN, XCOUT	-	-
Oscillator stop, Restart	Available	Available	Available	Available
Oscillator state after reset	Running	Stopped	Running	Stopped
Note	Externally generated clock can be input	Externally generated clock can be input	When the main clock oscillator stops running, the PLL frequency synthesizer oscillates at its own frequency, $\mathrm{f}_{\mathrm{SO}(\mathrm{PLL})}$	

Figure 8.1 Clock Generation Circuitry

Clock Control Register ${ }^{(1)}$

Notes:

1. Set the PRR register to AAh (write enabled) before rewriting this register.
2. The divide ratios of the base clock and peripheral bus clock should not be changed simultaneously. Otherwise, the peripheral bus clock frequency may be over the operational maximum.
3. The divide ratio of the CPU clock should be equal to or lower than that of peripheral bus clock.
4. This bit should be set only once after reset and the setting should not be changed. To rewrite this bit, the PBC register should be rewritten first.
5. To set this bit to 1, a 32-bit write access to addresses 0004h to 0007h should be performed.
6. To use these low speed clocks, select one of them by setting bits CM31 and CM30 in the CM3 register and then set the BCS bit to 1 .

Figure 8.2 CCR Register

System Clock Control Register $0{ }^{(1)}$

Notes:

1. Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting this register.
2. When the PM07 bit in the PMO register is 0 (BCLK output), bits CM01 and CM00 should be set to 00b. In memory expansion mode, when the PM07 bit is 1 (the pin function is selected using bits CM01 and CM00) and bits CMO1 and CMOO are set to 00b, a low is output from the P5_3 pin (This pin does not function as Port P5_3).
3. When the PM21 bit in the PM2 register is 1 (clock change disabled), neither the CM02 bit nor the CM05 bit changes, even if written to.
4. fC 32 and f 2 n whose clock source is the main clock do not stop.
5. When entering stop mode, the CM03 bit becomes 1 .
6. To set the CM04 bit to 1 (XCIN-XCOUT oscillator), bits PD8_7 and PD8_6 in the PD8 register should be set to 0 (input) and the PU25 bit in the PUR2 register should be set to 0 (pull-up resistor disabled).
7. This bit stops the main clock when entering low power mode. It cannot detect whether or not the main clock oscillator stops. When the CM05 bit is set to 1 , the clock applied to the XOUT pin becomes high. Since the on-chip feedback resistor remains connected, the XIN pin is connected to the XOUT pin via the feedback resistor.
8. Set this bit before activating the watchdog timer.
9. Once this bit is set to 1 , it cannot be set to 0 by a program.

Figure 8.3 CMO Register

System Clock Control Register $1{ }^{(1)}$

Notes:

1. Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting this register.
2. When the BCS bit in the CCR register is 0 (PLL clock selected as base clock source), the CM10 bit cannot be set to 1 .
3. When the PM21 bit in the PM2 register is 1 (clock change disabled), the CM10 bit is not changed by a write access.
4. These bits become 01b when the main clock is stopped. They should be set to 00b or 10 b after the main clock is fully stabilized.
5. The oscillator frequency should be 8 MHz or less to select super low mode.

Figure 8.4 CM1 Register

Oscillator Stop Detection Register ${ }^{(1)}$

Notes:

1. Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting this register.
2. This bit should be set to 0 (oscillator stop detection disabled) when f 256 is selected as base clock source in low speed mode.
3. When the PM21 bit in the PM2 register is 1 (clock change disabled), the CM02 bit is not changed by a write access.
4. When a main clock oscillator stop is detected, this bit becomes 1 . It can be set to 0 but not to 1 . If it is set to 0 while the main clock oscillator is stopped, it can be changed to 1 after the next main clock oscillator stop is detected.
5. The main clock state should be determined by several read accesses of this bit after an oscillator stop detection interrupt is generated.

Figure 8.5 CM2 Register

Low-Speed Mode Clock Control Register (1)

Notes:

1. Rewrite this register after setting the PRC27 bit in the PRCR2 register to 1 (write enabled) and while the BCS bit in the CCR register is 0 (PLL clock).
2. The on-chip oscillator clock starts running when the CM31 bit is set to 1 .

Figure 8.6 CM3 Register

Count Source Prescaler Register

Note:

1. The CST bit should be set to 0 to rewrite bits CNT3 to CNTO.

Figure 8.7 TCSPR Register

Figure 8.8 CPSRF Register

Processor Mode Register $2{ }^{(1)}$

Notes:

1. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.
2. Once this bit is set to 1 , it cannot be set to 0 by a program.
3. When the PM21 bit is set to 1 , the following bits are not changed by a write access:

CM02 bit in the CMO register (the peripheral clock source state in wait mode)
CM05 bit in the CM0 register (main clock oscillator enabled/disabled)
CM10 bit in the CM1 register (PLL oscillator enabled/disabled)
CM20 bit in the CM2 register (oscillator stop detection enabled/disabled)
4. When the PM24 bit is set to 0 (NMI disabled), the forced cutoff of the three-phase motor control timers is not available.
5. Disable all the peripheral functions that use f2n before rewriting this bit.

Figure 8.9 PM2 Register

Processor Mode Register $3{ }^{(1)}$

Notes:

1. Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting this register. Disable all the peripheral functions that use fAD, $f 1, f 8, f 32$, or $\mathfrak{f} 2 \mathrm{n}$ (when the clock source is the peripheral clock source) to rewrite this register.
2. The divide ratio should be selected so that the peripheral clock source has a frequency specified in the electrical characteristics or below.

Figure 8.10 PM3 Register

The following sections illustrate clocks generated in clock generators.

8.1.1 Main Clock

The main clock is generated by the main clock oscillator. This clock can be a clock source for the PLL reference clock or the peripheral clock. It also functions as an operating clock for the CAN module.
The main clock oscillator is configured with two pins, XIN and XOUT, connected by an oscillator or resonator. The circuit has an on-chip feedback resistor which is separated from the oscillator in stop mode to save power consumption. An external clock can be applied to the XIN pin in this circuit. Figure 8.11 shows an example of a main clock circuit connection.

Circuit constants may vary depending on each oscillator. They should be applied by each manufacturer's recommendations.
After a reset, the main clock oscillator is still active independently and disconnected from the PLL frequency synthesizer. A clock which the PLL frequency synthesizer self-oscillates, divided by 12 , is provided to the CPU.
The setting of CM05 bit in the CM0 register to 1 (main clock oscillator disabled) enables power-saving. In this case, the clock applied to the XOUT pin becomes high. The XIN pin connected to the XOUT by an embedded feedback resistor is also driven high. When an external clock is applied to the XIN pin, the CM05 bit should not be set to 1 .
All clocks, including the main clock, stop in stop mode. Refer to 8.7 "Power Control" for details.

Figure 8.11 Main Clock Circuit Connection

8.1.2 Sub Clock (fC)

The sub clock is generated by the sub clock oscillator. This clock can be a clock source for the CPU clock and a count source for timers A and B. It is output from the CLKOUT pin.
The sub clock oscillator is configured with pins XCIN and XCOUT connected by a crystal oscillator. The circuit has a on-chip feedback resistor which is separated from the oscillator in stop mode to save power consumption. An external clock can be applied to the XCIN pin. Figure 8.12 shows an example of a sub clock circuit connection. Circuit constants may vary depending on each oscillator. They should be applied by each manufacturer's recommendations.
After a reset, the sub clock oscillator is stopped. The feedback resistor is separated from the oscillator. To resume running, first set bits PD8_6 and PD8_7 in the PD8 register to 0 (input mode), and the PU25 bit in the PUR2 register to 0 (pull-up resistor unused). Then, set the CM04 bit in the CM0 register to 1 (XCIN-XCOUT oscillator).
To input an external clock to the XCIN pin, bits PD8_7 and PU25 should be set to 0, then the CM04 bit should be set to 1. The clock applied to the XCIN pin becomes a clock source for the sub clock.
When the CM3 register is set to 00h (fC selected) and the BCS bit in the CCR register is set to 1 (fC, fOCO4, or f 256 is selected as base clock source) after the sub clock oscillation has stabilized, the sub clock becomes the base clock of the CPU clock and the peripheral bus clock. All clocks, including the sub clock, stop in stop mode. Refer to 8.7 "Power Control" for details.

Figure 8.12 Sub Clock Circuit Connection

8.1.3 PLL Clock

The PLL clock is generated by the PLL frequency synthesizer based on the main clock. This clock can be a clock source for any clock including the CPU clock and the peripheral clock.
Figure 8.13 shows a block diagram of the PLL frequency synthesizer. Figure 8.14 and Figure 8.15 show registers PLC0 and PLC1, respectively.

Figure 8.13 PLL Frequency Synthesizer Block Diagram

PLL Control Register $0{ }^{(1,2)}$

Notes:

1. Set the PRC2 bit in the PRCR register to 1 (write enabled) just before rewriting this register. Any interrupt or

DMA transfer should not be generated between these two instructions.
2. This register can be rewritten only once after a reset.

Figure 8.14 PLCO Register

PLL Control Register $1^{(1)}$

Note:

1. Set the PRC2 bit in the PRCR register to 1 (write enabled) just before rewriting this register. Any interrupt or DMA transfer should not be generated between these two instructions.

Figure 8.15 PLC1 Register

In the PLL frequency synthesizer, the pulse-swallow operation is implemented. The divide ratio m is simply expressed by $n \times p$. However, with the swallow counter, the divide ratio p is 6 in a out of n, or 5 in other cases, the actual m is therefore given by the formula below:

$$
\begin{aligned}
m & =n \times p \\
& =n \times\left(\frac{a}{n} \cdot 6+\frac{n-a}{n} \cdot 5\right) \\
& =5 n+a
\end{aligned}
$$

The setting range of a is $0 \leq a<5,0 \leq a \leq n$.
As r is the divide ratio of reference counter, the PLL clock has a m / r times the main clock (XIN) frequency.

$$
\text { PLL clock frequency } \begin{aligned}
f(P L L) & =\frac{m}{r} \cdot \text { main clock frequency } \\
& =\frac{5 n+a}{r} \cdot \text { main clock frequency }
\end{aligned}
$$

After a reset, the reference counter is divided by 16, the PLL frequency synthesizer is multiplied by 10. Since the main clock as reference clock is disconnected, the PLL frequency synthesizer may selfoscillate at its own frequency $f_{S O(P L L)}$.
Each register should be set to meet the following conditions:
-The reference clock, which is the main clock divided by r, should be within 2 to 4 MHz .
-The divide ratio m is $25 \leq m \leq 100$.
For the setting of registers PLC1 and PLC0, Table 8.2 below should be applied. The waiting time of $\mathrm{t}_{\text {LOCK(PLL) }}$ is required after changing the setting until the PLL clock oscillation has stabilized while the main clock oscillation is stable.

Table 8.2 PLC1 and PLC0 Register Settings (1)

Main Clock	r	Reference Clock	n	a	m	PLC1 Register Setting	PLC0 Register Setting	m / r	PLL Clock
4 MHz	2	2 MHz	9	3	48	01h	68h	24	96 MHz
6 MHz	2	3 MHz	6	2	32	01h	45h	16	96 MHz
8 MHz	3	2.6667 MHz	7	1	36	02h	26h	12	96 MHz
10 MHz	5	2 MHz	9	3	48	04h	68h	9.6	96 MHz
12 MHz	4	3 MHz	6	2	32	03h	45h	8	96 MHz
16 MHz	5	3.2 MHz	6	0	30	04h	05h	6	96 MHz
4 MHz	1	4 MHz	5	0	25	00h	04h	25	100 MHz
6 MHz	3	2 MHz	10	0	50	02h	09h	16.6667	100 MHz
8 MHz	2	4 MHz	5	0	25	01h	04h	12.5	100 MHz
10 MHz	3	3.3333 MHz	6	0	30	02h	05h	10	100 MHz
12 MHz	3	4 MHz	5	0	25	02h	04h	8.3333	100 MHz
16 MHz	4	4 MHz	5	0	25	03h	04h	6.25	100 MHz
4 MHz	1	4 MHz	6	0	30	00h	05h	30	120 MHz
6 MHz	2	3 MHz	8	0	40	01h	07h	20	120 MHz
8 MHz	2	4 MHz	6	0	30	01h	05h	15	120 MHz
10 MHz	3	3.3333 MHz	7	1	36	02h	26h	12	120 MHz
12 MHz	3	4 MHz	6	0	30	02h	05h	10	120 MHz
16 MHz	4	4 MHz	6	0	30	03h	05h	7.5	120 MHz
4 MHz	1	4 MHz	6	2	32	00h	45h	32	128 MHz
6 MHz	3	2 MHz	12	4	64	02h	8Bh	21.3333	128 MHz
8 MHz	2	4 MHz	6	2	32	01h	45h	16	128 MHz
10 MHz	5	2 MHz	12	4	64	04h	8Bh	12.8	128 MHz
12 MHz	3	4 MHz	6	2	32	02h	45h	10.6667	128 MHz
16 MHz	4	4 MHz	6	2	32	03h	45h	8	128 MHz

Note:

1. The setting of registers PLC1 and PLCO should be done according to the list above.

8.1.4 On-chip Oscillator Clock

The on-chip oscillator clock is generated by the on-chip oscillator (OCO). This clock can be a clock source for the CPU clock and for a count source of timers A and B. This clock has a frequency of approximately 125 kHz . The clock divided by 4 can be used as base clock for the CPU clock and peripheral bus clock.
The on-chip oscillator clock is stopped after a reset. It starts running if the CM31 bit in the CM3 register is set to 1 . The clock should be switched after the on-chip oscillator clock has stabilized.

8.2 Oscillator Stop Detection

This function is to detect the main clock is stopped when its oscillator stops running by external source. When the CM20 bit in the CM2 register is set to 1 (oscillator stop detection enabled), an oscillator stop detection interrupt request is generated as soon as the main clock stops. Simultaneously, the PLL frequency synthesizer starts to self-oscillate at its own frequency. If the PLL frequency synthesizer is the clock source for CPU clock and peripheral clock, these clocks continue running.
When an oscillator stop is detected, the following bits in the CM2 register become 1:

- The CM22 bit: main clock oscillator stop detected
- The CM23 bit: main clock oscillator stopped
(Refer to Figure 8.17 "State Transition (when the sub clock is used)")

8.2.1 How to Use Oscillator Stop Detection

The oscillator stop detection interrupt shares vectors with the watchdog timer interrupt, and the low voltage detection interrupt. When using these interrupts simultaneously, read the CM22 bit with an interrupt handler to determine if an oscillator stop detection interrupt request has been generated.
When the main clock oscillator resumes running after an oscillator stop is detected, the PLL clock frequency may temporarily exceed the preset value before the PLL frequency synthesizer oscillation stabilizes. As soon as an oscillator stop is detected, the main clock oscillator should be stopped from resuming (set the CM05 bit in the CM0 register to 1) or the divide ratios of the base clock and peripheral clock source should be increased by a program. The respective divide ratio can be set by bits BCD1 and BCD0 in the CCR register and bits PM36 and PM35 in the PM3 register.
In low speed mode, when the main clock oscillator stops running, the oscillator stop detection interrupt request is generated, if the CM20 bit is set to 1 (oscillator stop detection enabled). The CPU clock remains running with a low speed clock source. Note that if the base clock is f 256 , which is the main clock divided by 256 , the oscillator stop detection is disabled.
The oscillator stop detection is provided to handle main clock stop caused by external sources. To stop the main clock oscillator by a program, i.e., to enter stop mode or to set the CM05 bit to 1 (main clock oscillator disabled), the CM20 bit in the CM2 register should be set to 0 (oscillator stop detection disabled). To enter wait mode, this bit should be also set to 0 .
The oscillator stop detection functions depending on the voltage of a capacitor which is being changed. More concrete terms, this function detects that the oscillator is stopped when the main clock goes lower than approximately 500 kHz . Note that if the CM22 bit is set to 0 by a program in an interrupt handler while the frequency is around 500 kHz , a stack overflow may occur caused by multiple interrupt requests.

8.3 Base Clock

Base clock is a reference clock for the CPU clock and peripheral bus clock. The base clock after a reset is the PLL clock divided by 6.
The base clock source is selected between the PLL clock and the low speed clocks which contains the sub clock (fC), on-chip oscillator clock divided by 4 (fOCO4), and main clock divided by 256 (f256).
If the PLL clock is selected, it is divided by a factor from $2,3,4$, and 6 to become the base clock. If a low speed clock is selected, the clock itself can be the base clock.
The base clock source is set using the BCS bit in the CCR register and the divide ratio for the PLL clock is set using bits BCD1 and BCD0. Bits CM31 and CM30 in the CM3 register select a low speed clock.

8.4 CPU Clock and Peripheral Bus Clock

The CPU operating clock is referred to as the CPU clock. The CPU clock after a reset is the base clock divided by 2.
The CPU clock source is the base clock and the divide ratio is selected using bits CCD1 and CCD0 in the CCR register. The base clock divided by a factor from 2 to 4 becomes the peripheral bus clock. Its divide ratio is selected using bits PCD1 and PCD0 in the CCR register. The peripheral bus clock also functions as count source for the watchdog timer and operating clock for the CAN module.
In memory expansion mode or microprocessor mode, the peripheral bus clock as BCLK to be a reference clock for external timing generation is available as an output clock at the BCLK pin. Refer to 8.6 "Clock Output Function" for details.
When the CPU becomes out of control, to prevent the CPU clock whose clock source is the PLL clock from stopping, the CM05 bit in the CM0 register should be set to 0 (main clock oscillator enabled) and the BCS bit in the CCR register should be set to 0 (PLL clock selected as base clock source). Then the following procedures should be performed.
(1) Set the PRC1 bit in the PRCR register to 1 (write enabled to the PM2 register).
(2) Set the PM21 bit in the PM2 register to 1 (clock change disabled).

8.5 Peripheral Clock

The peripheral clock is an operating clock or a count source for peripheral functions excluding the watchdog timer and the CAN module. The source of this clock is generated by a clock, which has the same frequency as the PLL clock, divided by a factor from $2,4,6$, and 8 according to the settings of bits PM36 and PM35 in the PM3 register. The peripheral clock is classified into three types of clock as shown below:
(1) f1, f8, f32, f2n
f1, f8, and f32 are the peripheral clock sources divided by 1, 8, and 32, respectively. The clock source for $f 2 n$ is selected between the peripheral clock source and the main clock using the PM26 bit in the PM2 register. The f2n divide ratio can be set using bits CNT3 to CNT0 in the TCSPR register. ($\mathrm{n}=1$ to 15 , not divided when $n=0$)
$\mathrm{f} 1, \mathrm{f} 8, \mathrm{f} 32$, and f 2 n whose clock source is the peripheral clock source stop in low power mode or when the CM02 bit is set to 1 (peripheral clock source stopped in wait mode) to enter wait mode.
f1, f8, and f2n are used as a count source for timers A and B or an operating clock for the serial interface. f 1 is used as an operating clock for the intelligent I/O as well.
f 8 and f 32 are available as output clocks at the CLKOUT pin. Refer to 8.6 "Clock Output Function" for details
(2) fAD
$f A D$, which has the same frequency as peripheral clock source, is an operating clock for the A/D converter.
This clock stops in low power mode or when the CM02 bit is set to 1 (peripheral clock source stopped in wait mode) to enter wait mode.

(3) fC32

fC32, which is a sub clock divided by 32, or on-chip oscillator clock divided by 128, is used as count source for timers A and B. This clock is available when the sub clock or on-chip oscillator clock is active.

8.6 Clock Output Function

Low speed clocks, f8, and f32 are available to be output from the CLKOUT pin.
In memory expansion mode or microprocessor mode, the BCLK, that is, the peripheral bus clock which is the base clock divided by a factor from 2 to 4 is also available to be output from the BCLK pin.
Table 8.3 and Table 8.4 list the CLKOUT pin functions in single-chip mode and memory expansion mode or microprocessor mode, respectively.

Table 8.3 CLKOUT Pin Functions in Single-chip Mode

PM0 Register (1)	CM0 Register (2)		CLKOUT Pin Function
PM07	CM01	CM00	
0 or 1	0	0	I/O port P5_3
1	0	1	Output a low speed clock
1	1	0	Output f8
1	1	1	Output f32

Notes:

1. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.
2. Set the PRCO bit in the PRCR register to 1 (write enabled) before rewriting this register.

Table 8.4 CLKOUT Pin Functions in Memory Expansion Mode or Microprocessor Mode

PMO Register (1)	CM0 Register (2)		CLKOUT Pin Function
PM07	CM01	CM00	
0	$0(3)$	$0(3)$	Output BCLK
1	0	0	Output low (no function as P5_3)
1	0	1	Output a low speed clock
1	1	0	Output f8
1	1	1	Output f32

Notes:

1. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.
2. Set the PRCO bit in the PRCR register to 1 (write enabled) before rewriting this register.
3. When the PM07 bit is set to 0 (BCLK output), set bits CM01 and CM00 to 00 b (I/O port P5_3).

8.7 Power Control

Power control contains three modes: wait mode, stop mode, and normal operating mode.
The name "normal operating mode" is used restrictively in this chapter, and it indicates all other modes except wait mode and stop mode. Figure 8.16 shows a block diagram of the state transition in normal operating mode, stop mode, and wait mode.

Figure 8.16 State Transition in Stop Mode and Wait Mode

8.7.1 Normal Operating Mode

Normal operating mode is classified into the five modes shown below. In normal operating mode, the CPU clock and peripheral clock are provided to operate the CPU and peripheral functions. Power consumption is controlled by the CPU clock frequency. The higher the CPU clock frequency is, the more processing power increases. The lower the CPU clock frequency is, the less power consumption is required. Power consumption can be reduced by stopping oscillators that are not being used.

(1) PLL Mode (high speed mode)

In this mode, the PLL clock is selected as the base clock source, and the main clock is provided as the reference clock source for the PLL frequency synthesizer. High speed mode enables the CPU to operate at the maximum operating frequency. The PLL clock divided by 2 becomes the base clock. The base clock frequency should be identical to that of the CPU clock. fAD, f1, f8, f32, and f2n can be used as the peripheral clocks. When the sub clock or the on-chip oscillator clock is provided, fC 32 can be used as the count source for timers A and B.

(2) PLL Mode (medium speed mode)

This mode indicates all modes in PLL mode except high speed mode. The PLL clock divided by $2,3,4$, or 6 becomes the base clock and the base clock divided by 1 to 4 becomes the CPU clock. fAD, f1, f8, $\mathfrak{f} 32$, and $\mathfrak{f 2 n}$ can be used as the peripheral clocks. When the sub clock or the on-chip oscillator clock is provided, fC32 can be used as the count source for timers A and B.

(3) Low Speed Mode

In this mode, a low speed clock is used as the base clock source. The low speed clock becomes the base clock and the base clock divided by 1 to 4 becomes the CPU clock. fAD, f1, f8, f32, and f2n can be used as the peripheral clocks. When the sub clock or the on-chip oscillator clock is provided, fC32 can be used as the count source for timers A and B.

(4) Low Power Mode

This is a state where the main clock oscillator and the PLL frequency synthesizer are stopped after switching to low speed mode. The sub clock or the on-chip oscillator clock divided by 4 becomes the base clock and the base clock divided by 1 to 4 becomes the CPU clock. fC32, which is the only peripheral clock available, can be used as the count source for timers A and B. By setting the MRS bit in the VRCR register to 1 (main regulator stopped), this mode consumes even less power than the modes above.

(5) PLL Self-oscillation Mode

In this mode, the PLL clock is selected as the base clock source, and the main clock is not provided as the reference clock source for the PLL frequency synthesizer. The PLL frequency synthesizer selfoscillates at its own frequency. The PLL clock divided by $2,3,4$, or 6 becomes the base clock and the base clock divided by 1 to 4 becomes the CPU clock. fAD, f1, f8, f32, and f2n can be used as the peripheral clocks. When the sub clock or the on-chip oscillator clock is provided, fC32 can be used as the count source for timers A and B.

The state transition within normal operating mode can be very complicated; therefore only the block diagrams of typical state transitions are shown. Figure 8.17 to Figure 8.19 show block diagrams of the respective state transition: state when the sub clock is used, state when the main clock divided by 256 is used, and state when the on-chip oscillator clock is used. As for the state transitions other than the above, setting of each register and the usage notes below can be used as references.

- PLL can be switched from PLL oscillating to self-oscillating by setting the SEO bit in the PLC1 register to 1 . Set the SEO bit to 1 (self-oscillating) before setting the CM05 bit in the CM0 register to 0 (main clock oscillator disabled) to stop the main clock.
- The divide ratio of the clock should be increased and the frequency should be decreased by using bits BCD1 to BCD0 in the CCR register or bits PM36 to PM35 in the PM3 register before setting the SEO bit to 0 (PLL oscillating) in order to switch back PLL self-oscillation mode to PLL mode. Set back the settings of bits BCD1 to BCD0 and bits PM36 to PM35 once PLL oscillation is stabilized after setting the SEO bit to 0 .
- Before switching the CPU clock to another, that clock should be stabilized. In particular, the sub clock oscillator may require more time to stabilize (1), therefore, certain waiting time to switch should be taken by a program immediately after turning the MCU ON or exiting stop mode.

Note:

1. Contact the oscillator manufacturer for oscillator stabilization time.

\longrightarrow : An arrow indicates a one-way transition between modes. No transition should be made unless indicated.
BCS: Bit in the CCR register
CM04 and CM05: Bits in the CM0 register
CM10: Bit in the CM1 register
CM20: Bit in the CM2 register
SEO: Bit in the PLC1 register
PLCO $=\mathrm{XXh}$: Multiplied ratio of the PLL clock should be set using bits MCV4 to MCVO and bits SCV2 to SCV0 in the PLC0 register.
PLC1 = 0Xh: Divide ratio of the reference clock should be set using bits RCV3 to RCV0 in the PLC1 register. The PLL clock frequency should not exceed the maximum value specified in the electrical characteristics.
$C C R=00 X X X X X X b$: Divide ratio of each clock should be set using the CCR register. The CPU clock frequency and the peripheral bus clock frequency should not exceed the maximum value specified in the electrical characteristics, respectively.

Notes:

1. The PLCO register can be set only once after a reset.
2. This clock should be switched after the sub clock oscillation is fully stabilized.
3. This clock should be switched after the PLL clock oscillation is fully stabilized.

Figure 8.17 State Transition (when the sub clock is used)

$\longrightarrow:$ An arrow indicates a one-way transition between modes. No transition should be made unless indicated.
BCS: Bit in the CCR register
CM05: Bit in the CM0 register
CM10: Bit in the CM1 register
CM20: Bit in the CM2 register
CM30: Bit in the CM3 register
SEO: Bit in the PLC1 register
PLC0 = XXh: Multiplied ratio of the PLL clock should be set using bits MCV4 to MCV0 and bits SCV2 to SCV0 in the PLC0 register.
PLC1 = 0Xh: Divide ratio of the reference clock should be set using bits RCV3 to RCV0 in the PLC1 register. The PLL clock frequency should not exceed the maximum value specified in the electrical characteristics.
$C C R=00 X X X X X X b$: Divide ratio of each clock should be set using the CCR register. The CPU clock frequency and the peripheral bus clock frequency should not exceed the maximum value specified in the electrical characteristics, respectively.
Notes:

1. The PLCO register can be set only once after a reset.
2. This clock should be switched after the PLL clock oscillation is fully stabilized.

Figure 8.18 State Transition (when the main clock divided by 256 is used)

\longrightarrow : An arrow indicates a one-way transition between modes. No transition should be made unless indicated.
BCS: Bit in the CCR register
CM05: Bit in the CM0 register
CM10: Bit in the CM1 register
CM20: Bit in the CM2 register
CM31: Bit in the CM3 register
SEO: Bit in the PLC1 register
PLC0 = XXh: Multiplied ratio of the PLL clock should be set using bits MCV4 to MCV0 and bits SCV2 to SCV0 in the PLC0 register.
PLC1 = 0Xh: Divide ratio of the reference clock should be set using bits RCV3 to RCV0 in the PLC1 register. The PLL clock frequency should not exceed the maximum value specified in the electrical characteristics.
$C C R=00 X X X X X X b$: Divide ratio of each clock should be set using the CCR register. The CPU clock frequency and the peripheral bus clock frequency should not exceed the maximum value specified in the electrical characteristics, respectively.

Notes:

1. The PLC0 register can be set only once after a reset.
2. This clock should be switched after the PLL clock oscillation is fully stabilized.

Figure 8.19 State Transition (when the on-chip oscillator clock is used)

8.7.2 Wait Mode

In wait mode, due to the base clock stop, the CPU clock and peripheral bus clock stop running as well. The CPU and watchdog timer, operated by the CPU clock, also stop. Since the main clock, sub clock, PLL clock, and on-chip oscillator clock continue running, peripheral functions using these clocks also continue operating.

8.7.2.1 Peripheral Clock Source Stop Function

When the CM02 bit in the CM0 register is set to 1 (peripheral clock source stopped in wait mode), peripheral clocks f1, f8, f32, f2n (when the clock source is the peripheral clock source), and fAD stop running, which enables power saving. fC32 and f2n (when the clock source is the main clock) do not stop running.

8.7.2.2 Entering Wait Mode

To enter wait mode, the following procedures should be done before the WAIT instruction is executed.

- Initial setting

Set the interrupt priority level to 7 for resuming (bits RLVL2 to RLVL0 in registers RIPL1 and RIPL2). Then set each interrupt request level.

- Steps before entering wait mode
(1) Set the I flag to 0
(2) Set the interrupt request level for each interrupt source (interrupt number from 1 to 127) to 0 , if its interrupt request level is not 0 .
(3) Perform a dummy read of any of the interrupt control registers.
(4) Set the processor interrupt priority level (IPL) in the flag register to 0.
(5) Enable interrupts temporarily by executing the following instructions:

FSET I
NOP
NOP
FCLR I
(6) Set the interrupt request level for the interrupt to exit wait mode.

Do not rewrite the interrupt control register after this step.
(7) Set the IPL in the flag register.
(8) Set the interrupt priority level for resuming to the same level as the IPL.

Interrupt request level for the interrupt to exit wait mode $>I P L=$ Interrupt priority level for resuming
(9) Set the CM20 bit in the CM2 register to 0 (oscillator stop detection disabled) when the oscillator stop detection is used.
(10)Enter either PLL self-oscillation mode, low speed mode, or low power mode.
(11)Set the I flag to 1.
(12)Execute the WAIT instruction.

- After exiting wait mode

Set the interrupt priority level for resuming to 7 immediately after exiting wait mode.

8.7.2.3 Pin State in Wait Mode

Table 8.5 lists pin state in wait mode.

Table $8.5 \quad$ Pin State in Wait Mode

Pin	Memory Expansion Mode/ Microprocessor Mode	Single-Chip Mode
Address bus, Data bus, $\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS3}}, \overline{\mathrm{BCO}}$ to $\overline{\mathrm{BC} 3}$	The state immediately before entering wait mode is held	-
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{WRO}}$ to $\overline{\mathrm{WR3}}$	High	-
$\overline{\mathrm{HLDA}}, \mathrm{BCLK}$	High	-
ALE	High	-
Ports	The state immediately before entering wait mode is held	
DA0, DA1	Whe state immediately before entering wait mode is held speed clock is selected	The clock is output
CLKOUT	When f8 or f32 is selected	The clock is output when the CM02 bit in the CM0 register is set to 0 (no peripheral clock source stopped in wait mode). The state immediately before entering wait mode is held when the CM02 bit is set to 1 (peripheral clock source stopped in wait mode)

8.7.2.4 Exiting Wait Mode

Wait mode is exited by the hardware reset, an NMI, or peripheral interrupts assigned to software interrupt numbers from 0 to 63.
To exit wait mode by either the hardware reset or an NMI, without using peripheral interrupts, bits ILVL2 to ILVLO for the peripheral interrupts should be set to 000b (interrupt disabled) before executing the WAIT instruction.
The CM02 bit setting in the CM0 register affects the peripheral interrupts. When the CM02 bit is set to 0 (peripheral clock source not stopped in wait mode), peripheral interrupts for software interrupt numbers from 0 to 63 can be used to exit wait mode. When this bit is set to 1 (peripheral clock source stopped in wait mode), peripheral functions operated using clocks (f1, f8, f32, f2n whose clock source is the peripheral clock source, and fAD) generated by the peripheral clock source stop operating. Therefore, the peripheral interrupts cannot be used to exit wait mode. However, peripheral functions operated using clocks which are independent from the peripheral clock source (fC32, external clock, and $\mathfrak{f} 2 \mathrm{n}$ whose clock source is the main clock) do not stop operating. Thus, interrupts generated by peripheral functions and assigned to software interrupt numbers from 0 to 63 can be used to exit wait mode.
The CPU clock used when exiting wait mode by the peripheral interrupts or an NMI is the same clock used when the WAIT instruction is executed.
Table 8.6 lists interrupts to be used to exit wait mode and usage conditions.

Table 8.6 Interrupts to Exit Wait Mode and Usage Conditions

Interrupt	When the CMO2 bit = 0	When the CMO2 bit = 1
NMI	Available	Available
External interrupt (1)	Available	Available
Key input interrupt	Available	Available
Low voltage detection interrupt	Available	Available in event counter mode, or when the count source is fC32 or f2n of which clock source is the main clock
Timer A interrupt Timer B interrupt	Available in any mode	Available when the external clock or f2n (when the clock source is the main clock) is used
Serial interface interrupt (2)	Available when the internal or external clock is used	Should not be used
A/D conversion interrupt	Available in single mode or single- sweep mode	Should not be used
Intelligent I/O interrupt	Available	Should not be used
I²C-bus interface interrupt $^{\text {2 }}$ Available	Available	
I2 C-bus line interrupt	Available	Available
CAN wake-up interrupt	Available	

Notes:

1. INT6 to INT8 are available in the intelligent I/O interrupt only.
2. UART7 and UART8 are excluded.

8.7.3 Stop Mode

In stop mode, all of the clocks, except for those that are protected, stop running. That is, the CPU and peripheral functions, operated by the CPU clock and peripheral clock, also stop. This is the most power-saving mode.

8.7.3.1 Entering Stop Mode

To enter stop mode, the following procedures should be done before the STOP instruction is executed.

- Initial setting

Set the interrupt priority level for resuming (bits RLVL2 to RLVL0 in registers RIPL1 and RIPL2) to 7. Then set each interrupt request level.

- Steps before entering stop mode
(1) Set the I flag to 0.
(2) Set the interrupt request level for each interrupt source (interrupt number from 1 to 127) to 0 , if the interrupt request level is not 0 .
(3) Perform a dummy read of any of the interrupt control registers.
(4) Set the processor interrupt priority level (IPL) in the flag register to 0.
(5) Enable interrupts temporarily by executing the following instructions:

FSET I
NOP
NOP
FCLR I
(6) Set the interrupt request level for the interrupt to exit stop mode. Do not rewrite the interrupt control register after this step.
(7) Set the IPL in the flag register.
(8) Set the interrupt priority level for resuming to the same level as the IPL. Interrupt request level for the interrupt to exit stop mode $>I P L=$ Interrupt priority level for resuming
(9) Set the CM20 bit in the CM2 register to 0 (oscillator stop detection disabled) when the oscillator stop detection is used.
(10)Change the base clock to either the main clock divided by 256 (f256) or the on-chip oscillator clock divided by 4 (fOCO4).
(11)Set the I flag to 1.
(12)Execute the STOP instruction.

- After exiting stop mode

Set the interrupt priority level for resuming to 7 immediately after exiting stop mode.

8.7.3.2 Pin State in Stop Mode

Table 8.7 lists pin state in stop mode.
Table 8.7 Pin State in Stop Mode

Pin	Memory Expansion Mode/ Microprocessor Mode	Single-Chip Mode
Address bus, Data bus, $\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS3}}, \overline{\mathrm{BCO}}$ to $\overline{\mathrm{BC3}}$	The state immediately before entering stop mode is held	-
$\overline{\mathrm{RD}, \overline{\mathrm{WR}}, \overline{\mathrm{WRO}} \text { to } \overline{\mathrm{WR3}}} \mathrm{High}$	-	
$\overline{\mathrm{HLDA}, ~ B C L K ~}$	High	-
ALE	High	-
Ports	The state immediately before entering stop mode is held	
DA0, DA1	The state immediately before entering stop mode is held	
CLKOUT	When a low speed clock is selected	High
When f8 or f32 is selected	The state immediately before entering stop mode is held	
XIN	High-impedance	
XOUT	High	-
XCIN, XCOUT	High-impedance	

8.7.3.3 Exiting Stop Mode

Stop mode is exited by the hardware reset, an NMI, low voltage detection interrupt, or peripheral interrupts assigned to software interrupt numbers from 0 to 63.
To exit stop mode by either the hardware reset or an NMI, without using peripheral interrupts, bits ILVL2 to ILVLO for the peripheral interrupts should be set to 000b (interrupt disabled) before executing the STOP instruction.
The CPU clock used when exiting stop mode by the peripheral interrupts or an NMI is the same clock used when the STOP instruction is executed.
Table 8.8 lists interrupts to be used to exit stop mode and usage conditions.

Table 8.8 Interrupts to Exit Stop Mode and Usage Conditions

Interrupt	Usage Condition
NMI	
Low voltage detection interrupt	
External interrupt	INT6 to INT8 are available when intelligent I/O interrupt is used
Key input interrupt	Available when the timer counts external pulse, having its 100 Hz or less frequency, in event counter mode
Timer A interrupt Timer B interrupt	Available when external clock is used
Serial interface interrupt (1)	
I2C-bus line interrupt	
CAN wake-up interrupt	

Note:

1. UART7 and UART8 are excluded.

8.8 System Clock Protection

The system clock protection is a function to disable clock change when the PLL clock is selected as base clock source. This prevents the CPU clock, which is out of control, from stopping.
When the PM21 bit in the PM2 register is set to 1 (clock change disabled), the following bits cannot be written to:

- Bits CM02 and CM05 in the CM0 register
- The CM10 bit in the CM1 register
- The CM20 bit in the CM2 register
- The PM27 bit in the PM2 register

To use the system clock protection, the CM05 bit in the CMO register should be set to 0 (main clock oscillator enabled) and the BCS bit in the CCR register should be set to 0 (PLL clock selected as base clock source) before the following procedure is done:
(1) The PRC1 bit in the PRCR register should be set to 1 (write to the PM2 register enabled).
(2) The PM21 bit in the PM2 register should be set to 1 (clock change disabled).
(3) The PRC1 bit in the PRCR register should be set to 0 (write to the PM2 register disabled).

8.9 Notes on Clock Generator

8.9.1 Sub Clock

8.9.1.1 Oscillation Parameter Matching

The constant matching of sub clock oscillator should be evaluated in both cases when the drive power is high and low.
Contact your oscillator manufacturer for details on the oscillation circuit constant matching.

8.9.2 Power Control

Do not switch the base clock source until the oscillation of the clock to be used has stabilized. However, this does not apply to the on-chip oscillator since the on-chip oscillator starts running immediately after the CM31 bit in the CM3 register is set to 1 .
To switch the base clock source from PLL clock to a low speed clock, that is, to set the BCS bit in the CCR register to 1 , use either the MOV.L or OR.L instruction.

- Program example in assembly language

OR.L \#80h, 0004h

- Program example in C language
asm("OR.L \#80h, 0004h");

8.9.2.1 Stop Mode

- To exit stop mode by reset, apply a low signal to RESET pin until a main clock oscillation stabilizes.

8.9.2.2 Suggestions to Power Saving

The followings are suggestions to reduce power consumption when programming or designing systems.

- I/O pins:

If inputs are floating, both transistors may be conducting. Set unassigned pins to input mode and connect each of them to VSS via a resistor, or set them to output mode and leave them open.

- A/D converter:

When the A/D conversion is not performed, set the VCUT bit in the ADOCON1 register to 0 (VREF disconnected). To perform the A/D conversion, set the VCUT bit to 1 (VREF connected) and wait 1 $\mu \mathrm{s}$ or more for the operation.

- D/A converter:

When the D/A conversion is not performed, set the DAiE bit in the DACON register $(i=0,1)$ to 0 (output disabled) and the DAi register to 00h.

- Peripheral clock stop: When entering wait mode, power consumption can be reduced by setting the CM02 bit in the CMO register to 1 to stop peripheral clock source. However, the fC32 does not stop by the CM02 bit setting.

9. Bus

This MCU provides internal bus and external bus. The internal bus contains fast bus (CPU bus) and slow bus (peripheral bus). Figure 9.1 shows a block diagram of the bus.

Note:

1. 32 -bit data bus is available in the 144-pin package only. In the 100-pin package, 16 -bit data bus is provided.

Figure 9.1 Bus Block Diagram

In memory expansion mode or microprocessor mode, some pins function as bus control pin to control the address bus and the data bus. The bus control pins are as follows: A0 to A23, D0 to D31, $\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS}} 3$, $\overline{\mathrm{WRO}} / \overline{\mathrm{WR}}, \overline{\mathrm{BC0}}, \overline{\mathrm{WR1}} / \overline{\mathrm{BC1}}, \overline{\mathrm{WR2}} / \overline{\mathrm{BC2}}, \overline{\mathrm{WR3}} / \overline{\mathrm{BC3}}, \overline{\mathrm{RD}}, \mathrm{BCLK}, \overline{\mathrm{HLDA}}, \overline{\mathrm{HOLD}}, \mathrm{ALE}$, and $\overline{\mathrm{RDY}}$.

9.1 Bus Setting

The bus setting is controlled by the two lowest bits of reset vector, the PBC register, registers EBC0 to EBC3, and CSOP0 to CSOP2.
Table 9.1 lists bus settings and their sources.

Table 9.1 Bus Settings and Sources

Bus Setting	Sources
Internal SFR bus timing	PBC register
External bus timing	Registers EBC0 to EBC3
External data bus width	PBC register, registers EBC0 to EBC3
External data bus width after reset	Two lowest bits of reset vector
Separate bus/Multiplexed bus selection	PBC register, registers EBC0 to EBC3
Pins to output chip select signals	Registers CSOP0 to CSOP2

9.2 Peripheral Bus Timing Setting

The peripheral bus of 16-/32-bit width operates at a frequency up to 32 MHz (the theoretical value and the maximum frequency of each product group are as defined by $f(B C L K)$ in 28. "Electrical Characteristics"). The timing adjustment and bus-width conversion with the faster, 64 -bit-wide CPU bus are controlled in the bus interface unit (BIU).
Figure 9.2 shows the PBC register which determines the peripheral bus timing.

Peripheral Bus Control Register (1,2)

Notes:

1. Set the PRR register to AAh (write enabled) before rewriting this register.
2. This register should be set only once after a reset. It should not be rewritten after the CCR register is set.
3. If this bit is set to 1 when the all MPX bits in registers EBC0 to EBC3 are set to 1, ports P0, P1, and P4_0 to P4_3 can be used as programmable I/O ports.
4. This bit should be the maximum bus width set in bits BW1 and BWO in registers EBCO to EBC3. The functions of ports P1, P12, and P13 vary with this bit setting.
5. This bit setting is applicable only in the 144-pin package.

Figure 9.2 PBC Register

9.3 External Bus Setting

External bus of 8-/16-/32-bit width operates at a frequency up to 32 MHz (the theoretical value and the maximum frequency of each product group are as defined by $f(B C L K)$ in 28. "Electrical Characteristics"). The timing adjustment and bus-width conversion with the faster, 64 -bit-wide CPU bus are controlled in the bus interface unit (BIU).

9.3.1 External Address Space Setting

In the R32C/100 Series, the CPU contains 26 address buses (A0 to A25) in the MCU. Since A26 to A31 are sign-extended of A25, it has 64 MB of accessible space in total in the addresses 00000000h to 01FFFFFFh and FE000000h to FFFFFFFFFh.
As address bus for external output, up to 24 buses (A0 to A23) are available. Decoded A18 to A25 function as 4 chip select signals ($\overline{\mathrm{CS3}}$ to $\overline{\mathrm{CS} 0}$). If 16 MB space is assigned to every chip select signal, up to 63.5 MB is available for external address space. When the processing mode is changed from single-chip mode to memory expansion mode, the address bus status is undefined until an external space is accessed.
Chip select signals $\overline{\mathrm{CS} 3}$ to $\overline{\mathrm{CS} 0}$ share pins with A20 to A23, respectively. Other combinations of signal and output port are also available as follows: signals $\overline{\mathrm{CS}}$ to $\overline{\mathrm{CS}} 3$ with ports P11_0 to P11_3 and signals $\overline{\mathrm{CS} 1}$ to $\overline{\mathrm{CS} 3}$ with ports P5_4, P5_6, and P5_7.
In microprocessor mode, the $\overline{\mathrm{CS} 0}$ signal is output from port P4_7 after a reset. The maximum space per chip select signal is 8 MB since A 23 is not available. Signals $\overline{\mathrm{CS} 1}$ to $\overline{\mathrm{CS3}}$ are output only when being set.
The $\overline{\mathrm{CSi}}(\mathrm{i}=0$ to 3) is held low while accessing an external space i . It shifts to high when accessing another external space. Figure 9.3 shows output examples of address bus and chip select signals.
A chip select signal to be used and an output pin are selected in registers CSOP0 to CSOP2. The space for each chip select signal is selected in registers CB01, CB12, and CB23.
Figure 9.4 to Figure 9.6 show registers CSOP0 to CSOP2. Figure 9.7, Figure 9.8, and Figure 9.9 show respectively registers CB01, CB12, and CB23. Figure 9.10 and Figure 9.11 show the chip select space. A chip select signal should not be set for more than two output pins in registers CSOPO to CSOP2. Registers CB01, CB12, and CB23 should be set to meet the conditions below:

- In memory expansion mode

$$
0080000 \mathrm{~h}<\left(\mathrm{CB} 23 \times 2^{18}\right)<\left(\mathrm{CB} 12 \times 2^{18}\right)<\left(\mathrm{CB} 01 \times 2^{18}\right) \leq 3 \mathrm{DC} 0000 \mathrm{~h}
$$

- In microprocessor mode

$$
0080000 \mathrm{~h}<\left(\mathrm{CB} 23 \times 2^{18}\right)<\left(\mathrm{CB} 12 \times 2^{18}\right)<\left(\mathrm{CB} 01 \times 2^{18}\right) \leq 3 \mathrm{FC} 0000 \mathrm{~h}
$$

Pattern 1. Address bus: changed,
Chip select signal: changed,
at the first cycle after accessing an external space
When a CSy space is accessed in the first cycle after the access to a $\overline{C S x}$ space, both the address bus and the chip select signal are changed.

Pattern 3. Address bus: changed,
Chip select signal: not changed,
at the first cycle after accessing an external space
When the same $\overline{\mathrm{CSx}}$ space is accessed in the first cycle after the access to a $\overline{\mathrm{CSx}}$ space, only the address bus is changed.

Pattern 2. Address bus: not changed
Chip select signal: changed,
at the first cycle after accessing an external space
When an internal space is accessed in the first cycle after the access to a $\overline{\mathrm{CSx}}$ space, only the chip select signal is changed.

Pattern 4. Address bus: not changed,
Chip select signal: not changed, at the first cycle after accessing an external space
When no space is accessed in the first cycle after the access to a $\overline{\mathrm{CSx}}$ space, (and no instruction prefetching is generated), neither the address bus nor the chip select signal is changed.

Note:

1. The patterns above show combinations of an address bus and a chip select signal in sequential two cycles. A chip select signal may be extended to two-bus cycles or more according to the combination.

Figure 9.3 Address Bus and Chip Select Signal Output Patterns (in Separate Bus Format)

Chip Select Output Pin Setting Register $0{ }^{(1)}$

Notes:

1. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.
2. The P4_7B bit should not be set to 0 when starting an operation in microprocessor mode.

Figure 9.4 CSOPO Register

Chip Select Output Pin Setting Register $1{ }^{(1)}$
Address

40055h | Reset Value |
| :--- |
| 01X0 XXXXb |

Notes:

1. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.

Figure 9.5 CSOP1 Register

Chip Select Output Pin Setting Register $2{ }^{(1)}$
Address
40056h

Notes:

1. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.
2. $\overline{W R 2}$ is output when the PM02 bit in the PM0 register is set to 1 ($\overline{R D} / \overline{W R 0} / \overline{W R 1} / \overline{W R 2} / \overline{W R 3})$ and bits EXBW1 and EXBW0 in the PBC register are set to 10b (32-bit width as the maximum width of external bus); otherwise, $\overline{\mathrm{CS} 3}$ is output.

Figure 9.6 CSOP2 Register

Chip Selects 0 and 1 Boundary Setting Register (1)

Notes:

1. Set the PRR register to AAh (write enabled) before rewriting this register.
2. The setting value should be higher than that for the CB12 register.

Figure 9.7 CB01 Register

Chip Selects 1 and 2 Boundary Setting Register ${ }^{(1)}$

Notes:

1. Set the PRR register to AAh (write enabled) before rewriting this register.
2. The setting value should be higher than that for the CB23 register and lower than that for the CB01 register.

Figure 9.8 CB12 Register

Chip Selects 2 and 3 Boundary Setting Register (1)

Notes:

1. Set the PRR register to AAh (write enabled) before rewriting this register.
2. The setting value should be lower than that for the CB12 register.

Figure 9.9 CB23 Register

Figure 9.10 Chip Select Spaces in Memory Expansion Mode

Figure 9.11 Chip Select Spaces in Microprocessor Mode

9.3.2 External Data Bus Width Setting

The external data bus width is selectable among 8 bits, 16 bits, and 32 bits. The bus width of each space is determined using bits BW1 and BW0 in registers EBCO to EBC3. The maximum bus width for all spaces is set using bits EXBW1 and EXBW0 in the PBC register. The bus width specified in bits EXBW1 and EXBW0 should be equal to or greater than the value set using bits BW1 and BW0. When an accessed space has a bus of less bit-width than that specified in bits EXBW1 and EXBW0, undefined value is output from the unused data output pins.
Figure 9.12 shows registers EBC0 to EBC3.

External Bus Control Register $\mathbf{i}(\mathrm{i}=0 \text { to } 3)^{(1)}$

Notes:

1. Set the PRR register to AAh (write enabled) before rewriting this register.
2. Refer to 9.3.5. "External Bus Timing" for the relation between register settings and practical timing.
3. The maximum value set here should be applied to bits EXBW1 and EXBWO in the PBC register.
4. This bit setting is applicable only in the 144 -pin package.

Figure 9.12 Registers EBC0 to EBC3

9.3.3 Separate Bus/Multiplexed Bus Selection

The bus format is selectable between separate bus format and multiplexed bus format. The bus format for each space is set using the MPX bit in registers EBC0 to EBC3. To specify multiplexed bus format for all spaces, the EXPMX bit in the PBC register should be set to 1 (multiplexed bus in all spaces). The ports P0 and P1, and P4_0 to P4_3 can be used as programmable I/O ports.

(1) Separate Bus

In this bus format, data and address have their own I/O pins.
To specify separate bus mode, the MPX bit in registers EBCO to EBC3 should be set to 0 . The data bus width is selectable among 8 bits, 16 bits, and 32 bits using bits BW1 and BWO in registers EBCO to EBC3.
According to the specified data bus width, pin functions vary as follows:
In 8-bit data bus format (bits EXBW1 and EXBW0 in the PBC register are set to 00b),
Port PO: data bus,
Ports P1, P12, and P13: programmable I/O ports.
In 16-bit data bus format (bits EXBW1 and EXBW0 are set to 01b),
Ports P0 and P1: data buses,
Ports P12 and P13: programmable I/O ports.
Note that port P1 (D8 to D15) becomes undefined if the MCU accesses an space where bits BW1 and BW0 are set to 00b (8-bit data bus).
In 32-bit data bus format (bits EXBW1 and EXBW0 are set to 10b),
Ports P0, P1, P12, and P13: data buses.
Note that ports P1, P12, and P13 (D8 to D31) become undefined if the MCU accesses an space where bits BW1 and BW0 are set to 00b (8-bit width data bus). In case of an access to an space set to 01b (16-bit data bus), ports P12 and P13 (D16 to D31) become undefined.

(2) Multiplexed Bus

In this bus format, data and address are input/output to/from a time-shared identical pin.
To specify multiplexed bus mode, the MPX bit in registers EBC0 to EBC3 should be set to 1 .
According to the specified data bus width, pins are multiplexed as follows:
In 8-bit data bus format (bits BW1 and BW0 in registers EBC0 to EBC3 are set to 00b),
D0 to D7 are multiplexed with A0 to A7.
In 16-bit or 32-bit data bus format (bits BW1 and BW0 are set to 01b or 10b),
D0 to D15 are multiplexed with $\overline{\mathrm{BC}}, \mathrm{A} 1 / \overline{\mathrm{BC}}$, and A 2 to A 15 .
In microprocessor mode, an operation is started in separate bus format after a reset. Therefore the multiplexed bus format is available only for spaces $\overline{\mathrm{CS} 1}$ to $\overline{\mathrm{CS} 3}$ and is not available for $\overline{\mathrm{CS} 0}$ space.

Table 9.2 shows pin functions for each processor mode and Table 9.3 shows pin functions for each bus format.

Table 9.2 Processor Mode and Pin Functions (1)

Process or Mode	$\begin{gathered} \text { Single- } \\ \text { Chip Mode } \end{gathered}$	Microprocessor Mode/Memory Expansion Mode						Memory Expansion Mode		
Bus format	-	Separate bus only (EXMPX = 0)			Separate bus and multiplexed bus (mixed) (EXMPX $=0$)			Multiplexed bus only (EXMPX = 1)		
Data bus width	-	8 bits only	8/16 bits (mixed)	$\begin{gathered} 8 / 16 / 32 \text { bits } \\ \text { (mixed) } \end{gathered}$	8 bits only	8/16 bits (mixed)	$\begin{array}{\|c} 8 / 16 / 32 \text { bits } \\ \text { (mixed) } \end{array}$	8 bits only	8/16 bits (mixed)	$\begin{gathered} 8 / 16 / 32 \text { bits } \\ \text { (mixed) } \end{gathered}$
$\begin{array}{\|l} \hline \text { PO_0 to } \\ \text { PO_7 } \end{array}$	I/O ports	D0 to D7						I/O ports		
$\begin{gathered} \hline \text { P1_0 to } \\ \text { P1_7 } \end{gathered}$	I/O ports	I/O ports	D8 to D15		1/O ports	D8 to D15		I/O ports		
P2_0	I/O port	A0	A0 or $\overline{\mathrm{BCO}}$		$\begin{aligned} & \text { A0 or } \\ & \text { A0/DO } \end{aligned}$	$\begin{gathered} \mathrm{AO}, \mathrm{AO} / \mathrm{DO}, \overline{\mathrm{BCO}}, \text { or } \\ \overline{\mathrm{BCO} / \mathrm{DO}} \end{gathered}$		A0/D0	A0/DO or $\overline{\mathrm{BCO}} / \mathrm{DO}$	
P2_1	I/O port	A1	A1 or $\overline{\mathrm{BC}} 2$		A1 or A1/D1		$\begin{gathered} \begin{array}{c} \mathrm{A} 1, \mathrm{~A} 1 / \mathrm{l} \\ \mathrm{D} 1, \mathrm{BC2}, \text { or } \\ \mathrm{BC2} / \mathrm{D} 1 \end{array} \end{gathered}$	A1/D1		A1/D1 or BC2/D1
$\begin{array}{\|c} \hline \text { P2_2 to } \\ \text { P2_7 } \end{array}$	I/O ports	A2 to A7			A2 to A7 or A2/D2 to A7/D7			A2/D2 to A7/D7		
$\begin{gathered} \hline \text { P3_0 to } \\ \text { P3_7 } \end{gathered}$	I/O ports	A8 to A15			A8 to A15	A8 to A15 orA8/D8 to A15/D15		A8 to A15	A8/D8 to A15/D15	
$\begin{gathered} \hline \text { P4_0 to } \\ \text { P4_3 } \end{gathered}$	I/O ports	A16 to A19						I/O ports		
P4_4	I/O port	A20 or $\overline{\mathrm{CS3}}$								
P4_5	I/O port	A21 or $\overline{\mathrm{CS} 2}$								
P4_6	I/O port	A22 or $\overline{\mathrm{CS1}}$								
P4_7	I/O port	A23 or $\overline{\mathrm{CSO}}$								
P5_0	I/O port	$\overline{\mathrm{WR}}$ or $\overline{\mathrm{WRO}}$								
P5_1	I/O port	Undefined (2)	$\overline{\mathrm{BC1}}$ or WR1		Undefined (2)	$\overline{\mathrm{BC} 1}$ or WR1		Undefined (2)	$\overline{\mathrm{BC} 1}$ or WR1	
P5_2	I/O port	$\overline{\mathrm{RD}}$								
P5_3	I/O port	BCLK								
P5_4	I/O port	HLDA or $\overline{\text { CS1 }}$								
P5_5	I/O port	HOLD								
P5_6	I/O port	ALE or $\overline{\mathrm{CS}}$ 2			Set to ALE					
P5_7	I/O port	$\overline{\mathrm{RDY}}$ or $\overline{\mathrm{CS} 3}$								
$\begin{array}{\|l} \text { P11_0 to } \\ \text { P11_2 } \end{array}$	I/O ports	$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS} 2}$ or I/O ports								
P11_3	I/O port	$\overline{\text { CS3 }}$ or I/O port		$\begin{aligned} & \hline \overline{\mathrm{CS3}} \text { or } \\ & \overline{\mathrm{WR} 2} \end{aligned}$	$\overline{\text { CS3 }}$ or I/O port		$\overline{\mathrm{CS3}}$ to $\overline{\mathrm{WR} 2}$	$\overline{\text { CS3 }}$ or I/O port		$\begin{aligned} & \overline{\mathrm{CS3}} \text { or } \\ & \overline{\mathrm{WR} 2} \end{aligned}$
P11_4	I/O port	I/O port		$\frac{\overline{\mathrm{BC3}} \mathrm{or}}{\overline{\mathrm{WR}}}$	I/O port		$\overline{\mathrm{BC} 3}$ to $\overline{\mathrm{WR} 3}$	I/O port		$\frac{\overline{\mathrm{BC3}} \mathrm{or}}{\overline{\mathrm{WR}}}$
$\begin{array}{\|c} \hline \text { P12_0to } \\ \text { P12_7 } \end{array}$	I/O ports	I/O ports		D16 to D23	I/O ports		D16 to D23	I/O ports		D16 to D23
$\begin{array}{\|c} \hline \text { P13_0 to } \\ \text { P13_7 } \\ \hline \end{array}$	I/O ports	I/O ports		D24 to D31	I/O ports		D24 to D31	I/O ports		D24 to D31

Notes:

1. Ports P11 to P15 are available in the 144-pin package only.
2. Undefined value is output.

Table 9.3 Bus Format and Pin Functions (in Microprocessor Mode/Memory Expansion Mode) (1)

Bus Format	Separate Bus			Multiplexed Bus		
MPX bit	0			1		
Bus width	8 bits	16 bits	32 bits	8 bits	16 bits	32 bits
Bits BW1 to BWO	00b	01b	10b	00b	01b	10b
P0_0 to P0_7	D0 to D7			I/O ports		
P1_0 to P1_7	I/O ports	D8 to D15		I/O ports		
P2_0	A0	$\overline{\mathrm{BCO}}$		A0/D0	BC0/D0	
P2_1	A1		$\overline{\mathrm{BC}} 2$	A1/D1		BC2/D1
P2_2 to P2_7	A2 to A7			A2/D2 to A7/D7		
P3_0 to P3_7	A8 to A15			A8/D8 to A15/D15		
P4_0 to P4_3	A16 to A19			A16 to A19 or I/O ports		
P4_4	A20 or $\overline{\mathrm{CS}} 3$					
P4_5	A21 or $\overline{\mathrm{CS} 2}$					
P4_6	A22 or $\overline{\mathrm{CS} 1}$					
P4_7	A23 or $\overline{\mathrm{CSO}}$ ($\overline{\mathrm{CSO}}$ fixed in microprocessor mode)					
P5_0	$\overline{\mathrm{WR}}$ or WRO					
P5_1	Undefined (2)	$\overline{\mathrm{BC1}}$ or $\overline{\mathrm{WR1}}$		Undefined (2)	$\overline{\mathrm{BC1}}$ or $\overline{\mathrm{WR1}}$	
P5_2	$\overline{\mathrm{RD}}$					
P5_3	BCLK					
P5_4	$\overline{\text { HLDA }}$ or $\overline{\mathrm{CS} 1}$					
P5_5	HOLD					
P5_6	ALE or $\overline{\mathrm{CS}} 2$			Set to ALE		
P5_7	$\overline{\mathrm{RDY}}$ or $\overline{\mathrm{CS3}}$					
$\begin{gathered} \hline \text { P11_0 to } \\ \text { P11_2 } \end{gathered}$	$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS} 2}$ or I/O ports					
P11_3	$\overline{\mathrm{CS3}}$ or I/O port		$\overline{\mathrm{CS3}}$ or $\overline{\mathrm{WR2}}$	$\overline{\mathrm{CS3}}$ or I/O port		$\overline{\mathrm{CS3}}$ or $\overline{\mathrm{WR2}}$
P11_4	I/O port		$\overline{\mathrm{BC}}$ or $\overline{\mathrm{WR} 3}$	I/O port		$\overline{\mathrm{BC}}$ or $\overline{\mathrm{WR} 3}$
$\begin{aligned} & \text { P12_0 to } \\ & \text { P12_7 } \end{aligned}$	I/O ports		D16 to D23	I/O ports		D16 to D23
$\begin{gathered} \hline \text { P13_0 to } \\ \text { P13_7 } \end{gathered}$	I/O ports		D24 to D31	I/O ports		D24 to D31

Notes:

1. Ports P11 to P15 are available in the 144-pin package only.
2. Undefined value is output.

9.3.4 Read and Write Signals

In 16- or 32-bit data bus, the PM02 bit in the PM0 register selects a combination of $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{BCO}}, \overline{\mathrm{BC}} 1$, $\overline{\mathrm{BC} 2}$, and $\overline{\mathrm{BC3}}$ or $\overline{\mathrm{RD}}, \overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}, \overline{\mathrm{WR2}}$, and $\overline{\mathrm{WR3}}$ as read or write signals.
When bits EXBW1 and EXBW0 in the PBC register are set to 00b (8-bit data bus), the PM02 bit should be set to $0(\overline{\mathrm{RD}} / \overline{\mathrm{WR}} / \overline{\mathrm{BC} 0} / \overline{\mathrm{BC} 1} / \overline{\mathrm{BC}} / \overline{\mathrm{BC} 3})$. When bits EXBW1 and EXBW0 are set to 01 b (16-bit data bus) or 10b (32-bit data bus) to access an 8 -bit space, the combination of $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{BC0}}, \overline{\mathrm{BC} 1}, \overline{\mathrm{BC}} 2$, and $\overline{\mathrm{BC}}$ is selected irrespective of the PM02 bit setting.
Table 9.4 and Table 9.5 list each signal operation.
The read and write signals after a reset are the following combination: $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{BC}}, \overline{\mathrm{BC} 1}, \overline{\mathrm{BC} 2}$, and $\overline{\mathrm{BC3}}$. To shift to another combination, $\overline{\mathrm{RD}}, \overline{\mathrm{WR0}}, \overline{\mathrm{WR1}}, \overline{\mathrm{WR2}}$, and $\overline{\mathrm{WR} 3}$, the PM02 bit should be set first to write data to an external memory.

Table 9.4 Signals $\overline{\mathrm{RD}}, \overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}, \overline{\mathrm{WR2}}$, and $\overline{\mathrm{WR3}}\left({ }^{(1)}\right.$

Data Bus Width	$\overline{\mathrm{RD}}$	$\overline{\text { WRO }}$	$\overline{\text { WR1 }}$	$\overline{\text { WR2 }}$	$\overline{\text { WR3 }}$	External Data Bus Status
32 bits (2)	L	H	H	H	H	Read 4-byte data
	H	L	H	H	H	Write 1-byte data to address 4n+0
	H	H	L	H	H	Write 1-byte data to address 4n+1
	H	H	H	L	H	Write 1-byte data to address 4n+2
	H	H	H	H	L	Write 1-byte data to address 4n+3
	H	L	L	H	H	Write 2-byte data to addresses 4n+0 to 4n+1
	H	H	L	L	H	Write 2-byte data to addresses $4 \mathrm{n}+1$ to $4 \mathrm{n}+2$
	H	H	H	L	L	Write 2-byte data to addresses 4n+2 to 4n+3
	H	L	L	L	H	Write 3-byte data to addresses 4n+0 to 4n+2
	H	H	L	L	L	Write 3-byte data to addresses $4 n+1$ to $4 n+3$
	H	L	L	L	L	Write 4-byte data to addresses 4n+0 to 4n+3
16 bits	L	H	H	H/L (A1)	-	Read 2-byte data
	H	L	H	H/L (A1)	-	Write 1-byte data to even address
	H	H	L	H/L (A1)	-	Write 1-byte data to odd address
	H	L	L	H/L (A1)	-	Write 2-byte data to both even and odd addresses
8 bits	L	$\mathrm{H}(\overline{\mathrm{WR}})$	-	H/L (A1)	-	Read 1-byte data
	H	L ($\overline{\mathrm{WR}})$	-	H/L (A1)	-	Write 1-byte data

Notes:

1. Signals $\overline{W R 2}$ and $\overline{W R 3}$ are available in the 144-pin package only.
2. Signals for 32-bit data bus width can be set in the 144-pin package only.

Table 9.5 Signals $\overline{R D}, \overline{W R}, \overline{B C 0}, \overline{B C 1}, \overline{B C 2}$, and $\overline{\mathrm{BC} 3}$ (1)

Data Bus Width	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{BCO}}$	$\overline{\mathrm{BC} 1}$	$\overline{\mathrm{BC} 2}$	$\overline{\mathrm{BC}}$	External Data Bus Status
32 bits (2)	L	H	L	L	L	L	Read 4-byte data
	H	L	L	H	H	H	Write 1-byte data to address 4n+0
	H	L	H	L	H	H	Write 1-byte data to address 4n+1
	H	L	H	H	L	H	Write 1-byte data to address 4n+2
	H	L	H	H	H	L	Write 1-byte data to address 4n+3
	H	L	L	L	H	H	Write 2-byte data to addresses 4n+0 to 4n+1
	H	L	H	L	L	H	Write 2-byte data to addresses $4 n+1$ to $4 n+2$
	H	L	H	H	L	L	Write 2-byte data to addresses $4 n+2$ to $4 n+3$
	H	L	L	L	L	H	Write 3-byte data to addresses $4 n+0$ to $4 n+2$
	H	L	H	L	L	L	Write 3-byte data to addresses $4 n+1$ to $4 n+3$
	H	L	L	L	L	L	Write 4-byte data to addresses 4n+0 to 4n+3
16 bits	L	H	L	L	H/L (A1)	-	Read 2-byte data
	H	L	L	H	H/L (A1)	-	Write 1-byte data to even address
	H	L	H	L	H/L (A1)	-	Write 1-byte data to odd address
	H	L	L	L	H/L (A1)	-	Write 2-byte data to both even and odd addresses
8 bits	L	H	H/L (A0)	-	H/L (A1)	-	Read 1-byte data
	H	L	H/L (A0)	-	H/L (A1)	-	Write 1-byte data

Notes:

1. Signals $\overline{\mathrm{BC} 2}$ and $\overline{\mathrm{BC}}$ are available in the 144-pin package only.
2. Signals for 32-bit data bus width can be set in the 144-pin package only.

9.3.5 External Bus Timing

The external bus timing is set using registers EBCO to EBC3. The reference clock is the base clock set using bits BCD1 and BCD0 in the CCR register.
Table 9.6 lists the bit setting of MPY1, MPY0, ESUR1, and ESUR0 and the Tsu(A-R) (address setup before $\overline{R D}$), Table 9.7 lists the bit setting of MPY1, MPY0, EWR1, and EWR0 and the Tw(R) ($\overline{R D}$ pulse width), Table 9.8 lists the bit setting of MPY1, MPY0, ESUW1, and ESUW0 and the Tsu(A-W) (address setup before $\overline{W R}$), and Table 9.9 lists the bit setting of MPY1, MPY0, EWW1, and EWW0 and the $\mathrm{Tw}(\mathrm{W})$ ($\overline{\mathrm{WR}}$ pulse width).

Table 9.6 The Tsu(A-R) and Bit Settings: MPY1, MPY0, ESUR1, and ESUR0 (unit: cycles)

ESUR1 and ESURO Bit Settings		Separate Bus				Multiplexed Bus			
		MPY1 and MPY0 bit settings				MPY1 and MPY0 bit settings			
		00b	01b	10b	11b	00b	01b	10b	11b
		mpy $=1$	$m p y=2$	$m p y=3$	$m p y=4$	mpy $=1$	$m p y=2$	$m p y=3$	$m p y=4$
00b	sur $=0$	0.5	0.5	0.5	0.5	1	1	1	1
01b	sur $=1$	1.5	2.5	3.5	4.5	2	3	4	5
10b	sur $=2$	2.5	4.5	6.5	8.5	3	5	7	9
11b	sur $=3$	3.5	6.5	9.5	12.5	4	7	10	13
Formula		$\mathrm{Tsu}(\mathrm{A}-\mathrm{R})=$ sur \times mpy +0.5				$\mathrm{Tsu}(\mathrm{A}-\mathrm{R})=$ sur \times mpy +1			

Table 9.7 The Tw(R) and Bit Settings: MPY1, MPY0, EWR1, and EWR0 (unit: cycles)

EWR1 and EWR0 Bit Settings		Separate Bus				Multiplexed Bus			
		MPY1 and MPY0 bit setting				MPY1 and MPY0 bit setting			
		00b	01b	10b	11b	00b	01b	10b	11b
		mpy $=1$	$m p y=2$	$m p y=3$	$m p y=4$	mpy $=1$	$m p y=2$	$m p y=3$	$m p y=4$
00b	$w r=1$	1.5	2.5	3.5	4.5	$0.5{ }^{(1)}$	1.5	2.5	3.5
01b	$w r=2$	2.5	4.5	6.5	8.5	1.5	3.5	5.5	7.5
10b	$w r=3$	3.5	6.5	9.5	12.5	2.5	5.5	8.5	11.5
11b	$w r=4$	4.5	8.5	12.5	16.5	3.5	7.5	11.5	15.5
Formula		$\mathrm{Tw}(\mathrm{R})=w r \times m p y+0.5$				$\mathrm{Tw}(\mathrm{R})=\mathrm{wr} \times$ mpy -0.5			

Note:

1. Do not set this value.

Table $9.8 \quad$ The Tsu(A-W) and the Bit Settings: MPY1, MPYO, ESUW1, and ESUW0 (unit: cycles)

ESUW1 and ESUW0 Bit	MPY1 and MPY0 Bit Settings				
	00b	01b	10 b	11 b	
	$m p y=1$	$m p y=2$	$m p y=3$	$m p y=4$	
00 b	suw $=0$	1	1	1	1
01b	suw $=1$	2	3	4	5
10 b	suw $=2$	3	5	7	9
11 b	suw $=3$	4	7	10	13
Formula		Tsu(A-W) $=$ suw $\times m p y+1$			

Table 9.9 The Tw(W) and the Bit Settings: MPY1, MPY0, EWW1, and EWW0 (unit: cycles)

EWW1 and EWWO Bit Settings		MPY1 and MPY0 Bit Settings			
		00b	01b	10b	11b
		$m p y=1$	$m p y=2$	mpy $=3$	$m p y=4$
00b	$w w=1$	$0.5{ }^{(1)}$	1.5	2.5	3.5
01b	$w w=2$	1.5	3.5	5.5	7.5
10b	$w w=3$	2.5	5.5	8.5	11.5
11b	$w w=4$	3.5	7.5	11.5	15.5
Formula		$\mathrm{Tw}(\mathrm{W})=w w \times m p y-0.5$			

Note:

1. Do not set this value.

Figure 9.13 and Figure 9.14 show an example of external bus timing in separate bus format (the MPX bit is set to 0) and in multiplexed bus format (the MPX bit is set to 1), respectively.
Note that the actual bus cycles are adjusted to be the integral multiple of peripheral bus clock as follows:

- Peripheral bus clock divided by 2: If the calculation result is odd, an idle cycle is inserted so that the bus cycles becomes even.
- Peripheral bus clock divided by 3: If the calculation result is not the multiples of three, (an) idle cycle(s) is/are inserted so that the bus cycles becomes the multiples of three.
- Peripheral bus clock divided by 4: If the calculation result is not the multiples of four, (an) idle cycle(s) is/are inserted so that the bus cycles becomes the multiples of four.
(1) When the EBCi register is XX01 01000001 0000b

(2) When the EBCi register is XX01 10010001 0101b

(3) When the EBCi register is XX01 01010101 0101b

Figure 9.13 External Bus Timing in Separate Bus Format ($\mathrm{i}=0$ to 3)
(1) When the EBCi register is XX11 $010000010100 b$

(2) When the EBCi register is XX11 10100001 1010b

(3) When the EBCi register is XX11 01010101 0101b

Figure 9.14 External Bus Timing in Multiplexed Bus Format ($\mathrm{i}=0$ to 3)

9.3.6 ALE Signal

The ALE signal latches an address of the multiplexed bus. The address should be latched on the falling edge of the ALE signal. This signal is output to internal space or external space.

Figure 9.15 ALE Signal and Address Bus/Data Bus

The ALE signal becomes high when a bus cycle is started and changes to low $1 / 2$ base clock before an $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ becomes low.

9.3.7 $\overline{R D Y}$ Signal

The $\overline{R D Y}$ signal facilitates access to external devices requiring longer access time. It is used when accessing an external device with lower access rate than the timing set in registers EBCO to EBC3 or when accessing multiple devices with different access timing in a $\overline{\mathrm{CS}}$ space.
When the RDY bit in registers EBC0 to EBC3 is set to 1 ($\overline{\mathrm{RDY}}$ used), the $\overline{\mathrm{RDY}}$ pin is sampled on the every mpy-th falling edge of the base clock. If the $\overline{R D Y}$ pin is held low when sampled, wait states are inserted into the bus cycle. The sampling continues until the $\overline{\mathrm{RDY}}$ pin is held high so that the bus cycle starts running again.
Since the base clock is not output to external pins, practically, the $\overline{R D Y}$ signal becomes low when the signals $\overline{R D}, \overline{W R}$, and $\overline{W R 0}$ to $\overline{W R 3}$ are held in a low level and it becomes high synchronizing the rise of the BCLK signal.
Figure 9.16 shows an example of $\overline{\text { RDY }}$ signal generator and Table 9.10 lists setting conditions of registers EBC0 to EBC3 to use this circuit. Figure 9.17 shows examples of bus cycle that is extended by the $\overline{\mathrm{RDY}}$ signal.

Figure 9.16 $\overline{\text { RDY }}$ Signal Generation Circuitry

Table 9.10 Setting Conditions of the EBCi register when Using the Circuit in Figure 9.16 ($\mathrm{i}=0$ to 3)

Peripheral Bus Clock Frequency	Setting Condition	Setting Example
BCLK = 1/2 base clock	$\begin{aligned} & \text { mpy }=3 \\ & \text { In separate bus } \\ & \overline{\mathrm{RD}} \text { pulse width } \geq 9.5 \\ & \overline{\mathrm{WR}} \text { pulse width } \geq 11.5 \\ & \overline{\mathrm{RD}} / \overline{\mathrm{WR}} \text { high level width } \geq 2.5 \\ & \text { In multiplexed bus } \\ & \overline{\mathrm{RD}} \text { pulse width } \geq 11.5 \\ & \overline{\mathrm{WR}} \text { pulse width } \geq 11.5 \end{aligned}$	In separate bus $\text { EBCi = XX01 } 11011011 \text { 1001b }$ etc. In multiplexed bus EBCi = XX11 11011011 1101b etc.
BCLK = 1/3 base clock	$m p y=3$ In separate bus $\overline{\mathrm{RD}}$ pulse width ≥ 12.5 $\overline{\text { WR }}$ pulse width ≥ 11.5 $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ high level width ≥ 3.5 In multiplexed bus $\overline{\mathrm{RD}}$ pulse width ≥ 11.5 $\overline{\text { WR }}$ pulse width ≥ 11.5	In separate bus $\text { EBCi = XX01 } 11011011 \text { 1101b }$ etc. In multiplexed bus EBCi = XX11 11011011 1101b etc.
BCLK = 1/4 base clock	$\begin{aligned} & \text { mpy }=4 \\ & \text { In separate bus } \\ & \overline{\mathrm{RD}} \text { pulse width } \geq 20.5 \\ & \overline{\mathrm{WR}} \text { pulse width } \geq 19.5 \\ & \overline{\mathrm{RD}} / \overline{\mathrm{WR}} \text { high level width } \geq 4.5 \\ & \text { In multiplexed bus } \\ & \overline{\mathrm{RD}} \text { pulse width } \geq 19.5 \\ & \overline{\mathrm{WR}} \text { pulse width } \geq 19.5 \end{aligned}$	In separate bus unavailable In multiplexed bus unavailable

X : given value

Figure 9.17 An Example of Bus Cycle Extended by $\overline{R D Y}$ Signal ($f(B C L K)=1 / 2 f(B a s e))(i=0$ to 3)

9.3.8 $\overline{\text { HOLD }}$ Signal

The $\overline{\text { HOLD }}$ signal is used when the external bus master requests the external bus from the CPU. When the external bus master drives the $\overline{\text { HOLD }}$ pin low, the CPU outputs a low signal from the $\overline{\mathrm{HLDA}}$ pin after the ongoing bus access is completed. Then the external bus privilege is transferred to the external bus master. While the HOLD pin is held low, the CPU does not start the next bus cycle.
To return the bus privilege to the CPU, the external bus master should verify the HLDA pin is held low, and then drive the $\overline{\text { HOLD }}$ pin high.
Table 9.11 lists the MCU status in a hold state.
The bus is used in the following priority order: External bus master, DMAC, and CPU.

Table 9.11 The MCU Status in Hold State

Item	
Oscillation	ON
Address bus, data bus, $\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS3}}, \overline{\mathrm{BCO}}$ to $\overline{\mathrm{BC3}}$	High-impedance
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{WRO}}$ to $\overline{\mathrm{WR3}}$	High-impedance
Programmable I/O port	The state when $\overline{\text { HOLD was received is held }}$
$\overline{\text { HLDA }}$ pin	Low is output
Internal peripheral circuit	ON (excluding the watchdog timer)
ALE pin	Low is output

9.3.9 BCLK Output

The BCLK, which has the same frequency as peripheral bus clock, is a divided clock generated by PLL. In memory expansion mode or microprocessor mode, the BCLK is output from port P5_3 when the PM07 bit in the PM0 register is set to 0 (BCLK output) and bits CM01 and CM00 in the CM0 register are set to 00b (I/O port P5_3). In single-chip mode, it cannot be output. Refer to 8. "Clock Generator" for details.

9.4 External Bus Status when Accessing Internal Space

Table 9.12 lists the external bus status when accessing an internal space.
Table 9.12 External Bus Status when Accessing Internal Space

Pin	Pin State when Accessing SFR	Pin State when Accessing Internal Memory
Address bus	Address is output	The address of SFR or external space last accessed is held
Data bus	Read Cycle	High-impedance
	Write Cycle	Data is output
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS} 3}$	High is output	Undefined
$\overline{\mathrm{BCO}}$ to $\overline{\mathrm{BC} 3}$	High is output	
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{WRO}}$ to $\overline{\mathrm{WC}} \overline{\mathrm{WR} 3}$ are output	$\overline{\mathrm{RD}}, \overline{\mathrm{WR}, \overline{\mathrm{WRO}} \text { to } \overline{\mathrm{WR3}} \text { are output }}$	The address of SFR or external space last accessed is held
ALE	High is output	

9.5 Notes on Bus

9.5.1 Notes on System Designing

When the flash memory rewrite is performed in CPU rewrite mode using memory expansion mode, the use of $\overline{\mathrm{CSO}}$ space and $\overline{\mathrm{CS3}}$ space has the following restrictions:

- If the FEBC0 and/or FEBC3 registers are set in CPU rewrite mode, the bus format for the corresponding space functions as separate bus. Any external devices connected in multiplexed bus format become inaccessible.
- If the FEBC0 and/or FEBC3 registers are set in CPU rewrite mode, the bus timing for the corresponding space changes. This may cause external devices to become inaccessible depending on the register settings.
Devices required to be accessed in CPU rewrite mode should be allocated in $\overline{\mathrm{CS} 1}$ space and/or $\overline{\mathrm{CS} 2}$ space.

9.5.2 Notes on Register Settings

9.5.2.1 Chip Select Boundary Select Registers

When not using memory expansion mode, do not change values after a reset for registers CB01, CB12, and CB23.
When the CPU operation is performed in memory expansion mode more than once, set a value within the specified range to all of these registers irrespective of the use of them.

9.5.2.2 External Bus Control Registers

Registers EBC0 and EBC3 share respective addresses with registers FEBC0 and FEBC3. If the FEBC0 and/or FEBC3 registers are set while the flash memory is being rewritten, set the EBC0 and/ or EBC3 registers again after rewriting the flash memory.

10. Protection

This function protects important registers from being easily overwritten when a program goes out of control. It contains the following registers: PRCR, PRCR2, PRCR3, and PRR.

10.1 Protect Register (PRCR Register)

Figure 10.1 shows the PRCR register. Registers protected by the bits in the PRCR register are listed in Table 10.1.

Table 10.1 Registers Protected by the PRCR Register

Bit	Protected Registers
PRC0	CM0, CM1, CM2, and PM3
PRC1	PM0, PM2, CSOP0, CSOP1, CSOP2, INVC0, INVC1, IOBC, and I2CMR
PRC2	PLC0, PLC1, PD9, and P9_iS ($\mathrm{i}=0$ to 7)

The PRC2 bit becomes 0 (write disabled) when a write operation is performed in a given address after this bit is set to 1 (write enabled). In registers PD9, P9_iS ($\mathrm{i}=0$ to 7), PLC0, and PLC1, the write operation should be performed immediately after the instruction to set the PRC2 bit to 1. Any interrupt or DMA transfer should not be accepted between this instruction and the next one. Bits PRC0 and PRC1 are not set to 0 even if data is written to a given address. These bits should be set to 0 by a program.

Protect Register	Symbol PRCR	Address 4004Ah	Reset Value XXXX X000b	$\begin{aligned} & \text { 'alue } \\ & \text { 000b } \end{aligned}$
I	Bit Symbol	Bit Name	Function	RW
	PRC0	Protect Bit 0	Enable to write to registers CMO, CM1, CM2, and PM3 0 : Write disabled 1: Write enabled	RW
	PRC1	Protect Bit 1	Enable to write to registers PMO, PM2, CSOP0, CSOP1, CSOP2, INVCO, INVC1, IOBC, and I2CMR 0 : Write disabled 1: Write enabled	RW
\qquad	PRC2	Protect Bit $2{ }^{(1)}$	Enable to write to registers PLCO, PLC1, PD9, and P9_iS ($\mathrm{i}=0$ to 7) 0 : Write disabled 1: Write enabled	RW
	(b7-b3)	No register bits; should be written with 0 and read as undefined value		-
1. The PRC2 bit becomes 0 if a write operation is performed in a given address after this bit is set to 1 . Bits PRC0 and PRC1 do not automatically become 0 . They should be set to 0 by a program.				

Figure 10.1 PRCR Register

10.2 Protect Register 2 (PRCR2 Register)

Figure 10.2 shows the PRCR2 register which protects the CM3 register only.

Figure 10.2 PRCR2 Register

10.3 Protect Register 3 (PRCR3 Register)

Figure 10.3 shows the PRCR3 register. Registers protected by the bits in the PRCR3 register are listed in Table 10.2.

Table 10.2 Registers Protected by the PRCR3 Register

Bit	Registers to be protected
PRC31	VRCR, LVDC, and DVCR

Figure 10.3 PRCR3 Register

10.4 Protect Release Register (PRR Register)

Figure 10.4 shows the PRR register. Registers protected by the PRR register are as follows: CCR, FMCR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12, and CB23.
To write to the registers above, the PRR register should be set to AAh (write enabled). Otherwise, the PRR register should be set to any value other than AAh to protect the above registers from unexpected write accesses.

Protect Release Register

Figure 10.4 PRR Register

11. Interrupts

11.1 Interrupt Types

Figure 11.1 shows types of interrupts.

Notes:
1.The peripheral functions in the MCU are used to generate the peripheral interrupt.
2.These interrupts are exclusively used for development support tool. Users are not allowed to use them.

Figure 11.1 Interrupts

The interrupts are also classified into maskable/non-maskable.

(1) Maskable Interrupt

Maskable interrupts can be disabled by the interrupt enable flag (I flag). The priority is configurable by assigning an interrupt request level.

(2) Non-maskable Interrupt

Maskable interrupts cannot be disabled by the interrupt enable flag (I flag).
The interrupt priority is not configurable.

11.2 Software Interrupt

Software interrupts are non-maskable. A software interrupt is generated by executing an instruction.
There are five types of software interrupts as follows:

(1) Undefined Instruction Interrupt

This interrupt occurs when the UND instruction is executed.

(2) Overflow Interrupt

This interrupt occurs when the INTO instruction is executed while the O flag is 1. The following instructions may change the O flag to 1, depending on the operation result:
ABS, ADC, ADCF, ADD, ADDF, ADSF, CMP, CMPF, CNVIF, DIV, DIVF, DIVU, DIVX, EDIV, EDIVU, EDIVX, MUL, MULF, MULU, MULX, NEG, RMPA, ROUND, SBB, SCMPU, SHA, SUB, SUBF, SUNTIL, and SWHILE

(3) BRK Instruction Interrupt

This interrupt occurs when the BRK instruction is executed.

(4) BRK2 Instruction Interrupt

This interrupt occurs when the BRK2 instruction is executed.
This interrupt is only meant for use with the development support tool, and users are not allowed to use it.

(5) INT Instruction Interrupt

This interrupt occurs when the INT instruction is executed with a selected software interrupt number from 0 to 255 . Numbers 0 to 127 are designated for peripheral interrupts. That is, the INT instruction with a number from 0 to 127 has the same interrupt handler as that for the peripheral interrupt.
The stack pointer (SP), which contains two types, is specified by the stack pointer select flag (U flag). For numbers 0 to 127, when an interrupt request is accepted, the U flag is saved to select the interrupt stack pointer (ISP) before the interrupt sequence is executed. The saved data of the U flag is restored upon returning from the interrupt handler. For numbers 128 to 255 , the stack pointer used before the interrupt request acceptance remains unchanged for the interrupt sequence.

11.3 Hardware Interrupt

There are two kinds of hardware interrupts: special interrupt and peripheral interrupt.
In peripheral interrupts, only one interrupt with the highest priority can be specified as a fast interrupt.

11.3.1 Special Interrupt

Special interrupts are non-maskable. There are five interrupts as follows:
(1) NMI (Non Maskable Interrupt)

This interrupt occurs if an input signal at the $\overline{\mathrm{NMI}}$ pin switches from high to low. Refer to 11.11 "NMI" for details.
(2) Watchdog Timer Interrupt

The watchdog timer generates this interrupt. Refer to 12. "Watchdog Timer" for details.

(3) Oscillator Stop Detection Interrupt

This interrupt occurs if the MCU detects a main clock oscillator stop. Refer to 8.2 "Oscillator Stop Detection" for details.

(4) Low Voltage Detection Interrupt

This interrupt occurs if the lowered voltage input to VCC is detected by the voltage detector. Refer to 6.2 "Low Voltage Detector" for details.
(5) Single-step Interrupt

This interrupt is only meant for use with the development support tool, and users are not allowed to use it.

11.3.2 Peripheral Interrupt

Peripheral interrupt is maskable, and is generated when an interrupt request from the peripheral functions in the MCU is accepted. It shares the interrupt vector table with software interrupt numbers 0 to 127 for the INT instruction.
Refer to Table 11.2 to Table 11.5 for details on the interrupt sources. Refer to the relevant description for details on each function.

11.4 Fast Interrupt

Fast interrupt enables the CPU to minimize the overhead of interrupt sequence. In peripheral interrupts, only one interrupt with the highest priority can be specified as the fast interrupt.
Steps to set up a fast interrupt are as follows:
(1) Set both FSIT bits in registers RIPL1 and RIPL2 to 1 (interrupt request level 7 available for fast interrupt).
(2) Set both DMAII bits in registers RIPL1 and RIPL2 to 0 (interrupt request level 7 available for interrupts).
(3) Set the start address of the fast interrupt handler to the VCT register.

Under the conditions above, bits ILVL2 to ILVLO in the interrupt control register should be set to 111b (level 7) to enable the fast interrupt. No other interrupts should be set to interrupt request level 7.
When the fast interrupt is accepted, the flag register (FLG) and the program counter (PC) are saved to the save flag register (SVF) and the save PC register (SVP), respectively. The program is executed from the address indicated by the VCT register.
To return from the fast interrupt handler, the FREIT instruction should be executed. The values saved into the save flag register (SVF) and the save PC register (SVP) are respectively restored to the flag register (FLG) and the program counter (PC).

11.5 Interrupt Vectors

Each interrupt vector has a 4-byte memory space, in which the start address of the associated interrupt handler is stored. When an interrupt request is accepted, the instruction jumps to the address set in the interrupt vector. Figure 11.2 shows an interrupt vector.

Figure 11.2 Interrupt Vector

11.5.1 Fixed Vector Table

The fixed vector table is allocated in addresses FFFFFFFDCh to FFFFFFFFFh. Table 11.1 lists the fixed vector table.

Table 11.1 Fixed Vector Table

Interrupt Source	Vector Table Addresses (Address (L) to Address (H))	Remarks	Reference
Undefined instruction	FFFFFFDCh to FFFFFFDFh	Interrupt by the UND instruction	R32C/100 Series Software Manual
Overflow	FFFFFFFE0h to FFFFFFE3h	Interrupt by the INTO instruction	
BRK instruction	FFFFFFFE4h to FFFFFFE7h	If address FFFFFFE7h is FFh, the instruction jumps to the address stored into software interrupt 0 in the relocatable vector table	
-	FFFFFFEE8 to FFFFFFEBh	Reserved	
-	FFFFFFECh to FFFFFFEFh	Reserved	
Watchdog timer Oscillator stop detection Low voltage detection	FFFFFFFOh to FFFFFFFF3	These addresses are shared by the watchdog timer interrupt, oscillator stop detection interrupt, and low voltage detection interrupt	12. "Watchdog Timer" 8. "Clock Generator" 6.2 "Low Voltage Detector"
-	FFFFFFF4h to FFFFFFFF7h	Reserved	
NMI	FFFFFFFF8h to FFFFFFFBh	External interrupt by the $\overline{\mathrm{NMI}}$ pin	
Reset	FFFFFFFFCh to FFFFFFFFFh		5. "Resets"

11.5.2 Relocatable Vector Table

The relocatable vector table occupies a 1024-byte memory space from the start address set in the INTB register. Table 11.2 to Table 11.5. list the relocatable vector table entries.
An address in multiples of 4 should be set in the INTB register for faster interrupt sequence.

Table 11.2 Relocatable Vector Table (1/4)

Interrupt Source	Vector Table Relative Addresses (Address (L) to Address (H)) ${ }^{(1)}$	Software Interrupt Number	Reference
BRK instruction (2)	+0 to +3 (0000h to 0003h)	0	R32C/100 Series Software Manual
Reserved	+4 to +7 (0004h to 0007h)	1	
UART5 transmission, NACK (3)	+8 to +11 (0008h to 000Bh)	2	18. "Serial Interface"
UART5 reception, ACK (3)	+12 to +15 (000Ch to 000Fh)	3	
UART6 transmission, NACK (3)	+16 to +19 (0010h to 0013h)	4	
UART6 reception, ACK (3)	+20 to +23 (0014h to 0017h)	5	
Bus collision detection, start condition detection, or stop condition detection (UART5 or UART6) ${ }^{(3,4)}$	+24 to +27 (0018h to 001Bh)	6	
Reserved	+28 to +31 (001Ch to 001Fh)	7	
DMA0 transfer complete	+32 to +35 (0020h to 0023h)	8	13. "DMAC"
DMA1 transfer complete	+36 to +39 (0024h to 0027h)	9	
DMA2 transfer complete	+40 to +43 (0028h to 002Bh)	10	
DMA3 transfer complete	+44 to +47 (002Ch to 002Fh)	11	
Timer A0	+48 to +51 (0030h to 0033h)	12	16.1 "Timer A"
Timer A1	+52 to +55 (0034h to 0037h)	13	
Timer A2	+56 to +59 (0038h to 003Bh)	14	
Timer A3	+60 to +63 (003Ch to 003Fh)	15	
Timer A4	+64 to +67 (0040h to 0043h)	16	
UART0 transmission, NACK (3)	+68 to +71 (0044h to 0047h)	17	18. "Serial Interface"
UART0 reception, ACK (3)	+72 to +75 (0048h to 004Bh)	18	
UART1 transmission, NACK (3)	+76 to +79 (004Ch to 004Fh)	19	
UART1 reception, ACK (3)	+80 to +83 (0050h to 0053h)	20	
Timer B0	+84 to +87 (0054h to 0057h)	21	16.2 "Timer B"
Timer B1	+88 to +91 (0058h to 005Bh)	22	
Timer B2	+92 to +95 (005Ch to 005Fh)	23	
Timer B3	+96 to +99 (0060h to 0063h)	24	
Timer B4	+100 to +103 (0064h to 0067h)	25	
INT5	+104 to +107 (0068h to 006Bh)	26	11.10 "External Interrupt"
INT4	+108 to +111 (006Ch to 006Fh)	27	
INT3	+112 to +115 (0070h to 0073h)	28	
INT2	+116 to +119 (0074h to 0077h)	29	
INT1	+120 to +123 (0078h to 007Bh)	30	
INT0	+124 to +127 (007Ch to 007Fh)	31	
Timer B5	+128 to +131 (0080h to 0083h)	32	16.2 "Timer B"

Notes:

1. Each entry is relative to the base address in the INTB register.
2. Interrupts from this source cannot be disabled by the I flag.
3. In $I^{2} \mathrm{C}$ mode, interrupts are generated by NACK, ACK, or detection of start condition/stop condition.
4. The IFSR16 bit in the IFSR1 register selects either the interrupt source in UART5 or that in UART6.

Table 11.3 Relocatable Vector Table (2/4)

Interrupt Source	Vector Table Relative Addresses (Address (L) to Address (H)) (1)	Software Interrupt Number	Reference
UART2 transmission, NACK (2)/I²Cbus interface (3)	+132 to +135 (0084h to 0087h)	33	18. "Serial Interface"/24. "Multi-
UART2 reception, ACK (2)/I²C-bus line (3)	+136 to +139 (0088h to 008Bh)	34	master I2C-bus Interface"
UART3 transmission, NACK (2)	+140 to +143 (008Ch to 008Fh)	35	
UART3 reception, ACK (2)	+144 to +147 (0090h to 0093h)	36	
UART4 transmission, NACK (2)	+148 to +151 (0094h to 0097h)	37	
UART4 reception, ACK (2)	+152 to +155 (0098h to 009Bh)	38	
Bus collision detection, start condition detection, or stop condition detection (UART2) (2)	+156 to +159 (009Ch to 009Fh)	39	
Bus collision detection, start condition detection, or stop condition detection (UART3 or UARTO) $(2,4)$	+160 to +163 (00A0h to 00A3h)	40	
Bus collision detection, start condition detection, or stop condition detection (UART4 or UART1) $(2,4)$	+164 to +167 (00A4h to 00A7h)	41	
A/D0	+168 to +171 (00A8h to 00ABh)	42	19. "A/D Converter"
Key input	+172 to +175 (00ACh to 00AFh)	43	11.12 "Key Input Interrupt"
Intelligent I/O interrupt 0	+176 to +179 (00B0h to 00B3h)	44	11.13 "Intelligent I/O
Intelligent I/O interrupt 1	+180 to +183 (00B4h to 00B7h)	45	Interrupt",
Intelligent I/O interrupt 2	+184 to +187 (00B8h to 00BBh)	46	23. "Intelligent I/O"
Intelligent I/O interrupt 3	+188 to +191 (00BCh to 00BFh)	47	
Intelligent I/O interrupt 4	+192 to +195 (00C0h to 00C3h)	48	
Intelligent I/O interrupt 5	+196 to +199 (00C4h to 00C7h)	49	
Intelligent I/O interrupt 6	+200 to +203 (00C8h to 00CBh)	50	
Intelligent I/O interrupt 7	+204 to +207 (00CCh to 00CFh)	51	
Intelligent I/O interrupt 8	+208 to +211 (00D0h to 00D3h)	52	
Intelligent I/O interrupt 9	+212 to +215 (00D4h to 00D7h)	53	
Intelligent I/O interrupt 10	+216 to +219 (00D8h to 00DBh)	54	
Intelligent I/O interrupt 11	+220 to +223 (00DCh to 00DFh)	55	
Reserved	+224 to +227 (00E0h to 00E3h)	56	
Reserved	+228 to +231 (00E4h to 00E7h)	57	
CANO wakeup	+232 to +235 (00E8h to 00EBh)	58	25. "CAN Module"
Reserved	+236 to +239 (00ECh to 00EFh)	59	
Reserved	+240 to +243 (00FOh to 00F3h)	60	
Reserved	+244 to +247 (00F4h to 00F7h)	61	
Reserved	+248 to +251 (00F8h to 00FBh)	62	
Reserved	+252 to +255 (00FCh to 00FFh)	63	

Notes:

1. Each entry is relative to the base address in the INTB register.
2. In $I^{2} C$ mode, interrupts are generated by NACK, $A C K$, or detection of start condition/stop condition.
3. Select an interrupt source either of UART2 or I ${ }^{2}$ C-bus interface by using the I2CEN bit in the I2CMR register.
4. The IFSR06 bit in the IFSR0 register selects either the interrupt source in UART0 or that in UART3. The IFSR07 bit selects either the interrupt source in UART1 or that in UART4.

Table 11.4 Relocatable Vector Table (3/4) (1)

Interrupt Source	Vector Table Relative Addresses (Address (L) to Address (H)) ${ }^{(2)}$	Software Interrupt Number	Reference
Reserved	+256 to +259 (0100h to 0103h)	64	
Reserved	+260 to +263 (0104h to 0107h)	65	
Reserved	+264 to +267 (0108h to 010Bh)	66	
Reserved	+268 to +271 (010Ch to 010Fh)	67	
Reserved	+272 to +275 (0110h to 0113h)	68	
Reserved	+276 to +279 (0114h to 0117h)	69	
Reserved	+280 to +283 (0118h to 011Bh)	70	
Reserved	+284 to +287 (011Ch to 011Fh)	71	
Reserved	+288 to +291 (0120h to 0123h)	72	
Reserved	+292 to +295 (0124h to 0127h)	73	
Reserved	+296 to +299 (0128h to 012Bh)	74	
Reserved	+300 to +303 (012Ch to 012Fh)	75	
Reserved	+304 to +307 (0130h to 0133h)	76	
Reserved	+308 to +311 (0134h to 0137h)	77	
Reserved	+312 to +315 (0138h to 013Bh)	78	
Reserved	+316 to +319 (013Ch to 013Fh)	79	
CANO transmit FIFO	+320 to +323 (0140h to 0143h)	80	25. "CAN Module"
CAN0 receive FIFO	+324 to +327 (0144h to 0147h)	81	
Reserved	+328 to +331 (0148 to 014Bh)	82	
Reserved	+332 to +335 (014Ch to 014Fh)	83	
Reserved	+336 to +339 (0150h to 0153h)	84	
Reserved	+340 to +343 (0154h to 0157h)	85	
Reserved	+344 to +347 (0158h to 015Bh)	86	
Reserved	+348 to +351 (015Ch to 015Fh)	87	
Reserved	+352 to +355 (0160h to 0163h)	88	
Reserved	+356 to +359 (0164h to 0167h)	89	
Reserved	+360 to +363 (0168 to 016Bh)	90	
Reserved	+364 to +367 (016Ch to 016Fh)	91	
Reserved	+368 to +371 (0170h to 0173h)	92	
INT8	+372 to +375 (0174h to 0177h)	93	11.10 "External
INT7	+376 to +379 (0178 to 017Bh)	94	Interrupt"
INT6	+380 to +383 (017Ch to 017Fh)	95	

Notes:

1. Entries in this table cannot be used to exit wait mode or stop mode.
2. Each entry is relative to the base address in the INTB register.

Table 11.5 Relocatable Vector Table (4/4) (1)

Interrupt Source	Vector Table Relative Addresses (Address (L) to Address (H)) (2)	Software Interrupt Number	Reference
CANO transmission	+384 to +387 (0180h to 0183h)	96	25. "CAN Module"
CAN0 reception	+388 to +391 (0184h to 0187h)	97	
CANO error	+392 to +395 (0188h to 018Bh)	98	
Reserved	+396 to +399 (018Ch to 018Fh)	99	
Reserved	+400 to +403 (0190h to 0193h)	100	
Reserved	+404 to +407 (0194h to 0197h)	101	
Reserved	+408 to +411 (0198h to 019Bh)	102	
Reserved	+412 to +415 (019Ch to 019Fh)	103	
Reserved	+416 to +419 (01A0h to 01A3h)	104	
Reserved	+420 to +423 (01A4h to 01A7h)	105	
Reserved	+424 to +427 (01A8h to 01ABh)	106	
Reserved	+428 to +431 (01ACh to 01AFh)	107	
Reserved	+432 to +435 (01B0h to 01B3h)	108	
Reserved	+436 to +439 (01B4h to 01B7h)	109	
Reserved	+440 to +443 (01B8h to 01BBh)	110	
Reserved	+444 to +447 (01BCh to 01BFh)	111	
Reserved	+448 to +451 (01C0h to 01C3h)	112	
Reserved	+452 to +455 (01C4h to 01C7h)	113	
Reserved	+456 to +459 (01C8h to 01CBh)	114	
Reserved	+460 to +463 (01CCh to 01CFh)	115	
Reserved	+464 to +467 (01D0h to 01D3h)	116	
Reserved	+468 to +471 (01D4h to 01D7h)	117	
Reserved	+472 to +475 (01D8h to 01DBh)	118	
Reserved	+476 to +479 (01DCh to 01DFh)	119	
Reserved	+480 to +483 (01E0h to 01E3h)	120	18. "Serial Interface"
Reserved	+484 to +487 (01E4h to 01E7h)	121	
Reserved	+488 to +491 (01E8h to 01EBh)	122	
Reserved	+492 to +495 (01ECh to 01EFh)	123	
UART7 transmission	+496 to +499 (01F0h to 01F3h)	124	
UART7 reception	+500 to +503 (01F4h to 01F7h)	125	
UART8 transmission	+504 to +507 (01F8h to 01FBh)	126	
UART8 reception	+508 to +511 (01FCh to 01FFh)	127	
INT instruction (3)	+0 to $+3(0000 \mathrm{~h}$ to 0003 h$)$ to +1020 to $+1023(03 F C h$ to $03 F F h)$	$\begin{aligned} & 0 \\ & \text { to } \\ & 255 \end{aligned}$	11.2 "Software Interrupt"

Notes:

1. Entries in this table cannot be used to exit wait mode or stop mode.
2. Each entry is relative to the base address in the INTB register.
3. Interrupts from this source cannot be disabled by the I flag.

11.6 Interrupt Request Acceptance

Software interrupts and special interrupts are accepted whenever their interrupt request is generated.
Peripheral interrupts, however, are only accepted if the conditions below are met:

- I flag = 1
- IR bit = 1
- Bits ILVL2 to ILVLO > IPL

The I flag, IPL, IR bit, and bits ILVL2 to ILVLO do not affect each other. The I flag and IPL are in the flag register (FLG). The IR bit and bits ILVL2 to ILVL0 are in the interrupt control register.
The following section describes these flag and bits.

11.6.1 I Flag and IPL

The I flag (interrupt enable flag) enables or disables maskable interrupts. When the I flag is set to 1 (enabled), all maskable interrupts are enabled; when it is set to 0 (disabled), they are disabled. The I flag is automatically set to 0 after a reset.
The IPL (processor interrupt priority level), consisting of three bits, indicates eight interrupt priority levels from 0 to 7 . An interrupt becomes acceptable when its interrupt request level is higher than the specified IPL (bits ILVL2 to ILVLO > IPL).
Table 11.6 lists interrupt request levels classified by the IPL.
Table 11.6 Acceptable Interrupt Request Levels and IPL

Processor Interrupt Priority Level (IPL)			Acceptable Interrupt Request Levels
IPL2	IPL1	IPL0	
1	1	1	All maskable interrupts are disabled
1	1	0	Level 7 only
1	0	1	Level 6 and above
1	0	0	Level 5 and above
0	1	1	Level 4 and above
0	1	0	Level 3 and above
0	0	1	Level 2 and above
0	0	0	Level 1 and above

11.6.2 Interrupt Control Register

The interrupt control registers control each peripheral interrupt.
Figure 11.3 and Figure 11.4 show the interrupt control registers.

Interrupt Control Register

Bit Symbol	Bit Name	Function	RW
ILVLO	Interrupt Request Level Select Bit	b2 b1 b0 000 : Level 0 (interrupt disabled) 0 0 1: Level 1 01 0: Level 2 0 1 1: Level 3 10 0: Level 4 10 1: Level 5 1 1 0: Level 6 1 1 1: Level 7	RW
ILVL1			RW
ILVL2			RW
IR	Interrupt Request Flag	0: No interrupt requested 1: Interrupt requested ${ }^{(6)}$	RW
$\overline{(b 7-b 4)}$	No register bits; should be written with 0 and read as undefined value		-

Notes:

1. The S2TIC register shares an address with the I2CIC register.
2.The S2RIC register shares an address with the I2CLIC register.
3.The BCNOIC register shares an address with the BCN3IC register.
4.The BCN1IC register shares an address with the BCN4IC register
5.The BCN5IC register shares an address with the BCN6IC register.

6 . This bit can be set to 0 only (It should not be set to 1).

Figure 11.3 Interrupt Control Register (1)

Interrupt Control Register

Notes:

1. When the 16 - or 32-bit data bus is used in microprocessor mode or memory expansion mode, pins $\overline{\text { INT3 }}$ to $\overline{\text { INT5 }}$ function as data bus. Bits ILVL2 to ILVL0 in registers INT3IC to INT5IC should be set to 000b.
2. This bit can be set to 0 only (it should not be set to 1).
3. This bit should be set to 0 (the falling edge or low level) to set the corresponding bit in registers IFSR0 and IFSR1 to 1 (both edges).
4. To select the level sensitive, the corresponding bit in registers IFSR0 and IFSR1 should be set to 0 (one edge).

Figure 11.4 Interrupt Control Register (2)

Bits ILVL2 to ILVLO

Bits ILVL2 to ILVL0 select the interrupt request level. The higher the level is, the higher interrupt priority is.
When an interrupt request is generated, its request level is compared to the IPL. This interrupt is accepted only when the interrupt request level is higher than the IPL. When bits ILVL2 to ILVLO are set to 000 b , the interrupt is disabled.

IR bit
The IR bit becomes 1 (interrupt requested) when an interrupt request is generated; this bit setting is retained until the interrupt request is accepted. When the request is accepted and the instruction jumps to the corresponding interrupt vector, the IR bit becomes 0 (no interrupt requested). The IR bit can be set to 0 by a program. This bit should not be set to 1 .

When rewriting the interrupt control register, no corresponding interrupt request should be generated. If it may be generated, disable all the maskable interrupts before the rewrite.
When enabling the maskable interrupts immediately after the rewrite, there should be sufficient time for the rewrite to complete before the interrupt enable flag (I flag) becomes 1. To delay the execution of the second instruction, insert NOPs or perform a dummy read of the interrupt control register after the first instruction.
If an interrupt request is generated for a register being rewritten, the IR bit may not become 1 depending on the instruction being used. If this is not desired, use one of the following instructions to rewrite the register:

- AND
- OR
- BCLR
- BSET

When setting the IR bit to 0 by the AND or BCLR instruction, the IR bit may not become 0 . This is because an interrupt request generated while the instruction above is being executed is kept pending. If this is not desired, the register should be reconfigured by the MOV instruction. To set just the IR bit to 0 , first temporarily store the read value to memory or CPU-internal registers, then execute either the AND or BCLR instruction in the stored area. After that, write the value back to the register by the MOV instruction.

11.6.3 Wake-up IPL Setting Register

The wake-up IPL setting register (registers RIPL1 and RIPL2) is used for an interrupt to exit wait or stop mode, or for the fast interrupt.
Refer to 8.7.2 "Wait Mode", 8.7.3 "Stop Mode", or 11.4 "Fast Interrupt" for details.
Figure 11.5 shows registers RIPL1 and RIPL2.

Notes:

1. Registers RIPL1 and RIPL2 should be identically set.
2. The MCU exits wait mode or stop mode if the request level of requested interrupt is higher than the level selected using bits RLVL2 to RLVLO. These bits should be set to the same value as the IPL in the flag register (FLG).
3. When the FSIT bit is set to 1 , an interrupt with interrupt request level 7 becomes the fast interrupt. In this case only one interrupt should be set to the interrupt request level 7 .
4. Either the FSIT or DMAII bit should be set to 1 . Simultaneous use of the fast interrupt and the DMAC II is not available.
5. Bits ILVL2 to ILVLO in the interrupt control register should be set after the DMAll bit is set. The DMA II transfer is not affected by the I flag or the IPL.

Figure 11.5 Registers RIPL1 and RIPL2

11.6.4 Interrupt Sequence

The interrupt sequence is performed from when an interrupt request has been accepted until the interrupt handler starts.
For most instructions, when an interrupt request is generated while an instruction is being executed, the requested interrupt is evaluated in the priority resolver after the current instruction is completed. If appropriate, the interrupt sequence starts from the next cycle.
For instructions RMPA, SCMPU, SIN, SMOVB, SMOVF, SMOVU, SOUT, SSTR, SUNTIL, and SWHILE, as soon as an interrupt request is generated, the requested interrupt is evaluated suspending the current instruction being executed. If appropriate, the interrupt sequence starts immediately.
The interrupt sequence is as follows:
(1) The CPU acknowledges the interrupt request to obtain the interrupt information (the interrupt number, and the interrupt request level) from the interrupt controller. Then the corresponding IR bit becomes 0 (no interrupt requested).
(2) The state of the flag register (FLG) before the interrupt sequence is stored to a temporary register (1) in the CPU.
(3) The following bits in the flag register (FLG) become 0 :

- The I flag (interrupt enable flag): interrupt disabled
- The D flag (debug flag): single-step interrupt disabled
- The U flag (stack pointer select flag): ISP selected
(4) The contents of the temporary register (1) in the CPU is saved to the stack; or to the save flag register (SVF) in case of the fast interrupt.
(5) The contents of the program counter (PC) is saved to the stack; or to the save PC register (SVP) in case of the fast interrupt.
(6) The interrupt request level for the accepted interrupt is set in the IPL (processor interrupt priority level).
(7) The corresponding interrupt vector is read from the interrupt vector table.
(8) This interrupt vector is stored into the program counter (PC).

When the interrupt sequence completes, the interrupt handler is initiated.

Note:

1. This register is inaccessible to users.

11.6.5 Interrupt Response Time

The interrupt response time, as shown in Figure 11.6, consists of two non-overlapping time segments: (a) the period from when an interrupt request is generated until the instruction being executed is completed; and (b) the period required for the interrupt sequence.

Figure 11.6 Interrupt Response Time
Period (a) varies depending on the instruction being executed. Instructions, such as LDCTX and STCTX in which registers are sequentially saved/restored into/from the stack, require the longest time. For example, the STCTX instruction requires at least 30 cycles for ten registers to be saved. It requires more time if the WAIT instruction is in the stack.
Period (b) is listed in Table 11.7.

Table 11.7 Interrupt Sequence Execution Time (1)

Interrupt	Execution Time in Terms of CPU Clock
Peripheral	$13+\alpha$ cycles (2)
INT instruction	11 cycles
NMI	10 cycles
Watchdog timer Oscillator stop detection Low voltage detection	11 cycles
Undefined instruction	12 cycles
Overflow	12 cycles
BRK instruction (relocatable vector table)	16 cycles
BRK instruction (fixed vector table)	19 cycles
BRK2 instruction	19 cycles
Fast interrupt	11 cycles

Notes:

1. The interrupt vectors should be aligned in addresses in multiples of 4 of internal ROM. The fast interrupt is independent of this condition.
2. α is the number of waits to access SFR minus 2 .

11.6.6 IPL After Interrupt Request Acceptance

When a peripheral interrupt request is accepted, the interrupt request level is set in the IPL (processor interrupt priority level).
Software interrupts and special interrupts have no interrupt request level. For these interrupt requests, if accepted, the value shown in Table 11.8 is set in the IPL as interrupt request level.

Table 11.8 Interrupts without Interrupt Request Level and IPL

Interrupt Sources without Interrupt Request Level	IPL Value to be Set
NMI, watchdog timer, oscillator stop detection, low voltage detection	7
Reset	0
Software	Unchanged

11.6.7 Register Saving

In the interrupt sequence, the flag register (FLG) and program counter (PC) values are saved to the stack, in that order. Figure 11.7 shows the stack status before and after an interrupt request is accepted.
In the fast interrupt sequence, the flag register (FLG) and program counter (PC) values are saved to the save flag register (SVF) and save PC register (SVP), respectively.
If there are any other registers to be saved to the stack, save them at the beginning of the interrupt handler. A single PUSHM instruction saves all registers except the frame base register (FB) and stack pointer (SP).

Figure 11.7 Stack Status Before and After an interrupt Request is Accepted

11.7 Register Restoring from Interrupt Handler

When the REIT instruction is executed at the end of the interrupt handler, the saved values of the flag register (FLG) and the program counter (PC) are restored from the stack, and the program resumes the operation that has been interrupted. In the fast interrupt, execute the FREIT instruction to restore them from the save registers, instead.
To restore the values of registers, which are saved by software in the interrupt handler, use an instruction such as POPM before the REIT or FREIT instruction.
If the register bank is switched in the interrupt handler, the bank is automatically switched back to the original register bank by the REIT or FREIT instruction.

11.8 Interrupt Priority

If two or more interrupt requests are detected at an interrupt request sampling point, the interrupt request with higher priority is accepted.
For maskable interrupts (peripheral interrupts), the interrupt request level select bits (bits ILVL2 to ILVL0) select a request level. If there are more than two interrupts with the same level, they are accepted according to their relative priority predetermined by the hardware.
The priorities of the reset and special interrupts, such as the watchdog timer interrupt, are determined by the hardware. Note that the reset has the highest priority. The following is the priority order of hardware interrupts:

> Watchdog timer
> Reset $>$ Oscillator stop detection $>$ NMI $>$ Peripherals
> Low voltage detection

Software interrupts are not governed by priority. They always cause execution to jump to the interrupt handler whenever the relevant instruction is executed.

11.9 Priority Resolver

The priority resolver determines which interrupt request has a higher priority if two or more interrupt requests are detected at a sampling point.
Figure 11.8 shows the priority resolver.

Figure 11.8 Priority Resolver

11.10 External Interrupt

An external interrupt is generated by an external input applied to the INTi pin ($\mathrm{i}=0$ to 8). The LVS bit in the INTilC register selects whether an interrupt is triggered by the effective edge(s) (edge sensitive), or by the effective level (level sensitive) of the input signal. The polarity of the input signal is selected by the POL bit in the same register.
When using edge-triggered interrupts, setting the IFSR0j bit in the IFSR0 register to 1 (both edges) causes interrupt requests to be generated on both rising and falling edges of the external input applied to the INTj pin $(j=0$ to 5$)$. This also applies to setting the IFSR1n bit $(n=m-6)$ in the IFSR1 register to 1 (both edges) for the $\overline{\text { INTm }}$ pin ($m=6$ to 8). When the IFSR0j bit or the IFSR1n bit is set to 1 , the POL bit in the corresponding register should be set to 0 (falling edge).
When using level-triggered interrupts, set the IFSR0j or IFSR1n to 0 (one edge). When an effective level, which is selected by the POL bit, is detected on the INTi pin, the IR bit in the INTiIC register becomes 1. The IR bit remains unchanged until the INTi interrupt is accepted, or it is set to 0 by a program, even if the signal level at the INTi pin changes.
Figure 11.9 and Figure 11.10 show registers IFSR0 and IFSR1, respectively.

External Interrupt Request Source Select Register 0

Note:

1. This bit should be set to 0 to select the level sensitive input as trigger. To set this bit to 1 , the POL bit in the corresponding INTiIC register ($\mathrm{i}=0$ to 5) should be set to 0 (falling edge).

Figure 11.9 IFSR0 Register

External Interrupt Request Source Select Register 1

Note:

1. This bit should be set to 0 to select the level sensitive input as trigger. To set this bit to 1 , the POL bit in the corresponding INTiIC register ($\mathrm{i}=6$ to 8) should be set to 0 (falling edge).

Figure 11.10 IFSR1 Register

11.11 NMI

The NMI (Non Maskable Interrupt) occurs when an input signal at the $\overline{\mathrm{NMI}}$ pin switches from high to low. This non maskable interrupt is disabled after a reset. To enable this interrupt, the PM24 bit in the PM2 register should be set to 1 after setting the interrupt stack pointer (ISP) at the beginning of the program. The $\overline{\text { NMI }}$ pin shares a pin with the port P8_5, which enables the P8_5 bit in the P8 register to indicate the input level at the $\overline{\mathrm{NMI}}$ pin.

Note:

1. When not using the NMI, hold 0 as reset value of the $P M 24$ bit in the $P M 2$ register.

11.12 Key Input Interrupt

The key input interrupt is enabled by setting ports P10_4 to P10_7 as input ports.
The interrupt request is generated if any of the signals applied to ports P10_4 to P10_7 switches from high to low. This interrupt also functions as key wake-up to exit wait or stop mode. Figure 11.11 shows a block diagram of the key input interrupt. If any of the ports is held low, signals applied to other ports are not detected as interrupt request signals.
To use the key input interrupt, every register from P10_4S to P10_7S should be set to 00h (I/O port) and bits PD10_4 to PD10_7 should be set to 0 (input). This is the only setting available for the key input interrupt.

Figure 11.11 Key Input Interrupt

11.13 Intelligent I/O Interrupt

The intelligent I/O interrupt is assigned to software interrupt numbers from 44 to 55 .
Figure 11.12 shows a block diagram of the intelligent I/O interrupt. Figure 11.13 and Figure 11.14 show registers IIOiIR and IIOiIE ($\mathrm{i}=0$ to 11), respectively.
To use the intelligent I/O interrupt, the IRLT bit in the IIOiIE register should be set to 1 (interrupt requests used for interrupt).
The intelligent I/O interrupt contains various request sources. When an interrupt request is generated with an intelligent I/O function, the corresponding bit in the IIOiIR register becomes 1 (interrupts requested). If the corresponding bit in the IIOiIE register is set to 1 (interrupt enabled), the IR bit in the corresponding IIOilC register changes to 1 (interrupts requested).
After the IR bit setting changes from 0 to 1 , this bit remains unchanged if a bit in the IIOilR register is set to 1 by another interrupt request source and the corresponding bit in the IIOiIE register is set to 1 .
Bits in the IIOiIR register are not set to 0 automatically even if an interrupt is accepted. They should be set to 0 by either the AND or BCLR instruction. Note that every generated interrupt request is ignored until these bit are set to 0 .
To use the intelligent I/O interrupt to activate DMAC II, the IRLT bit in the IIOiIE register should be set to 0 (interrupt requests used for DMA or DMA II) and the bit for interrupt source to be used in the IIOiE register should be set to 1 (interrupt enabled).

Figure 11.12 Intelligent I/O Interrupt Block Diagram (i=0 to 11)

Intelligent I/O Interrupt Request Register i (i = 0 to 11)

Notes:

1. When the register has any function-assigned bit, the reset value is X (undefined); otherwise, the reset value is 0 .
2. Refer to the table below for bit symbols.
3. When this bit is function-assigned, it can be set to 0 only. It should not be set to 1 . To set to 0 , either the AND or BCLR instruction should be used; when the bit is not function-assigned, that is, reserved, it should be set to 0 .

Bit Symbols for the Intelligent I/O Interrupt Request Register

Symbol	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IIO0IR	00A0h	-	-	-	-	-	TM13R/PO13R	TM02R/PO02R	-
IIO1IR	00A1h	-	-	-	-	-	TM14R/PO14R	TM00R/PO00R	-
IIO2IR	00A2h	-	-	-	-	-	TM12R/PO12R	-	-
IIO3IR	00A3h	-	-	-	-	PO27R	TM10R/PO10R	TM03R/PO03R	-
IIO4IR	00A4h	-	-	-	BT1R	-	TM17R/PO17R	TM04R/PO04R	-
IIO5IR	00A5h	-	-	-	SIO2RR	-	PO21R	TM05R/PO05R	-
IIO6IR	00A6h	-	-	-	SIO2TR	-	PO20R	TM06R/PO06R	-
IIO7IR	00A7h	IE0R	-	-	BT0R	-	PO22R	TM07R/PO07R	-
IIO8IR	00A8h	IE1R	IE2R	-	BT2R	-	PO23R	TM11R/PO11R	-
IIO9IR	00A9h	-	INT6R	-	-	-	PO24R	TM15R/PO15R	-
IIO10IR	00AAh	-	INT7R	-	-	-	PO25R	TM16R/PO16R	-
IIO11IR	00ABh	-	INT8R	-	-	-	PO26R	TM01R/PO01R	-

BTxR	$:$ Intelligent I / O group x base timer interrupt request $(x=0$ to 2$)$
TMxyR	: Intelligent I / O group x time measurement channel y interrupt request $(x=0,1 ; y=0$ to 7$)$
POxyR	: Intelligent I / O group x waveform generation channel y interrupt request $(x=0$ to $2 ; y=0$ to 7$)$
IEzR	: Intelligent I / O group 2 IEBus interrupt request $(z=0$ to 2$)$
SIO2RR	: Intelligent I / O group 2 receive interrupt request
SIO2TR	$:$ Intelligent I / O group 2 transmit interrupt request
INTmR	$:$ INTm interrupt request $(m=6$ to 8$)$

Figure 11.13 Registers IIOOIR to IIO11IR

Intelligent I/O Interrupt Enable Register i ($\mathrm{i}=0$ to 11)

		Symbol IIOOIE to IIO11IE	Address Refer to the table below.		Reset Value 0000 0000b
		Bit Symbol	Bit Name	Function	RW
		IRLT	Interrupt Request Select Bit (2)	0: Use interrupt requests for DMA or DMA II 1: Use interrupt requests for interrupt	RW
		(Note 1)	0: Disable the interrupt of bit 1: Enable the interrupt of bit	1 in the IIOilR register 1 in the IIOilR register	RW
		(Note 1)	0 : Disable the interrupt of bit 1: Enable the interrupt of bit 2	2 in the IIOilR register 2 in the IIOilR register	RW
		(Note 1)	0 : Disable the interrupt of bit 1: Enable the interrupt of bit	3 in the IIOilR register 3 in the IIOilR register	RW
		(Note 1)	0 : Disable the interrupt of bit 1: Enable the interrupt of bit	4 in the IIOilR register 4 in the IIOilR register	RW
		$(\bar{b} 5)$	Reserved	Should be written with 0	RW
		(Note 1)	0: Disable the interrupt of bit 1: Enable the interrupt of bit	6 in the IIOilR register 6 in the IIOilR register	RW
		(Note 1)	0: Disable the interrupt of bit 1: Enable the interrupt of bit	7 in the IIOilR register 7 in the IIOilR register	RW

Notes:

1. Refer to the table below for bit symbols.
2. To use interrupt requests for interrupt, the IRLT bit should be set to 1 , then bits 1 to 4,6 , and 7 should be set to 1 .

Bit Symbols for the Intelligent I/O Interrupt Enable Register

Symbol	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IIOOIE	00B0h	-	-	-	-	-	TM13E/PO13E	TM02E/PO02E	IRLT
IIO1IE	00B1h	-	-	-	-	-	TM14E/PO14E	TM00E/PO00E	IRLT
IIO2IE	00B2h	-	-	-	-	-	TM12E/PO12E	-	IRLT
IIO3IE	00B3h	-	-	-	-	PO27E	TM10E/PO10E	TM03E/PO03E	IRLT
IIO4IE	00B4h	-	-	-	BT1E	-	TM17E/PO17E	TM04E/PO04E	IRLT
IIO5IE	00B5h	-	-	-	SIO2RE	-	PO21E	TM05E/PO05E	IRLT
IIO6IE	00B6h	-	-	-	SIO2TE	-	PO20E	TM06E/PO06E	IRLT
IIO7IE	00B7h	IE0E	-	-	BT0E	-	PO22E	TM07E/PO07E	IRLT
IIO8IE	00B8h	IE1E	IE2E	-	BT2E	-	PO23E	TM11E/PO11E	IRLT
IIO9IE	00B9h	-	INT6E	-	-	-	PO24E	TM15E/PO15E	IRLT
IIO10IE	00BAh	-	INT7E	-	-	-	PO25E	TM16E/PO16E	IRLT
IIO11IE	00BBh	-	INT8E	-	-	-	PO26E	TM01E/PO01E	IRLT

BTxE : Intelligent I/O group x base timer interrupt enabled ($x=0$ to 2)
TMxyE : Intelligent I/O group x time measurement channel y interrupt enabled ($x=0,1 ; y=0$ to 7)
POxyE : Intelligent I/O group x waveform generation channel y interrupt enabled ($x=0$ to $2 ; y=0$ to 7)
IEzE : Intelligent I/O group 2 IEBus interrupt enabled ($z=0$ to 2)
SIO2RE : Intelligent I/O group 2 receive interrupt enabled
SIO2TE : Intelligent I/O group 2 transmit interrupt enabled
INTmE : INTm interrupt enabled ($m=6$ to 8)

Figure 11.14 Registers IIOOIE to IIO11IE

11.14 Notes on Interrupts

11.14.1 ISP Setting

The interrupt stack pointer (ISP) is initialized to 00000000 h after a reset. Set a value to the ISP before an interrupt is accepted, otherwise the program may go out of control. A multiple of 4 should be set to the ISP, which enables faster interrupt sequence due to less memory access.
For the use of NMI, in particular, since this interrupt cannot be disabled, the PM24 bit in the PM2 register should be set to 1 (NMI enabled) after the ISP is set at the beginning of program.

11.14.2 NMI

- The NMI cannot be disabled once the PM24 bit in the PM2 register is set to 1 (NMI enabled). This bit setting should be done only for the use of NMI.
- When the PM24 bit in the PM2 register is set to 1 (NMI enabled), the P8_5 bit in the P8 register is enabled just for monitoring the $\overline{\mathrm{NMI}}$ pin state. It is not enabled as a general port.

11.14.3 External Interrupt

- The input signal to the $\overline{\mathrm{INTi}}$ pin $(\mathrm{i}=0$ to 8) requires the pulse width specified by the electrical characteristics. If a pulse width is narrower than the specification, the external interrupt may not be accepted.
- When the effective level and/or edge of $\overline{\mathrm{INTi}}$ pin ($\mathrm{i}=0$ to 8) are/is changed by the following bits: bits POL and/or LVS in the INTiIC register, the IFSROi bit ($i=0$ to 5) in the IFSR0 register, and/or the IFSR1j bit ($\mathrm{j}=\mathrm{i}-6 ; \mathrm{i}=6$ to 8) in the IFSR1 register, the corresponding IR bit may become 1 (interrupt requested). When setting the above mentioned bits, preset bits ILVL2 to ILVLO in the INTiIC register to 000b (interrupt disabled). After setting the above mentioned bits, set the corresponding IR bit to 0 (no interrupt requested), then set bits ILVL2 to ILVLO.
- The interrupt input signals to pins $\overline{\mathrm{INT}}$ to $\overline{\mathrm{INT8}}$ are also connected to bits INT6R to INT8R in registers IIO9IR to IIO11IR. Therefore, these input signals, when assigned to the intelligent I/O, can be used as a source for exiting wait mode or stop mode. Note that these signals are enabled only on the falling edge and not affected by the following bit settings: bits POL and LVS in the INTiIC register ($\mathrm{i}=0$ to 8), IFSROi bit $(\mathrm{i}=0$ to 5) in the IFSR0 register, and the IFSR1j bit $(\mathrm{j}=\mathrm{i}-6 ; \mathrm{i}=6$ to 8) in the IFSR1 register.

12. Watchdog Timer

The watchdog timer monitors program executions and detects defective programs. The 15-bit watchdog counter counts downward with the cycle which is the peripheral bus clock frequency divided by the prescaler.
When the watchdog timer underflows, the CM06 bit in CM0 register selects either a watchdog timer interrupt request or a reset. Once the CM06 bit is set to 1 (reset), it cannot be changed to 0 (watchdog timer interrupt) by a program. Only after a reset, it can be set to 0 .
The watchdog timer contains a prescaler which is the peripheral bus clock divided by 16 or 128 . The divide ratio is selected by setting the WDC7 bit in the WDC register.
The watchdog timer is stopped in wait mode, stop mode, or when the $\overline{\mathrm{HOLD}}$ is driven low. It resumes counting from the value held when the mode or state is exited.

The general formula to calculate a watchdog timer period is:

$$
\text { Watchdog timer period }=\frac{\text { Prescaler divider factor }(16 \text { or } 128) \times 32768}{\text { Peripheral bus clock frequency }}
$$

For example, when the peripheral bus clock is $1 / 2$ of $50 \mathrm{MHz}-\mathrm{CPU}$ clock and the prescaler has a divide-by16 operation, the watchdog timer period is approximately 21 ms . Note that marginal errors within one prescaler output cycle may occur in the watchdog timer period.

The watchdog timer is initialized when a write to the WDTS register is performed or when a watchdog timer interrupt request is generated. The prescaler is initialized only when the MCU is reset.
After a reset, both the watchdog timer and the prescaler are stopped. They start counting when a write to the WDTS register is performed.

Figure 12.1 shows a block diagram of the watchdog timer. Figure 12.2 and Figure 12.3 show registers associated with the watchdog timer.

Figure 12.1 Watchdog Timer Block Diagram

Watchdog Timer Control Register

Note:

1. Set this bit before activating the watchdog timer.

Figure 12.2 WDC Register

Watchdog Timer Start Register

Figure 12.3 WDTS Register

13. DMAC

Direct Memory Access (DMA) is a system that can control data transfer without using the CPU.
The R32C/100 Series' four channel DMA controller (DMAC) transmits 8-bit (byte), 16-bit (word), or 32-bit (long word) data in cycle-steal mode from a source address to a destination address every time a transfer request is generated.
The DMAC, which shares a data bus with the CPU, has a higher bus access priority than the CPU. This allows the DMAC to perform fast data transfer when a transfer request is generated.
Figure 13.1 shows a map of the CPU-internal registers associated with DMAC. Table 13.1 lists DMAC specifications. Figure 13.2 to Figure 13.10 show registers associated with DMAC. Since the registers shown in Figure 13.1 are allocated in the CPU, the LDC or STC instruction should be used to write to the registers.

DMAC-associated Registers

DMD0
DMD1
DMD2
DMD3
DCT0
DCT1
DCT2
DCT3
DCR0
DCR1
DCR2
DCR3

DMA0 mode register
DMA1 mode register
DMA2 mode register
DMA3 mode register
DMA0 terminal count register
DMA1 terminal count register
DMA2 terminal count register
DMA3 terminal count register
DMA0 terminal count reload register ${ }^{(1)}$
DMA1 terminal count reload register ${ }^{(1)}$
DMA2 terminal count reload register ${ }^{(1)}$
DMA3 terminal count reload register ${ }^{(1)}$
DMA0 source address register
DMA1 source address register
DMA2 source address register
DMA3 source address register
DMA0 source address reload register ${ }^{(1)}$
DMA1 source address reload register (1)
DMA2 source address reload register ${ }^{(1)}$
DMA3 source address reload register ${ }^{(1)}$
DMA0 destination address register DMA1 destination address register DMA2 destination address register DMA3 destination address register
DMA0 destination address reload register ${ }^{(1)}$ DMA1 destination address reload register ${ }^{(1)}$ DMA2 destination address reload register ${ }^{(1)}$ DMA3 destination address reload register ${ }^{(1)}$

Note:

1. Registers are used for repeat transfer, not for single transfer.

Figure 13.1 CPU-internal Registers for DMAC

Table 13.1 DMAC Specifications

Item	Specification
Channels	4
Bus request mode	Cycle-steal mode
Transfer memory spaces	From a given address in a 64-Mbyte space (00000000h to 01FFFFFFh and FE000000h to FFFFFFFFh) to another given address in the same space
Maximum transfer bytes	64-Mbytes (when 32-bit data is transferred), 32-Mbytes (when 16-bit data is transferred), 16-Mbytes (when 8-bit data is transferred)
DMA request sources (1)	Falling edge or both edges of signals applied to pins INT0 to INT3 or pins INT6 to INT8 Timers A0 to A4 interrupt requests Timers B0 to B5 interrupt requests UART0 to UART8 transmit/receive interrupt requests A/D conversion interrupt requests Intelligent I/O interrupt requests
Multi-master I2C-bus interrupt requests	
Software trigger	

Note:

1. DMA transfer does not affect each interrupt.

Page 170 of 604

The DMA transfer request is available by two different sources: software and hardware. More concretely, they are a write access to the DSR bit in the DMiSL2 register ($\mathrm{i}=0$ to 3) and an interrupt request output from a function specified in bits DSEL4 to DSEL0 in the DMiSL register, and in bits DSEL24 to DSEL20 in the DMiSL2 register. Unlike interrupt requests, the DMA transfer request is not affected by the I flag nor the interrupt control register. Therefore this request can be accepted even when any interrupt request cannot be because of "interrupt disabled". Since the DMA transfer does not affect any interrupt, either, the IR bit in the interrupt control register is not changed by the DMA transfer.

DMAi Request Source Select Register ($\mathrm{i}=0$ to 3)

1. The bit settings of bits DSEL4 to DSELO should be changed while bits MDi1 and MDiO in the DMDi register of the corresponding channel are set to 00b (DMA transfer disabled).

Figure 13.2 Registers DMOSL to DM3SL

DMAi Request Source Select Register 2 ($\mathrm{i}=0$ to 3)

Note:

1. The bit settings of bits DSEL24 to DSEL20 should be changed while bits MDi1 and MDiO in the DMDi register of the corresponding channel are set to 00b (DMA transfer disabled).

Figure 13.3 Registers DMOSL2 to DM3SL2

Table 13.2 DMiSL Register ($\mathrm{i}=0$ to 3) Functions

Setting Value	DMA Request Source			
b4 b3 b2 b1 b0	DMA0	DMA1	DMA2	DMA3
000000	Select from DMiSL2 register			
0000001	Falling edge of $\overline{\mathrm{NTO}}$ (1)	Falling edge of $\overline{\mathrm{NT} 1}$ (1)	Falling edge of $\overline{\text { NT2 }}$ (1)	Falling edge of $\overline{\mathrm{INT3}}(1,2)$
000010	Both edges of $\overline{\text { INTO }}$ (1)	Both edges of $\overline{\mathrm{NT} 1}{ }^{(1)}$	Both edges of $\overline{\mathrm{NTT}}{ }^{(1)}$	Both edges of $\overline{\mathrm{INT3}}(1,2)$
00000111	Timer A0 interrupt request			
$00_{0}^{0} 11000$	Timer A1 interrupt request			
0001001	Timer A2 interrupt request			
$\begin{array}{lllll}0 & 0 & 1 & 1 & 0\end{array}$	Timer A3 interrupt request			
$\begin{array}{lllll}0 & 0 & 1 & 1 & 1\end{array}$	Timer A4 interrupt request			
$0 \begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}$	Timer B0 interrupt request			
$\begin{array}{lllll}0 & 1 & 0 & 0 & 1\end{array}$	Timer B1 interrupt request			
$\begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}$	Timer B2 interrupt request			
$\begin{array}{llllll}0 & 1 & 0 & 1 & 1\end{array}$	Timer B3 interrupt request			
$\begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array}$	Timer B4 interrupt request			
$\begin{array}{lllll}0 & 1 & 1 & 0 & 1\end{array}$	Timer B5 interrupt request			
$\begin{array}{llllll}0 & 1 & 1 & 1 & 0\end{array}$	UART0 transmit interrupt request			
$\begin{array}{lllll}0 & 1 & 1 & 1 & 1\end{array}$	UART0 receive interrupt request or ACK interrupt request (3)			
$\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}$	UART1 transmit interrupt request			
$1 \begin{array}{lllll}1 & 0 & 0 & 0 & 1\end{array}$	UART1 receive interrupt request or ACK interrupt request (3)			
100010	UART2 transmit interrupt request or I2C-bus interface interrupt request (4)			
$\begin{array}{lllll}1 & 0 & 0 & 1 & 1\end{array}$	UART2 receive interrupt request, ACK interrupt request (3), or ${ }^{2} \mathrm{C}$-bus line interrupt request (4)			
$\begin{array}{lllll}1 & 0 & 1 & 0 & 0\end{array}$	UART3 transmit interrupt request		UART5 transmit interrupt request	
$1 \begin{array}{lllll}1 & 0 & 1 & 1\end{array}$	UART3 receive interrupt request or ACK interrupt request (3)		UART5 receive interrupt request or ACK interrupt request (3)	
$\begin{array}{lllll}1 & 0 & 1 & 1 & 0\end{array}$	UART4 transmit interrupt request		UART6 transmit interrupt request	
$1 \begin{array}{lllll}1 & 0 & 1 & 1\end{array}$	UART4 receive interrupt request or ACK interrupt request (3)		UART6 receive interrupt request or ACK interrupt request (3)	
$\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}$	A/D0 interrupt request			
111001	Intelligent I/O interrupt 0 request	Intelligent I/O interrupt 7 request	Intelligent I/O interrupt 2 request	Intelligent I/O interrupt 9 request
110010	Intelligent I/O interrupt 1 request	Intelligent I/O interrupt 8 request	Intelligent I/O interrupt 3 request	Intelligent I/O interrupt 10 request
$1 \begin{array}{lllll}1 & 1 & 0 & 1\end{array}$	Intelligent I/O interrupt 2 request	Intelligent I/O interrupt 9 request	Intelligent I/O interrupt 4 request	Intelligent I/O interrupt 11 request
111100	Intelligent I/O interrupt 3 request	Intelligent I/O interrupt 10 request	Intelligent I/O interrupt 5 request	Intelligent I/O interrupt 0 request
$1 \begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	Intelligent I/O interrupt 4 request	Intelligent I/O interrupt 11 request	Intelligent I/O interrupt 6 request	Intelligent I/O interrupt 1 request
111110	Intelligent I/O interrupt 5 request	Intelligent I/O interrupt 0 request	Intelligent I/O interrupt 7 request	Intelligent I/O interrupt 2 request
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	Intelligent I/O interrupt 6 request	Intelligent I/O interrupt 1 request	Intelligent I/O interrupt 8 request	Intelligent I/O interrupt 3 request

Notes:

1. The falling edge and both edges of signals applied to the $\overline{\text { INTi }}$ pin ($i=0$ to 3) cause a DMA request generation. The external interrupts (bits POL and LVS in the INTiIC register and the IFSRO register) are not affected by these DMA request sources, and vice versa.
2. When the $\overline{\text { INT3 }}$ pin is used for data bus in memory expansion mode or microprocessor mode, it cannot be used for a signal input of DMA3 request source.
3. Registers UiSMR and UiSMR2 ($i=0$ to 6) are used to switch between the UARTi receive interrupt and ACK interrupt.
4. Select an interrupt source either of UART2 or ${ }^{2}$ C-bus interface by using the I2CEN bit in the I2CMR register.

Table 13.3 DMiSL2 Register ($\mathbf{i}=0$ to 3) Functions

Setting Value	DMA Request Source			
b4 b3 b2 b1 b0	DMAO	DMA1	DMA2	DMA3
0000000	Software trigger			
$0 \begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}$	Falling edge of $\overline{\text { INT6 }}$ (1)	Falling edge of INT7 (1)	Falling edge of $\overline{\text { INT8 }}$ (1)	Reserved
$0 \begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}$	Both edges of $\overline{\text { INT6 }}$ (1)	Both edges of INT7 (1)	Both edges of $\overline{\mathrm{INT8}}$ (1)	Reserved
$\begin{array}{lllll}0 & 0 & 0 & 1 & 1\end{array}$	Reserved			
$0 \begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}$	Reserved			
$0 \begin{array}{lllll}0 & 0 & 1 & 0 & 1\end{array}$	Reserved			
$\begin{array}{lllll}0 & 0 & 1 & 1 & 0\end{array}$	Reserved			
$\begin{array}{lllll}0 & 0 & 1 & 1 & 1\end{array}$	Reserved			
$0 \begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}$	Reserved			
$\begin{array}{lllll}0 & 1 & 0 & 0 & 1\end{array}$	Reserved			
$0 \begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}$	Reserved			
$\begin{array}{lllll}0 & 1 & 0 & 1 & 1\end{array}$	Reserved			
$\begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array}$	Reserved			
$\begin{array}{lllll}0 & 1 & 1 & 0 & 1\end{array}$	Reserved			
$\begin{array}{llllll}0 & 1 & 1 & 1 & 0\end{array}$	Reserved			
$\begin{array}{lllll}0 & 1 & 1 & 1 & 1\end{array}$	Reserved			
$1 \begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}$	Reserved			
$\begin{array}{lllll}1 & 0 & 0 & 0 & 1\end{array}$	Reserved			
$1 \begin{array}{lllll}1 & 0 & 0 & 1 & 0\end{array}$	Reserved			
$\begin{array}{lllll}1 & 0 & 0 & 1 & 1\end{array}$	Reserved			
$\begin{array}{lllll}1 & 0 & 1 & 0 & 0\end{array}$	Reserved			
$\begin{array}{lllll}1 & 0 & 1 & 0 & 1\end{array}$	Reserved			
$\begin{array}{lllll}1 & 0 & 1 & 1 & 0\end{array}$	Reserved			
$\begin{array}{lllll}1 & 0 & 1 & 1 & 1\end{array}$	Reserved			
$\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}$	UART7 transmit interrupt request			
$\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}$	UART7 receive interrupt request			
$1 \begin{array}{lllll}1 & 1 & 0 & 1 & 0\end{array}$	UART8 transmit interrupt request			
$\begin{array}{lllll}1 & 1 & 0 & 1 & 1\end{array}$	UART8 receive interrupt request			
$\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}$	Reserved			
$\begin{array}{lllll}1 & 1 & 1 & 0 & 1\end{array}$	Reserved			
$\begin{array}{lllll}1 & 1 & 1 & 1 & 0\end{array}$	Reserved			
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	Reserved			

Note:

1. The falling edge and both edges of signals applied to the $\overline{\mathrm{INTi}}$ pin ($i=6$ to 8) cause a DMA request generation. The external interrupts (bits POL and LVS in the INTiIC register and the IFSR1 register) are not affected by these DMA request sources, and vice versa.

Figure 13.4 Registers DMD0 to DMD3

DMAi Terminal Count Register ($\mathrm{i}=0$ to 3) ${ }^{(1)}$

Notes:

1. The LDC instruction should be used to write to this register. The register should be set while bits MDi1 and

MDiO in the DMDi register of the corresponding channel are set to 00b (DMA transfer disabled).
2. When this register is set to 000000 h , any new DMA transfer request is unacceptable.

Figure 13.5 Registers DCT0 to DCT3

DMAi Terminal Count Reload Register ($\mathrm{i}=0$ to 3$)^{(1)}$

Note:

1. The LDC instruction should be used to write to this register. The register should be set while bits MDi1 and MDiO in the DMDi register of the corresponding channel are set to 00b (DMA transfer disabled).

Figure 13.6 Registers DCR0 to DCR3

DMAi Source Address Register ($\mathrm{i}=0$ to 3) ${ }^{(1)}$

Note:

1. The LDC instruction should be used to write to this register. The register should be set while bits MDi1 and MDiO in the DMDi register of the corresponding channel are set to 00b (DMA transfer disabled).

Figure 13.7 Registers DSA0 to DSA3

DMAi Source Address Reload Register ($\mathrm{i}=0$ to 3) ${ }^{(1)}$

Note:

1. The LDC instruction should be used to write to this register. The register should be set while bits MDi1 and MDiO in the DMDi register of the corresponding channel are set to OOb (DMA transfer disabled).

Figure 13.8 Registers DSR0 to DSR3

DMAi Destination Address Register ($\mathrm{i}=0$ to 3) ${ }^{(1)}$

Note:

1. The LDC instruction should be used to write to this register. The register should be set while bits MDi1 and MDiO in the DMDi register of the corresponding channel are set to 00b (DMA transfer disabled).

Figure 13.9 Registers DDA0 to DDA3

DMAi Destination Address Reload Register (i=0 to 3) ${ }^{(1)}$

Note:

1. The LDC instruction should be used to write to this register. The register should be set while bits MDi1 and MDiO in the DMDi register of the corresponding channel are set to 00b (DMA transfer disabled).

Figure 13.10 Registers DDR0 to DDR3

13.1 Transfer Cycle

The transfer cycle is composed of bus cycles to read data from memory or SFR (source read) and to write data to destination address (destination write).
The read and write bus cycles vary with the setting of registers DSAi ($\mathrm{i}=0$ to 3) and DDAi, the width of data bus connected to the relevant device and bus timing.

13.1.1 Effect of Transfer Address and Data Bus Width

Table 13.4 lists the incremental bus cycles caused by transfer address alignment or data bus width.

Table 13.4 Incremental Bus Cycles Caused by Transfer Address and Data Bus Width

Transfer Data Unit	Data Bus Width	Transfer Address	Bus Cycles to be Incremented	Bus Cycles Generated
8-bit transfer	8 to 64 bits	n	0	[n]
16-bit transfer	8 bits	n	+1	[n] - [n+1]
	16 bits	2 n	0	[2n]
		$2 \mathrm{n}+1$	+1	[2n + 1]-[2n + 2]
	32 bits	4 n	0	[4n]
		$4 \mathrm{n}+1$	0	[4n + 1]
		$4 \mathrm{n}+2$	0	[4n + 2]
		$4 \mathrm{n}+3$	+1	[4n + 3] - [4n + 4]
	64 bits	8 n	0	[8n]
		$8 \mathrm{n}+1$	0	[8n + 1]
		$8 \mathrm{n}+2$	0	[8n + 2]
		$8 \mathrm{n}+3$	0	[8n + 3]
		$8 \mathrm{n}+4$	0	[8n+4]
		$8 \mathrm{n}+5$	0	[8n + 5]
		$8 \mathrm{n}+6$	0	[8n+6]
		$8 \mathrm{n}+7$	+1	[8n + 7] - [8n + 8]
32-bit transfer	8 bits	n	+3	[n] - [n+1]-[n+2]-[n+3]
	16 bits	4 n	+1	[4n] - [4n + 2]
		$4 \mathrm{n}+1$	+2	[4n + 1]-[4n + 2]-[4n + 4]
		$4 \mathrm{n}+2$	+1	[4n + 2] - [4n + 4]
		$4 \mathrm{n}+3$	+2	$[4 n+3]-[4 n+4]-[4 n+6]$
	32 bits	4 n	0	[4n]
		$4 \mathrm{n}+1$	+1	[4n + 1] - [4n + 4]
		$4 \mathrm{n}+2$	+1	[4n + 2] - [4n + 4]
		$4 \mathrm{n}+3$	+1	[4n + 3] - [4n + 4]
	64 bits	8 n	0	[8n]
		$8 \mathrm{n}+1$	0	[8n + 1]
		$8 \mathrm{n}+2$	0	[8n + 2]
		$8 \mathrm{n}+3$	0	[8n + 3]
		$8 \mathrm{n}+4$	0	[8n + 4]
		$8 \mathrm{n}+5$	+1	[8n+5]-[8n + 8]
		$8 \mathrm{n}+6$	+1	[8n+6]-[8n + 8]
		$8 \mathrm{n}+7$	+1	[8n + 7] - [8n + 8]

13.1.2 Effect of Bus Timing

In the R32C/100 Series, each device has its own bus addresses assigned. The bus width and bus timing vary with each device. Table 13.5 lists the bus width and access cycles for each device.

Table 13.5 Bus Width and Bus Cycles

Device	Addresses ${ }^{(1)}$	Bus Width	Access Cycles ${ }^{(2)}$	Reference Clock
Flash memory	FFE00000h to FFFFFFFFh	64-bit	2 or 3 (3)	CPU clock
Data flash	00060000h to 00061FFFh	64-bit	5	CPU clock
RAM	00000400h to 0003FFFFh	64-bit	1 or 2 (4)	CPU clock
SFR space	00000000h to 0000001Fh	16-bit	3 (5)	Peripheral bus clock
	00000020h to 000003FFh	16-bit	2 (5)	Peripheral bus clock
SFR2 space	00040000h to 00041FFFh	16-bit	2 (5)	Peripheral bus clock
	00042000h to 00043FFFh	32-bit	2 (5)	Peripheral bus clock
	00044000h to 000440DFh	16-bit	$2(5,6)$	Peripheral bus clock
	000440EOh to 000443FFh	16-bit	$3(5,6)$	Peripheral bus clock
	00044400h to 00045FFFh	16-bit	$2(5,6)$	Peripheral bus clock
	00046000h to 000467FFh	32-bit	$3(5,6)$	Peripheral bus clock
	00046800h to 00047FFFh	32-bit	$2(5,6)$	Peripheral bus clock
	00048000h to 0004FFFFh	64-bit	2	CPU clock
External bus	00060000h to 01FFFFFFFh FE000000h to FFDFFFFFh	8-/16-/32-bit	Specified by EBCn register $(\mathrm{n}=0 \text { to } 3)^{(5)}$	Peripheral bus clock

Notes:

1. Reserved spaces are included.
2. Access cycles are based on each bus clock.
3. An access to the same page as the previous time requires two cycles. Otherwise, three cycles are required.
4. If write cycles are generated sequentially, each write cycle except the initial one has two access cycles. A read cycle just after a write cycle has also two access cycles.
5. If SFR is sequentially accessed, each access except the initial one has additional one base clock cycle.
6. One or less access cycle may be added depending on the phase of peripheral bus clock.

Figure 13.11 shows an example of source-read bus cycles in a transfer cycle. In this figure, the number of source-read bus cycle is shown under different conditions, provided that the destination address is in an internal RAM with one bus cycle of destination-write. In real operation, the transfer cycles change according to conditions for destination-write bus cycles as well as for source-read bus cycles. To calculate a transfer cycle, therefore, respective conditions should be applied to both destination-write bus cycle and source-read bus cycle. In (2) of Figure 13.11, for example, if the destination-write bus cycle is generated twice, both bus cycles are two, respectively.

13.1.3 Effect of $\overline{R D Y}$ Signal

In memory expansion mode or microprocessor mode, the $\overline{R D Y}$ signal affects a bus cycle in an external space. Refer to 9.3.7 " RDY Signal" for details.
(1) One bus cycle of source-read is generated

Example: 16-bit data transfer from the address $8 n$ of the RAM

(2) Two bus cycles of source-read are generated

Example: 16 -bit data transfer from the address $8 \mathrm{n}+7$ of the RAM

(3) One bus cycle of source-read is generated with one wait cycle

Example: 16 -bit data transfer from the address 16 n of the ROM

(4) Two bus cycles of source-read is generated with one wait cycle

Example: 16 -bit data transfer from the address $16 n+7$ of the ROM

Note:

1. The above applies under the condition of one bus cycle of destination-write. In real cases, the number of destination-write bus cycles should be considered according to the conditions such as above.

Figure 13.11 Source-read Bus Cycles in a Transfer Cycle

13.2 DMA Transfer Cycle

The DMA transfer cycles are calculated as follows:
Number of a transfer cycles $=$ Source-read bus cycles $\times j+$ Destination-write bus cycles $\times k+1$
where:
$j=$ access cycles for read,
$k=$ access cycles for write (refer to Table 13.5)

Each bus cycle, source-read, and destination-write basically requires one or more cycles. In addition, more cycles may be required depending on the transfer address. Refer to Table 13.4 for required bus cycles.
$"+1$ " in the formula above means a cycle required to decrement the value of DCTi register ($\mathrm{i}=0$ to 3).
The following are calculation examples:
To transfer 32-bit data from the address 400 h of the RAM to the address 800 h of the RAM,
Number of the transfer cycles $=1 \times 1+1 \times 1+1$

$$
=3
$$

Thus, there are three cycles.

To transfer 16-bit data from the AD00 register at address 380h to registers P1 and P0 at addresses 3C1h and 3C0h, respectively, with the peripheral bus clock ($=1 / 2 \mathrm{CPU}$ clock),
Number of the transfer cycles $=1 \times 2 \times 2+1 \times 2 \times 2+1$

$$
=9
$$

Thus, there are nine cycles.

13.3 Channel Priority and DMA Transfer Timing

When multiple DMA transfer requests are generated in the same sampling period, between the falling edge of the CPU clock and the next falling edge, these requests are simultaneously input into the DMAC. Channel priority in this case is: DMA0 > DMA1 > DMA2 > DMA3.
Figure 13.12 shows an example of the DMA transfer by external source, specifically when a DMAO request and a DMA1 request are simultaneously generated. The DMAO request having higher priority is received first to start a transfer. After one DMA0 transfer is completed, the bus privilege is returned to the CPU. When the CPU has completed one bus access, the DMA1 transfer starts. After one DMA1 transfer is completed, the privilege is again returned to the CPU.
DMA transfer requests cannot be counted up. The transfer occurs only once even when an INTi interrupt is generated more than once before receiving the bus privilege, as the DMA1 shown in Figure 13.12.

Figure 13.12 DMA Transfer by External Source

13.4 Notes on DMAC

13.4.1 DMAC-associated Register Settings

- Set the DMAC-associated registers while bits MDi1 and MDiO ($\mathrm{i}=0$ to 3) in the DMDi register are 00b (DMA transfer disabled). Then, set bits MDi1 and MDi0 to 01b (single transfer) or 11b (repeat transfer) at the end of the setup procedure. This procedure is also applied to rewriting bits UDAi, USAi, and BWi1 and BWiO in the DMDi register.
- In case the DMAC-associated registers are to be rewritten while DMA transfer is enabled, disable the peripheral function as DMA request source so that no DMA transfer request is generated, then set bits MDi1 and MDi0 in the DMDi register of the corresponding channel to 00b (DMA transfer disabled).
- Once a DMA transfer request is accepted, DMA transfer cannot be disabled even if setting bits MDi1 and MDiO in the DMDi register to 00b (DMA transfer disabled). Do not change the settings of any DMAC-associated registers other than bits MDi1 and MDi0 until the DMA transfer is completed.
- Wait six or more peripheral bus clocks to set bits MDi1 and MDi0 in the DMDi register to 01b (single transfer) or 11b (repeat transfer) after setting registers DMiSL and DMiSL2.

13.4.2 Read from DMAC-associated Registers

- To sequentially read respective registers DMiSL and DMiSL2, follow the reading order as below: DM0SL, DM1SL, DM2SL, and DM3SL DM0SL2, DM1SL2, DM2SL2, and DM3SL2

14. DMAC II

DMAC II is activated by an interrupt request from any peripheral function, and performs data transfer without a CPU instruction. Transfer sources can be selected from memory, immediate data, memory + memory, and immediate data + memory.
Table 14.1 lists specifications of DMAC II.

Table 14.1 DMAC II Specifications

Item	Specification
Triggers for DMAC II	Interrupt requests generated by any of peripheral functions when bits ILVL2 to ILVL0 in the corresponding interrupt control register are set to 111b (level 7)
Transfer types	- Data in memory is transferred to memory (memory-to-memory transfer) - Immediate data is transferred to memory (immediate data transfer) - Data in memory + data in memory are transferred to memory (calculation transfer) - Immediate data + data in memory are transferred to memory (calculation transfer)
Transfer sizes	8 bits or 16 bits
Transfer memory spaces	From a given address in a 64-Mbyte space (00000000h to 01FFFFFFFh and FE000000h to FFFFFFFFFh) to another given address in the same space (1)
Addressing modes	Individually selectable for each source address and destination address from the following two modes: - Non-incrementing addressing: Address is held constant throughout a data transfer/a DMA II transaction - Incrementing addressing: Address increments by 1 (when 8-bit data is transferred) or 2 (when 16-bit data is transferred) after each data transfer
Transfer modes	- Single transfer: Only one data transfer is performed by one transfer request - Burst transfer: Data transfers are continuously performed for the number of times set in the transfer counter - Multiple transfer: Multiple memory-to-memory transfers are performed from different source addresses to different destination addresses by one transfer request
Chained transfer	Data transfer is sequentially performed according to a DMAC II Index (transfer information) linked with the previous transfer
DMA II transfer complete interrupt request	An interrupt request is generated when the transfer counter reaches 0000h

Note:

1. When 16-bit data is transferred to destination address at FFFFFFFFFh, it is transferred to 00000000h as well as FFFFFFFFFh. The same transfer is performed when the source address is FFFFFFFh.

14.1 DMAC II Settings

To activate DMAC II, set up the following items:

- Registers RIPL1 and RIPL2
- DMAC II index
- The interrupt control register of the peripheral function triggering DMAC II
- The relocatable vector of the peripheral function triggering DMAC II
- IIRLT bit in the IIOiIE register ($\mathrm{i}=0$ to 11) if the intelligent I/O interrupt is used. Refer to 11. "Interrupts" for details on the IIOilE register.

14.1.1 Registers RIPL1 and RIPL2

When the DMAII bits in both the RIPL1 and RIPL2 registers are set to 1 (DMA II transfer selected) and the FSIT bits are set to 0 (normal interrupt selected), DMAC II is activated by an interrupt of any peripheral function with bits ILVL2 to ILVL0 in the corresponding interrupt control register set to 111b (level 7).
Figure 14.1 shows registers RIPL1 and RIPL2.

Wake-up IPL Setting Register $\mathrm{i}(\mathrm{i}=1,2)^{(1)}$

Notes:

1. Registers RIPL1 and RIPL2 should be identically set.
2. The MCU exits wait mode or stop mode if the request level of requested interrupt is higher than the level selected using bits RLVL2 to RLVLO. These bits should be set to the same value as the IPL in the flag register (FLG).
3. When the FSIT bit is set to 1 , an interrupt with interrupt request level 7 becomes the fast interrupt. In this case only one interrupt should be set to the interrupt request level 7.
4. Either the FSIT or DMAII bit should be set to 1 . Simultaneous use of the fast interrupt and the DMAC II is not available.
5. Bits ILVL2 to ILVLO in the interrupt control register should be set after the DMAII bit is set. The DMA II transfer is not affected by the I flag or the IPL.

Figure 14.1 Registers RIPL1 and RIPL2

14.1.2 DMAC II Index

The DMAC II index is a data table of 12 to 60 bytes. It stores parameters for transfer mode, transfer counter, source address (or immediate data), operation address as an address to be calculated, destination address, chained transfer base address, and DMA II transfer complete interrupt vector address.
This DMAC II index should be located on the RAM.
Figure 14.2 shows a configuration of the DMAC II index and Table 14.2 lists a configuration example of the DMAC II index.

Memory-to-memory transfer, Immediate transfer, Calculation transfer 16 bits				Multiple transfer	
DMAC II index starting address (BASE) BASE + 2 BASE + 4	Transfer mode	(MOD)	$\begin{aligned} & \text { BASE } \\ & \text { BASE + } 2 \\ & \text { BASE + } 4 \end{aligned}$	Transfer mode	(MOD)
	Transfer counter	(COUNT)		Transfer counter	(COUNT)
	Source address (or immediate data)	(SADR)		Source address	(SADR1)
BASE + 8	Operation address ${ }^{(1)}$	(OADR)		Destination address	(DADR1)
BASE + 12	Destination address	(DADR)	BASE + 12	Source address	(SADR2)
BASE + 16	Chained transfer base address ${ }^{(2)}$	(CADR)	BASE + 16	Destination address	(DADR2)
BASE + 20	DMA II transfer complete interrupt vector address ${ }^{(3)}$	(IADR)			
				Source address	(SADR7)
				Destination address	(DADR7)
Notes: 1. Th 2. Th 3. Th The DMAC II index calculation transfer Configuration" of th Starting address of	data is required only for the data is required only for the data is required only for the should be located on the RA is not used, the destination next page). the DMAC II index should be	alculation tr hained tran MA II trans Required ress should t in the int	mplete inte should be set set to BASE vector for	front-aligned. For exa + 8. (Refer to "DMAC e peripheral interrupt	en the DMAC II.

Figure 14.2 DMAC II Index

The following are the details on the DMAC II index. These parameters should be aligned in the specified order listed in Table 14.2 according to the transfer mode to be performed.

- Transfer mode (MOD)

2-byte data is required to set transfer mode. Figure 14.3 shows a configuration for transfer mode.

- Transfer counter (COUNT) 2-byte data is required to set the transfers to be performed.
- Source address (SADR) 4-byte data is required to set a source address in a memory or an immediate data. However, the two upper bytes of immediate data are ignored.
- Operation address (OADR)

4-byte data is required to set an address in a memory to be calculated. This data setting is required only for the calculation transfer.

- Destination address (DADR)

4-byte data is required to set a destination address in a memory.

- Chained transfer base address (CADR)

4-byte data is required to set BASE, the starting address of the DMAC II index for the next transfer. This data setting is required only for the chained transfer.

- DMA II transfer complete interrupt vector address (IADR) 4-byte data is required to set a jump address for the DMA II transfer complete interrupt handler. This data setting is required only for the DMA II transfer complete interrupt.

The symbols above are hereinafter used in place of their respective parameters.

Table 14.2 DMAC II Index Configuration

$\begin{gathered} \text { Transfer } \\ \text { Data } \end{gathered}$	Memory-to-memory Transfer/ Immediate Data Transfer				Calculation Transfer				Multiple Transfer
Chained transfer	Not used	Used	Not available						
DMA II transfer complete interrupt	Not used	Not used	Used	Used	Not used	Not used	Used	Used	Not available
DMAC II index	MOD								
	COUNT								
	SADR	SADR1							
	DADR	DADR	DADR	DADR	OADR	OADR	OADR	OADR	DADR1
	12 bytes	CADR	IADR	CADR	DADR	DADR	DADR	DADR	
		16 bytes	16 bytes	IADR	16 bytes	CADR	IADR	CADR	SADRi
				20 bytes		20 bytes	20 bytes	IADR	DADRi
								24 bytes	$\begin{aligned} & i=1 \text { to } 7 \\ & \text { max. } 60 \text { bytes } \\ & (\text { when } i=7) \end{aligned}$

Transfer Mode (MOD) ${ }^{(1)}$
When multiple transfer is not selected (MULT $=0$)

	Bit Symbol	Bit Name	Function	RW
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SIZE	Transfer Size Select Bit	0: 8 bits 1: 16 bits	RW
	IMM	Transfer Source Select Bit	0: Immediate data 1: Memory	RW
	UPDS	Source Addressing Select Bit	0 : Non-incrementing addressing 1: Incrementing addressing	RW
	UPDD	Destination Addressing Select Bit	0 : Non-incrementing addressing 1: Incrementing addressing	RW
$11_{1} 1111111$	OPER	Calculation Transfer Select Bit	0: Not used 1: Used	RW
	BRST	Burst Transfer Select Bit	0 : Single transfer 1: Burst transfer	RW
	INTE	DMA II Transfer Complete Interrupt Select Bit	0: Not used 1: Used	RW
	CHAIN	Chained Transfer Select Bit	0: Not used 1: Used	RW
L」_ـ」	$\frac{-}{(b 14-b 8)}$	Reserved	Should be written with 0	RW
	MULT	Multiple Transfer Select Bit	0 : Not used	RW

When multiple transfer is selected (MULT $=1$)

Note:

1. The MOD should be located on the RAM.

Figure 14.3 MOD

14.1.3 Interrupt Control Register of the Peripheral Function

Set bits ILVL2 to ILVL0 in the interrupt control register for the peripheral interrupt triggering DMAC II to 111b (level 7).

14.1.4 Relocatable Vector Table of the Peripheral Function

Set the starting address of the DMAC II index to the interrupt vector for the peripheral interrupt triggering DMAC II.
To use the chained transfer, locate the relocatable vector table on the RAM.

14.1.5 IRLT Bit in the IIOiIE Register ($\mathbf{i}=0$ to 11)

To use the intelligent I/O interrupt as a trigger for DMAC II, set the IRLT bit in the corresponding IIOilE register to 0 (interrupt request for DMA or DMA II used).

14.2 DMAC II Performance

To perform a DMA II transfer, the DMAII bits in registers RIPL1 and RIPL2 should be set to 1 (interrupt request level 7 used for DMA II transfer). Any peripheral interrupts with bits ILVL2 to ILVLO set to 111b (level 7) can be a request source to activate DMAC II. These peripheral interrupt requests are available only for DMA II transfer, that is, they cannot be used for CPU.
When an interrupt request is generated with interrupt request level 7, DMAC II is activated irrespective of the state of I flag or IPL.
When a peripheral interrupt request triggering DMAC II and a higher-priority request such as watchdog timer interrupt, low voltage detection interrupt, oscillator stop detection interrupt, and NMI are simultaneously generated, the higher-priority interrupt is accepted prior to the DMA II transfer, and the DMA II transfer starts after the higher-priority interrupt sequence.

14.3 Transfer Types

DMAC II transfers three types of 8-bit or 16-bit data as follows:

- Memory-to-memory transfer: Data is transferred from a given memory location in a 64-Mbyte space (addresses 00000000h to 01FFFFFFFh and FE000000h to FFFFFFFFFh) to another given memory location in the same space.
- Immediate data transfer: Immediate data is transferred to a given memory location in a 64Mbyte space.
- Calculation transfer: Two data are added together and the result is transferred to a given memory location in a 64-Kbyte space.
When 16-bit data is transferred to DADR at FFFFFFFFFh, it is transferred to 00000000h as well as FFFFFFFFFh. The same transfer is performed when SADR is FFFFFFFFFh.

14.3.1 Memory-to-memory Transfer

Data transfer between any two memory locations can be:

- A transfer from a constant address to another constant address
- A transfer from a constant address to an address range in memory
- A transfer from an address range in memory to a constant address
- A transfer from an address range in memory to another address range in memory

When increment addressing mode is selected, SADR and DADR increment by one in a 8-bit transfer and by two in a 16-bit transfer after a data transfer for the next transfer. When SADR or DADR exceeds FFFFFFFFh as a result of address incrementation, it returns to 00000000h. Likewise, when SADR or DADR exceeds 01FFFFFFh, it must become 02000000h, but an actual transfer is performed for FE000000h.

14.3.2 Immediate Data Transfer

DMAC II transfers immediate data to any memory location. Both incrementing or non-incrementing addressing modes are available for destination address. Store the immediate data to be transferred into SADR. To transfer 8-bit immediate data, set the data to the one lower byte of SADR. For 16-bit immediate data, set the data to the two lower bytes. The three upper bytes or the two upper bytes of respective case are ignored.

14.3.3 Calculation Transfer

After two memory data or an immediate data and memory data are added together, DMAC II transfers calculated result to any memory location. Set one address to be calculated or an immediate data to SADR and set the other address to be calculated to OADR. Both incrementing or non-incrementing addressing modes are available for source and destination addresses in case of a data in memory +a data in memory calculation transfer. If the source addressing is incrementing mode, the operation addressing should be also incrementing. In case of an immediate data + a data in memory calculation transfer, the addressing mode is selectable only for destination address.

14.4 Transfer Modes

DMAC II provides three types of basic transfer modes: single transfer, burst transfer, and multiple transfer. COUNT determines the number of transfers to be performed. No transfer is performed when COUNT is set to 0000h.

14.4.1 Single Transfer

Set the BRST bit in the MOD to 0 .
One data transfer is performed by one transfer request.
When incrementing addressing mode is selected for the source and/or destination address, the address(es) increment(s) after a data transfer for the next transfer.
COUNT is decremented every time a data transfer is performed. When COUNT reaches 0000h, the DMA II transfer complete interrupt request is generated if the INTE bit in the MOD is 1 (the DMA II transfer complete interrupt used).

14.4.2 Burst Transfer

Set the BRST bit in the MOD to 1.
DMAC II continuously transfers data for the number of times determined by COUNT by one transfer request. COUNT is decremented every time a data transfer is performed. When COUNT reaches 0000h, the burst transfer is completed. The DMA II transfer complete interrupt request is generated if the INTE bit is 1 (the DMA II transfer complete interrupt used).
No interrupt is accepted during burst transfer being performed.

14.4.3 Multiple Transfer

Set the MULT bit in the MOD to 1.
Multiple memory-to-memory transfers are performed from different source addresses to different destination addresses by one transfer request.
Bits CNT2 to CNT0 in the MOD select the number of transfers to be performed from 001b (once) to 111b (seven times). These bits should not be set to 000b.
Allocate required number of SDARs and DADRs alternately following MOD and COUNT.
When the multiple transfer is selected, the following transfer functions are not available: the calculation transfer, burst transfer, chained transfer, and DMA II transfer complete interrupt.

14.5 Chained Transfer

The chained transfer is available when the CHAIN bit in the MOD is set to1.
The chained transfer is performed as follows:
(1) When a transfer request is generated, a data transfer is performed according to DMAC II index specified by the corresponding interrupt vector. Either single transfer (the BRST bit in the MOD is 0) or burst transfer (the BRST bit is 1) is performed according to the BRST bit setting.
(2) When COUNT reaches 0000h, the value in the interrupt vector in (1) above is overwritten with the value in CADR. Simultaneously, the DMA II transfer complete interrupt is generated when the INTE bit in the MOD is 1.
(3) When the next DMA II transfer request is generated, the data transfer is performed according to DMAC II index specified by the peripheral interrupt vector in (2) above.

Figure 14.4 shows the relocatable vector and DMAC II index in chained transfer. To use the chained transfer, the relocatable vector table should be located on the RAM.

Figure 14.4 Relocatable Vector and DMAC II Index in Chained Transfer

14.6 DMA II Transfer Complete Interrupt

The DMA II transfer complete interrupt is available when the INTE bit in the MOD is set to1. The starting address of the DMA II transfer complete interrupt handler should be set to IADR. The interrupt is generated when COUNT reaches 0000h.

The initial instruction of the interrupt handler is executed in the eighth cycle after a DMA II transfer is completed.

14.7 Execution Time

DMAC II execution cycle is calculated by the following equations:
Other than multiple transfer: $\mathrm{t}=6+(26+\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}) \times \mathrm{m}+(4+\mathrm{e}) \times \mathrm{n}$ cycles
Multiple transfer: $t=21+(11+b+c) \times k$ cycles
a: if IMM $=0$ (transfer source is immediate data), $\mathrm{a}=0$;
if IMM = 1 (transfer source is memory), $\mathrm{a}=-1$
b: if UPDS $=1$ (source addressing is incrementing), $b=0$;
if UPDS $=0$ (source addressing is non-incrementing), $b=1$
c : if UPDD $=1$ (destination addressing is incrementing), $\mathrm{c}=0$;
if UPDD $=0$ (destination addressing is non-incrementing), $\mathrm{c}=1$
d : if OPER $=0$ (calculation transfer is not selected), $d=0$;
if OPER = 1 (calculation transfer is selected) and UPDS = 0 (source addressing is immediate data or non-incrementing),
d = 7;
if OPER = 1 (calculation transfer is selected) and UPDS = 1 (source addressing is incrementing), $\mathrm{d}=8$
e : if CHAIN $=0$ (chained transfer is not selected), $\mathrm{e}=0$;
if CHAIN = 1 (chained transfer is selected), $e=4$
m : if BRST = 0 (single transfer), $\mathrm{m}=1$;
if BRST = 1 (burst transfer), $m=$ COUNT
n : if COUNT $=0001 \mathrm{~h}, \mathrm{n}=0$; if COUNT= 0002h or more, $\mathrm{n}=1$
k: The number of transfers to be performed set using bits CNT2 to CNT0

The equations above are approximate. The cycles may vary depending on CPU state, bus wait state and DMAC II index allocation.

When a DMA II transfer complete interrupt (transfer counter $=2$) is generated with no chained transfer after a memory-to-memory transfer is performed twice with a incremented source address and a non-incremented destination address in single transfer mode
$(a=-1, \quad b=0, \quad c=1, \quad d=0, \quad e=0, \quad m=1)$
First DMA II transfer $\quad t=6+(26-1+0+1+0) \times 1+(4+0) \times 1=36$ cycles
Second DMA II transfer $t=6+(26-1+0+1+0) \times 1+(4+0) \times 0=32$ cycles

Figure 14.5 Transfer Cycles

15. Programmable I/O Ports

The programmable I/O ports in each pin package are designated as follows:
100-pin package: 84 ports from P0 to P10 (excluding P8_5 and P9_0 to P9_2), and 144-pin package: 120 ports from P0 to P15 (excluding P8_5 and P14_0 to P14_2).
Each port status, input or output, can be selected using the direction register except P8_5 and P9_1/P14_1 which are input only. The P8_5 bit in the P8 register indicates an $\overline{\mathrm{NMI}}$ input level since the P8_5 shares a pin with the $\overline{\mathrm{NMI}}$.
Figure 15.1 shows a configuration of programmable I/O ports and Figure 15.2 to Figure 15.4 show a configuration of each input-only port.

Note:

1. Refer to 26. "I/O Pins" for details on the part enclosed with the dotted line above.

Figure 15.1 Programmable I/O Port Configuration

Input-only port (P8_5)

Figure 15.2 Input-only Port Configuration (1/3)

Input-only port (P9_1)
P9 read signal

Figure 15.3 Input-only Port Configuration (2/3) (in the 100-pin package only)

Input-only port (P14_1)

Figure 15.4 Input-only Port Configuration (3/3) (in the 144-pin package only)

15.1 Port Pi Register (Pi register, $\mathrm{i}=0$ to 15)

A write/read to the Pi register is required to communicate with external devices. This register consists of a port latch to hold output data and a circuit to read pin states. Each bit in the Pi register corresponds to a respective port.
When a programmable I/O port is selected in the output function select register, the value in the port latch as output data and pin states as input data are respectively read.
In memory expansion mode or microprocessor mode, this register cannot control pins being used as the bus control pins (A0 to A23, D0 to D31, $\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS3}}, \overline{\mathrm{WR}} / \overline{\mathrm{WRO}}, \overline{\mathrm{BCO}}, \overline{\mathrm{BC} 1} / \overline{\mathrm{WR} 1}, \overline{\mathrm{BC} 2} / \overline{\mathrm{WR} 2}, \overline{\mathrm{BC}} 3 / \overline{\mathrm{WR} 3}$, $\overline{R D}$, CLKOUT/BCLK, $\overline{H L D A}, \overline{H O L D}$, ALE, and RDY).
Figure 15.5 shows the Pi register.

Port Pi Register (i=0 to 15) ${ }^{(1,2)}$

Notes:

1. In memory expansion mode or microprocessor mode, the PDi register cannot control pins being used as bus control pins (A0 to A23, D0 to D31, $\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS} 3}, \overline{\mathrm{WR}} / \overline{\mathrm{WR0}}, \overline{\mathrm{BCO}}, \overline{\mathrm{BC} 1} / \overline{\mathrm{WR1}}, \overline{\mathrm{BC}} / \overline{\mathrm{WR} 2}, \overline{\mathrm{BC} 3} / \overline{\mathrm{WR3}}, \overline{\mathrm{RD}}$, CLKOUT/BCLK, HLDA, $\overline{H O L D}$, ALE, and RDY).
2. Registers P11 to P15 are available in the 144-pin package only.
3. The P8_5 bit in the P8 register, the P9_1 bit in the P9 register (in the 100-pin package), and the P14_1 bit in the P 14 register (in the 144-pin package) are read only.
4. Bits P9_0 and P9_2 in the P9 register (in the 100-pin package) and bits P14_0 and P14_2 in the P14 register (in the 144-pin package) are reserved. These bits should be written with 0 and read as undefined values.
5. Bits P11_5 to P11_7 in the P11 register and the P14_7 bit in the P14 register are unavailable on this MCU. These bits should be written with 0 and read as undefined values.

Figure 15.5 Registers P0 to P15

16. Timers

This MCU has eleven 16-bit timers which are divided into two groups according to functions: five timer As and six timer Bs. Each timer functions individually. The count source of each timer provides the clock for timer operations including counting, reloading and so on.
Figure 16.1 and Figure 16.2 show the configuration of the timers A and B, respectively.

Figure 16.1 Timer A Configuration

Figure 16.2 Timer B Configuration

16.1 Timer A

Figure 16.3 shows a block diagram of the timer A and Figure 16.4 to Figure 16.10 show registers associated with the timer A.
The timer A supports four modes shown as below. Timers A0 to A4 in any mode other than the event counter mode have the same function. A mode is selected using bits TMOD1 and TMODO in the TAiMR register ($\mathrm{i}=0$ to 4).

- Timer mode:
- Event counter mode:

The timer counts an internal count source
The timer counts an external pulse or an overflow and underflow of other timers

- One-shot timer mode: The timer outputs one valid pulse before the counter reaches 0000h
- Pulse-width modulation mode:The timer sequentially outputs pulses of given width

Figure 16.3 Timer A Block Diagram

Timer Ai Register (i=0 to 4) ${ }^{(1)}$

fj: f1, f8, f2n, fC32
Notes:

1. A 16-bit read/write access to this register should be performed.
2. The timer counts an external input pulse or an overflow and underflow of other timers.
3. When the TAi register is set to 0000 h , the timer counter does not start, nor the TAi interrupt request is generated.
4. The MOV instruction should be used to set the TAi register.
5. When the TAi register is set to 0000h, the pulse-width modulator does not operate, the TAiOUT pin is held low, and the TAi interrupt request is not generated. The same situation occurs in 8 -bit pulse-width modulator mode if the upper byte in the TAi register are set to 00h.

Figure 16.4 Registers TA0 to TA4

Timer Ai Mode Register ($\mathrm{i}=0$ to 4)

Figure 16.5 Registers TA0MR to TA4MR

Count Start Register

Figure 16.6 TABSR Register

Increment/Decrement Counting Select Register ${ }^{(1)}$

Notes:

1. The MOV instruction should be used to set this register.
2. This bit is enabled when the MR2 bit in the TAiMR register ($i=0$ to 4) is set to 0 (the UDF register setting is the source of increment/decrement count switching) in event counter mode.
3. This bit should be set to 0 when the two-pulse signal processing is not in use.

Figure 16.7 UDF Register

One-shot Start Register

Notes:

1. This bit is read as 0 .
2. The timer overflows or underflows.

Figure 16.8 ONSF Register

Trigger Select Register

Note:

1. The timer overflows or underflows.

Figure 16.9 TRGSR Register

Count Source Prescaler Register

Note:

1. The CST bit should be set to 0 to rewrite bits CNT3 to CNTO.

Figure 16.10 TCSPR Register

16.1.1 Timer Mode

In timer mode, the timer counts an internally generated count source. Table 16.1 lists specifications of timer mode. Figure 16.11 shows registers TAOMR to TA4MR in this mode.

Table 16.1 Timer Mode Specifications (i=0 to 4)

Item	Specification
Count sources	f1, f8, f2n, or fC32
Count operations	- Decrement counting - If the timer counter underflows, the reload register setting is reloaded into the counter to resume counting
Divide ratio	$\frac{1}{n+1} \quad \mathrm{n}$: TAi register setting value, 0000 h to FFFFh
Count start condition	The TAiS bit in the TABSR register is set to 1 (count starts)
Count stop condition	The TAiS bit in the TABSR register is set to 0 (count stops)
Interrupt request generating timing	When the timer counter underflows
TAilN pin function	A programmable I/O port or a gate input
TAiOUT pin function	A programmable I/O port or a pulse output
Read from timer	The TAi register indicates a counter value
Write to timer	- While the timer counter is stopped or before the initial count source is input after starting to count, the value written to the TAi register is written to both reload register and the counter - While the timer counter is running, the value written to the TAi register is written to the reload register (It is transferred to the counter at the next reload timing)
Selectable functions	- Gate function Input signal to the TAilN pin can control to start/stop counting - Pulse output function The polarity of the TAiOUT pin is inverted whenever the timer counter underflows. A low is output while the TAiS bit holds 0 (count stops)

Timer Ai Mode Register ($\mathrm{i}=0$ to 4) (timer mode)

Note:

1. X can be set to either 0 or 1 .

Figure 16.11 Registers TAOMR to TA4MR in Timer Mode

16.1.2 Event Counter Mode

In event counter mode, the timer counts an external signal or an overflow and underflow of other timers. Timers A2, A3 and A4 can count two-phase external signals. Table 16.2 lists specification in event count mode and Table 16.3 also list the specification when the timers use two-phase pulse signal processing. Figure 16.12 shows registers TAOMR to TA4MR in this mode.

Table 16.2 Event Counter Mode Specifications (without two-phase pulse signal processing) (i=0 to 4)

Item	Specification
Count sources	- External signal applied to the TAilN pin (valid edge is selectable by a program) - The overflow or underflow signal of timer B2, timer $A j(j=i-1$, or $j=4$ if i $=0$), and timer $\operatorname{Ak}(k=i+1$, or $k=0$ if $i=4)$
Count operations	- Increment/decrement counting can be switched by an external signal or program - If the timer counter underflows or overflows, the reload register setting is reloaded into the counter to resume counting. In the free-running count operation, the timer counter continues counting without reloading
Divide ratio	- $\frac{1}{F F F F h-n+1}$ for increment counting - $\frac{1}{n+1}$ for decrement counting n : TAi register setting value, 0000h to FFFFh
Count start condition	The TAiS bit in the TABSR register is set to 1 (count starts)
Count stop condition	The TAiS bit in the TABSR register is set to 0 (count stops)
Interrupt request generating timing	When the timer counter overflows or underflows
TAilN pin function	A programmable I/O port or a count source input
TAiOUT pin function	A programmable I/O port, a pulse output, or an input for increment/ decrement count switching
Read from timer	The TAi register indicates a counter value
Write to timer	- While the timer counter is stopped or before the initial count source is input after starting to count, the value written to the TAi register is written to both reload register and the counter - While the timer counter is running, the value written to the TAi register is written to the reload register (It is transferred to the counter at the next reload timing)
Selectable functions	- Free-running count function The reload register setting is not reloaded even if the timer counter overflows or underflows - Pulse output function The polarity of the TAiOUT pin is inverted whenever the timer counter overflows or underflows. A low is output while the TAiS bit holds 0 (count stops)

Table 16.3 Event Counter Mode Specifications (with two-phase pulse signal processing on timers A2 to A4) ($\mathbf{i}=2$ to 4)

\begin{tabular}{|c|c|}
\hline Item \& Specification \\
\hline Count sources \& Two-phase pulse signal applied to pins TAilN and TAiOUT \\
\hline Count operations \& \begin{tabular}{l}
- Increment/decrement counting can be switched by a two-phase pulse \\
- If the timer counter underflows or overflows, the reload register setting reloaded into the counter to resume counting. In the free-running count operation, the timer counter continues counting without reloading
\end{tabular} \\
\hline Divide ratio \& \begin{tabular}{l}
- \(\frac{1}{\text { FFFFh }-n+1}\) for increment counting \\
- \(\frac{1}{n+1}\) for decrement counting \\
n : TAi register setting value, 0000h
\end{tabular} \\
\hline Count start condition \& The TAiS bit in the TABSR register is set to 1 (count starts) \\
\hline Count stop condition \& The TAiS bit in the TABSR register is set to 0 (count stops) \\
\hline Interrupt request generating timing \& When the timer counter overflows or underflows \\
\hline TAilN pin function \& A two-phase pulse input \\
\hline TAiOUT pin function \& A two-phase pulse input \\
\hline Read from timer \& The TAi register indicates a counter value \\
\hline Write to timer \& \begin{tabular}{l}
- While the timer counter is stopped or before the initial count source is in starting to count, the value written to the TAi register is written to both relc register and the counter \\
- While the timer counter is running, the value written to the TAi register is to the reload register (It is transferred to the counter at the next reload
\end{tabular} \\
\hline Selectable functions \({ }^{(1)}\) \& \begin{tabular}{l}
- Normal processing operation (timers A2 and A3) While the input signal applied to the TAjOUT pin (j=2 or 3) is held high, timer increments the count on the rising edge of the TAjIN pin and decr the count on the falling edge \\
TAjOUT

TAjIN

DC: Count decremented
\end{tabular}

\hline
\end{tabular}

- Quadrupled processing operation (timers A3 and A4)

When the input signal applied to the TAkOUT pin ($k=3$ or 4) is held high on the rising edge of the TAkIN pin, the timer increments the count on both the rising and falling edges of pins TAkOUT and TAkIN.
When the signal is held high on the falling edge of the TAkIN pin, the timer decrements the count on both the rising and falling edges of pins TAkOUT and TAkIN

- Counter reset by Z-phase input (the timer A3)

The counter value is set to 0 by Z-phase input
Note:

1. Only the timer A3 is available for any selectable functions. The timer A2 is exclusively for the normal processing operation and the timer A4 is for the quadrupled processing operation, respectively.

Timer Ai Mode Register ($\mathrm{i}=0$ to 4) (event counter mode)

Notes:

1. Bits TAiTGH and TAiTGL in the ONSF or TRGSR register select the count source in event counter mode.
2. This bit setting is enabled only when an external signal is counted.
3. The timer decrements the count when the input signal to the TAiOUT pin is held low and increments the count when the signal is held high.
4. The TCK1 bit is enabled only in the TA3MR register.
5. For two-phase pulse signal processing, the TAjP bit in the UDF register ($\mathrm{j}=2$ to 4) should be set to 1 (twophase pulse signal processing enabled) and bits TAiTGH and TAiTGL should be set to 00b (the input to the TAjIN pin).

Figure 16.12 Registers TAOMR to TA4MR in Event Counter Mode

16.1.2.1 Counter Reset by Two-phase Pulse Signal Processing

A Z-phase input signal resets the timer counter when a two-phase pulse signal is being processed. This function can be used under the following conditions: timer A3 event counter mode, two-phase pulse signal processing, free-running count operation type, and quadrupled processing. The Z-phase signal is applied to the $\overline{\text { INT2 }}$ pin.
When the TAZIE bit in the ONSF register is set to 1 (Z-phase input enabled), the reset of timer counter by Z-phase input is enabled. To reset the counter, the TA3 register should be set to 0000h beforehand. A Z-phase signal applied to the $\overline{\mathrm{NT} 2}$ pin is detected on a edge. The edge polarity is selected using the POL bit in the INT2IC register. The Z-phase signal should be input in order to have a pulse width of one count source cycle for timer A3 or more. Figure 16.13 shows the two-phase pulse (phases A and B) and the Z-phase.
The timer counter is reset at the initial count source input after a Z-phase input is detected. Figure 16.14 shows the counter reset timing.

If the timer A3 overflows or underflows during a reset processing by the Z-phase input, two timer A3 interrupt requests are sequentially generated. To avoid this situation, the timer A3 interrupt request should not be used when this function is in use.

Figure 16.13 Two-phase Pulse (phases A and B) and Z-phase

Figure 16.14 Counter Reset Timing

16.1.3 One-shot Timer Mode

In one-shot timer mode, the timer operates only once for each trigger. Table 16.4 lists specifications of one-shot timer mode. Once a trigger occurs, the timer starts and operates for a given period. Figure 16.15 shows registers TAOMR to TA4MR in this mode.

Table 16.4 One-shot Timer Mode Specifications (i=0 to 4)

Item	Specification
Count sources	f1, f8, f2n, or fC32
Count operations	- Decrement counting - When the timer counter reaches 0000h, it stops running after the reload register setting is reloaded - If a trigger occurs while counting, the reload register setting is reloaded into the counter to continue counting
Divide ratio	1 n : TAi register setting value, 0000h to FFFFh n (Note that the timer counter does not run if $\mathrm{n}=0000 \mathrm{~h}$)
Count start conditions	The TAiS bit in the TABSR register is set to 1 (count starts) and any of following triggers occurs: - An external trigger applied to the TAilN pin - The overflow or underflow signal of timer B2, timer $A j(j=i-1$, or $j=4$ if i $=0)$, or timer $\operatorname{Ak}(k=i+1$, or $k=0$ if $i=4)$ - The TAiOS bit in the ONSF register is set to 1 (the timer started)
Count stop conditions	- The timer counter reaches 0000h and the reload register setting is reloaded - The TAiS bit in the TABSR register is set to 0 (count stops)
Interrupt request generating timing	When the timer counter reaches 0000h
TAilN pin function	A programmable I/O port or a trigger input
TAiOUT pin function	A programmable I/O port or a pulse output
Read from timer	The TAi register indicates undefined value
Write to timer	- While the timer counter is stopped or before the initial count source is input after starting to count, the value written to the TAi register is written to both reload register and the counter - While the timer counter is running, the value written to the TAi register is written to the reload register (It is transferred to the counter at the next reload timing)
Selectable function	- Pulse output function A low is output while the timer counter is not running and a high is output while the timer counter is running

Timer Ai Mode Register ($\mathrm{i}=0$ to 4) (one-shot timer mode)

Note:

1. The MR1 bit setting is enabled only when bits TAiTGH and TAiTGL in the TRGSR register are set to 00b (the input to the TAilN pin). This bit can be set to either 0 or 1 when bits TAiTGH and TAiTGL are set to 01b (the overflow or underflow of TB2), 10b (the overflow or underflow of TAi), or 11b (the overflow or underflow of TAi).

Figure 16.15 Registers TAOMR to TA4MR in One-shot Timer Mode

16.1.4 Pulse-width Modulation Mode

In pulse-width modulation mode, the timer outputs pulses of given width sequentially. Table 16.5 lists specifications of pulse-width modulation mode. The timer counter functions as either 16-bit or 8-bit pulse-width modulator. Figure 16.16 shows registers TAOMR to TA4MR in this mode. Figure 16.17 and Figure 16.18 respectively show an operation example of 16 -bit and 8 -bit pulse-width modulators.

Table 16.5 Pulse-width Modulation Mode Specification (i=0 to 4)

Item	Specification
Count sources	f1, f8, f2n, or fC32
Count operations	- Decrement counting (the timer counter functions as an 8-bit or a 16-bit pulse-width modulator) - The reload register setting is reloaded on the rising edge of PWM pulse to resume counting - The timer is not affected by a trigger that is generated while the counter is running
16-bit PWM	- High level width: $\frac{n}{f j} \mathrm{n}$: TAi register setting value, 0000h to FFFEh fj: Count source frequency - Cycle: $\frac{2^{16}-1}{f j}$ fixed
8-bit PWM	- High level width: $\frac{n \times(m+1)}{f j}$ - Cycle: $\frac{\left(2^{8}-1\right) \times(m+1)}{f j}$ n : TAi register (upper byte) setting value, 00h to FEh m : TAi register (lower byte) setting value, 00 h to FFh
Count start conditions	- The TAiS bit in the TABSR register is set to 1 (count starts) - The TAiS bit is set to 1 and an external trigger applied to the TAilN pin - The TAiS bit is set to 1 and any of following triggers occurs: The overflow or underflow signal of timer B2, timer $A j(j=i-1$, or $j=4$ if i $=0)$, or timer $\operatorname{Ak}(k=i+1$, or $k=0$ if $i=4)$
Count stop condition	The TAiS bit in the TABSR register is set to 0 (count stops)
Interrupt request generating timing	On the falling edge of the PWM pulse
TAilN pin function	A programmable I/O port or a trigger input
TAiOUT pin function	A pulse output
Read from timer	The TAi register indicates undefined value
Write to timer	- While the timer counter is stopped or before the initial count source is input after starting to count, the value written to the TAi register is written to both reload register and the counter - While the timer counter is running, the value written to the TAi register is written to the reload register (it is transferred to the counter at the next reload timing)

Timer Ai Mode Register ($\mathrm{i}=0$ to 4) (pulse-width modulation mode)

Note:

1. The MR1 bit setting is enabled only when bits TAiTGH and TAiTGL in the TRGSR register are set to 00b (input to the TAilN pin). This bit can be set to either 0 or 1 when bits TAiTGH and TAiTGL are set to 01b (the overflow or underflow of TB2), 10b (the overflow or underflow of TAi), or 11b (the overflow or underflow of TAi).

Figure 16.16 Registers TA0MR to TA4MR in Pulse-width Modulation Mode

When the reload register is set to 0003h and an external trigger (the rising edge of an input signal applied to the TAilN pin) is selected

= 0 to 4
fj : Count source frequency
(f1, f8, f2n, fC32)

Note:

1. $\mathrm{n}=0000 \mathrm{~h}$ to FFFEh

Figure 16.17 16-bit Pulse-width Modulator Operation

When the upper byte of the reload register is set to 02 h , the lower byte is set to 02 h and an external trigger (the falling edge of an input signal applied to the TAilN pin) is selected

Figure 16.18 8-bit Pulse-width Modulator Operation

16.2 Timer B

Figure 16.19 shows a block diagram of the timer B and Figure 16.20 to Figure 16.23 show registers associated with the timer B.
The timer B supports three modes shown as below. A mode is selected using bits TMOD1 and TMOD0 in the TBiMR register ($\mathrm{i}=0$ to 5).

- Timer mode:

The timer counts an internal count source

- Event counter mode:

The timer counts an external pulse or an overflow and underflow of other timers

- Pulse period/pulse-width measure mode:The timer measures pulse period or pulse width of an external signal

Figure 16.19 Timer B Block Diagram

Timer Bi Register $\left(\mathrm{i}=0\right.$ to 5) ${ }^{(1)}$

Notes:

1. A 16-bit read/write access to this register should be performed.
2. The TBi register counts an external input pulse or an overflow and underflow of other timers.

Figure 16.20 Registers TB0 to TB5

Timer Bi Mode Register (i=0 to 5)

Notes:

1. The MR2 bit is available for registers TBOMR and TB3MR only.
2. The MR2 bit in registers TB1MR, TB2MR, TB4MR and TB5MR are unavailable on this MCU. This bit should be written with 0 and read as undefined value.

Figure 16.21 Registers TB0MR to TB5MR

Count Start Register

Figure 16.22 TABSR Register

Count Start Register for Timers B3, B4 and B5

b7 b6 b5 b4 b3 b2 b1 b0	Symbol TBSR	Address 0300h	Reset Value 000X XXXXb	
1 1 1	Bit Symbol	Bit Name	Function	RW
d	(b4-b0)	No register bits; should be written with 0 and read as undefined value		-
-	TB3S	Timer B3 Count Start Bit	0 : Stop counting 1: Start counting	RW
-	TB4S	Timer B4 Count Start Bit	0: Stop counting 1: Start counting	RW
	TB5S	Timer B5 Count Start Bit	0 : Stop counting 1: Start counting	RW

Figure 16.23 TBSR Register

16.2.1 Timer Mode

In timer mode, the timer counts an internally generated count source. Table 16.6 lists specifications of timer mode. Figure 16.24 shows registers TB0MR to TB5MR in this mode.

Table 16.6 Timer Mode Specifications (i=0 to 5)

Item	Specification
Count sources	• Decrement counting - If the timer counter underflows, the reload register setting is reloaded into the counter to resume counting
Count operations	$\frac{1}{n+1} \quad \mathrm{n}$: TBi register setting value, 0000h to FFFFh
Divide ratio	The TBiS bit in the TABSR or TBSR register is set to 1 (count starts)
Count start condition	The TBiS bit in the TABSR or TBSR register is set to 0 (count stops)
Count stop condition	When the timer counter underflows
Interrupt request generating timing	The TBi register indicates a counter value
TBilN pin function	- While the timer counter is stopped or before the initial count source is input after starting to count, the value written to the TBi register is written to both reload register and the counter - While the timer counter is running, the value written to the TBi register is written to the reload register (It is transferred to the counter at the next reload timing)
Write to timer	

Timer Bi Mode Register ($\mathrm{i}=0$ to 5) (timer mode)

Figure 16.24 Registers TB0MR to TB5MR in Timer Mode

16.2.2 Event Counter Mode

In event counter mode, the timer counts an external signal or an overflow and underflow of other timers. Table 16.7 lists specifications of event counter mode. Figure 16.25 shows the TBiMR register ($\mathrm{i}=0$ to 5) in this mode.

Table 16.7 Event Counter Mode Specifications (i=0 to 5)

Item	Specification
Count sources	- External signal applied to the TBiIN pin (valid edge is selectable among the falling edge, the rising edge or the both by a program) - The overflow or underflow signal of $\operatorname{TBj}(\mathrm{j}=\mathrm{i}-1 ; \mathrm{j}=2$ if $\mathrm{i}=0$; or $\mathrm{j}=5$ if $\mathrm{i}=$ 3)
Count operations	- Decrement counting - If the timer counter underflows, the reload register setting is reloaded into the counter to resume counting
Divide ratio	$\frac{1}{n+1} \quad$ n: TBi register setting value, 0000h to FFFFh
Count start condition	The TBiS bit in the TABSR or TBSR register is set to 1 (count starts)
Count stop condition	The TBiS bit in the TABSR or TBSR register is set to 0 (count stops)
Interrupt request generation timing	When the timer counter underflows
TBilN pin function	A programmable I/O port or a count source input
Read from timer	The TBi register indicates a counter value
Write to timer	- While the timer counter is stopped or before the initial count source is input after starting to count, the value written to the TBi register is written to both reload register and the counter - While the timer counter is running, the value written to the TBi register is written to the reload register (it is transferred to the counter at the next reload timing)

Timer Bi Mode Register ($\mathrm{i}=0$ to 5) (event counter mode)

Notes:

1. These bit settings are enabled when the TCK1 bit is set to 0 .

When the TCK1 is set to 1 , these bits can be set to either 0 or 1 .
2. $\mathrm{j}=\mathrm{i}-1 ; \mathrm{j}=2$ if $\mathrm{i}=0$; or $\mathrm{j}=5$ if $\mathrm{i}=3$.

Figure 16.25 Registers TB0MR to TB5MR in Event Counter Mode

16.2.3 Pulse Period/Pulse-width Measure Mode

In pulse period/pulse-width measure mode, the timer measures pulse period or pulse width of an external signal. Table 16.8 lists specifications of pulse period/pulse-width measure mode. Figure 16.26 shows registers TB0MR to TB5MR in this mode. Figure 16.27 and Figure 16.28 respectively show an operation example of pulse period measurement and pulse-width measurement.

Table 16.8 Pulse Period/Pulse-width Measure Mode Specifications (i=0 to 5)

Item	Specification
Count sources	f1, f8, f2n, or fC32
Count operations	- Increment counting - The counter value is transferred to the reload register on the valid edge of a pulse to be measured, then it is set to 0000h to resume counting
Count start condition	The TBiS bit in the TABSR or TBSR register is set to 1 (count starts)
Count stop condition	The TBiS bit in the TABSR or TBSR register is set to 0 (count stops)
Interrupt request generating timing	- On the valid edge of a pulse to be measured (1) - When the timer counter overflows (when the MR3 bit in the TBiMR register becomes 1 (overflow). (2))
TBilN pin function	A pulse input to be measured
Read from timer	The TBi register indicates a reload register value (measurement results) (3)
Write to timer	The value written to the TBi register is written to neither the reload register nor the counter

Notes:

1. No interrupt request is generated when the pulse to be measured is applied on the initial valid edge after the timer counter starts.
2. To set the MR3 bit to 0 (no overflow), wait one or more count source cycles to write to the TBiMR register after the MR3 bit becomes 1 (overflow), while the TBiS bit is set to 1 (count starts).
3. The TBi register indicates undefined value until the pulse to be measured is applied on the second valid edge after the timer counter starts.

Timer Bi Mode Register ($\mathrm{i}=0$ to 5) (pulse period/pulse-width measure mode)

Notes:

1. Bits MR1 and MR0 select from the following measure modes:

Pulse period measurement 1 (bits MR1 and MR0 $=00 \mathrm{~b}$):
Measures between a falling edge and the next falling edge of a pulse
Pulse period measurement 2 (bits MR1 and MR0 $=01$ b):
Measures between a rising edge and the next rising edge of a pulse
Pulse-width measurement (bits MR1 and MR0 = 10b):
Measures between a falling edge and the next rising edge of a pulse and between the rising edge and the next falling edge of the pulse
2. The MR3 bit is undefined when the timer is reset.

To set the MR3 bit to 0 (no overflow), wait one or more count source cycles to write to the TBiMR register after the MR3 bit becomes 1 (overflow), while the TBiS bit in the TABSR or TBSR register is set to 1 (count starts). The MR3 bit cannot be set to 1 by a program.

Figure 16.26 Registers TB0MR to TB5MR in Pulse Period/Pulse-width Measure Mode

Figure 16.27 Operation Example in Pulse Period Measurement

Figure 16.28 Operation Example in Pulse-width Measurement

16.3 Notes on Timers

16.3.1 Timer A and Timer B

All timers are stopped after a reset. To restart timers, configure parameters such as operating mode, count source, and counter value, then set the TAiS bit ($\mathrm{i}=0$ to 4) or TBjS bit $(\mathrm{j}=0$ to 5) in the TABSR or TBSR register to 1 (count starts).
The following registers and bits should be set while the TAiS bit or TBjS bit is 0 (count stops):

- Registers TAiMR and TBjMR
- The UDF register
- Bits TAZIE, TAOTGL, and TAOTGH in the ONSF register
- The TRGSR register

16.3.2 Timer A

16.3.2.1 Timer Mode

- While the timer counter is running, the TAi register indicates a counter value at any given time. However, FFFFh is read while reloading is in progress. A set value is read if the TAi register is set while the timer counter is stopped.

16.3.2.2 Event Counter Mode

- While the timer counter is running, the TAi register indicates a counter value at any given time. However, FFFFh is read if the timer counter underflows or 0000h if overflows while reloading is in progress. A set value is read if the TAi register is set while the timer counter is stopped.

16.3.2.3 One-shot Timer Mode

- If the TAiS bit in the TABSR register is set to 0 (count stops) while the timer counter is running, the following operations are performed:
- The timer counter stops and the setting value of the TAi register is reloaded.
- A low signal is output at the TAiOUT pin.
- The IR bit in the TAilC register becomes 1 (interrupts requested) after one CPU clock cycle.
- One-shot timer is operated by an internal count source. When the trigger is an input to the TAilN pin, the signal is output with a maximum of one count source clock delay after a trigger input to the TAilN pin.
- The IR bit becomes 1 by any of the settings below. To use the timer Ai interrupt, set the IR bit to 0 after one of the settings below is done:
- Select one-shot timer mode after a reset.
- Switch the operating mode from timer mode to one-shot timer mode.
- Switch the operating mode from event counter mode to one-shot timer mode.
- If a retrigger occurs while counting, the timer counter decrements by one, reloads the setting value of the TAi register, and then continues counting. To generate a retrigger while counting, wait one or more count source cycles after the last trigger is generated.
- When an external trigger input is selected to start counting in timer A one-shot mode, do not provide an external retrigger for 300 ns before the timer counter reaches 0000h. Otherwise, it may stop counting.

16.3.2.4 Pulse-width Modulation Mode

- The IR bit becomes 1 by any of the settings below. To use the timer Ai interrupt ($i=0$ to 4), set the IR bit to 0 after one of the settings below is done:
- Select pulse-width modulation mode after a reset.
- Switch the operating mode from timer mode to pulse-width modulation mode.
- Switch the operating mode from event counter mode to pulse-width modulation mode.
- If the TAiS bit in the TABSR register is set to 0 (count stops) while PWM pulse is output, the following operations are performed:
- The timer counter stops.
- The output level at the TAiOUT pin changes from high to low. The IR bit becomes 1.
- When a low signal is output at the TAiOUT pin, it remains unchanged. The IR bit does not change, either.

16.3.3 Timer B

16.3.3.1 Timer Mode and Event Counter Mode

- While the timer counter is running, the TBj register ($\mathrm{j}=0$ to 5) indicates a counter value at any given time. However, FFFFh is read while reloading is in progress. A set value is read if the TBj register is set while the timer counter is stopped.

16.3.3.2 Pulse Period/Pulse-width Measure Mode

- To set the MR3 bit in the TBjMR register to 0 (no overflow), wait one or more count source cycles to write to the TBjMR register after the MR3 bit becomes 1 (overflow), while the TBjS bit is set to 1 (count starts).
- Use the IR bit in the TBjIC register to detect overflow. The MR3 bit is used only to determine an interrupt request source within the interrupt handler.
- The counter value is undefined when the timer counter starts. Therefore, the timer counter may overflow before a pulse to be measured is applied on the initial valid edge and cause a timer Bj interrupt request to be generated.
- When the pulse to be measured is applied on the initial valid edge after the timer counter starts, an undefined value is transferred to the reload register. At this time, the timer Bj interrupt request is not generated.
- The IR bit may become 1 (interrupt requested) by changing bits MR1 and MR0 in the TBjMR register after the timer counter starts. However, if the same value is rewritten to bits MR1 and MR0, the IR bit is not changed.
- Pulse width is repeatedly measured in pulse-width measure mode. Whether the measurement result is high-level width or not is determined by a program.
- If an overflow occurs simultaneously when a pulse is applied on the valid edge, this pulse is not recognized since an interrupt request is generated only once. Do not let an overflow occur in pulse period measure mode.
- In pulse-width measure mode, determine whether an interrupt source is a pulse applied on the valid edge or an overflow by reading the port level in the TBj interrupt handler.

17. Three-phase Motor Control Timers

A three-phase motor driving waveform can be output by using timers A1, A2, A4, and B2. The three-phase motor control timers are enabled by setting the INV02 bit in the INVC0 register to 1. Timer B2 is used for carrier wave control, and timers A1, A2, and A4 for three-phase PWM output ($U, \bar{U}, V, \bar{V}, W$, and \bar{W}) control. Table 17.1 lists specifications of the three-phase motor control timers and Figure 17.1 shows its block diagram. Figure 17.2 to Figure 17.6 show registers associated with this function.

Table 17.1 Three-phase Motor Control Timers Specifications

Item	Specification
Three-phase PWM waveform output pins	Six pins: U, $\bar{U}, \mathrm{~V}, \overline{\mathrm{~V}}, \mathrm{~W}$, and $\overline{\mathrm{W}}$
Forced cutoff (1)	A low input to the $\overline{\mathrm{NMI}}$ pin
Timers to be used	Timers A4, A1, and A2 (used in one-shot timer mode): Timer A4: U- and \bar{U}-phases waveform control Timer A1: V- and $\overline{\mathrm{V}}$-phases waveform control Timer A2: W- and \bar{W}-phases waveform control Timer B2 (used in timer mode) Carrier wave cycle control Dead time timer (three 8-bit timers share a reload register): Dead time control
Output waveform	Triangular wave modulation and sawtooth wave modulation - Output of a high or a low waveform for one cycle - Separately settable levels of high side and low side
Carrier wave cycle	Triangular wave modulation: count source $\times(m+1) \times 2$ Sawtooth wave modulation: count source $\times(\mathrm{m}+1)$ m : TB2 register setting value, 0000 h to FFFFh Count source: f1, f8, f2n, or fC32
Three-phase PWM output width	Triangular wave modulation: count source $\times \mathrm{n} \times 2$ Sawtooth wave modulation: count source $\times n$ n : Setting value of registers TA4, TA1, and TA2 (registers TA4, TA41, TA1, TA11, TA2, and TA21 when the INV11 bit in the INVC1 register is set to 1), 0001h to FFFFh Count source: f1, f8, f2n, or fC32
Dead time (width)	Count source $\times \mathrm{p}$ or no dead time p : DTT register setting value, 01 h to FFh Count source: f 1 or f 1 divided by 2
Active level	Selectable either active high or active low
Simultaneous conduction prevention	Function to detect simultaneous turn-on signal outputs, function to disable signal output when simultaneous turn-on signal outputs are detected
Interrupt frequency	Selectable from one through 15 time- carrier wave cycle-to-cycle basis for the timer B2 interrupt

Note:

1. Forced cutoff by the signal input to the $\overline{\mathrm{NMI}}$ pin is available when the PM24 bit in the PM2 register is set to 1 (NMI enabled), the INV02 bit in the INVCO register is set to 1 (the three-phase motor control timers used), and the INV03 bit is set to 1 (the three-phase motor control timer output enabled).

Figure 17.1 Three-phase Motor Control Timers Block Diagram

Three-Phase PWM Control Register $0{ }^{(1)}$

Notes:

1. This register should be set after the PRC1 bit in the PRCR register is set to 1 (write enabled). Bits INV00 to INV02 and INV06 should be rewritten while timers A1, A2, A4, and B2 are stopped.
2. This bit is enabled when the INV11 bit in the INVC1 register is set to 1 (three-phase mode 1). When the INV11 bit is set to 0 (three-phase mode 0), the ICTB2 counter increments by one every time the timer B2 underflows irrespective of the INV00 and INV01 bit settings.
3. Set the ICTB2 register before setting the INV01 bit to 1 . The timer A1 count start flag should be set to 1 before the initial timer B2 underflow occurs.
4. When the INVOO bit is set to 1 , the first interrupt is generated if the timer B2 underflows $n-1$ times. (n is the value set in the ICTB2 counter). Subsequent interrupts are generated every n times the timer B2 underflows.
5. The INV02 bit should be set to 1 to operate the dead time timer, U-, V-, and W-phase output control circuits, and the ICTB2 counter.
6. After setting the INV02 bit to 1, pins should be configured first by the IOBC register then by the output function select register.
7. When the INV02 bit is set to 1 and the INV03 bit to 0 , pins $U, \bar{U}, V, \bar{V}, W$, and \bar{W}, including shared pins set by another output function, become high-impedance.
8. The INV03 bit becomes 0 when any of the following occurs:
-Reset
-Signals of both sides high and low are simultaneously switched active when the INV04 bit is set to 1
-The INV03 bit is set to 0 by a program
-The $\overline{\text { NMI }}$ pin goes from high to low when the PM24 bit in the PM2 register is set to 1 (NMI enabled)
9. This bit cannot be set to 1 by a program. The INV04 bit should be set to 0 to set this bit to 0 .
10. When the INV06 bit is set to 1 , the INV11 bit in the INVC1 register should be set to 0 (three-phase mode 0). In this case, the PWCON bit in the TB2SC register should be set to 0 (timer B2 register reloaded if the timer B2 underflows).

Figure 17.2 INVCO Register

Three-Phase PWM Control Register $1{ }^{(1)}$

Notes:

1. This register should be set after the PRC1 bit in the PRCR register is set to 1 (write enabled). Bits INV00 to INV02 and INV06 should be rewritten while timers A1, A2, A4, and B2 are stopped.
2. When the INV06 bit in the INVC0 register is set to 1 (sawtooth wave modulation mode), the INV11 bit should be set to 0 (three-phase mode 0).
3. When the INV11 bit is set to 0 , the PWCON bit in the TB2SC register should be set to 0 (timer B2 register reloaded if the timer B2 underflows).
4. This bit setting is enabled when the INV06 bit is set to 0 (triangular wave modulation mode) and the INV11 bit is set to 1 (three-phase mode 1).
5. If the following conditions are all met, the INV16 bit should be set to 1:
-The INV15 bit is set to 0 (dead time enabled)
-The Dij bit ($\mathrm{i}=\mathrm{U}, \mathrm{V}$, or $\mathrm{W} ; \mathrm{j}=0$ to 1) has a different value from the DiBj bit whenever the INV03 bit is set to 1 (three-phase motor control timer output enabled); the high- and low-side output signals have always inverse level on the period other than dead time.
If any of the conditions above are not met, the INV16 bit should be set to 0 .

Figure 17.3 INVC1 Register

Three-Phase Output Buffer Control Register ${ }^{(1)}$

b7 b6 b5 b4 b3 b2 b1 b0	Symbol IOBC	Address 40097h	Reset Value 0XXX XXXXb	
	Bit Symbol	Bit Name	Function	RW
	$\overline{(b 6-\mathrm{b} 0})$	No register bits; should be written with 0 and read as undefined value		-
	TBSOUT	Three-Phase Output Pin Select Bit ${ }^{(2)}$	0 : Use pins $\mathrm{U}, \overline{\mathrm{U}}, \mathrm{V}, \overline{\mathrm{V}}, \mathrm{W}$, and $\overline{\mathrm{W}}$ of ports P7 and P8 1: Use pins $\mathrm{U}, \overline{\mathrm{U}}, \mathrm{V}, \overline{\mathrm{V}}, \mathrm{W}$, and $\overline{\mathrm{W}}$ of port P3	RW

Notes:
. This register should be set after the PRC1 bit in the PRCR register is set to 1 (write enabled).
2. This bit should be set after the INV02 bit in the INVCO register is set to 1 . Then, the output function select register of corresponding port should be set. When the INV03 bit in the INVC0 register is set to 0 , output pins for the three-phase motor control timers become high-impedance by the output enable control of output buffers. However, the output enable cannot be controlled only by the output function select register when more than two ports are assigned for output. Thus, a three-state output buffer should be selected using the TBSOUT bit.

Figure 17.4 IOBC Register

Three-Phase Output Buffer Register i $(\mathrm{i}=0,1)^{(1)}$

Note:

1. Values of registers IDB0 and IDB1 are transferred to the three-phase output shift register by a transfer trigger. The initial output signal level of each phase is determined by the value written in the IDB0 register after the transfer trigger occurs. After that, the output signal level is determined by the value written in the IDB1 register on the falling edge of a one-shot pulse of timers A1, A2, and A4.

Figure 17.5 Registers IDB0 and IDB1

Timer B2 Interrupt Generating Frequency Set Counter (1,2,3)

Notes:

1. The MOV instruction should be used to set the ICTB2 register.
2. When the INV01 bit in the INVC0 register is set to 1 , set this register when the TB2S bit in the TABSR register is 0 (timer B2 count stops). When the INV01 bit is set to 0 , this register can be set irrespective of the TB2S bit setting. However, do not set the register when the timer B2 underflows.
3. When the INVOO bit in the INVCO register is set to 1 , the first interrupt is generated if the timer B2 underflows $\mathrm{n}-1$ times. Subsequent interrupts are generated every n times the timer B2 underflows. ($n=$ setting value of the ICTB2 counter)

Figure 17.6 ICTB2 Register

17.1 Modulation Modes of Three-phase Motor Control Timers

The three-phase motor control timers supports two modulation modes: triangular wave modulation mode and sawtooth wave modulation mode. The triangular wave modulation mode has three-phase mode 0 and three-phase mode 1. Table 17.2 lists bit settings and characteristics of each mode.

Table 17.2 Modulation Modes

Item	Triangular Wave Modulation Mode		Sawtooth Wave Modulation Mode
	Three-phase mode 0	Three-phase mode 1	(Three-phase mode 0)
Bit settings	$\begin{aligned} & \text { INV06 = 0, INV11 = 0, } \\ & \text { PWCON = } \end{aligned}$	INV06 = 0, INV11 = 1	$\begin{aligned} & \text { INV06 = 1, INV11 = 0, } \\ & \text { PWCON = } \end{aligned}$
Waveform	Triangular wave		Sawtooth wave
Registers TA11, TA21, and TA41	Not used	Used	Not used
Timing to transfer data from registers IDB0 and IDB1 to the three-phase output shift register	Only once when a transfer trigger (1) occurs after setting registers IDB0 and IDB1		Whenever a transfer trigger (1) occurs
Timing to trigger the dead time timer when INV16 $=0$	On the falling edge of a one-shot pulse of timers A1, A2, and A4		When a transfer trigger occurs, or on the falling edge of a one-shot pulse of timers A1, A2, and A4
Bits INV00 and INV01 in the INVC0 register	Disabled. The ICTB2 counter increments every time the timer B2 underflows, irrespective of the INV00 and INV01 bit settings	Enabled	Disabled. The ICTB2 counter increments every time the timer B2 underflows, irrespective of the INVOO and INV01 bit settings
INV13 bit	Disabled	Enabled	Disabled

Note:

1. Transfer trigger: an underflow of timer B2 and a write to the INV07 bit, or a write to the TB2 register when the INV10 bit is set to 1 .

17.2 Timer B2

Timer B2, which operates in timer mode, is used for carrier wave control in the three-phase motor control timers.
Figure 17.7 and Figure 17.8 show registers TB2 and TB2MR in this function, respectively. Figure 17.9 shows the TB2SC register which switches timing to change the carrier wave frequency in three-phase mode 1.

Timer B2 Register ${ }^{(1)}$

1. A 16-bit read/write access to this register should be performed.

Figure 17.7 TB2 Register in Three-phase Motor Control Timers

	gister Symbol TB2MR	Address 035Dh	Reset Value 00XX 0000b	
1 1 1 1	Bit Symbol	Bit Name	Function	RW
1 d	TMOD0	Operating Mode Select Bit	Should be written with 00b (timer mode) when using the three-phase motor control timers	RW
1 i i i ion-	TMOD1			RW
1 1	MRO	Disabled in the three-phase motor control timers. Should be written with 0 and read as undefined value		RW
- 1 -----------	MR1			RW
-	MR2	No register bit; should be written with 0 and read as undefined value		-
+	MR3	Disabled in the three-phase motor control timers. Should be written with 0 and read as undefined value		-
	TCK0	Count Source Select Bit	$\left\lvert\, \begin{array}{ccc} \text { b7 } & \text { b6 } \\ 0 & 0 & \text { f1 } \end{array}\right.$	RW
	TCK1		$\begin{array}{ll} 1 & 0: f 2 n \\ 1 & 1: f C 32 \end{array}$	RW

Figure 17.8 TB2MR Register in Three-phase Motor Control Timers

Timer B2 Special Mode Register

Note:

1. When the INV11 bit is set to 0 (three-phase mode 0) or the INV06 bit is set to 1 (sawtooth wave modulation mode), this bit should be set to 0 .

Figure 17.9 TB2SC Register

17.3 Timers A4, A1, and A2

Timers A4, A1, and A2 are used for three-phase PWM output ($\mathrm{U}, \overline{\mathrm{U}}, \mathrm{V}, \overline{\mathrm{V}}, \mathrm{W}$, and $\overline{\mathrm{W}}$) control in the threephase motor control timers.
These timers should operate in one-shot timer mode. Every time the timer B2 underflows, a trigger is input to timers A4, A1, and A2 to generate a one-shot pulse. If the values of registers TA4, TA1 and TA2 are rewritten every time a timer B2 interrupt is generated, the duty ratio of the PWM waveform can be varied.
In three-phase mode 1, the value of registers TAi and TAi-1 $(i=4,1,2)$ is alternately reloaded to the counter on each timer B2 interrupt, which halves timer B2 interrupt frequency. The sum of setting values for registers TAi and TAi1 should be identical to the setting value of the TB2 register in this mode.
Figure 17.10 shows registers TA1, TA2, TA4, TA11, TA21, and TA41 in the three-phase motor control timers. Figure 17.11 shows registers TA1MR, TA2MR, and TA4MR in this function. Figure 17.12 and Figure 17.13 show registers TRGSR and TABSR, respectively, in this function.

Timer Ai/Timer Ai-1 Registers $(\mathrm{i}=1,2,4)^{(1 \text { to } 6)}$

Notes:

1. A 16-bit write access to these registers should be performed.
2. When these registers are set to 0000h, the counter does not start, and no timer Ai interrupt request is generated.
3. The MOV instruction should be used to set these registers.
4. When the INV15 bit in the INVC1 register is set to 0 (dead time enabled), the turn-on output signal is switched to its active state with a delay. It is switched when the dead time timer stops.
5. When the INV11 bit in the INVC1 register is set to 0 (three-phase mode 0), the value of the TAi register is transferred to the reload register by a timer Ai start trigger. When the INV11 bit is set to 1 (three-phase mode 1), firstly the value of the TAi1 register is transferred to the reload register by a timer Ai start trigger. Then the value of the TAi register is transferred by the next timer Ai start trigger. After that the value of these registers TAi1 and TAi is alternately transferred to the reload register.
6. These registers should not be written when the timer B2 underflows.

Figure 17.10 Registers TA1, TA2, TA4, TA11, TA21, and TA41

Timer Ai Mode Register (i=1, 2, 4)

Figure 17.11 Registers TA1MR, TA2MR, and TA4MR in Three-phase Motor Control Timers

Trigger Select Register

Note:

1. The timer overflows or underflows.

Figure 17.12 TRGSR Register in Three-phase Motor Control Timers

Count Start Register

Figure 17.13 TABSR Register

17.4 Simultaneous Conduction Prevention and Dead Time Timer

The three-phase motor control timers offers two ways to avoid shoot-through, which occurs when highside and low-side transistors are simultaneously turned on.
One is by the function called "simultaneous turn-on signal output disable function". This function prevents high-side and low-side transistors from being inadvertently switched active caused by program errors and so on. The other is by the use of dead time timers. A dead time timer delays the turn-on of one transistor in order to ensure that an adequate time (the dead time) passes after the turn-off of the other.
To disable simultaneous turn-on output signals, the INV04 bit in the INVC0 register should be set to 1 . If outputs for any pair of phases (U and \bar{U}, V and \bar{V}, or W and \bar{W}) are simultaneously switched to an active state, every three-phase motor control output pin becomes high-impedance. Figure 17.14 shows an example of output waveform when simultaneous turn-on signal output is disabled.
To enable the dead time timer, the INV15 bit in the INVC1 register should be set to 0 . The DTT register determines the dead time. Figure 17.15 shows the DTT register and Figure 17.16 shows an example of output waveform on using dead time timer.

Figure 17.14 Output Waveform When Simultaneous Turn-on Signal Output is Disabled

Dead Time Timer ${ }^{(1,2)}$

b7 b0	Address 030Ch	Reset Value Undefined	
,	Function	Setting Range	RW
	The dead time timer is a one-shot timer to delay the timing for a turn-on signal to be switched to its active state preventing a simultaneous conduction of high-side and low-side transistors. The timer stops when counting a count source n times after a start trigger occurs ($\mathrm{n}=$ setting value) ${ }^{(3)}$	01h to FFh	WO

Notes:
The MOV instruction should be used to set this register.
2. This register setting is enabled when the INV15 bit in the INVC1 register is set to 0 (dead time enabled). No dead time can be set when the INV15 bit is set to 1 (dead time disabled).
3. The trigger and count source should be respectively selected using bits INV06 and INV12 in the INVC1 register.

Figure 17.15 DTT Register

Figure 17.16 Output Waveform on Using Dead Time Timer

17.5 Three-phase Motor Control Timer Operation

Figure 17.17 and Figure 17.18 show an operation example of triangular wave modulation and sawtooth wave modulation, respectively.

Figure 17.17 Triangular Wave Modulation Operation

Figure 17.18 Sawtooth Wave Modulation Operation

17.6 Notes on Three-phase Motor Control Timers

17.6.1 Shutdown

- When a low signal is applied to the $\overline{\mathrm{NMI}}$ pin with the bit settings below, pins TA1OUT, TA2OUT, and TA4OUT become high-impedance: the PM24 bit in the PM2 register is 1 (NMI enabled), the INV02 bit in the INVCO register is 1 (the three-phase motor control timers used) and the INV03 bit is 1 (the three-phase motor control timer output enabled).

17.6.2 Register setting

- Do not write to the TAi1 register ($\mathrm{i}=1,2,4$) in the timing that timer B2 underflows. Before writing to the TAi1 register, read the TB2 register to verify that sufficient time is left until timer B2 underflows. Then, immediately write to the TAi1 register so that no interrupt handler is performed during this write procedure. If the TB2 register indicates little time is left until the underflow, write to the TAi1 register after timer B2 underflows.

18. Serial Interface

Serial interface consists of nine channels (UART0 to UART8).
Each UARTi ($\mathrm{i}=0$ to 8) has an exclusive timer to generate the transmit/receive clock and operates independently.
Figure 18.1 and Figure 18.2 show respectively a block diagram of UART0 to UART6 and that of UART7 and UART8.
The UARTi supports following modes:

- Synchronous serial interface mode
- Asynchronous serial interface mode (UART mode)
- Special mode 1 (${ }^{2} \mathrm{C}$ mode)
- Special mode 2
(for UART0 to UART8)
(for UART0 to UART8)
(for UART0 to UART6)
(for UART0 to UART6)
- Special mode 4 (Bus collision detection: IE mode) (optional) (1) (for UART0 to UART6)

Figure 18.3 to Figure 18.19 show registers associated with the UARTi.
Refer to the tables listing each mode for registers and pin settings.

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

Table 18.1 Functions of UARTO to UART8

Mode/Function	UART0 to UART6	UART7, UART8		
Synchronous serial interface mode Serial data logical inversion	Available	Available		
UART mode CTS/RTS selection	Available	Not available		
TXD and RXD I/O polarity selection	Available	Available		
Special mode 1 (I2C mode)	Available	Available		
Special mode 2	Available	Not available		
Special mode 4 (IE mode) (optional) (1)	Available	Not available		
Pins TXD and RXD output mode	Available	Not available		Push-pull output, N-channel
:---				
open drain output				
programmable by port				
function select registers	\quad	Push-pull output, N-channel		
:---				
open drain output				
programmable by port				
function select registers	,			
:---				

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

Figure 18.1 UARTi Block Diagram ($\mathrm{i}=0$ to 6)

Figure 18.2 UARTi Block Diagram ($\mathbf{i}=7,8$)

UARTi Transmit/Receive Mode Register ($\mathrm{i}=0$ to 6)

Figure 18.3 Registers U0MR to U6MR

UARTi Transmit/Receive Mode Register ($\mathrm{i}=7,8$)

Figure 18.4 Registers U7MR and U8MR

UARTi Transmit/Receive Control Register 0 ($\mathrm{i}=0$ to 6)

Note:

1. This bit is enabled when bits SMD2 to SMD0 in the UiMR register are set to 001b (synchronous serial interface mode selected) or 101b (UART mode, 8-bit character length selected). It should be set to 1 when bits SMD2 to SMD0 are set to 010b (${ }^{2}$ C mode selected) and should be set to 0 when they are set to 100b (UART mode, 7 -bit character length selected) or 110b (UART mode, 9-bit character length selected).

Figure 18.5 Registers U0C0 to U6C0

UARTi Transmit/Receive Control Register 0 ($\mathrm{i}=7,8$)

Note:

1. This bit is enabled when bits SMD2 to SMD0 in the UiMR register are set to 001b (synchronous serial interface mode selected) or 101b (UART mode, 8-bit character length selected). It should be set to 0 when they are set to 100 b (UART mode, 7 -bit character length selected) or 110b (UART mode, 9-bit character length selected).

Figure 18.6 Registers U7C0 and U8C0

UARTi Transmit/Receive Control Register 1 ($\mathrm{i}=0$ to 6)

Note:

1. This bit is enabled when bits SMD2 to SMD0 in the UiMR register are set to 001b (synchronous serial interface mode selected), 100b (UART mode, 7-bit character length selected), or 101b (UART mode, 8-bit character length selected). It should be set to 0 when bits SMD2 to SMD0 are set to 010b ($I^{2} \mathrm{C}$ mode selected) or 110b (UART mode, 9-bit character length selected).

Figure 18.7 Registers U0C1 to U6C1

UARTi Transmit/Receive Control Register 1 ($\mathrm{i}=7,8$)

Figure 18.8 Registers U7C1 and U8C1

UART7, UART8 Transmit/Receive Control Register 2

Figure 18.9 U78CON Register

UARTi Special Mode Register ($\mathrm{i}=0$ to 6)

Notes:

1. This bit is used in $I^{2} \mathrm{C}$ mode.
2. The BBS bit is only set to 0 . This setting is unchanged even if it is set to 1 .

This bit is used in IE mode.
UART0: timer A3 underflow signal, UART1: timer A4 underflow signal UART2: timer A0 underflow signal, UART3: timer A3 underflow signal
UART4: timer A4 underflow signal, UART5: timer A3 underflow signal
UART6: timer A4 underflow signal

Figure 18.10 Registers U0SMR to U6SMR

UARTi Special Mode Register 2 ($\mathrm{i}=0$ to 6)

Notes:

1. This bit is used in master mode of $I^{2} \mathrm{C}$ mode.
2. This bit is used in slave mode of $\mathrm{I}^{2} \mathrm{C}$ mode.

Figure 18.11 Registers U0SMR2 to U6SMR2

UARTi Special Mode Register 3 ($\mathrm{i}=0$ to 6)

Figure 18.12 Registers U0SMR3 to U6SMR3

UARTi Special Mode Register 4 ($\mathrm{i}=0$ to 6)

Notes:

1. This bit is used in master mode of $I^{2} \mathrm{C}$ mode. To set this bit to 1 , preset the IICM bit in the UiSMR register to $1\left(I^{2} \mathrm{C}\right.$ mode).
2. This bit becomes 0 when its condition is generated. The setting remains 1 when the condition is uncompleted.
3. The STSPSEL bit should be set to 1 after setting the STAREQ, RSTAREQ, or STPREQ bit to 1.
4. This bit is used in slave mode of $I^{2} \mathrm{C}$ mode. To set this bit to 1 , preset the IICM bit in the UiSMR register to 1 ($I^{2} \mathrm{C}$ mode).

Figure 18.13 Registers U0SMR4 to U6SMR4

UARTi Bit Rate Register ($\mathrm{i}=0$ to 8$)^{(1,2,3)}$

b7 bo	Symbol	Address	Reset Value	
	U0BRG to U3BRG	0369h, 02E9h, 0339h,	Undefined	
!	U4BRG to U7BRG	02F9h, 01C9h, 01D9h,	Undefined	
,	U8BRG	01E9h	Undefined	
,		Function	Setting Range	RW
	The UiBRG register divides the count source by $\mathrm{n}+1$ ($n=$ setting value)		OOh to FFh	WO
Notes:				
1. Set bits CLK1 and CLK0 in the UiC0 register before rewriting this register.				
2. The MOV instruction should be used to set this register.				
3. The register should be set while no data is being transmitted/received.				

Figure 18.14 Registers U0BRG to U8BRG

UARTi Transmit Buffer Register ($\mathrm{i}=0$ to 8) ${ }^{(1)}$

Note:
1.The MOV instruction should be used to set this register.

Figure 18.15 Registers UOTB to U8TB

UARTi Receive Buffer Register ($\mathrm{i}=0$ to 6)

Notes:

1. The ABT bit can be set to 0 only.
2. Bits OER, FER, PER, and SUM are set to 0 when bits SMD2 to SMD0 in the UiMR register are set to 000b (serial interface disabled) or the RE bit in the UiC1 register is set to 0 (reception disabled). When bits OER, FER, and PER are all set to 0 , the SUM bit is also set to 0 . Bits FER and PER are set to 0 when the lower byte in the UiRB register is read.
3. When bits SMD2 to SMD0 are set to 001b (synchronous serial interface mode selected) or 010b ($\mathrm{I}^{2} \mathrm{C}$ mode selected), these error flags are disabled and read as an undefined value.

Figure 18.16 Registers U0RB to U6RB

UARTi Receive Buffer Register ($\mathrm{i}=7,8$)

	Symbol U7RB, U8RB	Address 01E7h-01E6h, 01EFh-01EEh		Reset Value Undefined
	Bit Symbol	Bit Name	Function	RW
	$\overline{(b 7-b 0)}$	-	Data (D7 to D0) received	RO
	$\overline{(b 8)}$	-	Data (D8) received	RO
	$\frac{-}{(b 11-b 9)}$	No register bits; should be written with 0 and read as 0		-
	OER	Overrun Error Flag ${ }^{(1)}$	0: No overrun error occurred 1: Overrun error occurred	RO
1	FER	Framing Error Flag ${ }^{(1,2)}$	0: No framing error occurred 1: Framing error occurred	RO
	PER	Parity Error Flag ${ }^{(1,2)}$	0: No parity error occurred 1: Parity error occurred	RO
	SUM	Error Sum Flag ${ }^{(1,2)}$	0: No error occurred 1: Error occurred	RO

Notes:

1. Bits OER, FER, PER, and SUM are set to 0 when bits SMD2 to SMD0 in the UiMR register are set to 000b (serial interface disabled) or the RE bit in the UiC1 register is set to 0 (reception disabled). When bits OER, FER, and PER are all set to 0 , the SUM bit is also set to 0 . Bits FER and PER are set to 0 when the lower byte in the UiRB register is read.
2. When bits SMD2 to SMD0 are set to 001b (synchronous serial interface mode selected) or 010b ($I^{2} \mathrm{C}$ mode selected), these error flags are disabled and read as an undefined value.

Figure 18.17 Registers U7RB and U8RB

External Interrupt Request Source Select Register 0

Note:

1. This bit should be set to 0 to select the level sensitive input as trigger. To set this bit to 1 , the POL bit in the corresponding INTiIC register ($\mathrm{i}=0$ to 5) should be set to 0 (falling edge).

Figure $\mathbf{1 8 . 1 8}$ IFSR0 Register

External Interrupt Request Source Select Register 1

	Symbol IFSR1	Address 4406Dh	Reset Value X0XX X000b	
I	Bit Symbol	Bit Name	Function	RW
1 1 1	IFSR10	$\overline{\text { INT6 Pin Polarity Select Bit }}$ (1)	0: One edge 1: Both edges	RW
1 1 1	IFSR11	$\overline{\text { INT7 Pin Polarity Select Bit }}$ (1)	0 : One edge 1: Both edges	RW
'	IFSR12	INT8 Pin Polarity Select Bit (1)	0 : One edge 1: Both edges	RW
1	(b5-b3)	No register bits; should be written with 0 and read as undefined value		-
!	IFSR16	UART5/UART6 Interrupt Source Select Bit	0 : Bus collision, start condition detection, stop condition detection in UART5 1: Bus collision, start condition detection, stop condition detection in UART6	RW
	$\overline{(b 7)}$	No register bit; should be written with 0 and read as undefined value		-

Note:

1. This bit should be set to 0 to select the level sensitive input as trigger. To set this bit to 1 , the POL bit in the corresponding INTiIC register ($\mathrm{i}=6$ to 8) should be set to 0 (falling edge).

Figure 18.19 IFSR1 Register

18.1 Synchronous Serial Interface Mode

The synchronous serial interface mode allows data transmission/reception synchronized with transmit/ receive clock. Table 18.2 lists specifications of synchronous serial interface mode.

Table 18.2 Synchronous Serial Interface Mode Specifications

Item	Specification
Data format	8-bit character length
Transmit/receive clock	- The CKDIR bit in the UiMR register ($\mathrm{i}=0$ to 8) is set to 0 (internal clock): $\frac{f x}{2(m+1)} \quad \mathrm{fx}=\mathrm{f} 1, \mathrm{f} 8, \mathrm{f} 2 \mathrm{n} ; \mathrm{m}$: UiBRG register setting value, 00h to FFh - The CKDIR bit is set to 1 (external clock): input into the CLKi pin
Transmit/receive control	Selectable among CTS, RTS, and CTS/RTS disabled
Transmit start conditions	The conditions for starting data transmission are as follows (1): - The TE bit in the UiC1 register is set to 1 (transmission enabled) - The TI bit in the UiC1 register is set to 0 (data held in the UiTB register) - Input level at the CTSi pin is L when the CTS is selected
Receive start conditions	The conditions for starting data reception are as follows (1): - The RE bit in the UiC1 register is set to 1 (reception enabled) - The TE bit in the UiC1 register is set to 1 (transmission enabled) - The TI bit in the UiC1 register is set to 0 (data held in the UiTB register) - Input level at the CTSi pin is low when the CTS is selected
Interrupt request generating timing	In transmit interrupt, one of the following conditions is selected to set the UilRS bit in registers U0C1 to U6C1 and U78CON: - The UilRS bit is set to 0 (transmit buffer in the UiTB register is empty): when data is transferred from the UiTB register to the UARTi transmit register (when the transmission has started) - The UilRS bit is set to 1 (transmission is completed): when data transmission from the UARTi transmit register is completed In receive interrupt, - When data is transferred from the UARTi receive register to the UiRB register (when the reception is completed)
Error detection	Overrun error (2) This error occurs when the seventh bit of the next data has been received before the UiRB register is read
Selectable functions	- CLK polarity Selectable either rising or falling edge of the transmit/receive clock for output and input of transmit/receive data - Bit order selection Selectable either LSB first or MSB first - Continuous receive mode Data reception is enabled by a read access to the UiRB register - Serial data logical inversion (UART0 to UART6) This function logically inverses transmit/receive data

Notes:

1. In case external clock is selected, the following preconditions should be met:

- The CLKi pin is held high when the CKPOL bit in the UiC0 register is set to 0 (transmit data output on the falling edge of the transmit/receive clock and receive data input on the rising edge)
- The CLKi pin is held low when the CKPOL bit is set to 1 (transmit data output on the rising edge of the transmit/receive clock and receive data input on the falling edge)

2. If an overrun error occurs, the UiRB register is undefined. The IR bit in the SiRIC register is not changed to 1 (interrupts requested).

Table 18.3 and Table 18.4 list register settings. When UARTi ($i=0$ to 8) operating mode is selected, a high is output at the TXDi pin until the transmission starts (the TXDi pin is high-impedance when the N channel open drain output is selected).
Figure 18.20 and Figure 18.21 show respectively an example of transmit/receive operation in synchronous serial interface mode.

Table 18.3 Register Settings in Synchronous Serial Interface Mode (for UART0 to UART6)

Register	Bits	Function
UiMR	7 to 4	Set the bits to 0000b
	CKDIR	Select either the internal clock or the external clock
	SMD2 to SMD0	Set the bits to 001b
UiC0	UFORM	Select either LSB first or MSB first
	CKPOL	Select a transmit/receive clock polarity
	5	Set the bit to 0
	CRD	Select the CTS enabled or disabled
	TXEPT	Transmit register empty flag
	2	Set the bit to 0
	CLK1 and CLK0	Select a count source for the UiBRG register
UiC1	7	Set the bit to 0
	UiLCH	Set the bit to 1 to use logical inversion
	UiRRM	Set the bit to 1 to use continuous receive mode
	UiIRS	Select a source for UARTi transmit interrupt
	RI	Receive complete flag
	RE	Set the bit to 1 to enable data reception
	TI	Transmit buffer empty flag
	TE	Set the bit to 1 to enable data transmission/reception
UiSMR	7 to 0	Set the bits to 00h
UiSMR2	7 to 0	Set the bits to 00h
UiSMR3	7 to 0	Set the bits to 00h
UiSMR4	7 to 0	Set the bits to 00h
UiBRG	7 to 0	Set the bit rate
IFS0	IFS06	Select input pins for CLK3, RXD3, and CTS3
	IFS03 and IFS02	Select input pins for CLK6, RXD6, and $\overline{\text { CTS6 }}$
UiTB	7 to 0	Set the data to be transmitted
UiRB	OER	Overrun error flag
	7 to 0	Received data is read

$i=0$ to 6

Table 18.4 Register Settings in Synchronous Serial Interface Mode (for UART7 and UART8)

Register	Bits	Function
UiMR	7 to 4	Set the bits to 0000b
	CKDIR	Select the internal clock or the external clock
	SMD2 to SMD0	Set the bits to 001b
UiC0	UFORM	Select either LSB first or MSB first
	CKPOL	Select a transmit/receive clock polarity
	5	Set the bit to 0
	CRD	Select the CTS enabled or disabled
	TXEPT	Transmit register empty flag
	2	Set the bit to 0
	CLK1 and CLK0	Select a count source for the UiBRG register
UiC1	RI	Receive complete flag
	RE	Set the bit to 1 to enable data reception
	TI	Transmit buffer empty flag
	TE	Set the bit to 1 to enable data transmission/reception
U78CON	UiRRM	Set the bit to 1 to use continuous receive mode
	UilRS	Select an interrupt source for UARTi transmit
IFS0	IFS05	Select input pins for CLK7, RXD7, and CTS7
	IFS04	Select input pins for CLK8, RXD8, and CTS8
UiBRG	7 to 0	Set the bit rate
UiTB	7 to 0	Set the data to be transmitted
UiRB	OER	Overrun error flag
	7 to 0	Received data can be read

$i=7,8$

Transmit timing (in internal clock mode)

The figure above applies under the following conditions:
-The CKDIR bit in the UiMR register $=0$ (internal clock selected)
-The CRD bit in the UiC0 register $=0$ (CTS enabled)
-The CKPOL bit in the UiC0 register $=0$ (transmitted data output on the falling edge of the transmit/receive clock) -The UiRS bit in registers UiC1 and U78CON = 0 (an transmit interrupt request generated because the UiTB register is empty)
$T C=T C L K=2(m+1) / f x$
fx : UiBRG count source frequency ($\mathrm{f} 1, \mathrm{f8}$, or f2n)
m : Setting value of the UiBRG register

Figure 18.20 Transmit Operation in Synchronous Serial Interface Mode

Receive timing (in external clock mode)

The figure above applies under the following conditions:
-The CKDIR bit in the UiMR register = 1 (external clock selected)
-The CKPOL bit in the UiCO register $=0$ (received data input on the rising edge of the transmit/receive clock)

fEXT: External clock frequency

The following conditions should be met while an input level at the CLKi pin before receiving data is high:
-The TE bit in the UiC1 register $=1$ (transmission enabled)
-The RE bit in the UiC1 register = 1 (reception enabled)
-A write of dummy data to the UiTB register

Figure 18.21 Receive Operation in Synchronous Serial Interface Mode

18.1.1 Reset Procedure on Transmit/Receive Error

When a transmit/receive error occurs in synchronous serial interface mode, a reset is required as the procedure below:
A. Reset procedure for the UiRB register ($\mathrm{i}=0$ to 8)
(1) Set the RE bit in the UiC1 register to 0 (reception disabled).
(2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
(3) Set bits SMD2 to SMD0 in the UiMR register to 001b (synchronous serial interface mode selected).
(4) Set the RE bit in the UiC1 register to 1 (reception enabled).
B. Reset procedure for the UiTB register
(1) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
(2) Set bits SMD2 to SMD0 in the UiMR register to 001b (synchronous serial interface mode selected).
(3) Set the TE bit in the UiC1 register to 1 (transmission enabled) irrespective of the bit setting.

18.1.2 CLK Polarity

As shown in Figure 18.22, the polarity of the transmit/receive clock is selected using the CKPOL bit in the UiC0 register ($\mathrm{i}=0$ to 8).

Case 1: When the CKPOL bit in the UiC0 register is set to 0 (transmitted data output on the falling edge of the transmit/receive clock and received data input on the rising edge)

Case 2: When the CKPOL bit in the UiC0 register is set to 1 (transmitted data output on the rising edge of the transmit/receive clock and received data input on the falling edge)

3. The CLKi pin is held low when no data is transmitted/received.
4. The figure above applies under the following conditions:
-The UFORM bit in the UiC0 register $=0$ (LSB first)
-The UiLCH bit in the UiC1 register $=0$ (data is non logic-inverted)

Figure 18.22 Transmit/Receive Clock Polarity ($\mathrm{i}=0$ to 8)

18.1.3 LSB First and MSB First Selection

As shown in Figure 18.23, the bit order is selected using the UFORM bit in the UiC0 register ($\mathrm{i}=0$ to 8).

Case 1: When the UFORM bit in the UiC0 register is set to 0 (LSB first)

Note:

1. The figure above applies under the following conditions:
-The CKPOL bit in the UiCO register $=0$ (transmitted data output on the falling edge of the transmit/ receive clock and received data input on the rising edge)
-The UiLCH bit in the UiC1 register $=0$ (data is non logic-inverted)
Case 2: When the UFORM bit in the UiC0 register is set to 1 (MSB first)
Note:
2. The figure above applies under the following conditions:
-The CKPOL bit in the Uic0 register = 0 (transmitted data output on the falling edge of the transmit/
receive clock and received data input on the rising edge)
-The UiLCH bit in the UiC1 register = 0 (data is non logic-inverted)

Figure 18.23 Bit Order ($\mathrm{i}=0$ to 8)

18.1.4 Continuous Receive Mode

In continuous receive mode, data reception is automatically enabled by a read access to the receive buffer register without any write of dummy data to the transmit buffer register. To start data reception, however, dummy data is required to read the receive buffer register.
When the UiRRM bit ($\mathrm{i}=0$ to 8) in registers U0C1 to U6C1 and U78CON is set to 1 (continuous receive mode enabled), the TI bit in the UiC1 register is set to 0 (data held in the UiTB register) by a read access to the UiRB register. In this UiRRM bit setting, any dummy data should not be written to the UiTB register.

18.1.5 Serial Data Logical Inversion

When the UiLCH bit in the UiC1 register ($\mathrm{i}=0$ to 6) is set to 1 (data logic-inverted), logical value written in the UiTB register is inverted to be transmitted. The UiRB register is read as logic-inverted receive data. Figure 18.24 shows the logical inversion of serial data.

Case 1: When the UiLCH bit in the UiC1 register is set to 0 (data is non logic-inverted)

Case 2: When the UiLCH bit in the UiC1 register is set to 1 (data is logic-inverted)

Note:

1. The figures above apply under the following conditions:
-The CKPOL bit in the UiC0 register $=0$ (transmitted data output on the falling edge of the transmit/receive clock and received data input on the rising edge)
-The UFORM bit = 0 (LSB first)

Figure 18.24 Serial Data Logical Inversion (i=0 to 6)

18.1.6 CTS/RTS Function

The CTS controls data transmission using the $\overline{C T S i} / \overline{R T S i}$ pin ($i=0$ to 8). When an input level at the pin becomes low, data transmission is started. If the input level changes to high during transmit operation, the transmission of the next data is stopped.
In synchronous serial interface mode, the transmitter is required to operate even during the receive operation. If the CTS is enabled, the input level at the $\overline{\mathrm{CTSi}} / \overline{\mathrm{RTSi}}$ pin should be low to start data reception as well.
The RTS indicates receiver status using the $\overline{\mathrm{CTSi}} / \overline{\mathrm{RTSi}}$ pin. When data reception is ready, the output level at the pin becomes low. It becomes high on the first falling edge of the CLKi pin.

18.2 Asynchronous Serial Interface Mode (UART Mode)

The UART mode enables data transmission/reception synchronized with an internal clock generated by a trigger on the falling edge of the start bit. Table 18.5 lists specifications of UART mode.

Table 18.5 UART Mode Specifications

Item	Specification
Data format	- Start bit: 1 bit-length - Data bit (data character) selectable among 7, 8, and 9 bit-length - Parity bit: selectable among odd, even, and none - Stop bit: selectable between 1 and 2 bit-length
Transmit/receive clock	- The CKDIR bit in the UiMR register ($\mathrm{i}=0$ to 8) is set to 0 (internal clock): $\frac{f x}{16(m+1)} \quad f x=f 1, f 8, f 2 n ; m$: UiBRG register setting value, $00 h$ to $F F h$ - The CKDIR bit is set to 1 (external clock) $\frac{f E X T}{16(m+1)}$ fEXT: Clock applied to the CLKi pin
Transmit/receive control	Selectable among CTS, RTS, and CTS/RTS disabled
Transmit start conditions	The conditions for starting data transmission are as follows: - The TE bit in the UiC1 register is set to 1 (transmission enabled) - The TI bit in the UiC1 register is set to 0 (data held in the UiTB register) - Input level at the CTSi pin is low when the CTS is selected
Receive start conditions	The conditions for starting data reception are as follows: - The RE bit in the UiC1 register is set to 1 (reception enabled) - The start bit is detected
Interrupt request generating timing	In transmit interrupt, one of the following conditions is selected to set the UiIRS bit in registers U0C1 to U6C1 and U78CON: - The UilRS bit is set to 0 (transmit buffer in the UiTB register is empty): when data is transmitted from the UiTB register to the UARTi transmit register (when the transmission has started) - The UilRS bit is set to 1 (transmission is completed): when data transmission from the UARTi transmit register is completed In receive interrupt, - When data is transmitted from the UARTi receive register to the UiRB register (when reception is completed)
Error detection	- Overrun error ${ }^{(1)}$ This error occurs when one bit prior to the stop bit (when 1 stop bit length is selected) or the first stop bit (when 2 stop bit length is selected) of the next data has been received before the UiRB register is read - Framing error This error occurs when the required number of stop bits is not detected - Parity error This error occurs when an even number of 1's in parity and character bits is detected while the odd number is set, or vice versa. The parity should be enabled - Error sum flag This flag is set to 1 when any of overrun error, framing error, or parity error occurs
Selectable functions	- Bit order selection Selectable either LSB first or MSB first - Serial data logical inversion This function logically inverses transmit/receive data. The start bit and stop bit are not inverted - TXD/RXD I/O polarity switching The output level from the TXD pin and the input level to the RXD pin are inverted. All I/O levels are inverted

Note:

1. When an overrun error occurs, the UiRB register is undefined. The IR bit in the SiRIC register does not change to 1 (interrupts requested).

Table 18.6 and Table 18.7 list register settings. When UARTi ($\mathrm{i}=0$ to 8) operating mode is selected, a high is output at the TXDi pin until the transmission starts (the TXDi pin is high-impedance when the N channel open drain output is selected). Figure 18.25 and Figure 18.26 show examples of transmit operation in UART mode. Figure 18.27 shows an example of receive operation.

Table 18.6 Register Settings in UART Mode (UART0 to UART6)

Register	Bits	Function
UiMR	IOPOL	Select I/O polarity of pins TXD and RXD
	PRY and PRYE	Select parity enabled or disabled, and odd or even
	STPS	Select a stop bit length
	CKDIR	Select the internal clock or the external clock
	SMD2 to SMD0	Set the bits to 100b in 7-bit character length
		Set the bits to 101b in 8-bit character length
		Set the bits to 110b in 9-bit character length
UiC0	UFORM	Selectable either LSB first or MSB first in 8-bit character length. Set the bit to 0 in 7 -bit or 9 -bit character length
	CKPOL	Set the bit to 0
	5	Set the bit to 0
	CRD	Select the CTS enabled or disabled
	TXEPT	Transmit register empty flag
	2	Set the bit to 0
	CLK1 and CLK0	Select a count source for the UiBRG register
UiC1	7	Set the bit to 0
	UiLCH	Set the bit to 1 to use logical inversion
	UiRRM	Set the bit to 0
	UilRS	Select an interrupt source for UARTi transmit
	RI	Receive complete flag
	RE	Set the bit to 1 to enable data reception
	TI	Transmit buffer empty flag
	TE	Set the bit to 1 to enable data transmission
UiSMR	7 to 0	Set the bits to 00h
UiSMR2	7 to 0	Set the bits to 00h
UiSMR3	7 to 0	Set the bits to 00h
UiSMR4	7 to 0	Set the bits to 00h
UiBRG	7 to 0	Set the bit rate
IFS0	IFS06	Select input pins for CLK3, RXD3, and $\overline{\text { CTS3 }}$
	IFS03 and IFS02	Select input pins for CLK6, RXD6, and CTS6
UiTB	8 to 0	Set the data to be transmitted (1)
UiRB	OER, FER, PER, and SUM	Error flag
	8 to 0	Received data is read (1)

$i=0$ to 6
Note:

1. The bits to be used are as follows: 7-bit character length: bits 6 to 0

8 -bit character length: bits 7 to 0
9-bit character length: bits 8 to 0

Page 273 of 604

Table 18.7 Register Settings in UART Mode (UART7, UART8)

Register	Bits	Function
UiMR	PRY and PRYE	Select parity enabled or disabled, and odd or even
	STPS	Select a stop bit length
	CKDIR	Select the internal clock or the external clock
	SMD2 to SMD0	Set the bits to 100b in 7-bit character length
		Set the bits to 101b in 8-bit character length
		Set the bits to 110b in 9-bit character length
UiC0	UFORM	Selectable either LSB first or MSB first in 8-bit character length. Set the bit to 0 in 7 -bit or 9 -bit character length
	CKPOL	Set the bit to 0
	5	Set the bit to 0
	CRD	Select the CTS enabled or disabled
	TXEPT	Transmit register empty flag
	2	Set the bit to 0
	CLK1 and CLK0	Select a count source for the UiBRG register
UiC1	RI	Receive complete flag
	RE	Set the bit to 1 to enable data reception
	TI	Transmit buffer empty flag
	TE	Set the bit to 1 to enable data transmission
U78CON	UiRRM	Set the bit to 0
	UilRS	Select an interrupt source for UARTi transmit
UiBRG	7 to 0	Set the bit rate
IFS0	IFS05	Select input pins for CLK7, RXD7, and $\overline{\text { CTS7 }}$
	IFS04	Select input pins for CLK8, RXD8, and CTS8
UiTB	8 to 0	Set the data to be transmitted (1)
UiRB	OER, FER, PER, and SUM	Error flag
	8 to 0	Received data is read (1)

$i=7,8$

Note:

1. The bits to be used are as follows: 7-bit character length: bits 6 to 0

8 -bit character length: bits 7 to 0
9-bit character length: bits 8 to 0

8-bit character long data transmit timing (parity enabled, 1 stop bit)
The transmit/receive clock stops because the input level at the $\overline{\mathrm{CTSi}}$ pin is high when the stop bit state is verified. It resumes running as

$\begin{array}{lc} & \text { ST: Start bit } \\ \text { The figure above applies under the following conditions: } & \text { P: Parity bit } \\ \text {-The PRYE bit in the UiMR register }=1 \text { (parity enabled) } & \text { SP: Stop bit } \\ \text {-The STPS bit in the UiMR register }=0 \text { (1 stop bit) } & \\ \text {-The CRD bit in the UiC0 register }=0 \text { (CTS enabled) } & \\ \text {-The UiIRS bit in the UiC1 register }=1 \text { (transmit interrupt request generated because the UiTB register is empty) }\end{array}$
$T C=16(m+1) / f x$ or 16(m+1)/fEXT
fx : UiBRG count source frequency ($\mathrm{f} 1, \mathrm{f} 8, \mathrm{f} 2 \mathrm{n}$)
fEXT: UiBRG count source frequency (external clock)
m : Setting value of the UiBRG register

Figure 18.25 Transmit Operation in UART Mode (1) (i=0 to 8)

9-bit character long data transmit timing (parity disabled, 2 stop bits)

TC $=16(m+1) / f x$ or $16(m+1) / f E X T$
fx : UiBRG count source frequency (f1, f8, f2n)
fEXT: UiBRG count source frequency (external clock)
m : Setting value of the UiBRG register

Figure 18.26 Transmit Operation in UART Mode (2) ($\mathrm{i}=0$ to 8)

8-bit character long data receive timing (parity disabled, 1 stop bit)

The figure above applies under the following conditions:
-The PRYE bit in the UiMR register $=0$ (parity disabled)
-The STPS bit in the UiMR register $=0$ (1 stop bit)

Figure 18.27 Receive Operation in UART mode ($i=0$ to 8)

18.2.1 Bit Rate

In UART mode, the bit rate is clock frequency which is divided by a setting value of the UiBRG register ($\mathrm{i}=0$ to 8) and again divided by 16 . Table 18.8 lists an example of bit rate setting.

Table 18.8 Bit Rate Setting

Bit Rate (bps)	Count Source of BRG	Peripheral Clock: 30 MHz		Peripheral Clock: 32 MHz	
		Setting value of BRG: n	Actual bit rate (bps)	Setting value of BRG: n	Actual bit rate (bps)
1200	f8	194 (C2h)	1202	207 (CHh)	1202
2400	f8	97 (61h)	2392	103 (67h)	2404
4800	f8	48 (30h)	4783	51 (33h)	4808
9600	f1	194 (C2h)	9615	207 (CFh)	9615
14400	f1	129 (81h)	14423	138 (8Ah)	14388
19200	f1	97 (61h)	19133	103 (67h)	19231
28800	f1	64 (40h)	28846	68 (44h)	28986
31250	f1	59 (3Bh)	31250	63 (3Fh)	31250
38400	f1	48 (30h)	38265	51 (33h)	38462
51200	f1	36 (24h)	50676	38 (26h)	51282

18.2.2 Reset Procedure on Transmit/Receive Error

When a transmit/receive error occurs in UART mode, a reset is required as the procedure below:
A. Reset procedure for the UiRB register ($\mathrm{i}=0$ to 8)
(1) Set the RE bit in the UiC1 register to 0 (reception disabled).
(2) Set the RE bit in the UiC1 register to 1 (reception enabled).
B. Reset procedure for the UiTB register
(1) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
(2) Set again bits SMD2 to SMD0 to either of 001b, 101b, or 110b.
(3) Set the TE bit in the UiC1 register to 1 (transmission enabled) irrespective of the bit setting.

18.2.3 LSB First and MSB First Selection

As shown in Figure 18.28, the bit order is selected using the UFORM bit in the UiC0 register ($\mathrm{i}=0$ to 8). This function is available for the data format of 8-bit character length.
(1) When the UFORM bit in the UiC0 register is set to 0 (LSB first)

(2) When the UFORM bit in the UiC0 register is set to 1 (MSB first)

Note:

1. The figure above applies under the following conditions:

ST: Start bit
-The UiLCH bit in the UiC1 register $=0$ (data is non logic-inverted) P: Parity bit
-The STPS bit in the UiMR register $=0$ (1 stop bit)
-The PRYE bit = 1 (parity enabled)

Figure 18.28 Bit Order ($\mathrm{i}=0$ to 8)

18.2.4 Serial Data Logical Inversion

When the UiLCH bit in the UiC1 register ($\mathrm{i}=0$ to 6) is set to 1 (data logic-inverted), logical value written in the UiTB register is inverted to be transmitted. The UiRB register is read as logic-inverted receive data. The parity bit is not inverted. Figure 18.29 shows the logical inversion of serial data.
(1) When the UiLCH bit in the UiC1 register is set to 0 (data is non logic-inverted)

(2) When the UiLCH bit in the UiC1 register is set to 1 (data is logic-inverted)

CLKi

(logic-inverted)
Note:

1. The figure above applies under the following conditions:
ST: Start bit
-The UFORM bit in the UiC0 register $=0$ (LSB first)
P: Parity bit
-The STPS bit in the UiMR register $=0$ (1 stop bit)
SP: Stop bit
-The PRYE bit = 1 (parity enabled)

Figure 18.29 Serial Data Logical Inversion (i=0 to 6)

18.2.5 TXD and RXD I/O Polarity Inversion

The output level at the TXD pin and the input level at the RXD pin are inverted by this function. All I/O data levels, including the start bit, stop bit, and parity bit are inverted by setting the IOPOL bit in the UiMR register ($\mathrm{i}=0$ to 6) to 1 (inverted). Figure 18.30 shows TXD and RXD I/O polarity inversion.
(1) When the IOPOL bit in the UiMR register is set to 0 (non inverted)

(2) When the IOPOL bit in the UiMR register is set to 1 (inverted)
(inverted)
$1 \mathrm{ST}, \overline{\mathrm{D} 0} \times \overline{\mathrm{D} 1} \times \overline{\mathrm{D} 2} \times \overline{\mathrm{D} 3} \times \overline{\mathrm{D} 4} \times \overline{\mathrm{D} 5} \times \overline{\mathrm{D} 6} \times \overline{\mathrm{D} 7} \times \overline{\mathrm{P}} \lambda \mathrm{sp}$

Note:

1. The figure above applies under the following conditions:

ST: Start bit
-The UFORM bit in the UiC0 register $=0$ (LSB first)
-The STPS bit in the UiMR register $=0$ (1 stop bit)
-The PRYE bit = 1 (parity enabled)

Figure 18.30 TXD and RXD I/O Polarity Inversion ($\mathrm{i}=0$ to $\mathbf{6}$)

18.2.6 CTS/RTS Function

The CTS controls data transmission using the $\overline{C T S i} / \overline{\operatorname{RTSi}}$ pin ($i=0$ to 8). When an input level at the pin becomes low, data transmission is started. If the input level changes to high during transmit operation, the transmission of the next data is stopped.
The RTS indicates receiver status using the $\overline{\mathrm{CTSi}} / \overline{\mathrm{RTSi}} \mathrm{pin}$. When the MCU is ready to receive data, the output level at the pin becomes low. It becomes high on the first falling edge of the CLKi pin.

18.3 Special Mode 1 (${ }^{2} \mathrm{C}$ Mode)

This mode uses an $1^{2} \mathrm{C}$-typed interface for communication. Table 18.9 lists specifications of the $\mathrm{I}^{2} \mathrm{C}$ mode.

Table 18.9 $\quad I^{2} \mathrm{C}$ Mode Specifications

Item	Specification
Data format	8-bit character length
Transmit/receive clock	In master mode - The CKDIR bit in the UiMR register ($\mathrm{i}=0$ to 6) is set to 0 (internal clock): $\frac{f x}{2(m+1)} \quad \mathrm{fx}=\mathrm{f} 1, \mathrm{f} 8, \mathrm{f} 2 \mathrm{n}$ m: UiBRG register setting value, 00h to FFh In slave mode - The CKDIR bit is set to 1 (external clock): input into the SCLi pin
Transmit start conditions	The conditions for starting data transmission are as follows (1): - The TE bit in the UiC1 register is set to 1 (transmission enabled) - The TI bit in the UiC1 register is set to 0 (data held in the UiTB register)
Receive start conditions	The conditions for starting data reception are as follows (1): - The RE bit in the UiC1 register is set to 1 (reception enabled) - The TE bit in the UiC1 register is set to 1 (transmission enabled) - The TI bit in the UiC1 register is set to 0 (data held in the UiTB register)
Interrupt request generating timing	When any of the following is detected: start condition, stop condition, NACK (Not-Acknowledge), or ACK (Acknowledge)
Error detection	Overrun error (2) This error occurs when the eighth bit of the next data has been received before the UiRB register is read
Selectable functions	- Arbitration lost Selectable update timing of the ABT bit in the UiRB register - SDAi digital delay Selectable among non digital delay and two to eight cycles of digital delay of UiBRG count source - Clock phase setting Selectable either clock delayed or no clock delay

Notes:

1. When an external clock is selected, the conditions should be met while the external clock signal is held high.
2. If an overrun error occurs, the UiRB register is undefined. The IR bit in the SiRIC register is not changed to 1 (interrupts requested).

Table 18.10 and Table 18.11 list respectively register settings and functions in $\mathrm{I}^{2} \mathrm{C}$ mode. Figure 18.31 shows a block diagram of $\mathrm{I}^{2} \mathrm{C}$ mode and Figure 18.32 shows timings for the transfer to the UiRB register ($\mathrm{i}=0$ to 6) and the interrupt.

As shown in Table 18.11, this mode is available when bits SMD2 to SMD0 in the UiMR register ($\mathrm{i}=0$ to 6) are set to 010b, and the IICM bit in the UiSMR register is set to 1 . Since a transmit signal at the SDAi pin is output via the delay circuit, it changes after the SCLi pin is stably held low.

IICM: Bit in the UiSMR register
IICM2, SWC, ALS, SWC2, and SDHI: Bits in the UiSMR2 register STSPSEL, ACKD, and ACKC: Bits in the UiSMR4 register

Figure $18.31 \mathrm{I}^{2} \mathrm{C}$ Mode Block Diagram ($\mathrm{i}=0$ to 6)

Table 18.10 Register Settings in $I^{2} \mathrm{C}$ Mode ($\mathrm{i}=0$ to $\mathbf{6}$)

Register	Bits	Function	
		Master	Slave
UiMR	IOPOL	Set the bit to 0	
	CKDIR	Set the bit to 0	Set the bit to 1
	SMD2 to SMD0	Set the bit to 010b	
UiC0	7 to 4	Set the bits to 1001b	
	TXEPT	Transmit register empty flag	
	2	Set the bit to 0	
	CLK1 and CLK0	Select a count source for the UiBRG register	Disabled
UiC1	7 to 5	Set the bits to 000b	
	UilRS	Set the bit to 1	
	RI	Receive complete flag	
	RE	Set the bit to 1 to enable data reception	
	TI	Transmit buffer empty flag	
	TE	Set the bit to 1 to enable data transmission/reception	
UiSMR	7 to 3	Set the bits to 00000b	
	BBS	Bus busy flag	
	ABC	Select an arbitration lost detection timing	Disabled
	IICM	Set the bit to 1	
UiSMR2	7	Set the bit to 0	
	SDHI	Set the bit to 1 to disable the SDA output	
	SWC2	Set the bit to 1 to hold the SCL output at a forcible low	
	STC	Set the bit to 0	Set the bit to 1 to reset UARTi by detecting the start condition
	ALS	Set the bit to 1 to stop the output at the SDAi pin to detect an arbitration lost	Set the bit to 0
	SWC	Set the bit to 1 to hold a low output at the SCLi pin after receiving the eighth bit of the clock	
	CSC	Set the bit to 1 to enable clock synchronization	Set the bit to 0
	IICM2	Refer to Table 18.11	
UiSMR3	DL2 to DL0	Set the digital delay value of SDAi	
	4 to 2	Set the bit to 000b	
	CKPH	Refer to Table 18.11	
	SSE	Set the bit to 0	
UiSMR4	SWC9	Set the bit to 0	Set the bit to 1 to hold a low output at the SCLi pin after receiving the ninth bit of the clock
	SCLHI	Set the bit to 1 to stop the SCL output to detect stop condition	Set the bit to 0
	ACKC	Set the bit to 1 for ACK data output	
	ACKD	Select ACK or NACK	
	STSPSEL	Set the bit to 1 when any condition is output	Set the bit to 0
	STPREQ	Set the bit to 1 to generate a stop condition	Set the bit to 0
	RSTAREQ	Set the bit to 1 to generate a restart condition	Set the bit to 0
	STAREQ	Set the bit to 1 to generate a start condition	Set the bit to 0
UiBRG	7 to 0	Set the bit rate	Disabled
IFSR0	IFSR06 and IFSR07	Select a UART as interrupt source	
IFSR1	IFSR16	Select a UART as interrupt source	
IFS0	IFS06	Select input pins for SCL3 and SDA3	
	IFS03 and IFS02	Select input pins for SCL6 and SDA6	
UiTB	8	Set the bit to 1 on transmission. Set the bit to the value of the ACK bit on reception	
	7 to 0	Set the data to be transmitted on transmission. Set the register to FFh on reception	
UiRB	OER	Overrun error flag	
	ABT	Arbitration lost detection flag	Disabled
	8	D0 is loaded immediately after a receive interrupt is generated. ACK or NACK is loaded after a transmit interrupt is generated	
	7 to 0	D7 to D1 are read immediately after a receive interrupt is generated. D7 to D0 are read after a transmit interrupt is generated	

Table $18.11 \quad I^{2} \mathrm{C}$ Mode Functions ($\mathrm{i}=0$ to $\mathbf{6}$)

Function	Synchronous Serial Interface Mode (SMD2 to SMD0 $=001 \mathrm{~b}$, IICM = 0)	$1^{2} \mathrm{C}$ Mode (SMD2 to SMD0 $=010 \mathrm{~b}, \mathrm{IICM}=1$)			
		$\begin{gathered} \text { IICM2 }=0 \\ \text { (ACK/NACK interrupt) } \end{gathered}$		IICM2 $=1$(Transmit/receive interrupt)	
		CKPH = 0 (Non clock delayed)	CKPH = 1 (Clock delayed)	CKPH $=0$ (Non clock delayed)	CKPH = 1 (Clock delayed)
Source of software interrupt numbers 6, 39 to 41 (1) (Refer to Figure 18.32)	-	Start condition or stop condition detection (Refer to Table 18.12)			
Source of software interrupt numbers 2, 4, 17, 19, 33, 35, and 37 (1) (Refer to Figure 18.32)	UARTi transmission: Transmission started or completed (selected using the UilRS register)	NACK detection: Rising edge of the ninth bit of SCLi		UARTi transmission: Rising edge of the ninth bit of SCLi	UARTi transmission: Falling edge of the ninth bit of SCLi
Source of software interrupt numbers 3, 5, $18,20,34,36$, and 38 (1) (Refer to Figure 18.32)	UARTi reception: Receiving at eighth bit CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	ACK detection: Rising edge of the ninth bit of SCLi		UARTi reception: Falling edge of the eighth bit of SCLi	
Data transfer timing from the UART receive register to the UiRB register	CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Rising edge of the ninth bit of SCLi		Falling edge of the eighth bit of SCLi	Falling edge of the eighth bit and rising edge of the ninth bit of SCLi
UARTi transmit output delay	Non delayed	Delayed			
$\begin{aligned} & \text { Pins P6_3, P6_7, P7_0, } \\ & \text { P7_3, P7_6, P9_2, } \\ & \text { P9_6, P11_0, P12_0, } \\ & \text { P15_0, and P15_4 } \end{aligned}$	TXDi output	SDAi I/O			
```Pins P6_2, P6_6, P7_1, P7_5, P8_0, P9_1, P9_7, P11_2, P12_2, P15_2, and P15_5```	RXDi input	SCLi I/O			
$\begin{aligned} & \text { Pins P6_1, P6_5, P7_2, } \\ & \text { P7_4, P7_7, P9_0, } \\ & \text { P9_5, P11_1, P12_1, } \\ & \text { P15_1, and P15_6 } \end{aligned}$	Select CLKi input or output	(Not used in ${ }^{2}{ }^{2} \mathrm{C}$ mode)			
Read level at pins RXDi and SCLi	Readable irrespective of the port direction bit				
Default output value at the SDAi pin	-	High (Value set in the Port Pi register ( $\mathrm{i}=0$ to 7 ) if the I/O port is selected by output function select registers)			
SCLi default and end values	-	High	Low	High	Low
DMA source (Refer to Figure 18.32)	UARTi reception	ACK detection		UARTi reception: Falling edge of the eighth bit of SCLi	

Table $18.11 \quad I^{2} \mathrm{C}$ Mode Functions ( $\mathrm{i}=0$ to $\mathbf{6}$ )

Function	$\begin{aligned} & \text { Synchronous } \\ & \text { Serial Interface } \\ & \text { Mode } \\ & \text { (SMD2 to SMD0 } \\ & =001 \mathrm{~b}, \\ & \text { IICM }=0) \end{aligned}$	${ }^{2} \mathrm{C}$ C Mode (SMD2 to SMD0 $=010 \mathrm{~b}, \mathrm{IICM}=1$ )			
		$\begin{gathered} \text { IICM2 }=0 \\ \text { (ACK/NACK interrupt) } \end{gathered}$		IICM2 $=1$(Transmit/receive interrupt)	
		CKPH = 0   (Non clock delayed)	$\begin{gathered} \text { CKPH = } 1 \\ \text { (Clock } \\ \text { delayed) } \end{gathered}$	CKPH $=0$   (Non clock delayed)	CKPH = 1   (Clock delayed)
Store received data	The first to eighth bits of received data are stored into bits 0 to 7 in the UiRB register	The first to received da into bits 7 to register	ghth bits of are stored in the UiRB	The first to seventh bits of received data are stored into bits 6 to 0 in the UiRB register and the eighth bit is stored into bit 8	Same as on the left column on the first data storing (2). The first to eighth bits of received data are stored into 7 to 0 bits in the UiRB register and the ninth bit is stored into bit 8 on the second data storing (3)
Read received data	The UiRB register status is read as it is			Bits 6 to 0 in the UiRB register are read as bits 7 to 1 and bit 8 is read as bit 0	Same as on the left column on the first read (2). The UiRB register status is read as it is on the second read (3)

Notes:

1. Steps to change interrupt sources are as follows:
(1) Disable the interrupt of the corresponding software interrupt number.
(2) Change the source of interrupt.
(3) Set the IR bit of the corresponding software interrupt number to 0 (no interrupt requested).
(4) Set bits ILVL2 to ILVL0 of the corresponding software interrupt number.
2. The first data transfer to the UiRB register starts on the rising edge of the eighth bit of SCLi.
3. The second data transfer to the UiRB register starts on the rising edge of the ninth bit of SCLi.
(1) When the IICM2 bit is set to 0 (ACK or NACK interrupt) and the CKPH bit is set to 0 (non clock delayed)

(2) When the IICM2 bit is set to 0 and the CKPH bit is set to 1 (clock delayed)

(3) When the IICM2 bit is set to 1 (transmit/receive interrupt) and the CKPH bit is set to 0

(4) When the IICM2 bit is set to 1 and the CKPH bit is set to 1


The figure above applies under the following condition:

- The CKDIR bit in the UiMR register $=0$ (internal clock)

Figure 18.32 Timings for the Transfer and Interrupt to the UiRB Register ( $\mathrm{i}=0$ to $\mathbf{6}$ )

### 18.3.1 Start Condition and Stop Condition Detection

The start condition and stop condition are detected by their respective detectors.
The start condition detection interrupt request is generated by a high-to-low transition at the SDAi pin while the SCLi $(\mathrm{i}=0$ to 6$)$ pin is held high. The stop condition detection interrupt request is generated by a low-to-high transition at the SDAi pin while the SCLi pin is held high.
The start condition detection interrupt shares interrupt control registers and vectors with the stop condition detection interrupt. The BBS bit in the UiSMR register determines which interrupt is requested.
To detect a start condition or stop condition, both set-up and hold times require six cycles or more of the peripheral clock (f1) as shown in Figure 18.33. To meet the condition for the Fast-mode specification, f1 is required to be 10 MHz or more.


Figure 18.33 Start Condition and Stop Condition Detection Timing (i=0 to 6)

### 18.3.2 Start Condition and Stop Condition Generation

The start condition, restart condition, and stop condition are generated by bits STAREQ, RSTAREQ, and STPREQ in the UiSMR4 register ( $i=0$ to 6 ), respectively. To output the start condition, the STSPSEL bit in the UiSMR4 register should be set to 1 (start condition/stop condition generator selected) after setting the STAREQ bit to 1 (start). To output the restart condition and stop condition, the STSPSEL bit should be set to 1 after setting respective bits RSTAREQ and STPREQ to 1.
Table 18.12 and Figure 18.34 show the functions of the STSPSEL bit.

Table 18.12 STSPSEL Bit Functions

Function	STSPSEL $=0$	STSPSEL = 1
Start condition and stop   condition generation	Output is provided by the   program with port (no auto   generation by hardware)	Start condition or stop condition is output   according to the STAREQ, RSTAREQ, or   STPREQ bit, respectively
Start condition and stop   condition interrupt request   generating timing	When start condition or stop   condition is detected	When start condition or stop condition   generation is completed

(1) In slave mode

The CKDIR bit is set to 1 (external clock) and the STSPSEL bit is set to 0 (serial I/O circuit selected)

(2) In master mode

The CKDIR bit is set to 0 (internal clock) and the CKPH bit is set to 1 (clock delayed)


Figure 18.34 STSPSEL Bit Functions ( $\mathbf{i}=0$ to $\mathbf{6}$ )

### 18.3.3 Arbitration

The MCU determines whether the transmit data matches data input to the SDAi pin on the rising edge of the SCLi. If it does not match the input data, the arbitration takes place at the SDAi pin by switching off the data output stage.
The ABC bit in the UiSMR register $(i=0$ to 6 ) determines the update timing for the ABT bit in the UiRB register.
When the $A B C$ bit is set to 0 (update per bit), the $A B T$ bit is set to 1 (arbitration is lost) as soon as a data discrepancy is detected. If not detected, the $A B T$ bit is set to 0 (arbitration is won). When the $A B C$ bit is set to 1 (update per byte), the ABT bit is set to 1 on the falling edge of the eighth bit of the SCLi if any discrepancy is detected. In this ABC bit setting, the ABT bit should be set to 0 to start the next 1-byte transfer.
When the ALS bit in the UiSMR2 register is set to 1 (SDA output stop enabled), an arbitration lost occurs. As soon as the ABT bit is set to 1, the SDAi pin becomes high-impedance.

### 18.3.4 SCL Control and Clock Synchronization

Data transmission/reception in $I^{2} \mathrm{C}$ mode uses the transmit/receive clock as shown in Figure 18.32. The clock speed increase makes it difficult to secure the required time for ACK generation and data transmit procedure. The $I^{2} \mathrm{C}$ mode supports a function of wait-state insertion to secure this required time and a function of clock synchronization with a wait-state inserted by other devices.
The SWC bit in the UiSMR2 register ( $\mathrm{i}=0$ to 6 ) is used to insert a wait-state for ACK generation. When the SWC bit is set to 1 (the SCLi pin is held low after the eighth bit of the SCLi is received), the SCLi pin is held low on the falling edge of the eighth bit of the SCLi. When the SWC bit is set to 0 (no wait-state/ wait-state cleared), the SCLi line is released.
When the SWC2 bit in the UiSMR2 register is set to 1 (the SCLi pin is held low), the SCLi pin is forced low even during transmission or reception in progress. When the SWC2 bit is set to 0 (transmit/receive clock is output at the SCLi pin), the SCLi line is released to output the transmit/receive clock.
The SWC9 bit in the UiSMR4 register is used to insert a wait-state for checking received acknowledge bits. While the CKPH bit in the UiSMR3 register is set to 1 (clock delayed), when the SWC9 bit is set to 1 (the SCLi pin is held low after the ninth bit of the SCLi is received), the SCLi pin is held low on the falling edge of the ninth bit of the SCLi. When the SWC9 bit is set to 0 (no wait-state/wait-state cleared), the SCLi line is released.
(1) SWC bit function


Figure 18.35 Wait-state Insertion by Bits SWC or SWC9 (i=0 to 6)

The CSC bit in the UiSMR2 register is to synchronize an internally generated clock with the clock applied to the SCLi pin. For example, if a wait-state is inserted from other devices, the two clocks are not synchronized. While the CSC bit is set to 1 (clock synchronization enabled) and the internal clock is held high, when a high at the SCLi pin changes to low, the internal clock becomes low in order to reload the value of the UiBRG register and to resume counting. While the SCLi pin is held low, when the internal clock changes from low to high, the count is stopped until the SCLi pin becomes high. That is, the UARTi transmit/receive clock is the logical AND of the internal clock and the SCLi. The synchronized period starts from one clock prior to the first synchronized clock and ends when the ninth clock is completed. The CSC bit can be set to 1 only when the CKDIR bit in the UiMR register is set to 0 (internal clock selected).
The SCLHI bit in the UiSMR4 register is used to leave the SCLi pin open when other master generates a stop condition while the master is in transmit/receive operation. If the SCLHI bit is set to 1 (output stopped), the SCLi pin is open (the pin is high-impedance) when a stop condition is detected and the clock output is stopped.
(1) Clock synchronization

(2) Synchronization period


Figure 18.36 Clock Synchronization (i=0 to 6)

### 18.3.5 SDA Output

Values set in bits 8 to 0 ( D 8 to D 0 ) in the UiTB register ( $\mathrm{i}=0$ to 6 ) are output starting from D7 to D0, and lastly D8, which is a bit for the acknowledge signal. When transmitting, D8 should be set to 1 to free the bus. When receiving, D8 should be set to ACK or NACK.
Bits DL2 to DL0 in the UiSMR3 register set a delay time of the SDAi on the falling edge of the SCLi. Based on the UiBRG count source, the delay time can be selected from zero cycles (no delay) and two to eight cycles.
When the SDHI bit in the UiSMR2 register is set to 1 (SDA output disabled), the SDAi pin forcibly becomes high-impedance. Output at the SDAi pin is low if the I/O port is selected for the SDAi and the pin is specified as the output port after selecting $I^{2} \mathrm{C}$ mode. In this case, if the SDHI bit is set to 1 , the SDAi pin becomes high-impedance.
When the SDHI bit is rewritten while the SCLi pin is held high, a start condition or stop condition is generated. When it is rewritten immediately before the rising edge of the SCLi, an arbitration lost may be accidently detected. Therefore, the SDHI bit should be rewritten so the SDAi pin level changes while the SCLi pin is low.

### 18.3.6 SDA Input

When the IICM2 bit in the UiSMR2 register ( $\mathrm{i}=0$ to 6 ) is set to 0 , the first eight bits of received data (D7 to DO) are stored into bits 7 to 0 in the UiRB register and the ninth bit (ACK/NACK) is stored into bit 8. When the IICM2 bit is set to 1 , the first seven bits of received data (D7 to D1) are stored into bits 6 to 0 in the UiRB register and eighth bit (D0) is stored into bit 8.
If the IICM2 bit is set to 1 and the CKPH bit in the UiSMR3 register is set to 1 (clock delayed), the same data that is set when the IICM2 bit is 0 can be read. To read this data, read the UiRB register after data in the ninth bit is latched on the rising edge of the SCLi.

### 18.3.7 Acknowledge

When data is to be received in master mode, the ACK is output after eight bits are received by setting the UiTB register to 00FFh as dummy data. When the STSPSEL bit in the UiSMR4 register ( $\mathrm{i}=0$ to 6 ) is set to 0 (serial I/O circuit selected) and the ACKC bit is set to 1 (ACK data output), the value of the ACKD bit is output at the SDAi pin.
If the IICM2 bit is set to 0 , the NACK interrupt request is generated when the SDAi pin is held high on the rising edge of the ninth bit of the SCLi. The ACK interrupt request is generated when the SDAi pin is held low.
If the DMA request source is "UARTi receive interrupt request or ACK interrupt request", the DMA transfer is activated when an ACK is detected.

### 18.3.8 Initialization of Transmit/Receive Operation

When the CKDIR bit in the UiMR register ( $\mathrm{i}=0$ to 6 ) is set to 1 (external clock selected) and the STC bit in the UiSMR2 register is set to 1 (the circuit is initialized), and a start condition is detected, the following three operations are performed:

- The transmit register is reset and the content of the UiTB register is transferred to the transmit register. The new data transmission starts on the falling edge of the first bit of the next SCLi as transmit clock. The content of the transmit register before the reset is output at the SDAi pin in the period from the falling edge of the SCLi until the first data output.
- The receive register is reset and the new data reception starts on the falling edge of the first bit of the next SCLi.
- The SWC bit in the UiSMR2 register is set to 1 (the SCL pin is held low after the eighth bit of the SCLi is received).
If UARTi transmission/reception is started with this function, the TI bit in the UiC1 register does not change.


### 18.4 Special Mode 2

Special mode 2 enables serial communication between one or multiple masters and multiple slaves. The $\overline{\mathrm{SSi}}$ input pin ( $\mathrm{i}=0$ to 6 ) controls the serial bus communication. Table 18.13 lists specifications of special mode 2.

Table 18.13 Special Mode 2 Specifications

Item	Specification
Data format	8-bit character length
Transmit/receive clock	- The CKDIR bit in the UiMR register ( $\mathrm{i}=0$ to 6 ) is set to 0 (internal clock): $\frac{f x}{2(m+1)} \quad f x=f 1, f 8, f 2 n \quad m$ : UiBRG register setting value, 00 h to FFh   - The CKDIR bit is set to 1 (external clock): input into the CLKi pin
Transmit/receive control	SS function
Transmit start conditions	The conditions for starting data transmission are as follows (1):   - The TE bit in the UiC1 register is set to 1 (transmission enabled)   - The TI bit in the UiC1 register is set to 0 (data held in the UiTB register)
Receive start conditions	The conditions for starting data reception are as follows (1):   - The RE bit in the UiC1 register is set to 1 (reception enabled)   - The TE bit in the UiC1 register is set to 1 (transmission enabled)   - The TI bit in the UiC1 register is set to 0 (data held in the UiTB register)
Interrupt request generating timing	In transmit interrupt, one of the following conditions is selected to set the UilRS bit in registers U0C1 to U6C1:   - The UilRS bit is set to 0 (transmit buffer in the UiTB register is empty): when data is transferred from the UiTB register to the UARTi transmit register (when the transmission has started)   - The UilRS bit is set to 1 (transmission is completed): when data transmission from the UARTi transmit register is completed In receive interrupt,   - When data is transferred from the UARTi receive register to the UiRB register (when the reception is completed)
Error detection	Overrun error (2)   This error occurs when the seventh bit of the next data has been received before reading the UiRB register
Selectable functions	- CLK polarity   Selectable either rising or falling edge of the transmit/receive clock for transfer data input and output   - Bit order selection   Selectable either LSB first or MSB first   - Continuous receive mode   Data reception is enabled by a read access to the UiRB register   - Serial data logical inversion   This function logically inverses transmit/receive data   - Clock phase selection   Selectable from one of four combinations of transmit/receive clock polarity and phases   - $\overline{\mathrm{SSi}}$ input pin function Output pin can be high-impedance when the $\overline{\mathrm{SSi}}$ pin is high

## Notes:

1. In case external clock is selected, the following preconditions should be met:

- The CLKi pin is held high when the CKPOL bit in the UiCO register is set to 0 (transmit data output on the falling edge of the transmit/receive clock and receive data input on the rising edge)
- The CLKi pin is held low when the CKPOL bit is set to 1 (transmit data output on the rising edge of the transmit/receive clock and receive data input on the falling edge)

2. If an overrun error occurs, the UiRB register is undefined. The IR bit in the SiRIC register is not changed to 1 (interrupts requested).

Table 18.14 lists register settings in special mode 2.

Table 18.14 Register Settings in Special Mode 2 ( $\mathbf{i}=0$ to 6)

Register	Bits	Function
UiMR	7 to 4	Set the bits to 0000b
	CKDIR	Set the bit to 0 in master mode and set it to 1 in slave mode
	SMD2 to SMD0	Set the bits to 001b
UiC0	UFORM	Select either LSB first or MSB first
	CKPOL	Clock phase can be set by the combination of bits CKPOL and CKPH in the UiSMR3 register
	5	Set the bit to 0
	CRD	Set the bit to 1
	TXEPT	Transmit register empty flag
	2	Set the bit to 0
	CLK1 and CLK0	Select a count source for the UiBRG register
UiC1	7 and 6	Set the bits to 00b
	UiRRM	Set the bit to 1 to use continuous receive mode
	UilRS	Select a source for UARTi transmit interrupt
	RI	Receive complete flag
	RE	Set the bit to 1 to enable data reception
	TI	Transmit buffer empty flag
	TE	Set the bit to 1 to enable data transmission/reception
UiSMR	7 to 0	Set the bits to 00h
UiSMR2	7 to 0	Set the bits to 00h
UiSMR3	7 to 5	Set the bits to 000b
	ERR	Mode fault flag
	3	Set the bit to 0
	DINC	Set to 0 in master mode and set to 1 in slave mode
	CKPH	Clock phase can be set by the combination of bits CKPH and CKPOL in the UiC0 register
	SSE	Set the bit to 1
UiSMR4	7 to 0	Set the bits to 00h
UiBRG	7 to 0	Set the bit rate
IFS0	IFS06	Select input pins for CLK3, RXD3, SRXD3, and $\overline{\text { SS3 }}$
	IFS03 and IFS02	Select input pins for CLK6, RXD6, SRXD6, and $\overline{\text { SS6 }}$
UiTB	7 to 0	Set the data to be transmitted
UiRB	OER	Overrun error flag
	7 to 0	Received data is read

### 18.4.1 $\overline{\text { SSi }}$ Input Pin Function ( $\mathbf{i}=0$ to 6 )

Special mode 2 is selected by setting the SSE bit in the UiSMR3 register to 1 (SS enabled). The $\overline{\mathrm{CTSi}} /$ $\overline{\mathrm{RTSi}} / \overline{\mathrm{SSi}}$ pin functions as $\overline{\mathrm{SSi}}$ input.
The DINC bit in the UiSMR3 register determines which MCU performs as master or slave.
When multiple MCUs perform as master (multi-master system), the $\overline{\mathrm{SSi}}$ pin setting determines which master MCU is active and when.

### 18.4.1.1 SS Function in Slave Mode

When the DINC bit is set to 1 (slave mode selected) while an input at the $\overline{\text { SSi }}$ pin is high, the STXDi pin becomes high-impedance and the clock input at the CLKi pin is ignored. When an input at the $\overline{\text { SSi }}$ pin is low, the clock input is valid and serial data is output from the STXDi pin to enable serial communication.

### 18.4.1.2 SS Function in Master Mode

When the DINC bit is set to 0 (master mode selected) while an input at the $\overline{\mathrm{SSi}}$ pin is high, which means there is the only one master MCU or no other master MCU is active, the MCU as master starts communication. The master provides the transmit/receive clock output at the CLKi pin. When input at the $\overline{\text { SSi }}$ pin is low, which means that there are more masters, pins TXDi and CLKi become highimpedance. This error is called a mode fault. It can be verified using the ERR bit in the UiSMR3 register. The ongoing data transmission/reception is not stopped even if a mode fault occurs. To stop transmission/reception, bits SMD2 to SMD0 in the UiMR register should be set to 000b (serial interface disabled).


Figure 18.37 Serial Bus Communication Control with $\overline{\text { SSi }}$ Pin

### 18.4.2 Clock Phase Setting

The CKPH bit in the UiSMR3 register ( $\mathrm{i}=0$ to 6 ) and the CKPOL bit in the UiC0 register select one of four combinations of transmit/receive clock polarity and serial clock phase.
The transmit/receive clock phase and polarity should be identical for the master device and the communicating slave device.

### 18.4.2.1 Transmit/Receive Timing in Master Mode

When the DINC bit is set to 0 (master mode selected), the CKDIR bit in the UiMR register should be set to 0 (internal clock selected) to generate the clock. Figure 18.38 shows transmit/receive timing of each clock phase.


Figure 18.38 Transmit/Receive Timing in Master Mode

### 18.4.2.2 Transmit/Receive Timing in Slave Mode

When the DINC bit is set to 1 (slave mode selected), the CKDIR bit in the UiMR register should be set to 1 (external clock selected).
When the CKPH bit is set to 0 (non clock delayed) while input at the $\overline{\text { SSi }}$ pin is high, the STXDi pin becomes high-impedance. When input at the $\overline{\text { SSi pin is low, the conditions for data transmission are all }}$ met, but output is undefined. Then the data transmission/reception starts synchronizing with the clock. Figure 18.39 shows the transmit/receive timing.
When the CKPH bit is set to 1 (clock delayed) while an input at the $\overline{\text { SSi }}$ pin is high, the STXDi pin becomes high-impedance. When an input at the $\overline{\text { SSi }}$ pin is low, the first data is output. Then the data transmission starts synchronizing with the clock. Figure 18.40 shows the transmit/receive timing.


Figure 18.39 Transmit/Receive Timing in Slave Mode (CKPH = 0)


Figure 18.40 Transmit/Receive Timing in Slave Mode (CKPH = 1)

### 18.5 Notes on Serial Interface

### 18.5.1 Changing the UiBRG Register ( $\mathrm{i}=0$ to 8 )

- Set the UiBRG register after setting bits CLK1 and CLKO in the UiC0 register. When these bits are changed, the UiBRG register must be set again.
- If a clock is input immediately after the UiBRG register is set to 00h, the counter reaches FFh. In this case, it requires an extra 256 clocks to reload 00h into the register. Once the 00h is reloaded, the counter performs the operation without dividing the count source according to the setting.


### 18.5.2 Synchronous Serial Interface Mode

### 18.5.2.1 Selecting an External Clock

- If an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit in the UiC0 register ( $\mathrm{i}=0$ to 8 ) is set to 0 (transmit data output on the falling edge of the transmit/receive clock and receive data input on the rising edge), or while the external clock is held low when the CKPOL bit is set to 1 (transmit data output on the rising edge of the transmit/receive clock and receive data input on the falling edge):
- The TE bit in the UiC1 register is set to 1 (transmission enabled).
- The RE bit in the UiC1 register is set to 1 (reception enabled). This bit setting is not required in transmit operation only.
- The TI bit in the UiC1 register is set to 0 (data held in the UiTB register).


### 18.5.2.2 Receive Operation

- In synchronous serial interface mode, the transmit/receive clock is controlled by the transmit control circuit. Set the UARTi-associated registers ( $\mathrm{i}=0$ to 8 ) for a transmit operation, even if the MCU is used only for receive operation. Dummy data is output from the TXDi pin while receiving if the TXDi pin is set to output mode.
- If data is received continuously, an overrun error occurs when the RI bit in the UiC1 register is 1 (data held in the UiRB register) and the seventh bit of the next data is received in the UARTi receive shift register. Then, the OER bit in the UiRB register becomes 1 (overrun error occurred). In this case, the UiRB register becomes undefined. If an overrun error occurs, the IR bit in the SiRIC register is not changed to 1 .


### 18.5.3 Special Mode 1 ( ${ }^{2}$ C Mode)

- To generate a start condition, stop condition, or restart condition, set the STSPSEL bit in the UiSMR4 register ( $\mathrm{i}=0$ to 6 ) to 0 . Then, wait a half or more clock cycles of the transmit/receive clock to change the respective condition generate bit (the STAREQ, RSTAREQ, or STPREQ bit) from 0 to 1.


### 18.5.4 Reset Procedure on Communication Error

- Operations which result in communication errors such as rewritting function select registers during transmission/reception should not be performed. Follow the procedure below to reset the internal circuit once the communication error occurs in the following cases: when the operation above is performed by a receiver or transmitter or when a bit slip is caused by noise.


## A. Synchronous Serial Interface Mode

(1) Set the TE bit in the UiC1 register ( $\mathrm{i}=0$ to 8 ) to 0 (transmission disabled) and the RE bit to 0 (reception disabled).
(2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
(3) Set bits SMD2 to SMD0 in the UiMR register to 001b (synchronous serial interface mode).
(4) Set the TE bit in the UiC1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled) if necessary.
B. UART Mode
(1) Set the TE bit in the UiC1 register to 0 (transmittion disabled) and the RE bit to 0 (reception disabled).
(2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
(3) Set bits SMD2 to SMD0 in the UiMR register to 100b (UART mode, 7-bit character length), 101b (UART mode, 8-bit character length), or 110b (UART mode, 9-bit character length).
(4) Set the TE bit in the UiC1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled) if necessary.

## 19. A/D Converter

The A/D converter consists of one 10-bit successive approximation A/D converter with a capacitive coupling amplifier.
The result of an A/D conversion is stored in the A/D registers corresponding to selected pins. It is stored in the AD00 register only when DMAC operating mode is enabled.
When the A/D converter is not in use, power consumption can be reduced by setting the VCUT bit in the AD0CON1 register to 0 (VREF disconnected). This bit setting enables the power supply from VREF pin to the resistor ladder to stop.
Table 19.1 lists specifications of the A/D converter. Figure 19.1 shows a block diagram of the A/D converter. Figure 19.2 to Figure 19.7 show registers associated with the A/D converter.

Table 19.1 AID Converter Specifications

Item	Specification
A/D conversion method	Capacitance-based successive approximation
Analog input voltage ${ }^{(1)}$	0 V to AVCC (VCC)
Operating clock, ¢AD (2)	fAD, fAD/2, fAD/3, fAD/4, fAD/6, or fAD/8
Resolution	8 bits or 10 bits
Operating modes	One-shot mode, repeat mode, single sweep mode, repeat sweet mode 0, repeat sweep mode 1, multi-port single sweep mode, multi-port repeat sweep mode 0
Analog input pins (3)	34 (4)   8 pins each for AN, ANO, AN2, and AN15 (5)   2 function-extended input pins (ANEX0 and ANEX1)
A/D conversion start conditions	- Software trigger   The ADST bit in the ADOCONO register is set to 1 (A/D conversion started) by a program   - External trigger (Retrigger is enabled)   An input signal at the ADTRG pin switches from high to low after the ADST bit is set to 1 by a program   - Hardware trigger (Retrigger is enabled)   - Generation of a timer B2 interrupt request which has passed through the circuit to set interrupt generating frequency in the three-phase motor control timers after the ADST bit is set to 1 by a program
Conversion rates per pin	- Without sample and hold function 49 \$AD cycles @ 8-bit resolution 59 \$AD cycles @ 10-bit resolution including $2 \phi A D$ cycles for sampling time   - With sample and hold function 28 \$AD cycles @ 8-bit resolution 33 \$AD cycles @ 10-bit resolution including $3 \phi A D$ cycles for sampling time

## Notes:

1. Analog input voltage is not affected by with/without the sample and hold function.
2. The $\phi A D$ frequency should be as follows:

- When VCC $=4.2$ to $5.5 \mathrm{~V}, 16 \mathrm{MHz}$ or below
- When $\mathrm{VCC}=3.0$ to $4.2 \mathrm{~V}, 10 \mathrm{MHz}$ or below
- Without the sample and hold function, 250 kHz or above
- With the sample and hold function, 1 MHz or above

3. When $\mathrm{AVCC}=\mathrm{VREF}=\mathrm{VCC}, \mathrm{A} / \mathrm{D}$ input voltage for pins AN_0 to AN_7, ANO_0 to ANO_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, and ANEX1 should be VCC or lower.
4. Spec of the 144-pin package. In the 100-pin package, 26 channels are available.
5. Pins AN15_0 to AN15_7 are not available in the 100-pin package.


Figure 19.1 A/D Converter Block Diagram

## A/D0 Control Register $0{ }^{(1)}$



Notes:

1. When this register is rewritten during an $A / D$ conversion, the converted result is undefined.
2. Analog input pins should be set again after the A/D operating mode is changed.
3. This bit setting is enabled in one-shot mode or repeat mode.
4. Either AN, ANO, AN2, or AN15 port should be selected by using bits APS1 and APS0 in the ADOCON2 register.
5. When the MSS bit in the ADOCON3 register is set to 1 (multi-port sweep mode enabled), bits MD1 and MD0 should be set to 10 b for multi-port single sweep mode and 11 b for multi-port repeat sweep mode 0 .
6. When the MSS bit in the AD0CON3 register is set to 1 , bits MD1 and MD0 should be set to 10 b or 11 b .
7. To use the external trigger or the hardware trigger, a source of trigger should be selected using the TRG0 bit in the ADOCON2 register, the TRG bit should be set to 1, then the ADST bit should be set to 1 .
8. The $\phi A D$ frequency should be as follows: 16 MHz or below when $\mathrm{VCC}=5 \mathrm{~V}$,

10 MHz or below when $\mathrm{VCC}=3.3 \mathrm{~V}$
It is selected from the combination of bits CKS0, CKS1, and CKS2 shown as below:

The CKS2 bit in the AD0CON3 register	The CKS0 bit in the ADOCON0 register	The CKS1 bit in the AD0CON1 register	фAD
0	0	0	fAD divided by 4
		1	fAD divided by 3
	1	0	$f A D$ divided by 2
		1	fAD
1	0	0	fAD divided by 8
		1	fAD divided by 6

Figure 19.2 ADOCONO Register

## A/DO Control Register $1{ }^{(1)}$



Notes:

1. When this register is rewritten during an A/D conversion, the converted result is undefined.
2. This bit setting is enabled in single sweep mode, repeat sweep mode 0 , repeat sweep mode 1 , multi-port single sweep mode, or multi-port repeat sweep mode 0.
3. Either AN, ANO, AN2, or AN15 port should be selected by using bits APS1 and APSO in the AD0CON2 register.
4. These pins are commonly used in the A/D conversion when the MD2 bit is set to 1 .
5. Set bits SCAN0 and SCAN1 to 11 b in multi-port single sweep mode or multi-port repeat sweep mode 0 .
6. When the MSS bit in the ADOCON3 register is set to 1 (multi-port sweep mode enabled), the MD2 bit should be set to 0 .
7. Refer to the note on the CKS0 bit in the ADOCONO register.
8. This bit controls the reference voltage to the A/D converter. It does not affect the VREF performance of the D/A converter.
9. The VCUT bit should not be set to 0 during the A/D conversion.
10. When the VCUT bit is switched from 0 to 1 , the A/D conversion should be started after $1 \mu$ s or more.
11. Bits OPA 0 and OPA1 can be set to 01b or 10b only in one-shot mode or repeat mode. They should be set to 00 b or 11 b in other modes.
12. When the MSS bit in the ADOCON3 register is set to 1 (multi-port sweep mode enabled), bits OPAO and OPA 1 should be set to 00b.

Figure 19.3 AD0CON1 Register

## A/DO Control Register $2{ }^{(1)}$



Notes:

1. When this register is rewritten during an A/D conversion, the converted result is undefined.
2. Set bits APS1 and APS0 to 01b when the MSS bit in the AD0CON3 register is set to 1 (multi-port sweep mode enabled).
3. Do not set bits APS1 and APS0 to 01b In the 100-pin package when the MSS bit in the AD0CON3 register is set to 0 (multi-port sweep mode disabled).
4. These bits can be set to 10b or 11b in single-chip mode only.

Figure 19.4 AD0CON2 Register

## A/D0 Control Register $3{ }^{(1,2)}$



Notes:

1. When this register is rewritten during $A / D$ conversion, the converted result is undefined.
2. This register may be read incorrectly during A/D conversion. It should be read or written after the A/D converter stops operating.
3. To set the MSS bit to 1 , the DUS bit should be also set to 1 .
4. When the DUS bit is set to 1 , all A/D converted results are stored into the AD00 register.
5. To transfer converted results by DMA, configure the DMAC.
6. To set the MSS bit to 1 , the following bit settings should be done:
-the MD2 bit in the AD0CON1 register: 0 (mode other than repeat sweep mode 1)
-bits APS1 and APS0 in the AD0CON2 register: 01b (AN15_0 to AN15_7)
-bits OPA1 and OPA0 in the AD0CON1 register: 00b (no use of ANEX0 or ANEX1).
7. Refer to the note on the CKS0 bit in the ADOCONO register.
8. This bit setting is enabled when the MSS bit is set to 1 . The read value is undefined when the MSS bit is set to 0 .

Figure 19.5 ADOCON3 Register

## A/DO Control Register $4{ }^{(1)}$



Notes:

1. When this register is rewritten during A/D conversion, the converted result is undefined.
2. Do not set bits MPS11 and MPS10 to 01b in the 100-pin package.
3. Bits MPS11 and MPS10 can be set to 10 b or 11 b in single-chip mode only.
4. When the MSS bit in the ADOCON3 register is set to 0 (multi-port sweep mode disabled), set bits MSP11 and MPS10 to 00b. When it is set to 1 (multi-port sweep mode enabled), set them to any value other than 00b.

Figure 19.6 AD0CON4 Register

A/D0 Register $\mathrm{i}(\mathrm{i}=0 \text { to } 7)^{(1 \text { to } 4)}$


Notes:

1. If this register is read by a program while the DMAC is configured to transfer converted results, the value is undefined.
2. Register value written while the A/D converter stops operating is undefined.
3. Only the ADOO register is available when the DUS bit in the ADOCON3 register is 1 (DMAC operating mode enabled). Other registers are undefined.
4. When a converted result is transferred by DMA at 10-bit mode, the DMAC should be set for a 16-bit transfer.

Figure 19.7 Registers AD00 to AD07

### 19.1 Mode Descriptions

### 19.1.1 One-shot Mode

In one-shot mode, the analog voltage applied to a selected pin is converted into a digital code only once. Table 19.2 lists specifications of one-shot mode.

Table 19.2 One-shot Mode Specification

Item	Specification
Function	Converts only once the analog voltage applied to a pin into a digital code. The pin is selected using bits CH 2 to CH 0 in the ADOCONO register, OPA1 and OPA0 in the ADOCON1 register, and APS1 and APS0 in the AD0CON2 register
Start conditions	In the TRG bit setting in the ADOCON0 register to 0 (software trigger), the ADST bit in the ADOCONO register is set to 1 (A/D conversion started) by a program.   In the TRG bit setting to 1 (external trigger or hardware trigger), external trigger request source is selected by the TRG0 bit in the ADOCON2 register.   - When 0 is selected, an input signal at the $\overline{\text { ADTRG }}$ pin switches from high to low after the ADST bit is set to 1 by a program.   - When 1 is selected, generation of a timer B2 interrupt request which has passed through the circuit to set interrupt generating frequency in the three-phase motor control timers after the ADST bit is set to 1 by a program.
Stop conditions	- An A/D conversion is completed (the ADST bit is set to 0 when the software trigger is selected)   - The ADST bit is set to 0 (A/D conversion stopped) by a program
Interrupt request generation timing	When the A/D conversion is completed, an interrupt request is generated
Input pin to be selected	One pin is selected from among AN_0 to AN_7, ANO_0 to ANO_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, and ANEX1
Reading of $A / D$ converted result	In the DUS bit setting in the ADOCON3 register to 0 (DMAC operating mode disabled),   read the AD0j register ( $\mathrm{j}=0$ to 7) corresponding to the selected pin In the DUS bit setting to 1 (DMAC operating mode enabled), configure the DMAC (refer to 13. "DMAC"), then A/D converted result is stored in the AD00 register after the conversion is completed. The DMAC transfers the converted result from the AD00 register to given memory space.   Do not read the AD00 register by a program

### 19.1.2 Repeat Mode

In repeat mode, the analog voltage applied to a selected pin is repeatedly converted into a digital code. Table 19.3 lists specifications of repeat mode.

Table 19.3 Repeat Mode Specification

Item	Specification
Function	Converts repeatedly the analog voltage input to a pin into a digital code. The pin is selected using bits CH 2 to CH 0 in the AD0CON0 register, OPA1 and OPA0 in the AD0CON1 register, and APS1 and APS0 in the AD0CON2 register
Start conditions	In the TRG bit setting in the ADOCONO register to 0 (software trigger), the ADST bit in the ADOCON0 register is set to 1 (A/D conversion started) by a program.   In the TRG bit setting to 1 (external trigger or hardware trigger), external trigger request source is selected by the TRG0 bit in the AD0CON2 register.   - When 0 is selected, an input signal at the ADTRG pin switches from high to low after the ADST bit is set to 1 by a program.   - When 1 is selected, generation of a timer B2 interrupt request which has passed through the circuit to set interrupt generating frequency in the three-phase motor control timers after the ADST bit is set to 1 by a program.
Stop conditions	- The ADST bit is set to 0 (A/D conversion stopped) by a program
Interrupt request generation timing	In the DUS bit setting in the ADOCON3 register to 0 (DMAC operating mode disabled), no interrupt request is generated.   In the DUS bit setting to 1 (DMAC operating mode enabled), every time an A/D conversion is completed, an interrupt request is generated
Analog voltage input pins	One pin is selected from among AN_0 to AN_7, ANO_0 to ANO_7, AN2_0 to AN2 7, AN15 0 to AN15 7, ANEX0, and ANEX1
Reading of A/D converted result	In the DUS bit setting in the ADOCON3 register to 0 (DMAC operating mode disabled),   read the AD0j register ( $\mathrm{j}=0$ to 7 ) corresponding to the selected pin In the DUS bit setting to 1 (DMAC operating mode enabled),   - when the converted result is transferred by DMA, configure the DMAC (refer to 13. "DMAC"), then A/D converted result is stored in the AD00 register after the conversion is completed. The DMAC transfers the converted result from the AD00 register to given memory space.   Do not read the AD00 register by a program   - when the converted result is transferred by a program, read the AD00 register after the IR bit in the ADOIC register becomes 1. Set the IR bit back to 0

### 19.1.3 Single Sweep Mode

In single sweep mode, the analog voltage applied to selected pins is converted one-by-one into a digital code. Table 19.4 lists specifications of single sweep mode.

Table 19.4 Single sweep mode Specification

Item	Specification
Function	Converts one-by-one the analog voltage input to a set of pins into a digital code. The pins are selected using bits SCAN1 and SCANO in the AD0CON1 register and APS1 and APS0 in the AD0CON2 register
Start conditions	In the TRG bit setting in the ADOCON0 register to 0 (software trigger), the ADST bit in the ADOCON0 register is set to 1 (A/D conversion started) by a program.   In the TRG bit setting to 1 (external trigger or hardware trigger), external trigger request source is selected by the TRG0 bit in the AD0CON2 register.   - When 0 is selected, an input signal at the ADTRG pin switches from high to low after the ADST bit is set to 1 by a program.   - When 1 is selected, generation of a timer B2 interrupt request which has passed through the circuit to set interrupt generating frequency in the three-phase motor control timers after the ADST bit is set to 1 by a program.
Stop conditions	- An A/D conversion is completed (the ADST bit is set to 0 when the software trigger is selected)   - The ADST bit is set to 0 (A/D conversion stopped) by a program
Interrupt request generation timing	In the DUS bit setting in the ADOCON3 register to 0 (DMAC operating mode disabled), when a sweep is completed, an interrupt request is generated. In the DUS bit setting to 1 (DMAC operating mode enabled), every time an A/D conversion is completed, an interrupt request is generated
Analog voltage input pins	Selected from a group of 2 pins (ANi_0 and ANi_1) (i=none, 0, 2, 15), 4 pins (ANi_0 to ANi_3), 6 pins (ANi_0 to ANi_5), or 8 pins (ANi_0 to ANi_7)
Reading of A/D converted result	In the DUS bit setting in the ADOCON3 register to 0 (DMAC operating mode disabled),   read the AD0j register ( $\mathrm{j}=0$ to 7 ) corresponding to the selected pin In the DUS bit setting to 1 (DMAC operating mode enabled), configure the DMAC (refer to 13. "DMAC"), then A/D converted result is stored in the AD00 register after the conversion is completed. The DMAC transfers the converted result from the AD00 register to given memory space.   Do not read the AD00 register by a program

### 19.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0 , the analog voltage applied to selected pins is repeatedly converted into a digital code. Table 19.5 lists specifications of repeat sweep mode 0.

Table 19.5 Repeat Sweep Mode 0 Specification

Item	Specification
Function	Converts repeatedly the analog voltage input to a set of pins into a digital code. The pins are selected using bits SCAN1 and SCAN0 in the AD0CON1 register and APS1 and APS0 in the AD0CON2 register
Start conditions	In the TRG bit setting in the AD0CON0 register to 0 (software trigger), the ADST bit in the ADOCON0 register is set to 1 (A/D conversion started) by a program.   In the TRG bit setting to 1 (external trigger or hardware trigger), external trigger request source is selected by the TRG0 bit in the AD0CON2 register.   - When 0 is selected, an input signal at the ADTRG pin switches from high to low after the ADST bit is set to 1 by a program.   -When 1 is selected, generation of a timer B2 interrupt request which has passed through the circuit to set interrupt generating frequency in the three-phase motor control timers after the ADST bit is set to 1 by a program.
Stop conditions	- The ADST bit is set to 0 (A/D conversion stopped) by a program
Interrupt request generation timing	In the DUS bit setting in the ADOCON3 register to 0 (DMAC operating mode disabled), no interrupt request is generated.   In the DUS bit setting to 1 (DMAC operating mode enabled), every time an A/D conversion is completed, an interrupt request is generated
Analog voltage input pins	Selected from a group of 2 pins (ANi_0 and ANi_1) (i= none, 0, 2, 15), 4 pins (ANi_0 to ANi_3), 6 pins (ANi_0 to ANi_5), or 8 pins (ANi_0 to ANi_7)
Reading of A/D converted result	In the DUS bit setting in the ADOCON3 register to 0 (DMAC operating mode disabled),   read the AD0j register ( $\mathrm{j}=0$ to 7 ) corresponding to the selected pin   In the DUS bit setting to 1 (DMAC operating mode enabled),   - when the converted result is transferred by DMA, configure the DMAC (refer to 13. "DMAC"), then A/D converted result is stored in the AD00 register after the conversion is completed. The DMAC transfers the converted result from the AD00 register to given memory space.   Do not read the AD00 register by a program   - when the converted result is transferred by a program, read the AD00 register after the IR bit in the ADOIC register becomes 1. Set the IR bit back to 0

### 19.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, the analog voltage applied to eight selected pins including some prioritized pins is repeatedly converted into a digital code. Table 19.6 lists specifications of repeat sweep mode 1.

Table 19.6 Repeat Sweep Mode 1 Specification

Item	Specification
Function	Converts repeatedly the analog voltage input to a set of eight pins into a digital code. A/some selected pin(s) is/are converted by priority   e.g. When AN_0 is prioritized, the analog voltage is converted into a digital code in the following order: $A N _0 \rightarrow A N _1 \rightarrow A N _0 \rightarrow A N _2 \rightarrow A N _0 \rightarrow A N _3 \cdots$ The eight pins are selected using bits SCAN1 and SCAN0 in the ADOCON1 register and APS1 and APS0 in the AD0CON2 register
Start conditions	In the TRG bit setting in the ADOCONO register to 0 (software trigger), the ADST bit in the ADOCONO register is set to 1 (A/D conversion started) by a program.   In the TRG bit setting to 1 (external trigger or hardware trigger), external trigger request source is selected by the TRG0 bit in the ADOCON2 register.   - When 0 is selected, an input signal at the ADTRG pin switches from high to low after the ADST bit is set to 1 by a program. Retrigger is invalid.   - When 1 is selected, generation of a timer B2 interrupt request which has passed through the circuit to set interrupt generating frequency in the three-phase motor control timers after the ADST bit is set to 1 by a program.
Stop conditions	- The ADST bit is set to 0 (A/D conversion stopped) by a program
Interrupt request generation timing	In the DUS bit setting in the ADOCON3 register to 0 (DMAC operating mode disabled), no interrupt request is generated.   In the DUS bit setting to 1 (DMAC operating mode enabled), every time an A/D conversion is completed, an interrupt request is generated
Analog voltage input pins	8 (ANi_0 to ANi_7) ( $\mathrm{i}=$ none, $0,2,15$ )
Prioritized pin(s)	Selected from a group of 1 pin (ANi_0), 2 pins (ANi_0 and ANi_1), 3 pins (ANi_0 to ANi_2), or 4 pins (ANi_0 to ANi_3)
Reading of A/D converted result	In the DUS bit setting in the ADOCON3 register to 0 (DMAC operating mode disabled),   read the AD0j register ( $\mathrm{j}=0$ to 7 ) corresponding to the selected pin   In the DUS bit setting to 1 (DMAC operating mode enabled),   - when the converted result is transferred by DMA,   configure the DMAC (refer to 13. "DMAC"), then   A/D converted result is stored in the AD00 register after the conversion is completed. The DMAC transfers the converted result from the AD00 register to given memory space.   Do not read the AD00 register by a program   - when the converted result is transferred by a program, read the AD00 register after the IR bit in the ADOIC register becomes 1. Set the IR bit back to 0

### 19.1.6 Multi-port Single Sweep Mode

In multi-port single sweep mode, the analog voltage applied to 16 selected pins is converted one-byone into a digital code. The DUS bit in the ADOCON3 register should be set to 1 (DMAC operating mode enabled). Table 19.7 lists specifications of multi-port single sweep mode.

Table 19.7 Multi-port Single Sweep Mode Specification

Item	Specification
Function	Converts one-by-one the analog voltage input to a set of 16 selected pins into a digital code in the following order: AN_0 to AN_7 $\rightarrow$ ANi_0 to ANi_7 ( $\mathrm{i}=0,2,15$ ) The 16 pins are selected using bits MPS11 and MPS10 in the AD0CON4 register e.g. When bits MPS11 and MPS10 are set to 10 b (AN_0 to AN_7, ANO_0 to ANO_7),   the analog voltage is converted into a digital code in the following order: $\begin{aligned} & \text { AN_0 } \rightarrow \text { AN_1 } \rightarrow \text { AN_2 } \rightarrow \text { AN_3 } \rightarrow \text { AN_ } 4 \rightarrow \text { AN_ } 5 \rightarrow \text { AN_6 } \rightarrow \text { AN_ } 7 \rightarrow \text { ANO_0 } \rightarrow \cdots \rightarrow \\ & \text { ANO_ } 6 \rightarrow \text { ANO_ } \end{aligned}$
Start conditions	In the TRG bit setting in the ADOCONO register to 0 (software trigger), the ADST bit in the ADOCONO register is set to 1 (A/D conversion started) by a program.   In the TRG bit setting to 1 (external trigger or hardware trigger), external trigger request source is selected by the TRGO bit in the ADOCON2 register.   - When 0 is selected, an input signal at the ADTRG pin switches from high to low after the ADST bit is set to 1 by a program.   - When 1 is selected, generation of a timer B2 interrupt request which has passed through the circuit to set interrupt generating frequency in the three-phase motor control timers after the ADST bit is set to 1 by a program.
Stop conditions	- An A/D conversion is completed (the ADST bit is set to 0 when the software trigger is selected)   - The ADST bit is set to 0 (A/D conversion stopped) by a program
Interrupt request generation timing	Every time an A/D conversion is completed (Set the DUS bit to 1)
Analog voltage input pins	A combination of pin group is selected from AN_0 to AN_7 $\rightarrow$ AN15_0 to AN15_7, AN_0 to AN_7 $\rightarrow$ ANO_0 to ANO_7, or AN_0 to AN_7 $\rightarrow$ AN2_0 to AN2_7
Reading of A/D converted result	Set the DUS bit to 1 and configure the DMAC (refer to 13. "DMAC"), then A/D converted result is stored in the AD00 register after the conversion is completed. The DMAC transfers the converted result from the AD00 register to given memory space.   Do not read the AD00 register by a program

### 19.1.7 Multi-port Repeat Sweep Mode 0

In multi-port repeat sweep mode 0 , the analog voltage applied to 16 selected pins is repeatedly converted into a digital code. The DUS bit in the ADOCON3 register should be set to 1 (DMAC operating mode enabled). Table 19.8 lists specifications of multi-port repeat sweep mode 0.

Table 19.8 Multi-port Repeat Sweep Mode 0 Specification

Item	Specification
Function	Converts repeatedly the analog voltage input to a set of 16 selected pins into a digital code in the following order: AN_0 to AN_7 $\rightarrow$ ANi_0 to ANi_7 ( $\mathrm{i}=0,2,15$ ) The 16 pins are selected using bits MPS11 and MPS10 in the AD0CON4 register e.g. When bits MPS11 and MPS10 are set to 10b (AN_0 to AN_7, ANO_0 to ANO_7),   the analog voltage is repeatedly converted into a digital code in the following order:   $A N _0 \rightarrow A N _1 \rightarrow A N _2 \rightarrow A N _3 \rightarrow A N _4 \rightarrow A N _5 \rightarrow A N _6 \rightarrow A N _7 \rightarrow A N O _0 \rightarrow \cdots \rightarrow$ ANO_6 $\rightarrow$ ANO_7
Start conditions	In the TRG bit setting in the ADOCONO register to 0 (software trigger), the ADST bit in the ADOCONO register is set to 1 (A/D conversion started) by a program.   In the TRG bit setting to 1 (external trigger or hardware trigger), external trigger request source is selected by the TRG0 bit in the ADOCON2 register.   - When 0 is selected, an input signal at the ADTRG pin switches from high to low after the ADST bit is set to 1 by a program.   -When 1 is selected, generation of a timer B2 interrupt request which has passed through the circuit to set interrupt generating frequency in the three-phase motor control timers after the ADST bit is set to 1 by a program.
Stop conditions	- The ADST bit is set to 0 (A/D conversion stopped) by a program
Interrupt request generation timing	Every time an A/D conversion is completed (Set the DUS bit to 1)
Analog voltage input pins	A combination of pin group is selected from AN_0 to AN_7 $\rightarrow$ AN15_0 to AN15_7, AN_0 to AN_7 $\rightarrow$ ANO_0 to ANO_7, or AN_0 to AN_7 $\rightarrow$ AN2_0 to AN2_7
Reading of A/D converted result	Set the DUS bit to 1 and configure the DMAC (refer to 13. "DMAC"), then A/D converted result is stored in the AD00 register after the conversion is completed. The DMAC transfers the converted result from the AD00 register to given memory space.   Do not read the AD00 register by a program

### 19.2 Functions

### 19.2.1 Resolution Selection

The resolution is selected using the BITS bit in the ADOCON1 register. When the BITS bit is set to 1 (10-bit precision), the A/D converted result is stored into bits 9 to 0 in the ADOi register ( $\mathrm{i}=0$ to 7 ). When the BITS bit is set to 0 ( 8 -bit precision), the result is stored into bits 7 to 0 in the ADOi register.

### 19.2.2 Sample and Hold Function

This function improves the conversion rate per pin to $28 \phi A D$ cycles at 8 -bit resolution and $33 \phi A D$ cycles for 10-bit resolution. To use this function, which is available in all operating modes, set the SMP bit in the ADOCON2 register to 1 (with sample and hold function). Start the A/D conversion after setting the SMP bit.

### 19.2.3 Trigger Selection

A trigger to start A/D conversion is specified by the combination of TRG bit in the ADOCONO register and the TRG0 bit in the ADOCON2 register. Table 19.9 lists the settings of the trigger selection.

Table 19.9 Trigger Selection Settings

Bit and Setting		
ADOCON0 register	ADOCON2 register	
TRG $=0$	-	Software trigger   The ADST bit in the AD0CON0 register is set to 1
TRG $=1(1,2)$	TRG0 $=0$	External trigger   Falling edge of a signal applied to the $\overline{\text { ADTRG }}$ pin
	TRG0 $=1$	Hardware trigger   Generation of a timer B2 interrupt request which has passed   through the circuit to set interrupt generating frequency in   the three-phase motor control timers

## Notes:

1. The A/D converter starts operating if a trigger is generated while the ADST bit is set to 1 (A/D conversion started).
2. If an external trigger or a hardware trigger is generated during an $A / D$ conversion, the $A / D$ converter aborts the operation in progress. Then, it resumes the operation.

### 19.2.4 DMAC Operating Mode

The DMAC operating mode is available in all operating modes. When the A/D converter is in multi-port single sweep mode or multi-port repeat sweep mode 0 , the DMAC operating mode should be used definitely. When the DUS bit in the ADOCON3 register is set to 1 (DMAC operating mode enabled), all A/D converted results are stored into the AD00 register. The DMAC transfers the data from the AD00 register to a given memory space every time an A/D conversion is completed at a pin. 8-bit DMA transfer should be selected for 8-bit resolution. For 10-bit resolution, 16-bit DMA transfer should be selected. Refer to 13. "DMAC" for details.

### 19.2.5 Function-extended Analog Input Pins

In one-shot mode and repeat mode, pins ANEX0 and ANEX1 are available as analog input by setting bits OPA1 and OPA0 in the AD0CON1 register (refer to Table 19.10). The A/D converted result of pins ANEX0 and ANEX1 are respectively stored into registers AD00 and AD01. However, when the DUS bit in the ADOCON3 register is set to 1 (DMAC operating mode enabled), all results are stored into the AD00 register.
To use function-extended analog input pins, bits APS1 and APS0 in the AD0CON2 register should be set to 00b (AN0 to AN7, ANEX0, ANEX1 as analog input port) and the MSS bit in the AD0CON3 register to 0 (multi-port sweep mode disabled).

Table 19.10 Function-extended Analog Input Pin Settings

AD0CON1 Register		ANEX0	ANEX1
OPA1	OPA0		
0	0	Not used	Not used
0	1	Analog input	Analog input
1	0	Not used	Input from an external op-amp
1	1	Output to an external op-amp	

### 19.2.6 External Operating Amplifier (Op-AMP) Connection Mode

In external op-amp connection mode, multiple analog inputs can be amplified by one external op-amp using function-extended analog input pins ANEXO and ANEX1.
When bits OPA1 and OPAO in the AD0CON1 register are set to 11b (external op-amp connected), the voltage applied to pins ANO to AN7 are output from the ANEXO pin. This output signal should be amplified by an external op-amp and applied to the ANEX1 pin.
The analog voltage applied to the ANEX1 pin is converted into a digital code. The converted result is stored into the corresponding AD0i register ( $\mathrm{i}=0$ to 7 ). The conversion rate varies with the response of the external op-amp. The ANEX0 pin should not be connected to the ANEX1 pin directly.
To use external op-amp connection mode, bits APS1 and APS0 in the ADOCON2 register should be set to 00b (AN0 to AN7, ANEX0, ANEX1 as analog input port).
Figure 19.8 shows an example of an external op-amp connection.


Figure 19.8 External Op-Amp Connection

### 19.2.7 Power Saving

When the A/D converter is not in use, power consumption can be reduced by setting the VCUT bit in the ADOCON1 to 0 (VREF disconnected). With this bit setting the reference voltage input pin (VREF) can be disconnected from the resistor ladder, which enables the power supply from the VREF to the resistor ladder to stop.
To use the A/D converter, the VCUT bit should be set to 1 (VREF connected) and $1 \mu \mathrm{~s}$ or more after, the ADST bit in the ADOCONO register should be set to 1 (A/D conversion started). Bits ADST and VCUT should not be set to 1 simultaneously. The VCUT bit should not be set to 0 during the A/D conversion. The VCUT bit does not affect the VREF performance of the D/A converter (Refer to Figure 19.9).


Figure 19.9 Power Supply by VCUT Bit

### 19.2.8 Output Impedance of Sensor Equivalent Circuit under A/D Conversion

Figure 19.10 shows an analog input pin and external sensor equivalent circuit.
To perform A/D conversion correctly, internal capacitor (C) charging, shown in Figure 19.10, should be completed within the specified period. This period, called sampling time, is $2 \phi A D$ cycles for conversion without the sample and hold function and $3 \phi A D$ cycles for conversion with this function.


Figure 19.10 Analog Input Pin and External Sensor Equivalent Circuitry

The voltage between pins (VC) is expressed as follows:

$$
V C=\operatorname{VIN}\left\{1-e^{-\frac{t}{C(R 0+R)}}\right\}
$$

When $\mathrm{t}=\mathrm{T}$ and the precision (error) is x or less,

$$
V C=\operatorname{VIN}-\frac{x}{y} V I N=\operatorname{VIN}\left(1-\frac{x}{y}\right)
$$

Thus, output impedance of the sensor equivalent circuit $(\mathrm{RO})$ is determined by the following formulas:

$$
\begin{aligned}
e^{-\frac{T}{C(R 0+R)}} & =\frac{x}{y} \\
-\frac{T}{C(R 0+R)} & =\ln \frac{x}{y} \\
R 0 & =-\frac{T}{C \ln \frac{x}{y}}-R
\end{aligned}
$$

where:
$\mathrm{T}[\mathrm{s}]=$ Sampling time
$R 0[\Omega]=$ Output Impedance of the sensor equivalent circuit
VC = Potential difference between edges of the capacitor $C$
$R[\Omega]=$ Internal resistance of the MCU
$x[$ LSB $]=$ Precision (error) of the A/D converter
y[step] = Resolution of the A/D converter (1024 steps @10-bit mode, 256 steps @ 8-bit mode)

When $\phi A D=10 \mathrm{MHz}$, the $A / D$ conversion mode is 10 -bit resolution with the sample and hold function, the output impedance (R0) with the precision (error) of 0.1 LSB or less is determined by the following formula:
Using $T=0.3 \mu \mathrm{~s}, \mathrm{R}=2.0 \mathrm{k} \Omega$ (reference value), $\mathrm{C}=6.5 \mathrm{pF}$ (reference value), $\mathrm{x}=0.1, \mathrm{y}=1024$,

$$
\begin{aligned}
R 0 & =-\frac{0.3 \times 10^{-6}}{6.5 \times 10^{-12} \times 1 \mathrm{n} \frac{0.1}{1024}}-2.0 \times 10^{3} \\
& =2998
\end{aligned}
$$

Thus, the allowable output impedance of the sensor equivalent circuit ( R 0 ), making the precision (error) of 0.1 LSB or less, should be less than $3 \mathrm{k} \Omega$.
Actual error, however, is the value of absolute precision added to 0.1 LSB mentioned above.

### 19.3 Notes on A/D Converter

### 19.3.1 Notes on Designing Boards

- Three capacitors should be respectively placed between the AVSS pin and such pins as AVCC, VREF, and analog inputs (AN_0 to AN_7, ANO_0 to ANO_7, AN2_0 to AN2_7, and AN15_0 to AN15_7) to avoid error operations caused by noise or latchup, and to reduce conversion errors. Figure 19.11 shows an example of pin configuration for A/D converter.


Notes:

1. $\mathrm{C} 1 \geq 0.47 \mu \mathrm{~F}, \mathrm{C} 2 \geq 0.47 \mu \mathrm{~F}$, and $\mathrm{C} 3 \geq 100 \mathrm{pF}$ (reference values)
2. The traces for the capacitor and the MCU should be as short and wide as physically possible.

Figure 19.11 Pin Configuration for AID Converter

- Do not use any of the four pins AN_4 to AN_7 for analog input if the key input interrupt is to be used. Otherwise, a key input interrupt request occurs when the A/D input voltage becomes VIL or lower.
- When $\operatorname{AVCC}=$ VREF = VCC, A/D input voltage for pins AN_0 to AN_7, ANO_0 to ANO_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, and ANEX1 should be VCC or lower.


### 19.3.2 Notes on Programming

- The following registers should be written while the $A / D$ conversion is stopped, that is, before a trigger occurs: ADOCON0 (except the ADST bit), AD0CON1, ADOCON2, ADOCON3, and AD0CON4.
- If the VCUT bit in the ADOCON1 register is switched from 0 (VREF connected) to 1 (VREF disconnected), the A/D conversion should be started after $1 \mu \mathrm{~s}$ or more. Set the VCUT bit to 0 when $A / D$ conversion is not used to reduce power consumption.
- Set the port direction bit for the pin to be used as an analog input pin to 0 (input). Set the ASEL bit of the corresponding port function select register to 1 (the port is used as A/D input).
- If the TRG bit in the ADOCONO register is set to 1 (external trigger or hardware trigger is selected), set the corresponding port direction bit (PD9_7 bit) for the ADTRG pin to 0 (input).
- The $\phi A D$ frequency should be 16 MHz or below when VCC is 4.2 to 5.5 V , and 10 MHz or below when VCC is 3.0 to 4.2 V . It should be 1 MHz or above if the sample and hold function is enabled. If not, it should be 250 kHz or above.
- If A/D operating mode (bits MD1 and MD0 in the AD0CON0 register or the MD2 bit in the AD0CON1 register) has been changed, re-select analog input pins by using bits CH 2 to CH 0 in the AD0CON0 register or bits SCAN1 and SCANO in the AD0CON1 register.
- If the ADOi register ( $\mathrm{i}=0$ to 7 ) is read when the A/D converted result is stored to the register, the stored value may have an error. Read the AD0i register after the A/D conversion has been completed.
In one-shot mode or single sweep mode, read the respective AD0i register after the IR bit in the ADOIC register has become 1 (interrupt requested).
In repeat mode, repeat sweep mode 0 , or repeat sweep mode 1 , an interrupt request can be generated each time when an A/D conversion has been completed if the DUS bit in the ADOCON3 register is set to 1 (DMAC operating mode enabled). Similar to the other modes above, read the AD00 register after the IR bit in the ADOIC register has become 1 (interrupt requested).
- If the A/D conversion in progress is halted by setting the ADST bit in the ADOCONO register to 0 , the converted result is undefined. In addition, the unconverted ADOi register may also become undefined. Consequently, the ADOi register should not be used just after A/D conversion is halted.
- The external trigger cannot be used in DMAC operating mode. When the DMAC is configured to transfer converted results, do not read the ADOi register by a program.
- If, in single sweep mode, the A/D conversion in progress is halted by setting the ADST bit in the ADOCONO register to 0 (A/D conversion is stopped), an interrupt request may be generated even though the sweep is not completed. To halt the A/D conversion, first disable interrupts, then set the ADST bit to 0 .


## 20. D/A Converter

The MCU has two separate 8-bit R-2R resistor ladder D/A converters.
Digital code is converted to an analog voltage when a value is written to the corresponding DAi register ( $\mathrm{i}=0,1$ ). The DAiE bit in the DACON register determines whether the D/A conversion result is output or not. To output the converted value, the DAiE bit should be set to 1 (output enabled). This bit setting disables a pull-up resistor for the corresponding port.
Analog voltage to be output $(\mathrm{V})$ is calculated based on the value $(\mathrm{n})$ set in the DAi register ( $\mathrm{n}=$ decimal).

$$
V=\frac{V R E F \times n}{256} \quad(\mathrm{n}=0 \text { to } 255)
$$

VREF: reference voltage

Table 20.1 lists specifications of the D/A converter. Figure 20.1 shows a block diagram of the D/A converter. Figure 20.2 and Figure 20.3 show registers associated with the D/A. Figure 20.4 shows a D/A converter equivalent circuit.
When the D/A converter is not used, the DAi register should be set to 00h and the DAiE bit should be set to 0 (output disabled).

Table 20.1 D/A Converter Specifications

Item	Specification
D/A conversion method	R-2R resistor ladder
Resolution	8 bits
Analog output pins	2 channels



Figure 20.1 D/A Converter Block Diagram

D/A Control Register
Address

O39Ch | Reset Value |
| :--- |
| XXXX XXOOb |

Figure 20.2 DACON Register

D/A Register i (i=0,1)

b7 b0	$\begin{aligned} & \text { Symbol } \\ & \text { DA0, DA1 } \end{aligned}$	Address 0398h, 039Ah	Reset Value Undefined	
,		Function	Setting Range	RW
	Output value by	onversion	00h to FFh	RW

Figure 20.3 Registers DA0 and DA1


Notes:

1. The figure above applies when the DA0 register is set to $2 A h$.
2. This circuitry also applies to the D/A converter 1.
3. To reduce power consumption when the D/A converter is not in use, the DAiE bit ( $i=0,1$ ) should be set to 0 (output disabled) and the DAi register should be set to 00h to prevent the current from flowing into the R-2R resistor ladder.

Figure 20.4 D/A Converter Equivalent Circuitry

## 21. CRC Calculator

The CRC (Cyclic Redundancy Check) calculator is used for error detection in data blocks. A generator polynomial of CRC-CCITT ( $X^{16}+X^{12}+X^{5}+1$ ) generates a CRC.
The CRC is a 16 -bit code generated for given blocks of 8 -bit data. It is set in the CRCD register every time 1-byte data is written to the CRCIN register after a default value is set to the CRCD register.
Figure 21.1 shows a block diagram of the CRC calculator. Figure 21.2 and Figure 21.3 show registers associated with the CRC. Figure 21.4 shows an example of the CRC calculation.


Figure 21.1 CRC Calculator Block Diagram

## CRC Data Register

$\mathrm{b} 15 \quad$ b8 b7   	Symbol   CRCD Address   037Dh-037Ch    Function	Reset Value Undefined	
,		Setting Range	RW
	The CRC calculation result is stored in the CRCD register. When a default value in reversed bit position is set in this register and then data in reversed bit position is written to the CRCIN register, the CRC in reversed bit position is read from this register	0000h to FFFFh	RW

Figure 21.2 CRCD Register

## CRC Input Register



Figure 21.3 CRCIN Register

## CRC Calculation and Setting Procedure to Generate CRC for 80C4h

- CRC Calculation for R32C

CRC: a remainder of the division as follows:
$\frac{\text { reversed-bit-position value in the CRCIN register }}{\text { generator polynominal }}$

Generator Polynomial: $X^{16}+X^{12}+X^{5}+1(10001000000100001 b)$

- Setting Steps
(1) Reverse the bit position of 80C4h per byte by a program

80h to 01 h, C 4 h to 23 h
(2) Set 0000h (default value in reversed bit position) in CRCD register

(3) Set 01h (80h in reversed bit position) in CRCIN register


CRCIN register
1189h, CRC for 80h (9188h) in reversed bit position is stored into the CRCD register in the third cycle.

CRCD register
(4) Set 23 h (C4h in reversed bit position) in CRCIN register


## CRCIN register

0A41h, CRC for 80C4h (8250h) in revered bit position is stored into the CRCD register in the third cycle.

## CRCD register

- Details of CRC Calculation

As shown in (3) above, add 10000000000000000000 0000b as 80h (1000 0000b) plus 16 digits to 000000000000 000000000000 b as the default value of the CRCD register, 0000h plus eight digits to perform the modulo-2 division.


000100011000 1001b (1189h), the reversed-bit-position value of remainder 1001000110001000 b (9188h) can be read from the CRCD register.
When going on (4) above, add 11000100000000000000 0000b as C4h (1100 0100b) plus 16 digits to 10010001 100010000000 0000b as the remainder of (3) left in the CRCD register plus eight digits to perform the modulo-2 division.
0000101001000001 b (0A41h), the reversed-bit-position value of remainder 1000001001010000 b (8250h) can be read from the CRCD register.

Figure 21.4 CRC Calculation

## 22. $X-Y$ Conversion

The $X-Y$ conversion rotates a $16 \times 16$-bit matrix data 90 degrees or reverses the bit position of 16-bit data. The $X-Y$ conversion is set using the $X Y C$ register shown in Figure 22.1.
Data is written in write-only XiR registers ( $\mathrm{i}=0$ to 15) and converted data is read in read-only YjR register ( $=0$ to 15). These registers are allocated to the same address. Figure 22.2 and Figure 22.3 show registers XiR and YjR , respectively. A write/read access from an even address to the $\mathrm{XiR} / \mathrm{YjR}$ registers should be performed every 16 bits. 8-bit access operation results are undefined.

## X-Y Control Register



Figure 22.1 XYC Register

Xi Register ( $\mathrm{i}=0$ to 15$)^{(1)}$


Note:

1. A 16-bit write access to this register should be performed.

Figure 22.2 Registers X0R to X15R

## Yj Register ( $\mathrm{j}=0$ to 15) ${ }^{(1)}$



Note:

1. A 16-bit read access to this register should be performed.

Figure 22.3 Registers Y0R to Y15R

### 22.1 Data Conversion on Reading

The XYCO bit in the XYC register selects a read mode for the YjR register. When the XYC0 bit is set to 0 (data rotation), bit $j$ in the corresponding registers X0R to X 15 R is automatically read on reading the YjR register ( $\mathrm{j}=0$ to 15).
More concretely, on reading bit $\mathrm{i}(\mathrm{i}=0$ to 15) in the YOR register, the data of each bit 0 in the XiR register is read. That is, a read data of bit 0 in the Y15R register means the data of bit 15 in the X0R register and the data of bit 15 in the Y0R register is identical to that of bit 0 in the X15R register.
Figure 22.4 shows the conversion table when the XYCO bit is set to 0 and Figure 22.5 shows an example of $X-Y$ conversion.


Figure 22.4 Conversion Table $(\mathrm{XYCO}$ Bit $=0)$


Figure 22.5 X-Y Conversion

When the XYCO bit is set to 1 (no data rotation), the data of each bit in the YjR register is identical to that written in the XiR register. Figure 22.6 shows the conversion table when the XYCO bit is set to 1 .


Figure 22.6 Conversion Table (XYCO Bit = 1)

### 22.2 Data Conversion on Writing

The XYC1 bit in the XYC register selects a write mode for the XiR register.
When the XYC1 bit is set to 0 (no bit position reverse), the data is written in order. When it is set to 1 (bit position reverse), the data is written in reversed order. Figure 22.7 shows the conversion table when the XYC1 bit is set to 1 .


Figure 22.7 Conversion Table (XYC1 Bit = 1)

## 23. Intelligent I/O

The intelligent I/O is a multifunctional I/O port for time measurement, waveform generation, variable character length synchronous serial interface, and IEBus.
It consists of three groups each of which has one free-running 16-bit base timer and eight 16-bit registers for time measurement or waveform generation.
Table 23.1 lists functions and channels of the intelligent I/O.
Table 23.1 Intelligent I/O Functions and Channels

Functions		Group 0	Group 1	Group 2
Time measurement (1)	Digital filter	8 channels	8 channels	Not available
	Prescaler	2 channels	2 channels	
	Gating	2 channels	2 channels	
Waveform generation (1)	Single-phase waveform output mode	8 channels	8 channels	8 channels
	Inverted waveform output mode	8 channels	8 channels	8 channels
	SR waveform output mode	8 channels	8 channels	8 channels
	Bit modulation PWM mode	Not available	Not available	8 channels
	RTP mode			8 channels
	Parallel RTP mode			8 channels
Serial interface	Variable character length synchronous serial interface mode	Not available	Not available	Available
	IEBus mode (optional (2))			

Notes:

1. Functions time measurement and waveform generation share a pin.
2. Contact a Renesas Electronics sales office to use the optional features.

Each channel individually selects a function from the time measurement and the waveform generation.

Figure 23.1 to Figure 23.3 show block diagrams of the intelligent I/O.


Figure 23.1 Intelligent I/O Group 0 Block Diagram (j=0 to 7)


Figure 23.2 Intelligent I/O Group 1 Block Diagram (j=0 to 7)


Figure 23.3 Intelligent I/O Group 2 Block Diagram (j=0 to 7)

Figure 23.4 to Figure 23.17 show registers associated with the intelligent I/O base timer, the time measurement, and the waveform generation (For registers associated with the serial interface, refer to Figure 23.33 to Figure 23.40).

## Group i Base Timer Register (i=0 to $\mathbf{2 )}^{(1)}$



Notes:

1. The GiBT register reflects the base timer value after a delay of a half fBTi cycle.
2. The base timer stops only when bits BCK1 and BCK0 in the GiBCRO register are set to 00b (clock stopped). However, if the BTiS bit in the BTSR register and the BTS bit in the GiBCR1 register are set to 0 , the base timer is held in a reset state, holding the value 0000 h . That is, the base timer is in a "no counting" state. If either of these bits is set to 1 , this state is cleared and the base timer starts counting.

Figure 23.4 Registers G0BT to G2BT

Group i Base Timer Control Register 0 ( $\mathrm{i}=0$ to 2 )


Note:

1. This bit setting is enabled only when bits UD1 and UDO in the GjBCR1 register ( $j=0,1$ ) are set to 10 (twophase pulse signal processing mode). Bits BCK1 and BCK0 should not be set to 10b in other modes or in group 2.

Figure 23.5 Registers G0BCR0 to G2BCR0

Group i Base Timer Control Register 1 ( $\mathrm{i}=0,1$ )


Notes:

1. The group 0 base timer is reset by synchronizing with the reset of group 1 base timer, and vice versa.
2. The base timer is reset after two fBTi clock cycles if the base timer value has matched the GiPOO register setting (Refer to Figure 23.14 for the details on the GiPOO register). When the RST1 bit is set to 1 , the value of GiPOj register ( $\mathrm{j}=1$ to 7 ) to be used for the waveform generation should be smaller than that of the GiPO0 register.
3. The base timer is reset by an input of low signal to the external interrupt input pin selected for the UDiZ signal by the IFS2 register.
4. To start base timers groups 0 and 1 individually, the BTS bit should be set to 1 after setting the BTkS bit ( $k=0$, 1 ) in the BTSR register to 0 (base timer is reset).
5. To start the base timers of two or all groups simultaneously, the BTSR register should be used. The BTS bit should be set to 0 .
6. In two-phase pulse signal processing mode, the base timer is not reset, even though the RST1 bit is set to 1, if the timer counter decrements the count after two clock cycles when the base timer value matches the GiPOO register.

Figure 23.6 Registers G0BCR1 and G1BCR1

## Group 2 Base Timer Control Register 1



Notes:

1. The base timer is reset after two fBT2 clock cycles if the base timer value matches the G2PO0 register setting. When the RST1 bit is set to 1 , the value of G2POj register ( $\mathrm{j}=1$ to 7 ) used for the waveform generation or the serial interface should be smaller than that of the G2PO0 register.
2. To start the group 2 base timer, the BTS bit should be set to 1 after setting the BT2S bit in the BTSR register to 0 (base timer is reset).
3. To start the base timers of two or all groups simultaneously, the BTSR register should be used. The BTS bit should be set to 0 .
4. This bit setting is enabled when the RTP bit in the G2POCRi register is set to 1 (real-time port used).

Figure 23.7 G2BCR1 Register

Base Timer Start Register ${ }^{(1,2)}$


Notes:

1. The initial settings of bits and registers for the intelligent I/O are required as follows:
(1) Set the G2BCRO register to provide the clock to the group 2 base timer
(2) Set all bits BTOS to BT2S to 0 (base timer is reset)
(3) Set other registers associated with the intelligent I/O

The BTiS bit ( $\mathrm{i}=0$ to 2 ) allows the base timers of two or all groups to start counting simultaneously. To start counting individually, the BTiS bit should be set to 0 and the BTS bit in the GiBCR1 register should be used.
2. The following procedure is required to start the base timers of more than two groups simultaneously:
-Bits BCK1 to BCK0 and DIV4 to DIV0 in the GiBCR0 registers ( $\mathrm{i}=$ two among 0, 1, and 2 or all) to be used should be set identically
-After bits BCK1 to BCK0 or DIV4 to DIV0 are changed, start the base timers twice as following procedure:
(1) Set the BTiS bit to 1 (base timer starts counting)
(2) Set the BTiS bit to 0 (base timer is reset) after one fBTi clock cycle or more
(3) Set the BTiS bit to 1 again after another one fBTi clock cycle or more

Figure 23.8 BTSR Register

## Group i Time Measurement Control Register j (i=0, 1; j=0 to 7)



Notes:

1. These functions are available in registers GiTMCR6 and GiTMCR7. Bits 4 to 7 in registers GiTMCR0 to GiTMCR5 should be set to 0 .
2. These bit settings are enabled when the GT bit is set to 1 .
3. The GOC bit becomes 0 after gating is cleared.

Figure 23.9 Registers G0TMCR0 to G0TMCR7 and G1TMCR0 to G1TMCR7

Group i Time Measurement Prescaler Register j (i=0, 1; j=6, 7)


Figure $\mathbf{2 3 . 1 0}$ Registers G0TPR6, G0TPR7, G1TPR6 and G1TPR7

Group i Time Measurement Register $\mathrm{j}(\mathrm{i}=0,1 ; \mathrm{j}=0$ to 7 )


Figure 23.11 Registers G0TM0 to G0TM7 and G1TM0 to G1TM7

Group i Waveform Generation Control Register $\mathrm{j}(\mathrm{i}=0,1 ; \mathrm{j}=0$ to 7 )


Notes:

1. This bit setting is enabled only for even channels. In SR waveform output mode, the corresponding odd channel (the next channel after an even channel) setting is ignored. Waveforms are only output from even channels.
2. The setting value is output by a write to the IVL bit if the FSCj bit in the GiFS register is set to 0 (the waveform generation selected) and the IFEj bit in the GiFE register is set to 1 (the function for channel $j$ enabled).
3. This bit is available only in the GiPOCR0 register. Bit 6 in registers GiPOCR1 to GiPOCR7 should be set to 0 .
4. To set the BTRE bit to 1 , bits BCK1 and BCK0 in the GiBCR0 register should be set to 11b (f1) and bits UD1 and UDO in the GiBCR1 register should be set to 00b (increment counting mode).
5. The output level inversion is the final step in waveform generation process. When the INV bit is set to 1 (output level is inverted), high is output by setting the IVL bit to 0 (output low as default value), and vice versa.

Figure 23.12 Registers GOPOCR0 to GOPOCR7 and G1POCR0 to G1POCR7

Group 2 Waveform Generation Control Register j (j=0 to 7)


Notes:

1. When the RTP bit is set to 1 , the settings of bits MOD2 to MODO are disabled.
2. This bit setting is enabled only for even channels. In SR waveform output mode, the corresponding odd channel (the next channel after an even channel) setting is ignored. Waveforms are not output from odd channels but even channels.
3. This bit setting is enabled only for channels 0 and 1 of the group 2. To use the ISTXD2 or IEOUT pin as an output, bits MOD2 to MODO in the G2POCR0 register should be set to 111b. To use the ISCLK2 pin, the same bits in the G2POCR1 register should be set to 111b. This bit setting should not be done in other channels than 0 and 1.
4. This bit setting is enabled when the RTP bit is set to 1 (real-time port used) and the PRP bit in the G2BCR1 register is set to 1 (parallel RTP output mode).
5. The output level inversion is the final step in waveform generation process. When the INV bit is set to 1 (output level is inverted), high is output by setting the IVL bit to 0 (output low as default value), and vice versa.

Figure 23.13 Registers G2POCR0 to G2POCR7

Group i Waveform Generation Register j (i=0 to 2; j=0 to 7)


Figure 23.14 Registers G0PO0 to G0PO7, G1PO0 to G1PO7, and G2PO0 to G2PO7

Group i Function Select Register (i=0,1)				
1 1 d	Bit Symbol	Bit Name	Function	RW
	FSC0	Channel 0 Time Measurement/Waveform Generation Select Bit	0: Select the waveform generation   1: Select the time measurement	RW
	FSC1	Channel 1 Time Measurement/Waveform Generation Select Bit		RW
	FSC2	Channel 2 Time Measurement/Waveform Generation Select Bit		RW
	FSC3	Channel 3 Time Measurement/Waveform Generation Select Bit		RW
	FSC4	Channel 4 Time Measurement/Waveform Generation Select Bit		RW
	FSC5	Channel 5 Time Measurement/Waveform Generation Select Bit		RW
	FSC6	Channel 6 Time Measurement/Waveform Generation Select Bit		RW
	FSC7	Channel 7 Time Measurement/Waveform Generation Select Bit		RW

Figure 23.15 Registers G0FS and G1FS

## Group i Function Enable Register ( $\mathrm{i}=0$ to 2 )



Figure 23.16 Registers G0FE to G2FE


Figure 23.17 G2RTP Register

### 23.1 Base Timer (for Groups 0 to 2)

The base timer is a free-running counter that counts an internally generated count source. Table 23.2 lists specifications of the base timer. Figure 23.4 to Figure 23.17 show registers associated with the base timer. Figure 23.18 shows a block diagram of the base timer. Figure 23.19, Figure 23.20, and Figure 23.21 show respectively an operation example of the base timer (for groups 0 and 1 ) in increment counting mode, in increment/decrement counting mode, and in two-phase pulse signal processing mode.

Table 23.2 Base Timer Specifications (i=0 to 2)

Item	Specification
Count source (fBTi)	f1 divided by 2(n+1) (for groups 0 to 2), two-phase pulse input divided by 2(n+1) (for groups 0 and 1)   n : setting value using bits DIV4 to DIV0 in the GiBCR0 register $\mathrm{n}=0$ to 31; however no division when $\mathrm{n}=31$
Count operations	- Increment counting   - Increment/decrement counting   - Two-phase pulse signal processing
Count start conditions	- To start each base timer individually, the BTS bit in the GiBCR1 register is set to 1 (count starts)   - To start base timers of two or all groups simultaneously, the BTiS bit in the BTSR register is set to 1 (count starts)
Count stop condition	The BTiS bit in the BTSR register is set to 0 (base timer is reset) and the BTS bit in the GiBCR1 register is set to 0 (base timer is reset)
Reset conditions	- The base timer value matches the GiPO0 register setting   - An input of low signal into the external interrupt pin as follows: for group 0: selected using bits IFS23 and IFS22 in the IFS2 register for group 1: selected using bits IFS27 and IFS26 in the IFS2 register   - The overflow of bit 15 or 9 in the base timer   - The base timer reset request from the communication functions (group 2)
Reset value	0000h
Interrupt request	When the BTiR bit in the interrupt request register is set to 1 (interrupts requested) by the overflow of bit 9,14 , or 15 in the base timer (refer to Figure 11.12)
Read from base timer	- The GiBT register indicates a counter value while the base timer is running   - The GiBT register is undefined while the base timer is being reset
Write to base timer	When a value is written while the base timer is running, the timer counter immediately starts counting from this value. No value can be written while the base timer is being reset

Table 23.2 Base Timer Specifications (i=0 to 2)

Item	Specification
Selectable functions	- Increment/decrement counting mode (for groups 0 and 1) The base timer starts counting when the BTS or BTiS bit is set to 1 . On reaching FFFFh, it starts decrement counting. When the RST1 bit in the GiBCR1 register is set to 1 (reset by match with the GiPO0 register), the timer counter starts decrement counting as soon as the base timer value has matched the GiPO0 register setting. When the timer counter has reached 0000h, it starts increment counting again (Refer to Figure 23.20).   - Two-phase pulse signal processing mode (for groups 0 and 1) Two-phase pulse signals at pins UDiA and UDiB are counted (Refer to Figure 23.21).   UDiA   UDiB



Figure 23.18 Base Timer Block Diagram ( $\mathrm{i}=0$ to 2 )

Table 23.3 Base Timer Associated Register Settings (Common Settings for Time Measurement, Waveform Generation, and Serial Interface) (i=0 to 2)

Register	Bits	Function
G2BCR0	-	Provide an operating clock to the BTSR register. Set to 0111 1111b
BTSR	-	Set to 0000 0000b
GiBCR0	BCK1 and BCK0	Select a count source
	DIV4 to DIV0	Select a divide ratio of count source
	IT	Select a base timer interrupt source
	RST2 to RST0	Select a timing for base timer reset
	BTS	Use this bit when each base timer individually starts counting
	UD1 and UD0	Select a count operation (in groups 0 and 1)
GiPOCR0	BTRE	Select a source for base timer reset
GiBT	-	

The following register settings are required to set the RST1 bit to 1 (base timer is reset by match with the GiPO0 register).

GiPOCR0	MOD2 to MOD0	Set to 000b (single-phase waveform output mode)
GiPO0	-	Set the reset cycle
GiFS	FSC0	Set the bit to 0 (waveform generation)
GiFE	IFE0	Set the bit to 1 (channel operation starts)

Bit configurations and functions vary with the groups.
(1) When the IT bit in the GiBCRO register is set to 0
(an interrupt is requested by the overflow of bit 15 in the base timer)

$j=7,4$
The figure above applies under the following conditions:

- The RST1 bit in the GiBCR1 register is set to 0 (the match with the GiPO0 register is not the reset source for the base timer)
- Bits UD1 and UD0 in the GiBCR1 register are set to 00b (increment counting mode)
(2) When the IT bit in the GiBCRO register is set to 1
(an interrupt is requested by the overflow of bit 14 in the base timer)

Base timer i

Overflow signal of bit 14

BTiR bit in the IIOjIR register

$j=7,4$ program, if required

The figure above applies under the following conditions:

- The RST1 bit in the GiBCR1 register is set to 0 (the match with the GiPO0 register is not the reset source for the base timer)
- Bits UD1 and UD0 in the GiBCR1 register are set to 00b (increment counting mode)

Figure 23.19 Base Timer Increment Counting Mode (i=0,1)(for Groups 0 and 1)


Figure 23.20 Base Timer Increment/Decrement Counting (i=0,1)(for Groups 0 and $\mathbf{1}$ )
(1) When the base timer is reset while it increments the count

(2) When the base timer is reset while it decrements the count


Notes:

1. 1.5 fBTi clock cycles or more are required.
2. The RST2 bit in the GiBCR1 register should be set to 1 in two-phase pulse signal processing mode.

Figure 23.21 Base Timer Two-phase Pulse Signal Processing Mode (i=0,1) (for Groups 0 and 1)

### 23.2 Time Measurement (for Groups 0 and 1)

Every time an external trigger is input, the base timer value is stored into the GiTMj register ( $\mathrm{i}=0,1 ; \mathrm{j}=0$ to 7). Table 23.4 lists specifications of the time measurement and Table 23.5 lists its register settings. Figure 23.22 and Figure 23.23 show operation examples of the time measurement and Figure 23.24 shows operation examples with the prescaler or gate function.

Table 23.4 Time Measurement Specifications (i=0, 1; j=0 to 7)

Item	Specification
Time measurement channels	Group 0: Channels 0 to 7 Group 1: Channels 0 to 7
Trigger input polarity	Rising edge, falling edge, or both edges of the IIOi_j pin
Time measurement start condition	The IFEj bit in the GiFE register is set to 1 (function for channel $j$ enabled) while the FSCj bit in the GiFS register is set to 1 (time measurement selected)
Time measurement stop condition	The IFEj bit is set to 0 (function for channel j disabled)
Time measurement timing	- Without the prescaler: every time a trigger is input   - With the prescaler (for channels 6 and 7 ): every (GiTPRk register $(k=6,7)$ value +1 ) times a trigger is input
Interrupt request	When the TMijR bit in the interrupt request register is set to 1 (interrupts requested) (Refer to Figure 11.12)
IIOi $\quad$ input pin function	Trigger input
Selectable functions	- Digital filter   The digital filter determines a trigger input level every f1 or fBTi cycle and passes the signals holding the same level during three sequential cycles   - Prescaler (for channels 6 and 7)   Time measurement is executed every (GiTPRk register value +1 ) times a trigger is input   - Gating (for channels 6 and 7) This function disables any trigger input to be accepted after the time measurement by the first trigger input. However, the trigger input can be accepted again if any of following conditions are met while the GOC bit in the GiTMCRk register is set to 1 (the gating is cleared when the base timer matches the GiPOp register) $(p=4,5 ; p=4$ when $k=6 ; p=5$ when $k=7)$ :   - The base timer value matches the GiPOp register setting   - The GSC bit in the GiTMCRk register is set to 1

Table 23.5 Time Measurement (for Groups 0 and 1) Associated Register Settings ( $\mathrm{i}=\mathbf{0}, \mathbf{1} ; \mathbf{j}=\mathbf{0}$ to 7; $k=6,7$ )

Register	Bits	Function
GiTMCRj	CTS1 and CTS0	Select a time measurement trigger
	DF1 and DF0	Select a digital filter
	GT, GOC, GSC	Select if the gating is used
	PR	Select if the prescaler is used
GiTPRk	-	Set the prescaler value
GiFS	FSCj	Set the bit to 1 (the time measurement selected)
GiFE	IFEj	Set the bit to 1 (function for channel j enabled)

Bit configurations and functions vary with the channels or groups.
Registers associated with the time measurement should be set after setting the base timer-associated registers.

Input to the
IIOi_j pin

GiTMj register

TMijR bit


TMijR bit: Bit in registers IIOOIR to IIO11IR
This figure above applies under the following conditions:

- Bits CTS1 and CTS0 in the GiTMCRj register are set to 01b (rising edge as time measurement trigger), the PR bit is set to 0 (no prescaler is used) and the GT bit is set to 0 (no gating is used)
- Bits RST2 to RST0 in the GiBCR1 register are set to 000b (base timer is not reset) and bits UD1 and UD0 are set to 00b (increment counting mode)
The base timer reset by matching the GiPO0 register setting (bits RST2 to RST0 in the GiBCR1 register are set to 010 b ) is done after the base timer reaches the GiPOO register setting value +2 .

Figure 23.22 Time Measurement Operation (1) $(i=0,1 ; j=0$ to 7$)$

Case 1: When selecting the rising edge as a time measurement trigger
(Bits CTS1 and CTS0 in the GiTMCRj register are set to 01b)


Notes:

1. Bit in registers IIOOIR to IIO11IR
2. Input pulse applied to the IIOi jin requires 1.5 fBTi clock cycles or more.

Case 2: When selecting both edges as a time measurement trigger
(Bits CTS1 and CTS0 in the GiTMCRj register are set to 11b)
fBTi


Notes:

1. Bit in registers IIOOIR to IIO11IR
2. No interrupt is generated if the MCU receives a trigger signal when the TMijR bit is set to 1 . However, the value of GiTMj register changes.

Case 3: Trigger signal when using the digital filter
(Bits DF1 and DFO in the GiTMCRj register are set to 10b or 11b)
f1 or fBTi ${ }^{(1)}$

Input to the
IIOi jin
Trigger signal
after passing
the digital filter


Note:

1. fBTi when bits DF1 and DF0 are set to 10 b , f 1 when the bits are set to 11 b .

Figure 23.23 Time Measurement Operation (2) $(i=0,1 ; j=0$ to 7$)$

Case 1: Operation with the prescaler
(The GiTPRj register is set to 02 h and the PR bit in the GiTMCRj register is set to 1 )


Notes:

1. This example applies to cycles following the first cycle after the PR bit in the GiTMCRj register is set to 1 (the prescaler is used)
2. Bit in registers IIO0IR to IIO11IR

## Case 2: Operation with the gating

(The gating is cleared by matching the base timer value with the GiPOk register setting. Bits GT and GOC in the GiTMCRj register are respectively set to 1)

$k=4,5$
Note:

1. Bit in registers IIOOIR to IIO11IR

Figure 23.24 Prescaler and Gate Operations (i=0, 1; j=6, 7)

### 23.3 Waveform Generation (for Groups 0 to 2)

Waveforms are generated when the base timer value matches the GiPOj register setting (i=0 to $2 ; \mathrm{j}=0$ to 7).
Waveform generation has the following six modes:

- Single-phase waveform output mode (for groups 0 to 2)
- Inverted waveform output mode (for groups 0 to 2 )
- Set/reset waveform output (SR waveform output) mode (for groups 0 to 2)
- Bit modulation PWM output mode (for group 2)
- Real-time port output (RTP output) mode (for group 2)
- Parallel real-time port output (parallel RTP output) mode (for group 2)

Table 23.6 lists registers associated with the waveform generation.

Table 23.6 Waveform Generation Associated Register Settings (i=0 to 2; j=0 to 7)

Register	Bits	Function
GiPOCRj	MOD2 to MOD0	Select a waveform output mode
	PRT (1)	Set the bit to 1 to use parallel RTP output mode
	IVL	Select a default value
	RLD	Select a timing to reload the value into the GiPOj register
	RTP (1)	Set the bit to 1 to use RTP output mode or parallel RTP output mode.   The settings of bits MOD2 to MOD0 are disabled when this bit is set   to 1
G2BCR1	INV	Select if output level is inverted
GiPOj	-	Set the bit to 1 to use parallel RTP output mode
GiFS	FSCj	Set the timing to invert output waveform
GiFE	Set the bit to 0 (the waveform generation selected) (for groups 0 and   1 only)	
G2RTP	RTP0 to RTP7	Set the bit to 1 (the function for channel j enabled)   mode

Bit configurations and functions vary with channels or groups.
Registers associated with the waveform generation should be set after setting the base timer-associated registers.
Note:

1. This bit is available in the G2POCRj register only. Neither the GOPOCRj nor G1POCRj register has it.

### 23.3.1 Single-phase Waveform Output Mode (for Groups 0 to 2)

The output level at the IIOi_ pin (or OUTC2_j pin for Group 2) becomes high when the base timer value matches the GiPOj register ( $\mathrm{i}=0$ to $2 ; \mathrm{j}=0$ to 7 ). It switches to low when the base timer reaches 0000h. If the IVL bit in the GiPOCRj register is set to 1 (high level is output as default value), a high level output is provided when a waveform output starts. If the INV bit is set to 1 (output level is inverted), a waveform with inverted level is output. Refer to Figure 23.25 for details on single-phase waveform mode operation.
Table 23.7 lists specifications of single-phase waveform output mode.

Table 23.7 Single-phase Waveform Output Mode Specifications (i= 0 to 2)

Item	Specification
Output waveform (1)	- Free-running operation (when bits RST2 to RST0 in the GiBCR1 register are set to 000b)   Cycle: $\quad \frac{65536}{f B T i}$   Low level width: $\quad \frac{m}{f B T i}$   High level width: $\quad \frac{65536-m}{f B T i}$   m : GiPOj register ( $\mathrm{j}=0$ to 7 ) setting value, 0000h to FFFFh   - The base timer is reset by matching the base timer value with the GiPOO register setting (when bits RST2 to RST0 are set to 010b)   Cycle: $\frac{n+2}{f B T i}$   Low level width: $\quad \frac{m}{f B T i}$   High level width: $\quad \frac{n+2-m}{f B T i}$   m: GiPOj register ( $\mathrm{j}=1$ to 7 ) setting value, 0000h to FFFFh   n : GiPO0 register setting value, 0001h to FFFDh   If $m \geq n+2$, the output level is fixed to low
Waveform output start condition (2)	The IFEj ( $\mathrm{j}=0$ to 7 ) bit in the GiFE register is set to 1 (the function for channel j is enabled)
Waveform output stop condition	The IFEj bit is set to 0 (the function for channel j is disabled)
Interrupt request	When the POijR bit in the intelligent I/O interrupt request register is set to 1 (interrupts requested) by matching the base timer value with the GiPOj register setting (Refer to Figure 11.12)
IIOi_j output pin (or OUTC2 j pin for Group 2) function	Pulse signal output
Selectable functions	- Default value setting   This function determines the starting waveform output level   - Output level inversion   This function inverts the waveform output level and output the inverted signal from the IIOi j pin (or OUTC2 j pin for Group 2)

Notes:

1. When the INV bit in the GiPOCRj register is set to 1 (output level is inverted), widths low and high are inverted.
2. To use channels shared by time measurement and waveform generation, the FSCj bit in the GiFS register should be set to 0 (waveform generation is selected).

Case 1: Free-running operation (Bits RST2 to RST0 in the GiBCR register are set to 000b)

$\mathrm{j}=0$ to 7
m : GiPOj register setting value (0000h to FFFFh)
POijR bit: Bit in registers IIOOIR to IIO11IR
Notes:

1. Output waveform when the INV bit in the GiPOCRj register is set to 0 (output level is not inverted) and the IVL bit is set to 0 (low level is output as default value).
2. Output waveform when the INV bit is set to 0 (output level is not inverted) and the IVL bit is set to 1 (high level is output as default value).

This figure above applies under the following condition:

- Bits UD1 and UD0 in the GiBCR1 register are set to 00b (increment counting mode)

Case 2: The base timer is reset by matching the base timer value with the GiPOO register setting

j $=1$ to 7
m: GiPOj register setting value (0000h to FFFFh)
n : GiPOO register setting value (0001h to FFFDh)
POijR bit: Bit in registers IIOOIR to IIO11IR
This figure above applies under the following conditions:

- The IVL bit in the GiPOCRj register is set to 0 (low level is output as default value) and the INV bit is set to 0 (output is not inverted)
- Bits UD1 and UD0 in the GiBCR1 register are set to 00b (increment counting mode)
- $\mathrm{m}<\mathrm{n}+2$

Figure 23.25 Single-phase Waveform Output Mode Operation (i=0 to 2)

### 23.3.2 Inverted Waveform Output Mode (for Groups 0 to 2)

The output level at the IIOi_j pin (or OUTC2 j pin for Group 2) is inverted every time the base timer value matches the GiPOj register setting ( $\mathrm{i}=0$ to $2 ; \mathrm{j}=0$ to 7 ).
Table 23.8 lists specifications of the inverted waveform output mode. Figure 23.26 shows an example of the inverted waveform output mode operation.

Table 23.8 Inverted Waveform Output Mode Specifications (i=0 to 2)

Item	Specification
Output waveform	- Free-running operation (when bits RST2 to RST0 in the GiBCR1 register are set to 000b)   Cycle: $\quad \frac{65536 \times 2}{f B T i}$   High or low level width: $\frac{65536}{f B T i}$   m : GiPOj register ( $\mathrm{j}=0$ to 7 ) setting value, 0000h to FFFFh   - The base timer is reset by matching the base timer value with the GiPO0 register setting (when bits RST2 to RST0 are set to 010b)   Cycle: $\frac{2(n+2)}{f B T i}$   High or low level width: $\frac{n+2}{f B T i}$   n : GiPO0 register setting value, 0001h to FFFDh GiPOj register ( $\mathrm{j}=1$ to 7 ) setting value, 0000h to FFFFh If the GiPOj register setting $\geq \mathrm{n}+2$, the output level is not inverted
Waveform output start condition (1)	The IFEj bit in the GiFE register ( $\mathrm{j}=0$ to 7 ) is set to 1 (the function for channel j is enabled)
Waveform output stop condition	The IFEj bit is set to 0 (the function for channel j is disabled)
Interrupt request	When the POijR bit in the intelligent I/O interrupt request register is set to 1 (interrupts requested) by matching the base timer value with the GiPOj register setting (Refer to Figure 11.12)
IIOi_joutput pin (or OUTC2_j pin for Group 2) function	Pulse signal output
Selectable functions	- Default value setting   This function determines the starting waveform output level   - Output level inversion   This function inverts the waveform output level and outputs the inverted signal from the IIOi_j pin (or OUTC2_j pin for Group 2)

Note:

1. To use channels shared by time measurement and waveform generation, the FSCj bit in the GiFS register should be set to 0 (waveform generation is selected).

Case 1: Free-running operation (Bits RST2 to RST0 in the GiBCR1 register are set to 000b)

$\mathrm{j}=0$ to 7
m : GiPOj register setting value (0000h to FFFFh)
POijR bit: Bit in registers IIOOIR to IIO11IR
Notes:

1. Output waveform when the INV bit in the GiPOCRj register is set to 0 (output is not inverted) and the IVL bit is set to 0 (low level is output as default value).
2. Output waveform when the INV bit is set to 0 (output is not inverted) and the IVL bit is set to 1 (high level is output as default value).
This figure above applies under the following condition:

- Bits UD1 and UD0 in the GiBCR1 register are set to 00b (increment counting mode)

Case 2: The base timer is reset by matching the base timer value with the GiPOO register setting (Bits RST2 to RST0 are set to 010b)

$\mathrm{j}=1$ to 7
m : GiPOj register setting value (0000h to FFFFh)
n : GiPO0 register setting value (0001h to FFFDh)
POijR bit: Bit in registers IIOOIR to IIO11IR
This figure above applies under the following conditions:

- The IVL bit in the GiPOCRj register is set to 0 (low level is output as default value) and the INV bit is set to 0 (output is not inverted)
- Bits UD1 and UD0 in the GiBCR1 register are set to 00b (increment counting mode)
- $\mathrm{m}<\mathrm{n}+2$

Figure 23.26 Inverted Waveform Output Mode Operation (i=0 to 2)

### 23.3.3 Set/Reset Waveform Output Mode (SR Waveform Output Mode) (for Groups 0 to 2)

The output level at the IIOi_j pin (or OUTC2_j pin for Group 2) becomes high when the base timer value matches the GiPOj register setting ( $\mathrm{i}=0$ to $2 ; \mathrm{j}=0,2,4,6$ ). It switches to low when the base timer value matches the GiPOk register setting $(k=j+1)$ or the base timer reaches 0000h. If the IVL bit in the GiPOCRj register ( $\mathrm{j}=0$ to 7 ) is set to 1 (high level is output as default value), a high output level is provided when a waveform output starts. If the INV bit is set to 1 (output level is inverted), a waveform with inverted level is output. Refer to Figure 23.27 for details on SR waveform mode operation. Table 23.9 lists specifications of SR waveform output mode.

Table 23.9 SR Waveform Output Mode Specifications (i=0 to 2)

Item	Specification
Output waveform ${ }^{(1)}$	- Free-running operation (when bits RST2 to RST0 in the GiBCR1 register are set to 000b)   (1) $m<n$   High level width: $\quad \frac{n-m}{f B T i}$   Low level width: $\quad \frac{m}{f B T i}(2)+\frac{65536-n}{f B T i}(3)$   (2) $m \geq n$   High level width: $\frac{65536-m}{f B T i}$   Low level width: $\quad \frac{m}{f B T i}$   m: GiPOj register $(j=0,2,4,6)$ setting value, 0000 h to FFFFh   n : GiPOk register $(\mathrm{k}=\mathrm{j}+1)$ setting value, 0000 h to FFFFh   - The base timer is reset by matching the base timer value with the GiPOO register setting (when bits RST2 to RST0 are set to 010b) (4)   (1) $m<n<p+2$   High level width: $\quad \frac{n+m}{f B T i}$   Low width: $\begin{equation*} \frac{m}{f B T i}(2)+\frac{p+2-n}{f B T i} \tag{3} \end{equation*}$   (2) $m<p+2 \leq n$   High level width: $\quad \frac{p+2-m}{f B T i}$   Low level width: $\quad \frac{m}{f B T i}$   (3) $m \geq p+2$, output level is fixed to low   p: GiPOO register setting value, 0001h to FFFDh   m : GiPOj register $(j=2,4,6)$ setting value, 0000h to FFFFh   n : GiPOk register $(\mathrm{k}=\mathrm{j}+1)$ setting value, 0000 h to FFFFh
Waveform output start Condition (5)	The IFEq bit ( $q=0$ to 7 ) in the GiFE register is set to 1 (the function for channel $q$ is enabled)
Waveform output stop condition	The IFEq bit is set to 0 (the function for channel q is disabled)

Table 23.9 SR Waveform Output Mode Specifications (i=0 to 2)

Item	Specification
Interrupt request	When the POijR bit in the intelligent I/O interrupt request register is set to 1   (interrupts requested) by matching the base timer value with the GiPOj   register setting.   When the POikR bit is set to 1 (interrupts requested) by matching the base   timer value with the GiPOk register setting (refer to Figure 11.12)
IIOi_joutput pin (or   OUTC2_j pin for Group 2)   function	Pulse signal output
Selectable functions	- Default value setting   This function determines the starting waveform output level   • Output level inversion   This function inverts the waveform output level and output the inverted   signal from the IIOi_j pin (or OUTC2_j pin for Group 2)

## Notes:

1. When the INV bit in the GiPOCRj register is set to 1 (output is inverted), widths low and high are inverted.
2. Output period from a base timer reset until when the output level becomes high.
3. Output period from when the output level becomes low until the next base timer reset.
4. When the GiPOO register resets the base timer, channels 0 and 1 SR waveform generation functions are not available.
5. To use channels shared by time measurement and waveform generation, the FSCj bit in the GiFS register should be set to 0 (waveform generation is selected).

Case 1: Free-running operation (Bits RST2 to RST0 in the GiBCR1 register are set to 000b)


Case 2: The base timer is reset by matching the base timer value with the GiPOO register setting (Bits RST2 to RST0 in the GiBCR1 register are set to 010b)

$j=2,4,6 ; k=j+1$
m : GiPOj register setting value, 0000h to FFFFh
n : GiPOk register setting value, 0000h to FFFDh
p: GiPOO register setting value, 0001h to FFFDh
POijR bit, POikR bit: Bits in registers IIOOIR to IIO11IR
This figure above applies under the following conditions:

- The IVL bit is set to 0 (low level is output as default value) and the INV bit is set to 0 (output is not inverted).
- Bits UD1 and UD0 in the GiBCR1 register are set to 00b (increment counting mode)
- $\mathrm{m}<\mathrm{n}<\mathrm{p}+2$

Figure 23.27 SR Waveform Output Mode Operation (i=0 to 2)

### 23.3.4 Bit Modulation PWM Output Mode (for Group 2)

In bit modulation PWM output mode, a PWM output has a 16-bit resolution.
Pulses are output in repetitive cycles, each cycle consisting of span t repeated 1024 times. The span $t$ has a cycle of $\frac{64}{f B T 2}$. The six upper bits in the G2POj register ( $\mathrm{j}=0$ to 7 ) determine the base low width. The ten lower bits determine the number of span $t$, within a cycle, in which low width is extended by the minimum resolution bit width, that is, 1 clock cycle.
If the INV bit is set to 1 (output level is inverted), the waveform with inverted level is output.
Table 23.10 lists specifications of bit modulation PWM output mode. Table 23.11 lists the number of modulated spans and span ts to be extended with the minimum resolution bit width. Figure 23.28 shows an example of bit modulation PWM output mode operation.

Table 23.10 Bit Modulation PWM Output Mode Specifications

Item	Specification
Output waveform (1, 2)	PWM-repeated cycle T: $\frac{65536}{f B T 2}\left(=\frac{64}{f B T 2} \times 1024\right)$   Cycle of span $\mathrm{t}: \quad \frac{64}{f B T 2}$   Low width: $\quad \frac{n+1}{f B T 2}$ of $m$ spans $\frac{n}{f B T 2}$ of (1024-m) spans   Mean low width: $\quad \frac{1}{f B T 2} \times\left(\mathrm{n}+\frac{m}{1024}\right)$   n : G2POj register ( $\mathrm{j}=0$ to 7 ) setting value ( 6 upper bits), 00 h to 3 Fh   m : G2POj register ( $\mathrm{j}=0$ to 7 ) setting value ( 10 lower bits), 000h to 3FFh
Waveform output start condition	The IFEj bit in the G2FE register ( $\mathrm{j}=0$ to 7 ) is set to 1 (the function for channel j is enabled)
Waveform output stop condition	The IFEj bit is set to 0 (the function for channel j is disabled)
Interrupt request	When the PO2jR bit in the interrupt request register is set to 1 (interrupts requested) by matching the 6 lower bits of the base timer value with the 6 upper bits of the G2POj register setting (Refer to Figure 11.12)
OUTC2_j pin function	Pulse signal output pin
Selectable functions	- Default value setting   This function determines the starting waveform output level   - Output level inversion   This function inverts the waveform output level and output the inverted signal from the OUTC2_j pin

Notes:

1. Bits RST2 and RST0 in the G2BCR1 register should be set to 000b to use bit modulation PWM output mode.
2. When the INV bit in the G2POCRj register is set to 1 (output level is inverted), widths low and high are inverted.

Table 23.11 Number of Modulated Spans and Span $t$ Extended Minimum Resolution Bit Width

Modulated Spans	Span ts to be Extended with Minimum Resolution Bit Width
0000000000 b	none
0000000001 b	t 512
0000000010 b	t 256 and t768
0000000100 b	$\mathrm{t} 128, \mathrm{t} 384, \mathrm{t} 640$, and t 896
0000001000 b	$\mathrm{t} 64, \mathrm{t} 192, \mathrm{t} 320, \mathrm{t} 448, \mathrm{t} 576, \mathrm{t} 704, \mathrm{t} 832$, and t 960
$:$	$:$
1000000000 b	$\mathrm{t} 1, \mathrm{t} 3, \mathrm{t} 5, \mathrm{t} 7, \cdots \bullet \mathrm{t} 1019, \mathrm{t} 1021$, and t 1023



Figure 23.28 Bit Modulation PWM Output Mode Operation

### 23.3.5 Real-Time Port Output Mode (RTP Output Mode) (for Group 2)

The OUTC2 j pin ( $\mathrm{j}=0$ to 7) outputs the G2RTP register setting value in one-bit units when the base timer value matches the G2POj register setting. Table 23.12 lists specifications of RTP output mode. Figure 23.29 shows a block diagram of RTP output and Figure 23.30 shows an example of RTP output mode operation.

Table 23.12 RTP Output Mode Specifications

Item	Specification
Waveform output start   condition	The IFEj bit ( $=0$ to 7) in the G2FE register is set to 1 (the function for channel   j is enabled)
Waveform output stop   condition	The IFEj bit is set to 0 (the function for channel j is disabled)
Interrupt request	When the PO2jR bit in the interrupt request register is set to 1 (interrupts   requested) by matching the base timer value with the G2POj register setting   (0000h to FFFFh (1)) (Refer to Figure 11.12)
OUTC2_j pin function	RTP output pin
Selectable functions	- Default value setting   This function determines the starting waveform output level   - Output level inversion   This function inverts the waveform output level and output the inverted   signal from the OUTC2 j pin

Note:

1. The G2PO0 register should be set to between 0001h and FFFDh to set the base timer value to 0000h (bits RST2 to RST0 are set to 010b) when the base timer value matches the G2PO0 register setting.


Figure 23.29 RTP Output Block Diagram

Case 1: Free-running operation (Bits RST2 to RST0 in the G2BCR1 register are set to 000b)

Base timer 2

$\mathrm{j}=0$ to 7
m: G2POj register setting value, 0000h to FFFFh
PO2jR bit: Bit in registers IIO03R to IIO11IR
This figure above applies under the following conditions:
-The IVL bit in the G2POCRj register is set to 0 (low level is output as default value) and the INV bit is set to " 0 " (output is not inverted).
-Bits RST2 to RST0 in the G2BCR1 register are set to 000b (base timer is not reset)
Case 2: The base timer is reset by matching the base timer value with the G2PO0 register setting (Bits RST2 to RST0 are set to 010b)


Figure 23.30 RTP Output Mode Operation

### 23.3.6 Parallel Real-Time Port Output Mode (RTP Output Mode) (for Group 2)

The OUTC2_j pin ( $\mathrm{j}=0$ to 7 ) outputs all the G2RTP register setting values in one-byte units when the base timer value matches the G2POj register setting. Table 23.13 lists specifications of parallel RTP output mode. Figure 23.7 shows the G2BCR1 register. Figure 23.31 shows a block diagram of parallel RTP output and Figure 23.32 shows an example of parallel RTP output mode operation.

Table 23.13 Parallel RTP Output Mode Specifications

Item	Specification
Waveform output start   condition	The IFEj bit ( $\mathrm{l}=0$ to 7) in the G2FE register is set to 1 (the function for channel   j is enabled)
Waveform output stop   Condition	The IFEj bit is set to 0 (the function for channel j is disabled)
Interrupt request	When the PO2jR bit in the interrupt request register is set to 1 (interrupts   requested) by matching the base timer value with the G2POj register setting   (0000h to FFFFh (1)) (Refer to Figure 11.12)
OUTC2_j pin function	RTP output pin
Selectable functions	- Default value setting   This function determines the starting waveform output level   - Output level inversion   This function inverts the waveform output level and output the inverted   signal from the OUTC2 j pin

Note:

1. The G2PO0 register should be set to between 0001h and FFFDh to set the base timer value to 0000h (bits RST2 to RST0 are set to 010b) when the base timer value matches the G2PO0 register setting.


Figure 23.31 Parallel RTP Output Mode Block Diagram

## Case 1: Free-running operation


m : G2PO0 register setting value, 0000h to FFFFh
n : G2PO1 register setting value, 0000h to FFFFh
p : G2PO2 register setting value, 0000h to FFFFh
Bits PO20R, PO21R, and PO22R: Bits in registers IIO3IR to IIO11IR
This figure above applies under the following conditions:
-The IVL bit in the G2POCRj register is set to 0 (low level is output as default value) and the IVL bit is set to 0 (output level is not inverted)
-Bits RST2 to RST0 in the G2BCR1 register are set to 000b (base timer is not reset)
$-\mathrm{m}<\mathrm{n}<\mathrm{p}$

Figure 23.32 Parallel RTP Output Mode Operation

### 23.4 Group 2 Serial Interface

Two 8-bit shift registers and waveform generation enable the serial interface function. In group 2 of the intelligent I/O, the variable synchronous serial interface and IEBus (optional (1)) are available.
Figure 23.33 to Figure 23.40 show associated registers.

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

Group 2 SI/O Transmit Buffer Register


Note:

1. The PC bit should be set to 1 after the $P$ bit is set to 0 .

Figure 23.33 G2TB Register

## Group 2 SI/O Receive Buffer Register



Note:

1. The OER bit is set to 0 when bits GMD1 and GMDO in the G2MR register are set to 00b (the communication block is reset) or the RE bit in the G2CR register is set to 0 (reception disabled).

Figure 23.34 G2RB Register

Group 2 Serial Interface Mode Register


Notes:

1. One base timer clock or more is required after bits $\mathrm{GMD1}$ and GMD0 are set to 00 b .
2. Bits GMD1 and GMD0 should be set to 01b or 10b while the base timer clock is stopped.

Figure 23.35 G2MR Register

## Group 2 Serial Interface Control Register



Note:

1. The group 2 base timer may be reset when these bits are rewritten. To avoid unexpected resets, the RST2 bit in the G2BCR1 register should be set to 0 (base timer is not reset by a reset request from the serial interface).

Figure 23.36 G2CR Register

## Group 2 IEBus Control Register

	Symbol IECR	Address 0172h	Reset Value 00XX X000b	
1 1	Bit Symbol	Bit Name	Function	RW
1 d d	IEB	IEBus Enable Bit ${ }^{(1)}$	0 : IEBus disabled ${ }^{(2)}$   1: IEBus enabled	RW
	IETS	IEBus Transmit Start Request Bit	0: Transmission completed   1: Transmission started	RW
1 1 1 1	IEBBS	IEBus Bus Busy Flag	0: Idle state   1: Busy state (start condition detected)	RO
	(b5-b3)	No register bits; should be written with 0 and read as undefined value		-
1	DF	Digital Filter Select Bit	0: No digital filter   1: Use the digital filter	RW
	IEM	IEBus Mode Select Bit	0 : Mode 1 1: Mode 2	RW

Notes:

1. The IEB bit should be rewritten while the base timer clock is stopped.
2. One fBT2 cycle or more is required after the IEB bit is set to 0 . To set this bit to 1 , bits BCK1 and BCKO in the G2BCRO register should be set to 00b (clock is stopped).

Figure 23.37 IECR Register

## Group 2 IEBus Address Register



Figure 23.38 IEAR Register

Group 2 IEBus Transmit Interrupt Source Detect Register


Note:

1. This bit can be set to 0 by a program but cannot be set to 1 . To set this bit to 0 , the IEB bit in the IECR register should be set to 0 (IEBus disabled).

Figure 23.39 IETIF Register

Group 2 IEBus Receive Interrupt Source Detect Register


Note:

1. This bit can be set to 0 by a program but cannot be set to 1 . To set this bit to 0 , the IEB bit in the IECR register should be set to 0 (IEBus disabled).

Figure $\mathbf{2 3 . 4 0}$ IERIF Register

### 23.4.1 Variable Synchronous Serial Interface Mode (for Group 2)

This mode allows 1-bit to 8-bit data transmission/reception synchronized with the transmit/receive clock. The character length is selectable from 1 to 8 bits. Table 23.14 lists specifications of the group2 variable synchronous serial interface mode and Table 23.15 lists its settings. Figure 23.41 shows an operation example of data transmission/reception.

Table 23.14 Group 2 Variable Synchronous Serial Interface Mode Specifications

Item	Specification
Data format	1- to 8-bit character length
Transmit/receive clock	- The CKDIR bit in the G2MR register is set to 0 (internal clock selected): $\frac{f B T 2}{2(n+2)}$   n : G2PO0 register setting value, 0000 h to FFFFh (1)   The bit rate is set using the G2PO0 register. The clock is generated in the inverted waveform output mode of the channel 2 waveform generation   - The CKDIR bit is set to 1 (external clock selected): input into the ISCLK2 pin (2)
Transmit start conditions	The conditions for starting data transmission are as follows:   - The TE bit in the G2CR register is set to 1 (transmission enabled)   - The TI bit in the G2CR register is set to 0 (data held in the G2TB register)
Receive start conditions	The conditions for starting data reception are as follows:   - The RE bit in the G2CR register is set to 1 (reception enabled)   - The TE bit in the G2CR register is set to 1 (transmission enabled)   - The TI bit in the G2CR register is set to 0 (data held in the G2TB register)
Interrupt request	In transmit interrupt, either of the following conditions is selected to set the SIO2TR bit in the IIO6IR register to 1 (interrupts requested) (Refer to Figure 11.12):   - The IRS bit in the G2MR register is set to 0 (transmit buffer in the G2TB register is empty):   when data is transferred from the G2TB register to the transmit shift register (when the transmission has started)   - The IRS bit is set to 1 (transmission is completed):   when data transmission from the transmit shift register is completed In receive interrupt,   When data is transferred from the receive shift register to the G2RB register (when the reception is completed), the SIO2PR bit in the IIO5IR register is set to 1 (interrupts requested) (Refer to Figure 11.12)
Error detection	Overrun error (3)   This error occurs when the last bit of the next data has been received before reading the G2RB register
Selectable functions	- Bit order selection   Selectable either LSB first or MSB first   - ISTXD2 and ISRXD2 I/O polarity Output level from the ISTXD2 pin and input level to the ISRXD2 pin can be respectively inverted   - Character length for data transmission/reception Selectable a character length from 1 to 8 bits

Notes:

1. When using the serial interface, set 1 or above to the G2PO0 register.
2. The highest transmit/receive clock frequency should be fBT2 divided by 20.
3. If an overrun error occurs, the G2RB register is undefined.

Table 23.15 Register Settings in Group2 Variable Synchronous Serial Interface Mode

Register	Bits	Function
G2BCR0	BCK1 and BCK0	Set the bits to 11b
	DIV4 to DIV0	Select a divide ratio of count source
	IT	Set the bit to 0
G2BCR1	7 to 0	Set the bits to 0001 0010b
G2POCR0	7 to 0	Set the bits to 0000 0111b
G2POCR1	7 to 0	Set the bits to 0000 0111b
G2POCR2	7 to 0	Set the bits to 0000 0010b
G2PO0	15 to 0	$\begin{aligned} & \text { Set a comparative value for waveform generation } \\ & \frac{f B T 2}{2 \times(\text { setting value }+2)}=\text { transmit/receive clock frequency } \end{aligned}$
G2PO2	15 to 0	Set to a value smaller than that in the G2PO0 register setting
G2FE	IFE2 to IFE0	Set the bits to 111b
G2MR	GMD1 and GMD0	Set the bits to 01b
	CKDIR	Select either the internal clock or the external clock
	UFORM	Select either LSB first or MSB first
	IRS	Select a source for transmit interrupt
G2CR	TE	Set the bit to 1 to enable data transmission/reception
	TXEPT	Transmit shift register empty flag
	TI	Transmit buffer empty flag
	RE	Set the bit to 1 to enable data reception
	RI	Receive complete flag
	OPOL	Select if the output level at the ISTXD2 pin is inverted (usually set the bit to 0 )
	IPOL	Select if the input level at the ISRXD2 pin is inverted (usually set the bit to 0)
G2TB	15 to 0	Set the data to be transmitted/received and its character length
G2RB	15 to 0	Store received data and error flag



Figure 23.41 Group 2 Variable Synchronous Serial Interface Mode Transmit/Receive Operation

## 24. Multi-master $\mathrm{I}^{2} \mathrm{C}$-bus Interface

The multi-master $I^{2} \mathrm{C}$-bus interface (MMI2C) is capable of serial, bi-directional data transfer in the $\mathrm{I}^{2} \mathrm{C}$-bus data transmit and receive format. It contains an arbitration lost detector and a clock synchronization function. Table 24.1 lists specifications of the multi-master ${ }^{2}{ }^{2} \mathrm{C}$-bus interface. Table 24.2 lists detectors of the multi-master $\mathrm{I}^{2} \mathrm{C}$-bus interface. Figure 24.1 shows a block diagram of the multi-master $\mathrm{I}^{2} \mathrm{C}$-bus interface.

Table 24.1 Multi-master $\mathrm{I}^{2} \mathrm{C}$-bus Interface Specifications

Item	Specification
Data format	Compliant with the $I^{2} \mathrm{C}$-bus specification   - 7-bit addressing format   - Fast-mode   - Standard-mode
Master/Slave device	Selectable
I/O pins	Serial data line: MSDA (SDA) Serial clock line: MSCL (SCL)
Transmit/Receive clock	16.1 to $400 \mathrm{kbps}(\phi I \mathrm{C}=4 \mathrm{MHz}) \quad \phi \mathrm{IIC}$ : ${ }^{2} \mathrm{C}$-bus system clock
Transmit/Receive modes	Compliant with the $I^{2} \mathrm{C}$-bus specification   - Master-transmit mode   - Master-receive mode   - Slave-transmit mode   - Slave-receive mode
Interrupt request sources	- Six $I^{2} \mathrm{C}$-bus interface interrupts: Successful transmit, successful receive, slave address match detection, general call address detection, STOP condition detection, and timeout detection   - Two I ${ }^{2} \mathrm{C}$-bus line interrupts: Rising or falling edge of pins MSDA and MSCL
Selectable functions	- Timeout detector   This function detects that the MSCL pin level is held high for longer than the specified time while the bus is busy   - Free data format selector This function selects the free data format to generate an interrupt request, regardless of the slave address value, when the first byte is received

Table 24.2 Detectors of Multi-master $I^{2} \mathrm{C}$-bus Interface

Item	Specification
Slave address match   detector	In slave-receive mode, this detects whether the address sent from the   master device matches the slave address. When they match, an ACK is   automatically sent. When they do not, a NACK is automatically sent and   communication is stopped
General call address   detector	This detects a general call address when in slave-receive mode
Arbitration lost detector	This detects an arbitration lost and then immediately stops output to the   MSDA pin.
Bus busy detector	This detects that the bus is busy, and sets/resets the BBSY bit



Figure 24.1 Multi-master $I^{2}$ C-bus Interface Block Diagram

### 24.1 Multi-master $I^{2} \mathrm{C}$-bus Interface-associated Registers

### 24.1.1 $\quad I^{2} \mathrm{C}$-bus Transmit/Receive Shift Register (I2CTRSR)

$I^{2} \mathrm{C}$-bus Transmit/Receive Shift Register ${ }^{(1,2,3)}$
Notes:

1. This register is write enabled when the ICE bit in the I2CCRO register is 1 ( $I^{2} \mathrm{C}$-bus interface enabled).
2. This register is used for transmitting and receiving. Read the received data before using this register for
transmitting.
3. When data is written to this register, bits BC 2 to BC 0 in the I2CCR0 register become 000 b , and bits
LRB, AAS, and AL in the I2CSR register become 0 .

Figure 24.2 I2CTRSR Register

The I2CTRSR register is an 8-bit shift register where received data is stored and transmit data is written. When transmit data is written to this register, the data is synchronized with the SCL clock and shifted out in descending order from bit 7 . Every time a bit is shifted out, the data is shifted to the left by 1 bit. During a receive operation, the data is synchronized with the SCL clock and stored in order starting from bit 0.1 bit of data is shifted (to the left) for every bit that is input. Figure 24.3 shows the timing when the received data is stored to the I2CTRSR register.
The I2CTRSR register is write enabled when the ICE bit in the I2CCRO register is $1\left(I^{2} \mathrm{C}\right.$-bus interface enabled). When the ICE bit is 1 and the MST bit in the I2CSR register is 1 (master mode), writing data to the I2CTRSR register resets the bit counter and the SCL clock is output.
Write to the I2CTRSR register when a START condition is generated or the MSCL pin is low. The register can always be read.


Figure 24.3 Received Data Storing Timing to the I2CTRSR Register

### 24.1.2 $\quad I^{2} \mathrm{C}$-bus Slave Address Register (I2CSAR)

## $\mathrm{I}^{2} \mathrm{C}$-bus Slave Address Register



Figure 24.4 I2CSAR Register
The I2CSAR register stores a slave address to automatically recognize itself as a slave device. When the received address matches the slave address, the device operates as a slave device.

### 24.1.2.1 Bits SAD6 to SADO

Bits SAD6 to SAD0 store a slave address. When the addressing format is enabled, the received 7-bit address and the slave address set in bits SAD6 to SAD0 are compared. When a match is detected, the device operates as a slave device.

### 24.1.3 $\quad \mathrm{I}^{2} \mathrm{C}$-bus Control Register 0 (I2CCRO)

## $1^{2} \mathrm{C}$-bus Control Register 0



Note:

1. These bits automatically become 000b in the following cases:

- When a START or STOP condition is detected
- When data transmission is completed
- When data reception is completed

Figure 24.5 I2CCR0 Register
The I2CCR0 register controls data communication format.

### 24.1.3.1 Bits BC2 to BCO

Bits $B C 2$ to $B C 0$ set the data bit length to be sent or received next. When the data bit length set with bits $B C 2$ to $B C 0$ (acknowledge clock pulse is included in the number when the ACKCLK bit in the $12 C C C R$ register is 1 ) is sent or received, an $I^{2} C$-bus interface interrupt request is generated. Consequently, bits BC2 to BCO become 000b. Note that these bits also become 000b when a START condition is detected. Address data is sent or received in 8 bits regardless of their setting.

### 24.1.3.2 ICE Bit

The ICE bit enables the $I^{2} \mathrm{C}$-bus interface. Set this bit to 1 to enable the $I^{2} \mathrm{C}$-bus interface and 0 to disable it. When this bit is 0 , pins MSDA and MSCL are fixed high (these pins are high-impedance when the corresponding NOD bits in registers P7_0S and P7_1S are 1), therefore the $I^{2} \mathrm{C}$-bus interface cannot be used.
When the ICE bit is set to 0 , the following occurs:

- Bits ADZ, AAS, AL, BBSY, TRS, and MST in the I2CSR register become 0 , and the IRF bit becomes 1.
- Writing to the I2CTRSR register is disabled.
- The $I^{2} \mathrm{C}$-bus system clock ( $\phi I \mathrm{C}$ ) is stopped, and the internal counter and flags are reset.
- The TOF bit in the I2CCR2 register becomes 0 (timeout not detected).


### 24.1.3.3 DFS Bit

The DFS bit enables the automatic recognition of a slave address. When the DFS bit is set to 0 , the addressing format is selected and the slave address is automatically recognized. In this setting, data is received only when a general call address is received or a slave address match is detected. When the DFS bit is set to 1 , the free data format is selected. In this setting, the slave address is not recognized, so all data are received.

### 24.1.3.4 RST Bit

The RST bit resets the ${ }^{2}{ }^{2} \mathrm{C}$-bus interface when a communication error occurs. When the ICE bit is set to 1 ( ${ }^{2} \mathrm{C}$-bus interface enabled), writing 1 (reset) to the RST bit has the following effects on the $I^{2} \mathrm{C}$ bus interface:

- Bits ADZ, AAS, AL, BBSY, TRS, and MST in the I2CSR register become 0, and the IRF bit becomes 1.
- The TOF bit in the I2CCR2 register becomes 0 (timeout not detected).
- The internal counter and flags are reset.

When the RST bit is written with 1 , the multi-master $I^{2} \mathrm{C}$-bus interface is reset within a maximum of 2.5 фIIC cycles. Consequently, the RST bit automatically becomes 0 .

Figure 24.6 shows the timing when the $\mathrm{I}^{2} \mathrm{C}$-bus interface is reset.


Figure $24.6 \quad I^{2} \mathrm{C}$-bus Interface Reset Timing

### 24.1.4 $\quad I^{2} \mathrm{C}$-bus Clock Control Register (I2CCCR)



Figure 24.7 I2CCCR Register
The I2CCCR register controls ACK and sets SCL mode and SCL clock frequency. While data is being transmitted or received, only rewrite the ACKD bit.

### 24.1.4.1 Bits CKS4 to CKS0

Bits CKS4 to CKS0 set the SCL clock frequency. The SCL clock frequency varies as shown in the Table 24.3, where $n$ is a setting value of bits CKS4 to CKS0 ( $n=3$ to 31). Do not rewrite these bits while data is being transmitted or received.

Table 24.3 I2CCCR Register Setting Values and SCL Frequencies

Bits CKS4 to   CKS0 Setting   Value (n)	Standard-mode	Fast-mode
	SCL Frequency (When $\phi I \mathrm{C}=4 \mathrm{MHz})^{(1)}$	
0 to 2	Do not set (2)	Do not set (2)
3	Do not set (3)	$333 \mathrm{kHz}(\phi I \mathrm{C} / 4 \mathrm{n})$
4	Do not set (3)	$250 \mathrm{kHz}(\phi I \mathrm{C} / 4 \mathrm{n})$
5	$100 \mathrm{kHz}(\phi I \mathrm{C} / 8 \mathrm{n})$	$400 \mathrm{kHz}(\phi I \mathrm{C} / 2 \mathrm{n})(4)$
6 to 31	83 to $16 \mathrm{kHz}(\phi I \mathrm{C} / 8 \mathrm{n})$	166 to $32 \mathrm{kHz}(\phi I \mathrm{C} / 4 \mathrm{n})$

Notes:

1. The CKS value must be set so the SCL clock frequency is 100 kHz or less in Standard-mode or 400 kHz or less in Fast-mode. The high period of the SCL clock has a margin of error of +2 to $-4 \phi \mathrm{lIC}$ in Standard-mode, and +2 to $-2 \phi I I C$ in Fast-mode. Note that if the high period is shortened, the low period is lengthened, so the frequency remains unchanged.
2. Do not set the CKS value to 0 to 2 regardless of the $\phi I I C$ frequency.
3. When $\phi I I C$ is 4 MHz or higher, do not set the CKS value to 3 or 4 . The SCL clock frequency will extend beyond the specified range.
4. The normal duty cycle of the SCL clock is $50 \%$. When the CKS value is 5 in Fast-mode, it varies from $35 \%$ to $45 \%$.

### 24.1.4.2 CLKMD Bit

Set the CLKMD bit to select the SCL mode. Set this bit to 0 to select Standard-mode and 1 for Fastmode. To use the device under the Fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus specification (up to $400 \mathrm{kbit} / \mathrm{s}$ ), set $\phi I I \mathrm{C}$ to be 4 MHz or higher.

### 24.1.4.3 ACKD Bit

Set the ACKD bit to select the state of the MSDA pin with the ACK clock. When the ACKD bit is set to 0 , the MSDA pin becomes low (acknowledged) by an ACK. When the ACKD bit is 1 , the MSDA pin is held high with the ACK clock.
Table 24.4 lists the MSDA pin state with the ACK clock.

Table 24.4 MSDA Pin States with the ACK Clock

Received   Content	DFS Bit	ACKD Bit	Slave Address	MSDA Pin State
Slave   address		0	0	Match
		1	No match	High (NACK)
	1	0	-	High (NACK)
		1	-	Low (ACK)
Data	-	0	-	High (NACK)
		1	-	Low (ACK)

### 24.1.4.4 ACKCLK Bit

Set the ACKCLK bit to select whether or not to generate an ACK handshake. When this bit is 1 (ACK clock generated), an ACK clock pulse is generated after 1 byte of data is transmitted or received. When this bit is 0 (ACK clock not generated), the ACK clock is not generated after 1 byte of data is transmitted or received. In this case, the IR bit in the I2CIC register becomes 1 ( ${ }^{2} \mathrm{C}$-bus interface interrupt requested) on the last falling edge of the clock for data transmission or reception.

### 24.1.5 $\quad I^{2} \mathrm{C}$-bus START and STOP Conditions Control Register (I2CSSCR)



Figure 24.8 I2CSSCR Register
The I2CSSCR register controls the detection and generation of START and STOP conditions.

### 24.1.5.1 Bits SSC4 to SSC0

Bits SSC4 to SSC0 select the parameters for detecting the START and STOP conditions by setting the high period of SCL pin, set-up, and hold times. This parameter is set by referencing the $I^{2} \mathrm{C}$-bus system clock ( $\phi I I C$ ). Therefore, it will change according to the XIN frequency and the setting of the $I^{2}$ C-bus system clock select bits (i.e. bits ICK4 to ICK0 in registers I2CCR2 and I2CCR1). Do not set an odd number or 00000 b to bits SSC4 to SSC0. To detect a START or STOP condition, set the ICE bit in the I2CCR0 register to 1 ( ${ }^{2} \mathrm{C}$-bus interface enabled). Table 24.11 lists the recommended values for bits SSC4 to SSC0.

### 24.1.5.2 SIP Bit

Set the SIP bit to select which of the edges of MSCL or MSDA pin generates the $\mathrm{I}^{2} \mathrm{C}$-bus line interrupt. Set this bit to 0 to select the falling edge, and 1 to select the rising edge.

### 24.1.5.3 SIS Bit

Set the SIS bit to select the input signal to be used as an $\mathrm{I}^{2} \mathrm{C}$-bus line interrupt source. To select the MSDA pin as an $I^{2} \mathrm{C}$-bus line interrupt source, set this bit to 0 . To select the MSCL pin, set this bit to 1.

### 24.1.5.4 STSPSEL Bit

Set the STSPSEL bit to select the set-up and hold times when START and STOP conditions are generated. Set this bit to 0 to select short mode and 1 to select long mode. The STSPSEL bit must be set to 1 (long mode) when the $\phi I I C$ frequency is higher than 4 MHz . Figure 24.16 shows the START condition generation timing. Table 24.9 lists the set-up and hold times when START and STOP conditions are generated.

### 24.1.6 $\quad I^{2} \mathrm{C}$-bus Control Register 1 (I2CCR1)

## $1^{2} \mathrm{C}$-bus Control Register $1{ }^{(1)}$



Notes:

1. Do not use a bit processing instruction with this register.
2. Set this bit to 0 when the ACKCLK is 0 (ACK clock is not generated).
3. These bits are enabled when bits ICK4 to ICK2 in the I2CCR2 register are 000b.

Figure 24.9 I2CCR1 Register

The I2CCR1 register controls the $\mathrm{I}^{2} \mathrm{C}$-bus interface.

### 24.1.6.1 STIE Bit

The STIE bit enables the STOP condition detection interrupt. Set this bit to 1 to enable the $I^{2} \mathrm{C}$-bus interface interrupt when a STOP condition is detected. Consequently, the STOP bit in the I2CCR2 register becomes 1 (STOP condition detection interrupt requested) and the IR bit in the I2CIC register becomes 1 ( ${ }^{2} \mathrm{C}$-bus interface interrupt requested).

### 24.1.6.2 RIE Bit

When the ACKCLK bit in the I2CCCR register is 1 (ACK clock generated), the RIE bit enables the interrupt which is generated when receiving the last bit of data. When the RIE bit is 1 , the $I^{2} \mathrm{C}$-bus interface interrupt is generated when the last bit (the eighth falling edge of the SCL) of data is received.
Note that the $I^{2} \mathrm{C}$-bus interface interrupt is always generated when the ACK bit (the ninth falling edge of the SCL) is received regardless of the RIE bit setting. Therefore, when the RIE bit is set to 1 , two $1^{2} \mathrm{C}$-bus interface interrupts are generated per data. The source of the interrupt can be identified by reading the RIE bit. The read value indicates the internal WAIT flag state. When the read value is 1 , the last bit of data is the interrupt source. When the read value is 0 , the ACK bit is the interrupt source.
Set the RIE bit to 0 when the ACKCLK bit in the I2CCCR register is 0 (ACK clock not generated). When the device is transmitting data or receiving a slave address, the $I^{2} \mathrm{C}$-bus interface interrupt is generated only by the ACK bit (the ninth falling edge of the SCL) regardless of the RIE bit setting. In both cases, the internal WAIT flag is 0 .

Table 24.5 $\quad I^{2} \mathrm{C}$-bus Interrupt Request Generating Timings when Data are Received and Resuming Communication

        C C-bus Interface Interrupt   Generating Timing	Internal WAIT   Flag	Resuming Transmission/Reception
Last bit of data (on eighth clock)	1	Write to the ACKD bit in the I2CCCR register
ACK bit (on ninth clock)	0	Write to the I2CTRSR register

When the RIE bit is 0 (receive mode, ACK clock generated)


When the RIE bit is 1 (receive mode, ACK clock generated)


Figure 24.10 Interrupt Request Generating Timing in Receive Mode

### 24.1.6.3 Bits SDAO and SCLO

Bits SDAO and SCLO are read-only bits, and are used to monitor the logical values of the internal SDA output signal and internal SCL output signal, respectively. Only set these bits to 0 . Note that the levels of the internal SDA and SCL output signals read from bits SDAO and SCLO are pre-influenced by the external devices, and do not indicate MSDA and MSCL pin states.

### 24.1.6.4 Bits ICK1 and ICKO

Set bits ICK1 and ICK0 to select the I2C-bus system clock frequency ( $\phi$ IIC). These bits are enabled when bits ICK4 to ICK2 in the I2CCR2 register are 000b. Rewrite these bits when the ICE bit in the I2CCR0 register is $0\left(I^{2} \mathrm{C}\right.$-bus interface disabled). The $I^{2} \mathrm{C}$-bus system clock frequency ( $\phi$ IIC) is selected from fIIC divided-by-2, -4 , and -8 by setting these bits. fIIC divided-by-2.5, $-3,-5$, and -6 are also available by setting bits ICK4 to ICK2 in the I2CCR2 register. However, the bits ICK1 and ICK0 are disabled in this case.

Table 24.6 I²C-bus System Clock ( $\phi$ IIC) Select Bit Settings

I2CCR2 Register			I2CCR1 Register		фIIC
ICK4 bit	ICK3 bit	ICK2 bit	ICK1 bit	ICK0 bit	
0	0	0	0	0	fIIC divided-by-2
			0	1	fIIC divided-by-4
		1	1	0	fIIC divided-by-8
0	0	0	0	0	fIIC divided-by-2.5
0	1	1	0	0	fIIC divided-by-3
0	1	0	0	0	fIIC divided-by-5
1	0		0	fIIC divided-by-6	

Only set the values listed above.

### 24.1.7 $\quad \mathrm{I}^{2} \mathrm{C}$-bus Control Register 2 (I2CCR2)

## $\mathrm{I}^{2} \mathrm{C}$-bus Control Register 2



Figure 24.11 I2CCR2 Register

The I2CCR2 register controls communication error detection. If the SCL clock stops, each device connected to the bus is halted suspending communication. To avoid this, the multi-master $I^{2} \mathrm{C}$-bus interface supports a function to generate an $I^{2} \mathrm{C}$-bus interface interrupt when the SCL clock is held high for a specified period of time during transmission or reception.


Figure 24.12 Timeout Detecting Timing

### 24.1.7.1 TOE Bit

The TOE bit enables the timeout detector. When this bit is set to 1 , the timeout detector is enabled, and when the SCL clock is held high for a specified period of time while the BBSY bit in the I2CSR register is 1 (bus is busy), an $I^{2} \mathrm{C}$-bus interface interrupt request is generated.
The timeout detection period is determined by 1) the internal counter that uses $\phi I I C$ as a count source, and 2) the TOSEL bit setting (selects the timeout detection period to be either long or short). Refer to 24.1.7.3 "TOSEL bit" for details.
When a timeout is detected, set the ICE bit in the I2CCRO register to $0\left(I^{2} \mathrm{C}\right.$-bus interface disabled) and initialize the $\mathrm{I}^{2} \mathrm{C}$-bus interface.

### 24.1.7.2 TOF Bit

The TOF bit is a flag that indicates the state of a timeout detection. This bit is enabled when the TOE bit is 1 . When the TOF bit becomes 1 (timeout detected), the IR bit in the I2CIC register becomes 1 ( ${ }^{2} \mathrm{C}$-bus interface interrupt requested) simultaneously.

### 24.1.7.3 TOSEL Bit

The TOSEL bit selects a long or short length for a timeout detection period. This bit is enabled when the TOE bit is 1 (timeout detector enabled). Set this bit to 0 to select the long timeout period. In this setting, the internal counter functions as a 16-bit counter. Set this bit to 1 to select the short timeout period. In this setting, the internal counter functions as a 14-bit counter.
The internal counter increments using the $\mathrm{I}^{2} \mathrm{C}$-bus system clock ( $\phi I \mathrm{C}$ ) as a count source.
Table 24.7 lists timeout detection periods.

Table 24.7 Example Timeout Detection Periods

$\phi$ IIC	Long Timeout Detection Period   $($ TOSEL $=0)$	Short Timeout Detection Period   $($ TOSEL $=1)$
4 MHz	16.4 ms	4.1 ms
2 MHz	32.8 ms	8.2 ms
1 MHz	65.6 ms	16.4 ms

### 24.1.7.4 Bits ICK4 to ICK2

Set bits ICK4 to ICK2 to select the $\mathrm{I}^{2} \mathrm{C}$-bus system clock frequency ( $\phi \mathrm{IIC}$ ). Rewrite these bits when the ICE bit in the I2CCRO register is $0\left(I^{2} \mathrm{C}\right.$-bus interface disabled).
The $I^{2} \mathrm{C}$-bus system clock frequency ( $\phi \mathrm{II} \mathrm{C}$ ) can be selected from fIIC divided-by-2.5, $-3,-5$, and -6 . Or, when bits ICK4 to ICK2 are 000b, the $I^{2}$ C-bus system clock frequency ( $\phi I I C$ ) can be selected from fIIC divided-by-2, -4 , and -8 by setting bits ICK1 and ICK0 in the I2CCR1 register. Refer to Table 24.6.

### 24.1.7.5 STOP Bit

The STOP bit monitors the STOP condition detection interrupt. When the $1^{2} \mathrm{C}$-bus interface interrupt is generated by the detection of a STOP condition, the STOP bit becomes 1. This bit is enabled when the STIE bit in the I2CCR1 register is 1 (STOP condition detection interrupt is enabled). This bit can only be set to 0 . Writing 1 to this bit has no effect.

### 24.1.8 $\quad I^{2} \mathrm{C}$-bus Status Register (I2CSR)

## $1^{2} \mathrm{C}$-bus Status Register



Notes:

1. Write 1111b to the lower four bits of this register to set the TRS or MST bit to 1 without generating a START or STOP condition.
2. These bits are read-only when using them to check the status.
3. This bit is read-only. Only set this bit to 0 .

## Figure 24.13 I2CSR Register

The I2CSR register monitors the state of the ${ }^{2}$ C-bus interface. Write to this register only when using the functions listed in Table 24.8, and only set the values that are listed. Note that the lower six bits are not rewritten even though a value from Table 24.8 is written.

Table 24.8 I2CSR Register Settings and Functions

Values Written to the I2CSR Register								Function
MST	TRS	BBSY	IRF	AL	AAS	ADZ	LRB	
0	0	X	0	1	1	1	1	Select slave-receive mode
0	1							Select slave-transmit mode
1	0							Select master-receive mode
1	1							Select master-transmit mode
1	1	0	0	0	0	0	0	Select master-transmit mode and set the device to be on STOP condition standby.
		1						Select master-transmit mode and set the device to be on START condition standby.

### 24.1.8.1 LRB Bit

The LRB bit stores the data of the last received bit. It is used to check whether an ACK is received. When the ACKCLK bit in the I2CCCR register is 1 (ACK clock generated), the LRB bit becomes 0 when the ACK is received, and 1 when the ACK is not received. When the ACKCLK bit is 0 (ACK clock not generated), the last bit of data is stored to the LRB bit. When a value is written to the I2CTRSR register, the LRB bit becomes 0 .

### 24.1.8.2 ADZ Bit

The ADZ bit is a flag that indicates that the general call address was received. When the DFS bit in the I2CCRO register is 0 (addressing format) in slave-receive mode, the ADZ bit becomes 1 when the general call address is received.
The ADZ bit becomes 0 in any of the following cases:

- When a STOP or START condition is detected
- When the ICE bit in the I2CCRO register is set to 0 ( ${ }^{2} \mathrm{C}$-bus interface disabled)
- When the RST bit in the I2CCR0 register is written with 1 (I2C-bus interface reset)


### 24.1.8.3 AAS Bit

The AAS bit is a flag that indicates whether the received address matches its own slave address. The AAS bit becomes 1 when the received address matches its own slave address in bits SAD6 to SAD0 in the I2CSAR register, when the DFS bit in the I2CCR0 register is 0 (addressing format) in slavereceive mode, or when the received address is the general call address. The AAS bit becomes 0 in any of the following cases:

- When data is written to the I2CTRSR register
- When the ICE bit in the I2CCR0 register is set to 0 ( ${ }^{2} \mathrm{C}$-bus interface disabled)
- When the RST bit in the I2CCR0 register is written with 1 ( $I^{2} \mathrm{C}$-bus interface reset)


### 24.1.8.4 AL Bit

The AL bit is a flag that indicates arbitration lost detection. In master transmit mode, if the MSDA pin is changed to low by another device, then the AL bit becomes 1. Consequently, the TRS bit in the I2CSR register becomes 0 (receive mode), and then the MST bit becomes 0 (slave mode) at the end of the byte in which an arbitration lost is detected.
The AL bit becomes 0 in any of the following cases:

- When data is written to the I2CTRSR register
- When the ICE bit in the I2CCRO register is set to 0 ( ${ }^{2} \mathrm{C}$-bus interface disabled)
- When the RST bit in the I2CCRO register is written with 1 ( ${ }^{2} \mathrm{C}$-bus interface reset)


### 24.1.8.5 IRF Bit

Set the IRF bit to generate the $I^{2} \mathrm{C}$-bus interface interrupt request signal. When the $\mathrm{I}^{2} \mathrm{C}$-bus interface interrupt source is generated, first the IRF bit becomes 0 , then the $I^{2} \mathrm{C}$-bus interface interrupt is generated on the falling edge of the IRF bit. Refer to Figure 24.10 for the timing. The IRF bit becomes 0 in any of the following cases:

- When 1-byte data transmission is completed (including when an arbitration lost is detected)
- When 1-byte data reception is completed
- When the slave address is matched in addressing format in slave-receive mode
- When the general call address is received in addressing format in slave-receive mode
- When address data reception is completed in free data format in slave-receive mode The IRF bit becomes 1 in any of the following cases:
- When data is written to the I2CTRSR register
- When data is written to the I2CCCR register (internal WAIT flag is 1 )
- When the ICE bit in the I2CCR0 register is set to $0\left(I^{2} \mathrm{C}\right.$-bus interface disabled)
- When the RST bit in the I2CCR0 register is written with 1 ( $I^{2} \mathrm{C}$-bus interface reset)


### 24.1.8.6 BBSY Bit

The BBSY bit is a flag that indicates the availability of the $I^{2} \mathrm{C}$-bus. The BBSY bit becomes 1 when a START condition is detected, and 0 when a STOP condition is detected. When the BBSY bit is 0 , the ${ }^{2}{ }^{2} \mathrm{C}$-bus is not in use, and is available for the device to generate a START condition.
The detection of a START or STOP condition is dependent on the setting of bits SSC4 to SSC0 in the I2CSSCR register.
The BBSY bit becomes 0 in any of the following cases:

- When a STOP condition is detected
-When the ICE bit in the I2CCR0 register is set to 0 ( $I^{2} \mathrm{C}$-bus interface disabled)
- When the RST bit in the I2CCRO register is written with 1 ( $I^{2} \mathrm{C}$-bus interface reset)


### 24.1.8.7 TRS Bit

The TRS bit determines the direction of data communication. When this bit is set to 0 , the device enters receive mode and waits for data to be sent from another device. When this bit is set to 1 , the device enters transmit mode and transmits data and address to the SDA line synchronized with the SCL clock.
The TRS bit automatically becomes 1 (transmit mode) when the received address matches its own slave address and the received $R / \bar{W}$ bit is 1 (data requested) in addressing format in slave-receive mode.
The TRS bit becomes 0 in any of the following cases:

- When this bit is set to 0
- When an arbitration lost is detected
- When a STOP condition is detected
- When the START condition redundancy prevention function is activated
- When a START condition is detected in slave mode
- When a NACK is received in slave mode
- When the ICE bit in the I2CCR0 register is set to $0\left(I^{2} \mathrm{C}\right.$-bus interface disabled)
- When the RST bit in the I2CCR0 register is written with 1 ( $I^{2} \mathrm{C}$-bus interface reset)


### 24.1.8.8 MST Bit

Set the MST bit to select master or slave mode. To enter slave mode, set this bit to 0 . Communication is initiated in synchronization with the SCL clock generated by the master device. Set this bit to 1 to enter master mode. The device generates the SCL clock to initiate communication.
The MST bit becomes 0 in any of the following cases:

- When the MST bit is set to 0
- When an arbitration lost is detected, and transmission of the corresponding byte is completed
- When a STOP condition is detected
- When a START condition is detected
- When the START condition redundancy prevention function is enabled
- When the ICE bit in the I2CCRO register is set to 0 ( ${ }^{2} \mathrm{C}$-bus interface disabled)
- When the RST bit in the I2CCRO register is written with 1 ( $I^{2} \mathrm{C}$-bus interface reset)


### 24.1.9 $\quad I^{2} \mathrm{C}$-bus Mode Register (I2CMR)

## $1^{2} \mathrm{C}$-bus Mode Register ${ }^{(1)}$

Address
O44410h

Note:

1. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.

## Figure $\mathbf{2 4 . 1 4}$ I2CMR Register

The I2CMR register selects signals for the $I^{2} \mathrm{C}$-bus interface and to select the clock source. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.

### 24.1.9.1 I2CEN Bit

The I2CEN bit switches between signals for UART2 and the $I^{2}$ C-bus interface. Set this bit to 1 to use the following signals: MSDA, MSCL, the $I^{2} \mathrm{C}$-bus interface interrupt, and the $I^{2} \mathrm{C}$-bus line interrupt. When this bit is set to 0 , signals for UART2 are enabled.

### 24.1.9.2 Bits CLK2 to CLK0

Bits CLK2 to CLK0 select the clock source for the ${ }^{2}$ ²-bus interface clock (fIIC). It is selected from f 1 divided-by-2, f8 divided-by-2, f2n divided-by-2, f1, f8, or f2n.
The clock source selected for the $I^{2} \mathrm{C}$-bus interface (fIIC) is used as the clock source for the $I^{2} \mathrm{C}$-bus system clock ( $\phi \mathrm{IIC}$ ).

### 24.2 Generating a START Condition

To enter a START condition standby state, write EOh to the I2CSR register while the ICE bit in the I2CCR0 register is 1 ( $I^{2} \mathrm{C}$-bus interface enabled) and the BBSY bit in the I2CSR register is 0 (bus is free). When in standby, write a slave address to the I2CTRSR register to generate a START condition. Consequently, the bit counter becomes 000b, 1 byte of the SCL clock is output, and the slave address is transmitted. Figure 24.15 shows how to generate a START condition.

Note that after a STOP condition is generated, writing to the I2CSR register is disabled for 1.5 cycles of $\phi I I C$ after the BBSY bit becomes 0 (bus is free). To generate a START condition immediately after generating a STOP condition, first write EOh to the I2CSR register, then confirm that bits STR and MST in the I2CSR register are 1. After that, write a slave address to the I2CTRSR register.


Figure 24.15 Generating a START Condition

The timing to generate a START condition differs between Standard-mode and Fast-mode. Figure 24.16 shows START condition generating timing. Table 24.9 lists the set-up and hold times when a START or STOP condition is generated.


Figure 24.16 START Condition Generating Timing

Table 24.9 Set-up and Hold Times When Generating a START or STOP Condition

Parameter	SCL Mode	Short Mode   $(S T S P S E L ~=~ 0) ~$	Long Mode   $($ STSPSEL = 1)
	Standard-mode (CLKMD = 0)	$5.0 \mu \mathrm{~s} \mathrm{(20)}$	$13.0 \mu \mathrm{~s}(52)$
	Fast-mode (CLKMD = 1)	$2.5 \mu \mathrm{~s}(10)$	$6.5 \mu \mathrm{~s}(26)$
Hold time	Standard-mode (CLKMD = 0)	$5.0 \mu \mathrm{~s}(20)$	$13.0 \mu \mathrm{~s}(52)$
	Fast-mode (CLKMD = 1)	$2.5 \mu \mathrm{~s}(10)$	$6.5 \mu \mathrm{~s}(26)$

CLKMD: Bit in the I2CCCR register STSPSEL: Bit in the I2CSSCR register $\phi$ IIC cycle numbers are in parentheses.

### 24.3 Generating a STOP Condition

To enter a STOP condition standby state, write COh to the I2CSR register while the ICE bit in the I2CCRO register is 1 ( ${ }^{2} \mathrm{C}$-bus interface enabled). Consequently, the MSDA pin becomes low. When in a standby state, write dummy data to the I2CTRSR register to generate a STOP condition. Figure 24.17 shows how to generate a STOP condition.


Figure 24.17 Generating a STOP Condition

The timing for generating a STOP condition differs between Standard-mode and Fast-mode. Figure 24.18 shows STOP condition generating timing. Table 24.9 lists the set-up and hold times when a START or STOP condition is generated.


Figure 24.18 STOP Condition Generating Timing
To ensure the successful generation of a STOP condition, after the standby setting, do not write to the I2CSR or I2CTRSR register before the BBSY bit in the I2CSR register becomes 0 (bus is free), otherwise the STOP condition might not be generated successfully.
Furthermore, after the standby setting, if the MSCL pin input signal becomes low after the MSCL pin level becomes high, before the BBSY bit in the I2CSR register becomes 0 (bus is free), then the internal SCL output becomes low. In this case, low output from the MSCL pin is stopped (clock line released) by generating a STOP condition, by setting the ICE bit in the I2CCRO register to 0 ( $I^{2} \mathrm{C}$-bus interface disabled), or by setting the RST bit to 1 ( $I^{2} \mathrm{C}$-bus interface reset)

### 24.4 START Condition Redundancy Prevention Function

A START condition is generated when the bus is free (confirmed with the BBSY bit in the I2CSR register). However, before a START condition is generated, if a different master device generates another START condition, the BBSY bit may become 1. In this case, the START condition redundancy prevention function terminates the generation of its own START condition.
The START condition redundancy prevention functions as follows:

- The START condition standby setting is disabled (exits from standby state)
- Writing to the I2CTRSR register is disabled (generation of the START condition trigger is disabled)
- Bits MST and TRS in the I2CSR register become 0 (enters into slave-receive mode)
- The AL bit in the I2CSR register becomes 1 (arbitration lost is detected)

Figure 24.19 shows the operation of the START condition redundancy prevention function.

Example behavior of when a START condition from another device is generated while in a START condition standby state.


Figure 24.19 Example Operation of the START Condition Redundancy Prevention Function

The START condition redundancy prevention function is enabled from the falling edge of an SDA line in a START condition until the slave address is completely received. This means, when registers I2CSR and I2CTRSR are written during this period, then the START condition redundancy prevention function is enabled. Figure 24.20 shows the duration.


Figure 24.20 Enabled Duration of the START Condition Redundancy Prevention Function

### 24.5 Detecting START and STOP Conditions

Figure 24.21 shows START condition detection, Figure 24.22 shows STOP condition detection, and Table 24.10 lists the parameters for detecting START and STOP conditions. The parameters to detect START and STOP conditions are set with bits SSC4 to SSC0 in the I2CSSCR register. These parameters are detectable only when the input signals of pins MSCL and MSDA meet all the conditions of the high period of MSCL pin, set-up, and hold times in Table 24.10.

The BBSY bit in the I2CSR register becomes 1 when a START condition is detected, and 0 when a STOP condition is detected. The timing for setting the BBSY bit differs between Standard-mode and Fast-mode. Refer to Table 24.11 for BBSY bit setting time. Table 24.11 lists the recommended settings for bits SSC4 to SSC0 in Standard-mode.


Figure 24.21 Detecting a START Condition


Figure 24.22 Detecting a STOP Condition

Table 24.10 Parameters for Detecting START and STOP Conditions

Parameter	Standard-mode	Fast-mode
High period of MSCL pin	SSC value +1 cycle $(6.25 \mu \mathrm{~s})$	4 cycles $(1.0 \mu \mathrm{~s})$
Set-up time	$\frac{\text { SSC value }}{2}+1$ cycle $<4.0 \mu \mathrm{~s}(3.25 \mu \mathrm{~s})$	2 cycles $(0.5 \mu \mathrm{~s})$
Hold time	$\frac{\text { SSC value }}{2}$ cycles $<4.0 \mu \mathrm{~s}(3.0 \mu \mathrm{~s})$	2 cycles $(0.5 \mu \mathrm{~s})$
BBSY bit set/reset time	$\frac{\text { SSC value }-1}{2}+2$ cycles $(3.375 \mu \mathrm{~s})$	3.5 cycles $(0.875 \mu \mathrm{~s})$

Unit: $\phi$ IIC cycles
SSC value: Setting value of bits SSC4 to SSC0 in the I2CSSCR register. Do not set these bits to 0 or an odd number.
Example times of when $\phi I I C=4 \mathrm{MHz}$ and the I2CSSCR register $=18 \mathrm{~h}$ are in parentheses.

Table 24.11 Recommended Values for Bits SSC4 to SSC0 in Standard-mode

$\phi$ IIC	SSC   Recom   mended   Value	Parameters for Detecting START and STOP Conditions   MSCL pin	Set-up time	Hold time	BSY Bit Set/Reset   Time
	30	$6.2 \mu \mathrm{~s}(31)$		$3.0 \mu \mathrm{~s}(15)$	$4.125 \mu \mathrm{~s}(16.5)$
	26	$6.75 \mu \mathrm{~s}(27)$	$3.5 \mu \mathrm{~s}(14)$	$3.25 \mu \mathrm{~s}(13)$	$3.625 \mu \mathrm{~s}(14.5)$
	24	$6.25 \mu \mathrm{~s}(25)$	$3.25 \mu \mathrm{~s}(13)$	$3.0 \mu \mathrm{~s}(12)$	$3.375 \mu \mathrm{~s}(13.5)$
2 MHz	12	$6.5 \mu \mathrm{~s}(13)$	$3.5 \mu \mathrm{~s}(7)$	$3.0 \mu \mathrm{~s}(6)$	$3.75 \mu \mathrm{~s}(7.5)$
	10	$5.5 \mu \mathrm{~s}(11)$	$3.0 \mu \mathrm{~s}(6)$	$2.5 \mu \mathrm{~s}(5)$	$3.25 \mu \mathrm{~s}(6.5)$
1 MHz	4	$5.0 \mu \mathrm{~s}(5)$	$3.0 \mu \mathrm{~s}(3)$	$2.0 \mu \mathrm{~s}(2)$	$3.5 \mu \mathrm{~s}(3.5)$

The number of $\phi I I C$ cycles are in parentheses.
SSC recommended values: Decimal value of bits SSC4 to SSC0 in the I2CSSCR register.

### 24.6 Data Transmission and Reception

Examples of the data transmission and reception format for master-transmission or slave-reception in a 7-bit address format are shown in section 24.6.1 "Master Transmission" and 24.6.2 "Slave Reception". These examples assume communication starts after initialization using the parameters set in Table 24.12.

Table 24.12 Example of Initial Settings

Register	Setting Value	Parameter	Initial Setting
I2CSAR	02h	Slave address	1
I2CCCR	85h	SCL frequency	100 kHz ( $\phi \mathrm{IIC}=4 \mathrm{MHz}$ )
		Clock mode	Standard-mode
		ACK clock generation	ACK clock generated
I2CCR2	00h	Timeout Detector	Disabled
I2CCR1	13h	STOP condition detection interrupt	Enabled
		Successful data receive interrupt	Enabled
		\$IIC	flIC divided-by-2
I2CSR	0Fh	Communication mode	Slave-receive mode
I2CSSCR	98h	SSC value (see Table 24.11)	24
		START and STOP conditions generation mode	Long mode
I2CCR0	08h	Number of bits to be transmitted or received	8 bits
		${ }^{2} \mathrm{C}$-bus interface	Enabled (communication enabled)
		Data format	Addressing format
I2CMR	09h	$1^{2} \mathrm{C}$-bus interface/UART2	${ }^{2} \mathrm{C}$-bus interface selected
		$1^{2} \mathrm{C}$-bus interface clock source	$\mathrm{fIIC}=\mathrm{f} 2 \mathrm{n}$

### 24.6.1 Master Transmission

The operation and procedures of master transmission are described in this section. Figure 24.23 shows an example of master transmission operation. For (A) to (C) in the figure, see $A$ to $C$ in the descriptions and procedures below. (1) to (3) show the program's instructions. Arrows indicate that the procedure is performed by the MCU automatically.


Figure 24.23 Example Operation of Master Transmission
A. Transmitting a slave address
(1) Confirm the BBSY bit in the I2CSR register is 0 (bus is free)
(2) Write EOh to the I2CSR register
$\rightarrow$ The device enters the START condition standby state
(3) Write an address of a receiver (slave address) to the upper 7 bits of the I2CTRSR register
$\rightarrow$ A START condition is generated
$\rightarrow$ The slave address is sent
B. Transmitting data (processed in the $\mathrm{I}^{2} \mathrm{C}$-bus interrupt routine)
(1) Write transmit data to the I2CTRSR register
$\rightarrow$ Data is sent
To send multiple bytes of data, write them to the I2CTRSR register in succession
C. Completing master transmission (processed in the $I^{2} \mathrm{C}$-bus interrupt routine)
(1) Write COh to the I2CSR register
$\rightarrow$ The device enters the STOP condition standby state
(2) Write dummy data to the I2CTRSR register
$\rightarrow$ A STOP condition is generated

In addition to the case where transmission is completed, procedure (C) is required when no ACK from the slave device is received (when a NACK is received as shown in Figure 24.23).

### 24.6.2 Slave Reception

The operation and procedures of slave reception are described in this section. Figure 24.24 shows an example of slave reception operation. For (A) to (D) in the figure, see A to $D$ in the descriptions and procedures below. (1) to (3) show the program's instructions. Arrows indicate that the procedure is performed by the MCU automatically.


Figure 24.24 Example Operation of Slave Reception
A. Receiving a slave address (performed by the MCU automatically)
$\rightarrow$ A START condition is detected
$\rightarrow$ A slave address is received
$\rightarrow$ An ACK is sent and the $I^{2} \mathrm{C}$-bus interface interrupt is generated in either of the following cases -When the general call address is received (the ADZ bit in the I2CSR register is 1) -When an address match is detected (the AAS bit in the I2CSR register is 1 )
B. Starting slave reception (processed in the $I^{2} \mathrm{C}$-bus interrupt routine)
(1) Confirm the content of the I2CSR register. When the TRS bit is 0 , start the slave reception.
(2) Write dummy data to the I2CTRSR register
$\rightarrow$ Data reception starts
C. Completing slave reception (processed in the $I^{2} \mathrm{C}$-bus interrupt routine)
(1) Read the received data from the I2CTRSR register
(2) Set the ACKD bit in the register to 1 (NACK) when the data is the last received data
(3) Set the ACKD bit in the register to 0 (ACK) when the data is not the last received data
$\rightarrow$ An ACK or NACK is sent and an $I^{2}$ C-bus interface interrupt is generated
D. Completing ACK transmission (processed in the $\mathrm{I}^{2} \mathrm{C}$-bus interrupt routine)
(1) Write dummy data to the I2CTRSR register
$\rightarrow$ If the data is the last received data, a STOP condition is detected
$\rightarrow$ If not, data reception restarts

### 24.7 Notes on Using Multi-master I ${ }^{2}$ C-bus Interface

### 24.7.1 Accessing Multi-master $\mathrm{I}^{2} \mathrm{C}$-bus Interface-Associated Registers

Notes on writing to and reading $\mathrm{I}^{2} \mathrm{C}$-bus interface-associated registers.

- I2CTRSR register

Do not write to this register during data transmission or reception. Doing so resets the transmit/ receive counter and the register is unable to perform normal data transmission or reception.

- I2CCR0 register

This register becomes 000b when a START condition is detected or 1 byte of data transmission or reception is completed. Do not write to or read this register at these two timings. Doing so may change the register value to an unexpected value. Figure 24.26 and Figure 24.27 show the bit counter reset timings.

- I2CCCR register

Do not rewrite bits other than the ACKD bit during transmission or reception. Otherwise the $I^{2} \mathrm{C}-$ bus clock circuit is reset and a normal transmission or reception will not be performed as a result.

- I2CCR1 register

Rewrite bits ICK4 to ICK0 only when the ICE bit in the I2CCRO register is $0\left(I^{2} \mathrm{C}\right.$-bus interface disabled). When the I2CCR1 register is read, the internal WAIT flag status is read from this register. Therefore, do not use a bit processing instruction (read-modify-write instruction) with this register.

- I2CSR register

Do not use a bit processing instruction (read-modify-write instruction) since the value of each bit in the I2CSR register changes depending on the communication state. Also, do not access this register when MST bit or TRS bit, which select the communication mode, changes. Doing so may change the register value to an unexpected value. Figure 24.25 to Figure 24.27 show the timing of bits MST and TRS to change.


Figure 24.25 Bit Resetting Timing (when a STOP condition is detected)


Figure 24.26 Bit Resetting Timing (when a START condition is detected)


Figure 24.27 Bit Setting/Resetting Timing (when data transmission/reception is completed)

### 24.7.2 Generating a Repeated START condition

Use the following steps to generate a repeated START condition after transmitting 1-byte of data:
(1) Write EOh (the START condition standby state, and the MSDA pin is high) to the I2CSR register
(2) Wait until the MSDA pin becomes high
(3) Write a slave address to the I2CTRSR register to generate a START condition trigger Figure 24.28 shows the repeated START condition generating timing.


Figure 24.28 Repeated START Condition Generating Timing

## 25. CAN Module

The R32C/117 Group implements one channel (referred to as CANO) of the Controller Area Network (CAN) module that complies with the ISO11898-1 Specifications. The CAN module transmits and receives both formats of messages, namely the standard identifier (11 bits) (identifier hereafter referred to as ID) and extended ID (29 bits).
Table 25.1 and Table 25.2 list the CAN module specifications, and Figure 25.1 shows the CAN module block diagram.
Connect the CAN bus transceiver externally.
Table 25.1 CAN Module Specifications (1)

Item	Specifications
Protocol	ISO11898-1 compliant
Bit rate	Up to 1 Mbps
Message boxes	32 mailboxes:   Two selectable mailbox modes:   - Normal mailbox mode   All 32 mailboxes can be configured for transmission or reception.   - FIFO mailbox mode:   24 mailboxes can be configured for transmission or reception.   The remaining mailboxes can be configured as 4-stage FIFO for transmission and 4-stage FIFO for reception.
Reception	- Data frames and remote frames can be received.   - Selectable receiving ID format (only standard ID, only extended ID, or both ID)   - Programmable one-shot reception function   - Selectable overwrite mode (message overwritten) or overrun mode (message discarded)   - The reception complete interrupt can be individually enabled or disabled for each mailbox.
Acceptance filtering	8 acceptance masks: one mask every 4 mailboxes The mask can be individually enabled or disabled for each mailbox.
Transmission	- Data frame and remote frame can be transmitted.   - Selectable transmitting ID format (only standard ID, only extended ID, or both ID).   - Programmable one-shot transmission function   - Selectable ID priority transmit mode or mailbox number priority transmit mode   - Transmission request can be aborted. (The completion of abort can be confirmed with a flag.)   - The transmission complete interrupt can be individually enabled or disabled for each mailbox.
Mode transition for bus-off recovery	Mode transition for the recovery from the bus-off state can be selected:   - ISO11898-1 compliant   - Automatic entry to CAN halt mode at bus-off entry   - Automatic entry to CAN halt mode at bus-off end   - Entry to CAN halt mode by a program   - Transition to the error-active state by a program

Table 25.2 CAN Module Specifications (2)

Item	Specifications
Error status monitoring	- CAN bus errors (stuff error, form error, ACK error, CRC error, bit error, and ACK delimiter error) can be monitored.   - Transition to error states can be detected (error-warning, error-passive, bus-off entry, and bus-off recovery).   - The error counters can be read.
Time stamp function	Time stamp function using a 16 -bit counter The reference clock can be selected from either 1-, 2-, 4- or 8-bit time periods.
Interrupt sources	6 types:   - Reception complete   - Transmission complete   - Receive FIFO   - Transmit FIFO   - Error   - Wake-up
CAN sleep mode	Current consumption can be reduced by stopping the CAN clock.
Software support units	3 software support units:   - Acceptance filter support   - Mailbox search support (receive mailbox search, transmit mailbox search, and message lost search)   - Channel search support
CAN clock source	Selectable peripheral bus clock or main clock
Test mode	3 test modes available for user evaluation:   - Listen-only mode   - Self-test mode 0 (external loop back)   - Self-test mode 1 (internal loop back)


fCAN: CAN system clock

Figure 25.1 CAN Module Block Diagram

- CANOIN/CANOOUT: CAN input/output pins
- Protocol controller: Handles CAN protocol processing such as bus arbitration, bit timing at transmission and reception, stuffing, and error handling, etc.
- Message box: Consists of 32 mailboxes which can be configured as either transmit or receive mailboxes. Each mailbox has an individual ID, data length code, a data field (8 bytes), and a time stamp.
- Acceptance filter: Performs filtering of received messages. Registers COMKR0 to COMKR7 are used for the filtering process.
- Timer: Used for the time stamp function. The timer value when storing a message into the mailbox is written as the time stamp value.
- Wake-up function: Generates a CANO wake-up interrupt request when a message is detected on the CAN bus.
- Interrupt generator: Generates the following five types of interrupts:
- CANO reception complete interrupt
- CANO transmission complete interrupt
- CANO receive FIFO interrupt
- CANO transmit FIFO interrupt
- CANO error interrupt
-CAN SFRs: CAN-associated registers. Refer to 25.1 "CAN SFRs" for details.


### 25.1 CAN SFRs

The CAN-associated registers are shown in Figures 25.2 to $25.11,25.13,25.14,25.16$ to $25.20,25.22$, and 25.24 to 25.30 .

### 25.1.1 CANO Control Register (COCTLR Register)

CANO Control Register


1. When bits CANM and SLPM are changed, check the COSTR register to ensure that the mode has been switched.
Do not change bits CANM and SLPM until the mode has been switched.
2. Write to the SLPM bit in CAN reset mode or CAN halt mode.

When rewriting the SLPM bit, set only this bit to 0 or 1.
3. Write to bits BOM, MBM, IDFM, MLM, TPM, and TSPS in CAN reset mode.
4. Set the RBOC bit to 1 in bus-off state.
5. Bits RBOC and TSRC are automatically set back to 0 after being set to 1 . They are read as 0 .
6. Set the TSRC bit to 1 in CAN operation mode.

Figure 25.2 COCTLR Register

### 25.1.1.1 CANM Bit

The CANM bit selects one of the following modes for the CAN module: CAN operation mode, CAN reset mode, or CAN halt mode. Refer to 25.2 "Operating Mode" for detail.
CAN sleep mode is set by the SLPM bit.
Do not set the CANM bit to 11 b .
When the CAN module enters CAN halt mode according to the setting of the BOM bit, the CANM bit is automatically set to 10b.

### 25.1.1.2 SLPM Bit

When the SLPM bit is set to 1 , the CAN module enters CAN sleep mode. When this bit is set to 0 , the CAN module exits CAN sleep mode.
Refer to 25.2 "Operating Mode" for detail.

### 25.1.1.3 BOM Bit

The BOM bit is used to select bus-off recovery mode.

When the BOM bit is 00b, the recovery from bus-off is compliant with ISO11898-1, i.e. the CAN module re-enters CAN communication (error-active state) after detecting 11 consecutive recessive bits 128 times. A bus-off recovery interrupt request is generated when recovering from bus-off.

When the BOM bit is 01 b , as soon as the CAN module reaches the bus-off state, the CANM bit in the COCTLR register is set to 10b (CAN halt mode) and the CAN module enters CAN halt mode. No bus-off recovery interrupt request is generated when recovering from bus-off and registers COTECR and CORECR are set to 00h.

When the BOM bit is 10b, the CANM bit is set to 10 b as soon as the CAN module reaches the bus-off state. The CAN module enters CAN halt mode after the recovery from the bus-off state, i.e. after detecting 11 consecutive recessive bits 128 times. A bus-off recovery interrupt request is generated when recovering from bus-off and registers COTECR and CORECR are set to 00h.

When the BOM bit is 11 b , the CAN module enters CAN halt mode by setting the CANM bit to 10 b while the CAN module is still in bus-off state. No bus-off recovery interrupt request is generated when recovering from bus-off and registers COTECR and CORECR are set to 00h. However, if the CAN module recovers from bus-off after detecting 11 consecutive recessive bits 128 times before the CANM bit is set to10b, a bus-off recovery interrupt request is generated.

If the CPU requests an entry to CAN reset mode at the same time as the CAN module attempts to enter CAN halt mode (at bus-off entry when the BOM bit is 01 b , or at bus-off end when the BOM bit is 10b), then the CPU request to enter CAN reset mode has higher priority.

### 25.1.1.4 RBOC Bit

When the RBOC bit is set to 1 (forcible return from bus-off) in bus-off state, the CAN module forcibly returns from the bus-off state. This bit is automatically set to 0 . The error state changes from bus-off to error-active.

When the RBOC bit is set to 1 , registers CORECR and COTECR are set to 00h and the BOST bit in the COSTR register is set to 0 (the CAN module is not in bus-off state). The other registers remain unchanged. No bus-off recovery interrupt request is generated by this recovery from the bus-off state. Use the RBOC bit only when the BOM bit is 00b (normal mode).

### 25.1.1.5 MBM Bit

When the MBM bit is 0 (normal mailbox mode), mailboxes [0] to [31] are configured as transmit or receive mailboxes.
When this bit is 1 (FIFO mailbox mode), mailboxes [0] to [23] are configured as transmit or receive mailboxes. Mailboxes [24] to [27] are configured as a transmit FIFO and mailboxes [28] to [31] as a receive FIFO.
Transmit data is written into mailbox [24] (mailbox [24] is a window mailbox for the transmit FIFO).
Receive data is read from mailbox [28] (mailbox [28] is a window mailbox for the receive FIFO).
Table 25.3 lists the mailbox configuration.
Table 25.3 Mailbox Configuration

Mailbox	MBM $=0$   (Normal Mailbox Mode)	MBM $=1$ (1)   (FIFO Mailbox Mode)
	Mailboxes [0] to [23]	Normal mailbox
Mailboxes [24] to [27]		Normal mailbox
		Transmit FIFO
Mailboxes [28] to [31]		Receive FIFO

Note:

1. When the MBM bit is set to 1 , note the following:

- Transmit FIFO is controlled by the COTFCR register. The COMCTLj register ( $\mathrm{j}=0$ to 31) for mailboxes [24] to [27] is disabled. Registers COMCTL24 to COMCTL27 cannot be used.
- Receive FIFO is controlled by the CORFCR register. The COMCTLj register for mailboxes [28] to [31] is disabled. Registers COMCTL28 to COMCTL31 cannot be used.
- Refer to the COMIER register about the FIFO interrupts.
- The corresponding bits in the COMKIVLR register for mailboxes [24] to [31] are disabled. Set 0 to these bits.
- Transmit/receive FIFOs can be used for both data frames and remote frames.


### 25.1.1.6 IDFM Bit

The IDFM bit specifies the ID format.
When this bit is 00b, all mailboxes (including FIFO mailboxes) handle only standard IDs.
When this bit is 01b, all mailboxes (including FIFO mailboxes) handle only extended IDs.
When this bit is 10b, all mailboxes (including FIFO mailboxes) handle both standard IDs and extended IDs. Standard IDs or extended IDs are specified by using the IDE bit in the corresponding mailbox in normal mailbox mode. In FIFO mailbox mode, the IDE bit in the corresponding mailbox is used for mailboxes [0] to [23], the IDE bit in registers COFIDCR0 and COFIDCR1 is used for the receive FIFO, and the IDE bit in mailbox [24] is used for the transmit FIFO.
Do not set 11b to the IDFM bit.

### 25.1.1.7 MLM Bit

The MLM bit specifies the operation when a new message is captured in the unread mailbox. Overwrite mode or overrun mode can be selected. All mailboxes (including the receive FIFO) are set to either overwrite mode or overrun mode.

When the MLM bit is 0 , all mailboxes are set to overwrite mode and the new message is overwriting the old message.
When this bit is 1 , all mailboxes are set to overrun mode and the new message is discarded.

### 25.1.1.8 TPM Bit

The TPM bit specifies the priority of modes when transmitting messages.
ID priority transmit mode or mailbox number transmit mode can be selected.
All mailboxes are set for either ID priority transmission or mailbox number priority transmission.

When the TPM bit is 0, ID priority transmit mode is selected and transmission priority complies with the CAN bus arbitration rule, as defined in the ISO 11898-1 Specifications. In ID priority transmit mode, mailboxes [0] to [31] (in normal mailbox mode), and mailboxes [0] to [23] (in FIFO mailbox mode), and the transmit FIFO are compared for the IDs of mailboxes configured for transmission. If two or more mailbox IDs are the same, the mailbox with the smaller number has higher priority.

Only the next message to be transmitted from the transmit FIFO is included in the transmission arbitration. If a transmit FIFO message is being transmitted, the next pending message within the transmit FIFO is included in the transmission arbitration.

When the TPM bit is 1, mailbox number transmit mode is selected and the transmit mailbox with the smallest mailbox number has the highest priority. In FIFO mailbox mode, the transmit FIFO has lower priority than normal mailboxes (mailboxes [0] to [23]).

### 25.1.1.9 TSRC Bit

The TSRC bit is used to reset the time stamp counter.
When this bit is set to 1 , the COTSR register is set to 0000 h . It is automatically set to 0 .

### 25.1.1.10 TSPS Bit

The TSPS bit selects the prescaler for the time stamp.
The reference clock for the time stamp can be selected from either 1-, 2-, 4- or 8-bit time periods.

### 25.1.2 CANO Clock Select Register (COCLKR Register)

## CANO Clock Select Register

b7 b6 b5 b4 b3 b2 b1 b0	Symbol COCLKR	Address   47F47h	Reset Value 000X 0000b	
d	Bit Symbol	Bit Name	Function	RW
1 $\quad 1 \quad 1 \quad 1$	CCLKS	CAN Clock Source Select Bit ${ }^{(1)}$	0: Peripheral bus clock   1: Main clock ${ }^{(2)}$	RW
1 1 1	(b1)	Reserved	Should be written with 0	RW
1 1	$\overline{(\mathrm{b} 2)}$	No register bit; should be written with 0 and read as 0		-
1	$(\mathrm{b} 3)$	Reserved	Should be written with 0	RW
+	(b4)	Reserved	Should be written with 0 and read as undefined value	RW
\|	$\overline{(b 6-b 5)}$	No register bits; should be written with 0 and read as 0		-
I_	(b7)	Reserved	Should be written with 0	RW

Notes:

1. Write to the CCLKS bit in CAN reset mode.
2. To set the CCLKS bit to 1, the frequency of the peripheral bus clock should be equal to or higher than the frequency of the main clock.

Figure 25.3 COCLKR Register

### 25.1.2.1 CCLKS Bit

When the CCLKS bit is set to 0 , the CAN clock source (fCAN) originates from the PLL.
When this bit is set to 1 , the fCAN originates directly from the external XIN pin bypassing the PLL.

### 25.1.3 CANO Bit Configuration Register (COBCR Register)

CANO Bit Configuration Register ${ }^{(1,2)}$


	TSEG2	Time Segment 2 Control Bit	```b18b17b16 0 0 0: Do not use this combination 0 0 1:2 Tq 0 1 0:3 Tq 0 1 1:4 Tq 1 0 0:5 Tq 1 0 1:6 Tq 1 1 0:7 Tq 1 1 1:8 Tq```	RW				
	$\overline{(\mathrm{b} 19)}$	No register bit; should be written with 0 and read as 0		-				
$\begin{aligned} & \\| \\ & \\| \\ & \\| \\ & \\| \\ & ! \\ & ! \\ & ! \\ & ! \\ & ! \\ & ! \\ & ! \\ & ! \end{aligned}$	SJW	Resynchronization Jump Width Control Bit	$\begin{array}{\|lll} \hline \text { b21b20 } \\ 0 & 0 & : 1 \\ 0 & 1: 2 & \mathrm{Tq} \\ 1 & 0 & : 3 \\ 1 & 1: 4 \mathrm{Tq} \\ 1 & 1 \end{array}$	RW				
1	(b23-b22)	No register bits; should be written with 0 and read as 0		-				

Notes:

1. Set the COBCR register before entering CAN halt mode from CAN reset mode or CAN operation mode from CAN reset mode. After the setting is made once, this register can be written to in CAN reset mode or CAN halt mode.
2. The COBCR register consists of 24 bits. A 32-bit read/write access should be performed carefully not to rewrite the COCLKR register.

Figure 25.4 COBCR Register

Refer to 25.3 "CAN Communication Speed Configuration" about the bit timing configuration.

### 25.1.3.1 BRP Bit

The BRP bit is used to set the frequency of the CAN communication clock (fCANCLK). The cycle of the fCANCLK is set to be 1 Time Quantum (Tq).

### 25.1.3.2 TSEG1 Bit

The TSEG1 bit is used to specify the total length of the propagation time segment (PROP_SEG) and phase buffer segment 1 (PHASE_SEG1) with the value of Tq.
A value from 4 to 16 time quanta can be set.

### 25.1.3.3 TSEG2 Bit

The TSEG2 bit is used to specify the length of phase buffer segment TSEG2 (PHASE_SEG2) with the value of Tq.
A value from 2 to 8 time quanta can be set.
Set the value smaller than that of the TSEG1 bit.

### 25.1.3.4 SJW Bit

The SJW bit is used to specify the resynchronization jump width with the value of Tq. A value from 1 to 4 time quanta can be set.
Set the value smaller than or equal to that of the TSEG2 bit.

### 25.1.4 CANO Mask Register $k$ (COMKRk Register) ( $k=0$ to 7)

CANO Mask Register k (k=0 to 7) ${ }^{(1)}$

b31b28 b18b17			Symbol	Address			Reset Value							
od 0														
		,	Bit Symbol	Bit Name		Function		RW						
			EID	Extended ID Bit		0 : Corresponding EID bit is not compared   1: Corresponding EID bit is compared		RW						
			SID	Standard ID Bit		0 : Corresponding SID bit is not compared   1: Corresponding SID bit is compared		RW						
			(b31-b29)	Reserved		Should be written with 0		RW						

Note:

1. Write to registers COMKR0 to COMKR7 in CAN reset mode or CAN halt mode.

Figure 25.5 Registers COMKR0 to COMKR7

Refer to 25.5 "Acceptance Filtering and Masking Function" about the masking function in FIFO mailbox mode.

### 25.1.4.1 EID Bit

The EID bit is the filter mask bit corresponding to the CAN extended ID bit. This bit is used to receive extended ID messages.
When the EID bit is 0 , the corresponding EID bit is not compared for the received ID and the mailbox ID.
When this bit is 1 , the corresponding EID bit is compared for the received ID and the mailbox ID.

### 25.1.4.2 SID Bit

The SID bit is the filter mask bit corresponding to the CAN standard ID bit. This bit is used to receive both standard ID and extended ID messages.
When the SID bit is 0 , the corresponding SID bit is not compared for the received ID and the mailbox ID.
When this bit is 1 , the corresponding SID bit is compared for the received ID and the mailbox ID.

### 25.1.5 CAN0 FIFO Received ID Compare Register n (Registers C0FIDCR0 and C0FIDCR1) ( $\mathrm{n}=0,1$ )

CAN0 FIFO Received ID Compare Register $\mathrm{n}(\mathrm{n}=0,1)^{(1)}$					
b31b28	${ }^{\text {b18b17 }}$ b0	Symbol COFIDCRO			Reset Value Undefined Undefined
			47E23h-47E20		
		COFIDCR1	47E27h-47E24		
!1!	-	Bit Symbol	Bit Name	Function	RW
!!!		EID	Extended ID Bit	0 : Corresponding EID bit is 0 1: Corresponding EID bit is 1	RW
! 111		SID	Standard ID Bit	0 : Corresponding SID bit is 0   1: Corresponding SID bit is 1	RW
!1:		$\overline{(\mathrm{b} 29})$	Reserved	Should be written with 0	RW
		RTR	Remote Frame Request Bit	0: Data frame   1: Remote frame	RW
		IDE	ID Extension Bit (2)	0: Standard ID   1: Extended ID	RW

Notes:

1. Write to registers COFIDCR0 and COFIDCR1 in CAN reset mode or CAN halt mode.
2. The IDE bit is enabled when the IDFM bit in the COCTLR register is 10 b (mixed ID mode).

When the IDFM bit is either 00b (standard ID mode) or 01b (extended ID mode), the IDE bit should be written with 0 .

Figure 25.6 Registers COFIDCR0 and COFIDCR1
Registers COFIDCR0 and COFIDCR1 are enabled when the MBM bit in the C0CTLR register is set to 1 (FIFO mailbox mode). Bits EID, SID, RTR, and IDE in registers C0MB28 to C0MB31 are disabled. Refer to 25.5 "Acceptance Filtering and Masking Function" about the usage of these registers.

### 25.1.5.1 EID Bit

The EID bit sets the extended ID of data frames and remote frames. This bit is used to receive extended ID messages.

### 25.1.5.2 SID Bit

The SID bit sets the standard ID of data frames and remote frames. This bit is used to receive both standard ID and extended ID messages.

### 25.1.5.3 RTR Bit

The RTR bit sets the specified frame format of data frames or remote frames.
This bit specifies the following operation:

- When both RTR bits in registers C0FIDCR0 and COFIDCR1 are set to 0, only data frames can be received.
- When both RTR bits in registers COFIDCR0 and COFIDCR1 are set to 1, only remote frames can be received.
- When the RTR bits in registers C0FIDCR0 and COFIDCR1 are set to 0 or 1 individually, both data frames and remote frames can be received.


### 25.1.5.4 IDE Bit

The IDE bit sets the ID format of standard ID or extended ID.
This bit is enabled when the IDFM bit in the C0CTLR register is 10b (mixed ID mode).
When the IDFM bit is 10b, the IDE bit specifies the following operation:

- When both IDE bits in registers COFIDCR0 and C0FIDCR1 are set to 0, only standard ID frames can be received.
- When both IDE bits in registers C0FIDCR0 and COFIDCR1 are set to 1, only extended ID frames can be received.
- When the IDE bits in registers COFIDCR0 and COFIDCR1 are set to 0 or 1 individually, both standard ID and extended ID frames can be received.


### 25.1.6 CANO Mask Invalid Register (COMKIVLR Register)

## CANO Mask Invalid Register ${ }^{(1)}$

Normal mailbox mode b31 b0	Symbol COMKIVLR	Address 47E2Bh-47E28h		Reset Value Undefined
$\underbrace{\text { cmemmenmen }}$	Bit Symbol	Bit Name	Function	RW
	$\overline{(b 31-b 0)}$	Mask Invalid Bit	0: Mask valid   1: Mask invalid	RW

FIFO mailbox mode


Note:

1. Write to the COMKIVLR register in CAN reset mode or CAN halt mode.

Figure 25.7 COMKIVLR Register

Each bit corresponds to the mailbox with the same number. When each bit is 1, the acceptance mask for the mailbox corresponding to the bit number is disabled. In this case, a receiving message is stored into the mailbox only if its ID matches bits SID and EID in the COMBj register ( $\mathrm{j}=0$ to 31).

### 25.1.7 CANO Mailbox (COMBj Register) ( $\mathbf{j}=\mathbf{0}$ to 31)

Table 25.4 lists the CANO mailbox memory mapping, and Table 25.5 lists the CAN data frame structure. The value after reset of CANO mailbox is undefined.

Table 25.4 CANO Mailbox Memory Mapping

Address	Message Content
CANO	Memory Mapping
47C00h + j $\times 16+0$	EID7 to EID0
$47 \mathrm{COOh}+\mathrm{j} \times 16+1$	EID15 to EID8
$47 \mathrm{COOh}+\mathrm{j} \times 16+2$	SID5 to SID0, EID17, EID16
$47 \mathrm{COOh}+\mathrm{j} \times 16+3$	IDE, RTR, SID10 to SID6
$47 \mathrm{COOh}+\mathrm{j} \times 16+4$	-
$47 \mathrm{COOh}+\mathrm{j} \times 16+5$	Data length code (DLC)
$47 \mathrm{COOh}+\mathrm{j} \times 16+6$	Data byte 0
$\begin{gathered} \hline 47 \mathrm{COOh}+\mathrm{j} \times 16+7 \\ \vdots \\ \vdots \\ 47 \mathrm{C} 00 \mathrm{~h}+\mathrm{j} \times 16+13 \end{gathered}$	Data byte 1   Data byte 7
$47 \mathrm{COOh}+\mathrm{j} \times 16+14$	Time stamp lower byte
$47 \mathrm{COOh}+\mathrm{j} \times 16+15$	Time stamp upper byte

j: Mailbox number ( $\mathrm{j}=0$ to 31 )
Table 25.5 CAN Data Frame Structure

SID10 to   SID6	SID5 to   SID0	EID17 to   EID16	EID15 to   EID8	EID7 to   EID0	DLC3 to   DLC0	DATA0	DATA1	$\ldots \ldots . .$.	DATA7

CANO Mailbox Register j ( $=0$ to 31) ${ }^{(1)}$


Notes:

1. Write to the COMBj register only when the associated COMCTLj register is 00 h and the corresponding mailbox is not processing an abort request
2. Refer to the memory mapping table for CANO mailbox on the previous page for detailed addresses.
3. If the mailbox has received a standard ID message, the EID bit in the mailbox is undefined.
4. The IDE bit is enabled when the IDFM bit in the COCTLR register is 10 b (mixed ID mode). When the IDFM bit is either 00b (standard ID mod) or 01b (extended ID mode), it should be written with 0 .
5. If the mailbox has received a message with $n$ bytes less than 8 bytes, the values of DATAn to DATA7 in the mailbox are undefined.
6. If the mailbox has received a remote frame, the previous values of DATA0 to DATA7 in the mailbox are retained.

Figure 25.8 COMBj Register

The previous value of each mailbox is retained unless a new message is received.

### 25.1.7.1 EID Bit

The EID bit sets the extended ID of data frames and remote frames. This bit is used to transmit or receive extended ID messages.

### 25.1.7.2 SID Bit

The SID bit sets the standard ID of data frames and remote frames. This bit is used to transmit or receive both standard ID and extended ID messages.

### 25.1.7.3 RTR Bit

The RTR bit sets the frame format of data frames or remote frames.
This bit specifies the following operation:

- Receive mailbox receives only frames with the format specified by the RTR bit.
- Transmit mailbox transmits according to the frame format specified by the RTR bit.
- Receive FIFO mailbox receives the data frame, remote frame, or both frames specified by the RTR bit in registers C0FIDCR0 and COFIDCR1.
- Transmit FIFO mailbox transmits the data frame or remote frame specified by the RTR bit in the relevant transmitting message.


### 25.1.7.4 IDE Bit

The IDE bit sets the ID format of standard IDs or extended IDs.
This bit is enabled when the IDFM bit in the COCTLR register is 10 b (mixed ID mode).
When the IDFM bit is 10b, the IDE bit specifies the following operation:

- Receive mailbox receives only the ID format specified by the IDE bit.
- Transmit mailbox transmits according to the ID format specified by the IDE bit.
- Receive FIFO mailbox receives messages with the standard ID, extended ID, or both IDs specified by the IDE bit in registers C0FIDCR0 and COFIDCR1.
- Transmit FIFO mailbox transmits messages with the standard ID or extended ID specified by the IDE bit in the relevant transmitting message.


### 25.1.7.5 DLC (Data Length Code)

The DLC is used to set the number of data bytes to be transmitted in a data frame. When data is requested using a remote frame, the number of data bytes to be requested is set.
When a data frame is received, the number of received data bytes is stored. When a remote frame is received, the number of requested data bytes is stored.
Table 25.6 lists the data length corresponding DLC.

Table 25.6 Data Length Corresponding DLC

DLC[3]	DLC[2]	DLC[1]	DLC[0]	Data Length
0	0	0	0	0 byte
0	0	0	1	1 byte
0	0	1	0	2 bytes
0	0	1	1	3 bytes
0	1	0	0	4 bytes
0	1	0	1	5 bytes
0	1	1	0	6 bytes
0	1	1	1	7 bytes
1	$X$	$X$	$X$	8 bytes

X: Any value

### 25.1.7.6 DATA0 to DATA7

DATA0 to DATA7 store the transmitted or received CAN message data. Transmission or reception starts from DATAO. The bit order on the CAN bus is MSB first, and transmission or reception starts from bit 7.

### 25.1.7.7 TSL and TSH

TSL and TSH store the counter value of the time stamp when received messages are stored in the mailbox.

### 25.1.8 CANO Mailbox Interrupt Enable Register (COMIER Register)

CANO Mailbox Interrupt Enable Register (1, 2)

Normal mailbox mode b31	Symbol COMIER	$\begin{aligned} & \text { Address } \\ & \text { 47E2Fh-47E2Ch } \end{aligned}$		Reset Value Undefined
-	Bit Symbol	Bit Name	Function	RW
	$\overline{(b 31-b 0)}$	Interrupt Enable Bit	0: Interrupt disabled   1: Interrupt enabled	RW

FIFO mailbox mode

		(b23-b0)	Interrupt Enable Bit	0: Interrupt disabled   1: Interrupt enabled	RW
		(b24)	Transmit FIFO Interrupt Enable Bit	0: Interrupt disabled   1: Interrupt enabled	RW
		$(\overline{\mathrm{b} 25})$	Transmit FIFO Interrupt Generation Timing Control Bit	Transmit FIFO interrupt request is generated   0 : Every time transmission is completed   1: When transmit FIFO becomes empty due to completion of transmission	RW
		$\begin{gathered} - \\ (b 27-\mathrm{b} 26) \end{gathered}$	Reserved	Should be written with 0	RW
		$(\bar{b} 28)$	Receive FIFO Interrupt Enable Bit	0: Interrupt disabled   1: Interrupt enabled	RW
		$(\overline{\mathrm{b} 29})$	Receive FIFO Interrupt Generation Timing Control Bit	Receive FIFO interrupt request is generated   0 : Every time reception is completed   1: When receive FIFO becomes buffer warning by completion of reception ${ }^{(3)}$	RW
		$\left(\begin{array}{c} - \\ \text { (b31-b30) } \end{array}\right.$	Reserved	Should be written with 0	RW

Notes:

1. Write to the COMIER register only when the associated COMCTLj register ( $j=0$ to 31 ) is 00 h and the corresponding mailbox is not processing a transmission or reception abort request.
2. In FIFO mailbox mode, change the bits in the COMIER register for the associated FIFO only when:

- The TFE bit in the COTFCR register is 0 and the TFEST bit is 1 , and
- The RFE bit in the CORFCR register is 0 and the RFEST bit is 1 .

3. No interrupt request is generated when the receive FIFO becomes buffer warning from full.

## Figure 25.9 COMIER Register

Interrupts can enabled individually for each mailbox.
In normal mailbox mode (bits 0 to 31) and in FIFO mailbox mode (bits 0 to 23), each bit corresponds to the mailbox with the same number. These bits enable or disable transmission/reception complete interrupts for the corresponding mailboxes.
In FIFO mailbox mode, bits $24,25,28$, and 29 specify whether transmit/receive FIFO interrupts are enabled/disabled and timing when interrupt requests are generated.
"Buffer warning" indicates a state in which the third unread message is stored in the receive FIFO.

### 25.1.9 CANO Message Control Register j (COMCTLj Register) (j=0 to 31)

CANO Message Control Register j $\mathrm{j}=0$ to 31$)^{(1,2)}$


Symbol	Address	Reset Value
COMCTL0 to C0MCTL31	47F2Oh to 47F3Fh	00h


Bit Symbol	Bit Name	Function	RW

When the TRMREQ bit is 0 and the RECREQ bit is 1

NEWDATA	Reception Complete   Flag ${ }^{(3,4)}$	0: No data has been received or   0 is written to the NEWDATA bit   1: A new message is being stored   or has been stored to the mailbox	RW
INVALDATA	Reception-in-Progress   Status Flag	0: Message valid   1: Message being updated	RO
MSGLOST	Message Lost Flag ${ }^{(3,4)}$	0: Message is not overwritten or   overrun   $1:$ Message is overwritten or overrun	RW

When the TRMREQ bit is 1 and the RECREQ bit is 0

SENTDATA	Transmission Complete $\operatorname{Flag}^{(3,4)}$	0 : Transmission is not completed (pending)   1: Transmission is completed (success)	RW
TRMACTIVE	Transmission-in-Progress Status Flag	0 : Transmission is pending or transmission is not requested   1: From acceptance of transmission request to completion of transmission, or error/arbitration lost	RO
TRMABT	Transmission Abort Complete Flag ${ }^{(3,4)}$	0 : Transmission has started, transmission abort failed because transmission is completed, or transmission abort is not requested   1: Transmission abort is completed	RW
(b3)	No register bit; should be written with 0 and read as 0		-
ONESHOT	One-shot Enable Bit ${ }^{(5)}$	0 : One-shot reception or one-shot transmission disabled   1: One-shot reception or one-shot transmission enabled	RW
$\overline{(b 5)}$	No register bit; should be written with 0 and read as 0		-
RECREQ	Receive Mailbox Set Bit ${ }^{(4,6,7)}$	0: Not configured for reception   1: Configured for reception	RW
TRMREQ	Transmit Mailbox Set Bit ${ }^{(4,6)}$	0 : Not configured for transmission   1: Configured for transmission	RW

Notes:

1. Write to the COMCTLj register in CAN operation mode or CAN halt mode.
2. Do not use registers COMCTL24 to COMCTL31 in FIFO mailbox mode.
3. Write 0 only. Writing 1 has no effect.
4. When writing 0 to bits NEWDATA, SENTDATA, MSGLOST, TRMABT, RECREQ, and TRMREQ by a program, use the MOV instruction to ensure that only the specified bit is set to 0 and the other bits are set to 1.
5. To enter one-shot receive mode, write 1 to the ONESHOT bit at the same time as setting the RECREQ bit to 1. To exit one-shot receive mode, write 0 to the ONESHOT bit after writing 0 to the RECREQ bit and confirming it has been set to 0 .
To enter one-shot transmit mode, write 1 to the ONESHOT bit at the same time as setting the TRMREQ bit to 1.
To exit one-shot transmit mode, write 0 to the ONESHOT bit after the message has been transmitted or aborted.
6. Do not set both the RECREQ and TRMREQ bits to 1.
7. When setting the RECREQ bit to 0 , set bits MSGLOST, NEWDATA, RECREQ to 0 simultaneously.

Figure 25.10 COMCTLj Register

### 25.1.9.1 NEWDATA Bit

The NEWDATA bit is set to 1 when a new message is being stored or has been stored to the mailbox. The timing for setting this bit to 1 is simultaneous with the INVALDATA bit.
The NEWDATA bit is set to 0 by writing 0 by a program.
This bit is not be set to 0 by writing 0 by a program while the related INVALDATA bit is 1 .

### 25.1.9.2 SENTDATA Bit

The SENTDATA bit is set to 1 when data transmission from the corresponding mailbox is completed.
This bit is set to 0 by writing 0 by a program.
To set the SENTDATA bit to 0 , first set the TRMREQ bit to 0 .
Bits SENTDATA and TRMREQ cannot be set to 0 simultaneously.
To transmit a new message from the corresponding mailbox, set the SENTDATA bit to 0 .

### 25.1.9.3 INVALDATA Bit

After the completion of a message reception, the INVALDATA bit is set to 1 while the received message is being updated into the corresponding mailbox.
This bit is set to 0 immediately after the message has been stored. If the mailbox is read while this bit is 1 , the data is undefined.

### 25.1.9.4 TRMACTIVE Bit

The TRMACTIVE bit is set to 1 when the corresponding mailbox of the CAN module begins transmitting a message.
This bit is set to 0 when the CAN module has lost CAN bus arbitration, a CAN bus error occurs, or data transmission is completed.

### 25.1.9.5 MSGLOST Bit

The MSGLOST bit is set to 1 when the mailbox is overwritten or overrun by a new received message while the NEWDATA bit is 1 . The MSGLOST bit is set to 1 at the end of the 6 th bit of EOF. This bit is set to 0 by writing 0 by a program.
In both overwrite and overrun modes, this bit is not set to 0 by writing 0 by a program during five cycles of fCAN (CAN system clock) following the 6th bit of EOF.

### 25.1.9.6 TRMABT Bit

The TRMABT bit is set to 1 in the following cases:

- Following a transmission abort request, when the transmission abort is completed before starting transmission.
- Following a transmission abort request, when the CAN module detects CAN bus arbitration lost or a CAN bus error.
- In one-shot transmission mode (RECREQ bit = 0, TRMREQ bit = 1, and ONESHOT bit = 1), when the CAN module detects CAN bus arbitration lost or a CAN bus error.
The TRMABT bit is not set to 1 when data transmission is completed. In this case, the SENTDATA bit is set to 1.
The TRMABT bit is set to 0 by writing 0 by a program.


### 25.1.9.7 ONESHOT Bit

The ONESHOT bit can be used in the following two ways, receive mode and transmit mode:

## (1) One-shot Receive Mode

When the ONESHOT bit is set to 1 in receive mode (RECREQ bit $=1$ and TRMREQ bit $=0$ ), the mailbox receives a message only one time. The mailbox does not behave as a receive mailbox after having received a message one time. The behavior of bits NEWDATA and INVALDATA is the same as in normal reception mode. In one-shot receive mode, the MSGLOST bit is not set to 1 . To set the ONESHOT bit to 0 , first write 0 to the RECREQ bit and ensure that it has been set to 0 .
(2) One-shot Transmit Mode

When the ONESHOT bit is set to 1 in transmit mode (RECREQ bit $=0$ and TRMREQ bit $=1$ ), the CAN module transmits a message only one time. The CAN module does not transmit the message again if a CAN bus error or CAN bus arbitration lost occurs. When transmission is completed, the SENTDATA bit is set to 1 . If transmission is not completed due to a CAN bus error or CAN bus arbitration lost, the TRMABT bit is set to 1 .
Set the ONESHOT bit to 0 after the SENTDATA or TRMABT bit is set to 1 .

### 25.1.9.8 RECREQ Bit

The RECREQ bit selects receive modes shown in Table 25.11.
When the RECREQ bit is set to 1 , the corresponding mailbox is configured for reception of a data frame or a remote frame.
When this bit is set to 0 , the corresponding mailbox is not configured for reception of a data frame or a remote frame.
Due to HW protection, the RECREQ bit cannot be set to 0 by writing 0 by a program during the following period:
HW protection is started

- from the acceptance filter procedure (the beginning of the CRC field)

HW protection is released

- for the mailbox that is specified to receive the incoming message, after the received data is stored into the mailbox or a CAN bus error occurs (i.e. a maximum period of HW protection is from the beginning of the CRC field to the end of the 7th bit of EOF)
- for the other mailboxes, after the acceptance filter procedure
- if no mailbox is specified to receive the message, after the acceptance filter procedure

When setting the RECREQ bit to 1 , do not set 1 to the TRMREQ bit.
To change the configuration of a mailbox from transmission to reception, first abort the transmission and then set bits SENTDATA and TRMABT to 0 before changing to reception.

### 25.1.9.9 TRMREQ Bit

The TRMREQ bit selects transmit modes shown in Table 25.11.
When this bit is set to 1 , the corresponding mailbox is configured for transmission of a data frame or a remote frame.
When this bit is set to 0 , the corresponding mailbox is not configured for transmission of a data frame or a remote frame.
If the TRMREQ bit is changed from 1 to 0 to cancel the corresponding transmission request, either the TRMABT or SENTDATA bit is set to 1 .
When setting the TRMREQ bit to 1 , do not set the RECREQ bit to 1 .
To change the configuration of a mailbox from reception to transmission, first abort the reception and then set bits NEWDATA and MSGLOST to 0 before changing to transmission.

### 25.1.10 CANO Receive FIFO Control Register (CORFCR Register)

## CANO Receive FIFO Control Register ${ }^{(1)}$



Notes:

1. Write to the CORFCR register in CAN operation mode or CAN halt mode.
2. When setting the RFE bit to 0 , set the RFMLF bit to 0 as well.
3. Write 0 only. Writing 1 has no effect.

Figure 25.11 CORFCR Register

### 25.1.10.1 RFE Bit

When the RFE bit is set to 1 , the receive FIFO is enabled.
When this bit is set to 0 , the receive FIFO is disabled for reception and becomes empty (RFEST bit $=$ 1).

Do not set this bit to 1 in normal mailbox mode (MBM bit in the COCTLR register $=0$ ).
Due to HW protection, the RFE bit is not set to 0 by writing 0 by a program during the following period:
HW protection is started

- from the acceptance filter procedure (the beginning of the CRC field)

HW protection is released

- if the receive FIFO is specified to receive the incoming message, after the received data is stored into the receive FIFO or a CAN bus error occurs. (i.e. a maximum period of HW protection is from the beginning of the CRC field to the end of the 7th bit of EOF.)
- if the receive FIFO is not specified to receive the message, after the acceptance filter procedure.


### 25.1.10.2 RFUST Bit

The RFUST bit indicates the number of unread messages in the receive FIFO.
The value of this bit is initialized to 000b when the RFE bit is set to 0 .

### 25.1.10.3 RFMLF Bit

The RFMLF bit is set to 1 (receive FIFO message lost has occurred) when the receive FIFO receives a new message and the receive FIFO is full. The timing for setting this bit to 1 is at the end of the 6th bit of EOF.
The RFMLF bit is set to 0 by writing 0 by a program.
In both overwrite and overrun modes, this bit cannot be set to 0 (receive FIFO message lost has not occurred) by writing 0 by a program due to HW protection during the five cycles of fCAN following the 6th bit of EOF, if the receive FIFO is full and determined to receive the message.

### 25.1.10.4 RFFST Bit

The RFFST bit is set to 1 (receive FIFO is full) when the number of unread messages in the receive FIFO is 4 . This bit is set to 0 (receive FIFO is not full) when the number of unread messages in the receive FIFO is less than 4 . This bit is set to 0 when the RFE bit is 0 .

### 25.1.10.5 RFWST Bit

The RFWST bit is set to 1 (receive FIFO is buffer warning) when the number of unread messages in the receive FIFO is 3 . This bit is set to 0 (receive FIFO is not buffer warning) when the number of unread messages in the receive FIFO is less than 3 or equal to 4 . This bit is set to 0 when the RFE bit is 0 .

### 25.1.10.6 RFEST Bit

The RFEST bit is 1 (no unread message in receive FIFO) when the number of unread messages in the receive FIFO is 0 . This bit is set to 1 when the RFE bit is set to 0 . The RFEST bit is set to 0 (unread message in receive FIFO) when the number of unread messages in the receive FIFO is one or more.

Figure 25.12 shows the receive FIFO mailbox operation.


Figure 25.12 Receive FIFO Mailbox Operation (Bits 29 and 28 in COMIER Register = 01b and 11b)

### 25.1.11 CANO Receive FIFO Pointer Control Register (CORFPCR Register)

## CANO Receive FIFO Pointer Control Register



Figure 25.13 CORFPCR Register

When the receive FIFO is not empty, write FFh to the CORFPCR register by a program to increment the CPU-side pointer for the receive FIFO to the next mailbox location.
Do not write to the CORFPCR register when the RFE bit in the CORFCR register is 0 (receive FIFO disabled).
Both the CAN-side pointer and the CPU-side pointer are incremented when a new message is received and the RFFST bit is 1 (receive FIFO is full) in overwrite mode. When the RFMLF bit is 1 in this condition, the CPU-side pointer cannot be incremented by writing to the CORFPCR register by a program.

### 25.1.12 CANO Transmit FIFO Control Register (COTFCR Register)

CANO Transmit FIFO Control Register (1)


Note:

1. Write to the COTFCR register in CAN operation mode or CAN halt mode.

Figure 25.14 COTFCR Register

### 25.1.12.1 TFE Bit

When the TFE bit is set to 1 , the transmit FIFO is enabled.
When this bit is set to 0 , the transmit FIFO becomes empty (TFEST bit $=1$ ) and then unsent messages from the transmit FIFO are lost as described below:

- If a message from the transmit FIFO is not scheduled for the next transmission or during transmission.
- Following the completion of transmission, a CAN bus error, CAN bus arbitration lost, or entry to CAN halt mode if a message from the transmit FIFO is scheduled for the next transmission or already during transmission.
Before setting the TFE bit to set to 1 again, ensure that the TFEST bit has been set to 1 .
After setting the TFE bit to 1, write transmit data into the COMB24 register.
Do not set this bit to 1 in normal mailbox mode (MBM bit in the COCTLR register $=0$ ).


### 25.1.12.2 TFUST Bit

The TFUST bit indicates the number of unsent messages in the transmit FIFO.
After the TFE bit is set to 0 , the value of the TFUST bit is initialized to 000b when transmission abort or transmission is completed.

### 25.1.12.3 TFFST Bit

The TFFST bit is set to 1 (transmit FIFO is full) when the number of unsent messages in the transmit FIFO is 4. This bit is set to 0 (transmit FIFO is not full) when the number of unsent messages in the transmit FIFO is less than 4. This bit is set to 0 when transmission from the transmit FIFO has been aborted.

### 25.1.12.4 TFEST Bit

The TFEST bit is set to 1 (no message in transmit FIFO) when the number of unsent messages in the transmit FIFO is 0 . This bit is set to 1 when transmission from the transmit FIFO has been aborted. The TFEST bit is set to 0 (message in transmit FIFO) when the number of unsent messages in the transmit FIFO is not 0 .

Figure 25.15 shows the transmit FIFO mailbox operation.


Figure 25.15 Transmit FIFO Mailbox Operation (Bits 25 and 24 in COMIER Register = 01b and 11b)

### 25.1.13 CANO Transmit FIFO Pointer Control Register (COTFPCR Register)

## CANO Transmit FIFO Pointer Control Register



Figure 25.16 COTFPCR Register
When the transmit FIFO is not full, write FFh to the COTFPCR register by a program to increment the CPU-side pointer for the transmit FIFO to the next mailbox location.
Do not write to the COTFPCR register when the TFE bit in the COTFCR register is 0 (transmit FIFO disabled).

### 25.1.14 CANO Status Register (COSTR Register)

## CANO Status Register



Address
47F43h-47F42h
Reset Value 000000000000 0101b

|  | Function | RW |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 25.17 COSTR Register

### 25.1.14.1 RSTST Bit

The RSTST bit is set to 1 when the CAN module is in CAN reset mode.
This bit is set to 0 when the CAN module is not in CAN reset mode.
Even when the state is changed from CAN reset mode to CAN sleep mode, the RSTST bit remains 1.

### 25.1.14.2 HLTST Bit

The HLTST bit is set to 1 when the CAN module is in CAN halt mode.
This bit is set to 0 when the CAN module is not in CAN halt mode.
Even when the state is changed from CAN halt mode to CAN sleep mode, the HLTST bit remains 1.

### 25.1.14.3 SLPST Bit

The SLPST bit is set to 1 when the CAN module is in CAN sleep mode.
This bit is set to 0 when the CAN module is not in CAN sleep mode.

### 25.1.14.4 EPST Bit

The EPST bit is set to 1 when the value of the COTECR or CORECR register exceeds 127 and the CAN module is in error-passive state ( $128 \leq$ TEC $<256$ or $128 \leq$ REC $<256$ ). This bit is set to 0 when the CAN module is not in error-passive state.
TEC indicates the value of the transmit error counter (COTECR register) and REC indicates the value of the receive error counter (CORECR register).

### 25.1.14.5 BOST Bit

The BOST bit is set to 1 when the value of the COTECR register exceeds 255 and the CAN module is in bus-off state ( $\mathrm{TEC} \geq 256$ ). This bit is set to 0 when the CAN module is not in bus-off state.

### 25.1.14.6 TRMST Bit

The TRMST bit is set to 1 when the CAN module performs as a transmitter node or is in bus-off state. This bit is set to 0 when the CAN module performs as a receiver node or is in bus-idle state.

### 25.1.14.7 RECST Bit

The RECST bit is set to 1 when the CAN module performs as a receiver node.
This bit is set to 0 when the CAN module performs as a transmitter node or is in bus-idle state.

### 25.1.14.8 NDST Bit

The NDST bit is set to 1 when at least one NEWDATA bit in the COMCTLj register ( $\mathrm{j}=0$ to 31 ) is 1 regardless of the value of the COMIER register.
The NDST bit is set to 0 when all NEWDATA bits are 0 .

### 25.1.14.9 SDST Bit

The SDST bit is set to 1 when at least one SENTDATA bit in the COMCTLj register ( $\mathrm{j}=0$ to 31 ) is 1 regardless of the value of the COMIER register.
The SDST bit is set to 0 when all SENTDATA bits are 0 .

### 25.1.14.10 RFST Bit

The RFST bit is set to 1 when the receive FIFO is not empty.
This bit is set to 0 when the receive FIFO is empty.
This bit is set to 0 when normal mailbox mode is selected.

### 25.1.14.11 TFST Bit

The TFST bit is set to 1 when the transmit FIFO is not full. This bit is set to 0 when the transmit FIFO is full.
This bit is set to 0 when normal mailbox mode is selected.

### 25.1.14.12 NMLST Bit

The NMLST bit is set to 1 when at least one MSGLOST bit in the COMCTLj register is 1 regardless of the value of the COMIER register.
The NMLST bit is set to 0 when all MSGLOST bits are 0 .

### 25.1.14.13 FMLST Bit

The FMLST bit is set to 1 when the RFMLF bit in the CORFCR register is 1 regardless of the value of the COMIER register.
The FMLST bit is set to 0 when the RFMLF bit is 0 .

### 25.1.14.14TABST Bit

The TABST bit is set to 1 when at least one TRMABT bit in the COMCTLj register is 1 regardless of the value of the COMIER register.
The TABST bit is set to 0 when all TRMABT bits are 0 .

### 25.1.14.15EST Bit

The EST bit is 1 when at least one error is detected by the COEIFR register regardless of the value of the COEIER register.
This bit is set to 0 when no error is detected by the COEIFR register.

### 25.1.15 CANO Mailbox Search Mode Register (COMSMR Register)

## CANO Mailbox Search Mode Register ${ }^{(1)}$



Note:

1. Write to the COMSMR register in CAN operation mode or CAN halt mode.

Figure 25.18 COMSMR Register

### 25.1.15.1 MBSM Bit

The MBSM bit selects the search mode for the mailbox search function.
When this bit is 00b, receive mailbox search mode is selected. In this mode, the search targets are the NEWDATA bit in the COMCTLj register ( $\mathrm{j}=0$ to 31 ) for the normal mailbox and the RFEST bit in the CORFCR register.
When the MBSM bit is 01b, transmit mailbox search mode is selected. In this mode, the search target is the SENTDATA bit in the COMCTLj register.
When the MBSM bit is 10b, message lost search mode is selected. In this mode, the search targets are the MSGLOST bit in the COMCTLj register for the normal mailbox and the RFMLF bit in the CORFCR register.
When the MBSM bit is 11 b , channel search mode is selected. In this mode, the search target is the COCSSR register. Refer to 25.1.17 "CANO Channel Search Support Register (C0CSSR Register)".

### 25.1.16 CANO Mailbox Search Status Register (COMSSR Register)

CANO Mailbox Search Status Register


Figure 25.19 COMSSR Register

### 25.1.16.1 MBNST Bit

The MBNST bit outputs the smallest mailbox number that is searched in each mode of the COMSMR register.
In receive mailbox, transmit mailbox, and message lost search modes, the value of the mailbox i.e.,the search result to be output, is updated as described below:

- When the NEWDATA, SENTDATA, or MSGLOST bit for the output mailbox is set to 0 .
- When the NEWDATA, SENTDATA, or MSGLOST bit for a higher-priority mailbox is set to 1 .

In receive mailbox search and message lost search modes, the receive FIFO (mailbox [28]) is output when the receive FIFO is not empty and there are no unread received messages or no lost messages in any of the normal mailboxes (mailboxes [0] to [23]).
In transmit mailbox search mode, the transmit FIFO (mailbox [24]) is not output.
Table 25.7 lists the behavior of MBNST bit in FIFO mailbox mode.
Table 25.7 Behavior of MBNST Bit in FIFO Mailbox Mode

MBSM Bit	Mailbox [24] (Transmit FIFO)	$\begin{gathered} \hline \text { Mailbox [28] } \\ \text { (Receive FIFO) } \end{gathered}$
00b	Mailbox [24] is not output	Mailbox [28] is output when no NEWDATA bit for the normal mailbox is set to 1 and the receive FIFO is not empty
01b		Mailbox [28] is not output
10b		Mailbox [28] is output when no MSGLOST bit for the normal mailbox is set to 1 and the RFMLF bit is set to 1 in the receive FIFO
11b		Mailbox [28] is not output

In channel search mode, the MBNST bit outputs the corresponding channel number. After the COMSSR register is read by a program, the next target channel number is output.

### 25.1.16.2 SEST Bit

The SEST bit is set to 1 when no corresponding mailbox is found after searching all mailboxes. For example, in transmit mailbox search mode, the SEST bit is set to 1 when no SENTDATA bit for mailboxes is 1 . The SEST bit is set to 0 when at lease one SENTDATA bit is 1. When the SEST bit is 1 , the value of the MBNST bit is undefined.

### 25.1.17 CANO Channel Search Support Register (COCSSR Register)

## CANO Channel Search Support Register ${ }^{(1,2)}$

b7 b0	$\begin{aligned} & \text { Symbol } \\ & \text { COCSSR } \end{aligned}$	Address   47F51h	Reset Value Undefined	
,		Function	Setting Value	RW
-	When the valu number is out	nnel search is input, the channel MSSR register	Channel value	RW

Notes:

1. Write to the COCSSR register only when the MBSM bit in the COMSMR register is 11b (channel search mode).
2. Write to the COCSSR register in CAN operation mode and CAN halt mode.

Figure 25.20 COCSSR Register

The bits in the COCSSR register, which are set to 1 , are encoded by an 8 -to-3 priority encoder (the lower bit position, the higher priority) and output to the MBNST bits in the COMSSR register.
The value of the COMSSR register is updated whenever the COMSSR register is read.
Figure 25.21 shows the write and read of registers COCSSR and COMSSR.


Figure 25.21 Write and Read of Registers COCSSR and COMSSR

The value of the COCSSR register is also updated whenever the COMSSR register is read. When the COCSSR register is read, the value before the 8-to-3 priority encoder conversion is read.

### 25.1.18 CANO Acceptance Filter Support Register (COAFSR Register)

## CANO Acceptance Filter Support Register ${ }^{(1)}$

	Symbol COAFSR	Address   47F57h-47F56h	Reset Value Undefined	
1		Function	Setting Value	RW
	After the stand the value con	received message is written, ata table search can be read	Standard ID/ converted value	RW

Note:

1. Write to the COAFSR register in CAN operation mode or CAN halt mode.

Figure 25.22 COAFSR Register

The acceptance filter support unit (ASU) can be used for data table ( 8 bits $\times 256$ ) search. In the data table, all standard IDs created by the user are set to be valid/invalid in bit units. When the COAFSR register is written with the 16-bit unit data including the SID bit in the COMBj register ( $\mathrm{j}=0$ to 31 ), in which a received ID is stored, a decoded row (byte offset) position and column (bit) position for data table search can be read. The ASU can be used for standard (11-bit) IDs only.
The ASU is enabled in the following cases:

- When the ID to receive cannot be masked by the acceptance filter.

Example) IDs to receive: $078 \mathrm{~h}, 087 \mathrm{~h}, 111 \mathrm{~h}$

- When there are too many IDs to receive and software filtering time is expected to be shortened. Figure 25.23 shows the write and read of COAFSR register.


Figure 25.23 Write and Read of COAFSR Register

### 25.1.19 CANO Error Interrupt Enable Register (COEIER Register)

CANO Error Interrupt Enable Register ${ }^{(1)}$


Note:

1. Write to the COEIER register in CAN reset mode.

Figure 25.24 COEIER Register

The COEIER register is used to set the error interrupt enabled/disabled individually for each error interrupt source in the COEIFR register.

### 25.1.19.1 BEIE Bit

When the BEIE bit is 0 , no error interrupt request is generated even if the BEIF bit in the COEIFR register is set to 1.
When the BEIE bit is 1 , an error interrupt request is generated if the BEIF bit is set to 1 .

### 25.1.19.2 EWIE Bit

When the EWIE bit is 0 , no error interrupt request is generated even if the EWIF bit in the COEIFR register is set to 1.
When the EWIE bit is 1 , an error interrupt request is generated if the EWIF bit is set to 1 .

### 25.1.19.3 EPIE Bit

When the EPIE bit is 0 , no error interrupt request is generated even if the EPIF bit in the COEIFR register is set to 1 .
When the EPIE bit is 1 , an error interrupt request is generated if the EPIF bit is set to 1 .

### 25.1.19.4 BOEIE Bit

When the BOEIE bit is 0 , no error interrupt request is generated even if the BOEIF bit in the COEIFR register is set to 1.
When the BOEIE bit is 1 , an error interrupt request is generated if the BOEIF bit is set to 1 .

### 25.1.19.5 BORIE Bit

When the BORIE bit is 0 , an error interrupt request is not generated even if the BORIF bit in the COEIFR register is set to 1 .
When the BORIE bit is 1 , an error interrupt request is generated if the BORIF bit is set to 1 .

### 25.1.19.6 ORIE Bit

When the ORIE bit is 0 , no error interrupt request is generated even if the ORIF bit in the COEIFR register is set to 1 .
When the ORIE bit is 1 , an error interrupt request is generated if the ORIF bit is set to 1 .

### 25.1.19.7 OLIE Bit

When the OLIE bit is 0 , no error interrupt request is generated even if the OLIF bit in the COEIFR register is set to 1.
When the OLIE bit is 1 , an error interrupt request is generated if the OLIF bit is set to 1 .

### 25.1.19.8 BLIE Bit

When the BLIE bit is 0 , no error interrupt request is generated even if the BLIF bit in the COEIFR register is set to 1 .
When the BLIE bit is 1 , an error interrupt request is generated if the BLIF bit is set to 1 .

### 25.1.20 CANO Error Interrupt Factor Judge Register (COEIFR Register)

CANO Error Interrupt Factor Judge Register ${ }^{(1)}$


Note:

1. When writing 0 to these bits by a program, use the MOV instruction to ensure that only the specified bit is set to 0 and the other bits are set to 1 . Writing 1 has no effect to these bit values.

Figure 25.25 COEIFR Register

If an event corresponding to each bit occurs, the corresponding bit in the C0EIFR register is set to 1 regardless of the setting of the COEIER register.
To set each bit to 0 , write 0 by a program. If the set timing occurs simultaneously with the clear timing by the program, the bit becomes 1 .

### 25.1.20.1 BEIF Bit

The BEIF bit is set to 1 when a bus error is detected.

### 25.1.20.2 EWIF Bit

The EWIF bit is set to 1 when the value of the receive error counter (REC) or transmit error counter (TEC) exceeds 95.
This bit is set to 1 only when the REC or TEC initially exceeds 95 . Thus, if 0 is written to the EWIF bit by a program while the REC or TEC remains greater than 95 , this bit is not set to 1 until the REC and the TEC go below 95 and then exceed 95 again.

### 25.1.20.3 EPIF Bit

The EPIF bit is set to 1 when the CAN error state becomes error-passive (the REC or TEC value exceeds 127).
This bit is set to 1 only when the REC or TEC initially exceeds 127 . Thus, if 0 is written to the EPIF bit by a program while the REC or TEC remains greater than 127, this bit is not set to 1 until the REC and the TEC go below 127 and then exceed 127 again.

### 25.1.20.4 BOEIF Bit

The BOEIF bit is set to 1 when the CAN error state becomes bus-off (the TEC value exceeds 255).
This bit is also set to 1 when the BOM bit in the COCTLR register is 01b (entry to CAN halt mode automatically at bus-off entry) and the CAN module becomes the bus-off state.

### 25.1.20.5 BORIF Bit

The BORIF bit is set to 1 when the CAN module recovers from the bus-off state normally by detecting 11 consecutive bits 128 times in the following conditions:
(1) When the BOM bit in the COCTLR register is 00b
(2) When the BOM bit is 10 b
(3) When the BOM bit is 11 b

The BORIF bit is not set to 1 if the CAN module recovers from the bus-off state in the following conditions:
(1) When the CANM bit in the C0CTLR register is set to 01b (CAN reset mode)
(2) When the RBOC bit in the COCTLR register is set to 1 (forcible return from bus-off)
(3) When the BOM bit is 01b
(4) When the BOM bit is 11 b and the CANM bit is set to 10 b (CAN halt mode) before normal recovery occurs

Table 25.8 lists the behavior of bits BOEIF and BORIF according to BOM bit setting value.
Table 25.8 Behavior of Bits BOEIF and BORIF according to BOM Bit Setting Value

BOM Bit	BOEIF Bit	BORIF Bit
00b	Set to 1 on entry to the bus-off	Set to 1 on exit from the bus-off state.
01b	state.	Do not set to 1.
10b		Set to 1 on exit from the bus-off state.
11b		Set to 1 if normal bus-off recovery occurs before the CANM bit is set to 10 b (CAN halt mode).

### 25.1.20.6 ORIF Bit

The ORIF bit is set to 1 when a receive overrun occurs.
This bit is not to set to 1 in overwrite mode. In overwrite mode, a reception complete interrupt request is generated if an overwrite condition occurs and this bit is not set to 1 .
In normal mailbox mode, if an overrun occurs in any of mailboxes [0] to [31] in overrun mode, this bit is set to 1.
In FIFO mailbox mode, if an overrun occurs in any of mailboxes [0] to [23] or the receive FIFO in overrun mode, this bit is set to 1 .

### 25.1.20.7 OLIF Bit

The OLIF bit is set to 1 if the transmitting condition of an overload frame is detected when the CAN module performs transmission or reception.

### 25.1.20.8 BLIF Bit

The BLIF bit is set to 1 if 32 consecutive dominant bits are detected on the CAN bus while the CAN module is in CAN operation mode.
After the BLIF bit is set to 1,32 consecutive dominant bits are detected again under either of the following conditions:

- After this bit is set to 0 from 1, recessive bits are detected.
- After this bit is set to 0 from 1, the CAN module enters CAN reset mode or CAN halt mode and then enters CAN operation mode again.


### 25.1.21 CANO Receive Error Count Register (CORECR Register)

## CANO Receive Error Count Register



Note:

1. The value in bus-off state is undefined.

Figure 25.26 CORECR Register
The CORECR register indicates the value of the receive error counter.
Refer to the CAN Specifications (ISO11898-1) about the increment/decrement conditions of the receive error counter.

### 25.1.22 CAN0 Transmit Error Count Register (COTECR Register)

## CANO Transmit Error Count Register

b7 b0	Symbol COTECR	Address   47F4Fh	Reset Value 00h	
,		Function	Counter Value	RW
	Transmit erro The COTECR value accord transmission	ion rements or decrements the counter or status of the CAN module during	00h to FFh ${ }^{(1)}$	RO

Note:

1. The value in bus-off state is undefined.

Figure 25.27 COTECR Register
The COTECR register indicates the value of the TEC error counter.
Refer to the CAN Specifications (ISO11898-1) about the increment/decrement conditions of the transmit error counter.

### 25.1.23 CANO Error Code Store Register (COECSR Register)

## CANO Error Code Store Register




Symbol	Address
COECSR	$47 F 50 \mathrm{~h}$

Reset Value
00h

Bit Symbol	Bit Name	Function	RW
SEF	Stuff Error Flag (1, 2)	0: No stuff error detected   1: Stuff error detected	RW
FEF	Form Error Flag ${ }^{(1,2)}$	0: No form error detected   1: Form error detected	RW
AEF	ACK Error Flag ${ }^{(1,2)}$	0: No ACK error detected   1: ACK error detected	RW
CEF	CRC Error Flag (1, 2)	0: No CRC error detected   1: CRC error detected	RW
BE1F	Bit Error (recessive)   Flag ${ }^{(1,2)}$	0: No bit error detected   1: Bit error (recessive) detected	RW
BE0F	Bit Error (dominant)   Flag ${ }^{(1,2)}$	0: No bit error detected   1: Bit error (dominant) detected	RW
ADEF	ACK Delimiter Error Bit (1, 2)	0: No ACK delimiter error detected   1: ACK delimiter error detected	RW
EDPM	Error Display Mode   Select Bit ${ }^{(3)}$	0: Output of first detected error code   1: Output of accumulated error code	RW

Notes:

1. Writing 1 has no effect to these bit values.
2. When writing 0 to bits SEF, FEF, AEF, CEF, BE1F, BE0F, and ADEF by a program, use the MOV instruction to ensure that only the specified bit is set to 0 and the other bits are set to 1 .
3. Write to the EDPM bit in CAN reset mode or CAN halt mode.
4. If more than one error condition is detected simultaneously, all related bits are set to 1 .

## Figure 25.28 COECSR Register

The COECSR register can be used to monitor whether an error has occurred on the CAN bus. Refer to the CAN Specifications (ISO11898-1) to check the generation conditions of each error.
To set each bit except the EDPM bit to 0 , write 0 by a program. If the timing at which each bit is set to 1 and the timing at which is written by a program are the same, the relevant bit is set to 1 .

### 25.1.23.1 SEF Bit

The SEF bit is set to 1 when a stuff error is detected.

### 25.1.23.2 FEF Bit

The FEF bit is set to 1 when a form error is detected.

### 25.1.23.3 AEF Bit

The AEF bit is set to 1 when an ACK error is detected.

### 25.1.23.4 CEF Bit

The CEF bit is set to 1 when a CRC error is detected.

### 25.1.23.5 BE1F Bit

The BE1F bit is set to 1 when a recessive bit error is detected.

### 25.1.23.6 BEOF Bit

The BEOF bit is set to 1 when a dominant bit error is detected.

### 25.1.23.7 ADEF Bit

The ADEF bit is set to 1 when a form error is detected with the ACK delimiter during transmission.

### 25.1.23.8 EDPM Bit

The EDPM bit selects the output mode of the COECSR register.
When this bit is set to 0 , the COECSR register outputs the first error code.
When this bit is set to 1 , the COECSR register outputs the accumulated error code.

### 25.1.24 CANO Time Stamp Register (COTSR Register)

## CANO Time Stamp Register ${ }^{(1)}$

| b15 | Symbol <br> COTSR | Address <br> $47 F 55 h-47 F 54 h$ | Reset Value <br> 0000h |
| :--- | :--- | :--- | :--- | :--- |
|  | Function | Counter Value | RW |
|  | Free-running counter value for the time stamp function | 0000h to FFFFh | RO |

Note:

1. Read the COTSR register in 16 -bit units.

Figure 25.29 COTSR Register

When the COTSR register is read, the value of the time stamp counter (16-bit free-running counter) at that moment is read.
The value of the time stamp counter reference clock is a multiple of 1 bit time, as configured by the TSPS bit in the C0CTLR register.
The time stamp counter stops in CAN sleep mode and CAN halt mode, and is initialized in CAN reset mode.
The time stamp counter value is stored to TSL and TSH in the COMBj register ( $\mathrm{j}=0$ to 31 ) when a received message is stored in a receive mailbox.

### 25.1.25 CANO Test Control Register (COTCR Register)

## CANO Test Control Register ${ }^{(1)}$



Note:

1. Write to the COTCR register only in CAN halt mode.

Figure 25.30 COTCR Register

### 25.1.25.1 TSTE Bit

When the TSTE bit is set to 0, CAN test mode is disabled. When this bit is set to 1 , CAN test mode is enabled.

### 25.1.25.2 TSTM Bit

The TSTM bit selects the CAN test mode.
The details of each CAN test mode is described below.

### 25.1.25.3 Listen-Only Mode

The ISO 11898-1 recommends an optional bus monitoring mode. In listen-only mode, the CAN node is able to receive valid data frames and valid remote frames. It sends only recessive bits on the CAN bus and the protocol controller is not required to send the ACK bit, overload flag, or active error flag. Listen-only mode can be used for baud rate detection.
Do not request transmission from any mailboxes in this mode.
Figure 25.31 shows the connection when listen-only mode is selected.


Figure 25.31 Connection when Listen-Only Mode is Selected

### 25.1.25.4 Self-Test Mode 0 (External Loop Back)

Self-test mode 0 is provided for CAN transceiver tests.
In this mode, the protocol controller treats its own transmitted messages as messages received via the CAN transceiver and stores them into the receive mailbox. To be independent from external stimulation, the protocol controller generates the ACK bit.
Connect the CANOOUT/CANOIN pins to the transceiver.
Figure 25.32 shows the connection when self-test mode 0 is selected.


Figure 25.32 Connection when Self-Test Mode 0 is Selected

### 25.1.25.5 Self-Test Mode 1 (Internal Loop Back)

Self-test mode 1 is provided for self-test functions.
In this mode, the protocol controller treats its transmitted messages as received messages and stores them into the receive mailbox. To be independent from external stimulation, the protocol controller generates the ACK bit.
In self-test mode 1, the protocol controller performs an internal feedback from the internal CANOOUT pin to the internal CANOIN pin. The input value of the external CANOIN pin is ignored. The external CANOOUT pin outputs only recessive bits. The CANOOUT/CANOIN pins do not need to be connected to the CAN bus or any external device.
Figure 25.33 shows the connection when self-test mode 1 is selected.


Figure 25.33 Connection when Self-Test Mode 1 is Selected

### 25.2 Operating Mode

The CAN module has the following four operating modes:

- CAN reset mode
- CAN halt mode
- CAN operation mode
- CAN sleep mode

Figure 25.34 shows the transition between CAN operating modes.


CANM, SLPM, BOM, and RBOC: Bits in the COCTLR register

Notes:

1. The transition timing from the bus-off state to CAN halt mode depends on the setting of the BOM bit.

- When the BOM bit is 01b, the state transition timing is immediately after entering the bus-off state.
- When the BOM bit is 10b, the state transition timing is at the end of the bus-off state.
- When the BOM bit is 11 b , the state transition timing is at the setting of the CANM bit to 10 b (CAN halt mode).

2. Write only to the SLPM bit to exit/set CAN sleep mode.

Figure 25.34 Transition between CAN Operating Modes

### 25.2.1 CAN Reset Mode

CAN reset mode is provided for CAN communication configuration.
When the CANM bit in the COCTLR register is set to 01b, the CAN module enters CAN reset. Then the RSTST bit in the COSTR register is set to 1. Do not change the CANM bit until the RSTST bit is set to 1 . Configure the COBCR register before exiting CAN reset mode to any other modes.

The following registers are initialized to their reset values after entering CAN reset mode and their initialized values are retained during CAN reset mode:

- COMCTLj register ( $\mathrm{j}=0$ to 31)
- COSTR register (except bits SLPST and TFST)
- COEIFR register
- CORECR register
- COTECR register
- COTSR register
- COMSSR register
- COMSMR register
- CORFCR register
- COTFCR register
- COTCR register
- COECSR register (except EDPM bit)

The previous values of the following registers are retained after entering CAN reset mode.

- C0CLKR register
- COCTLR register
- COSTR register (bits SLPST and TFST)
- COMIER register
- COEIER register
- COBCR register
- COCSSR register
- COECSR register (EDPM bit only)
- COMBj register
- Registers COMKRO to COMKR7
- Registers COFIDCR0 and COFIDCR1
- COMKIVLR register
- COAFSR register
- CORFPCR register
- COTFPCR register


### 25.2.2 CAN Halt Mode

CAN halt mode is used for mailbox configuration and test mode setting.
When the CANM bit in the COCTLR register is set to 10b, CAN halt mode is selected. Then the HLTST bit in the COSTR register is set to 1 . Do not change the CANM bit until the HLTST bit is set to 1 .
Refer to Table 25.9 "Operation in CAN Reset Mode and CAN Halt Mode" regarding the state transition conditions when transmitting or receiving.

All registers except bits RSTST, HLTST, and SLPST in the COSTR register remain unchanged when the CAN module enters CAN halt mode.
Do not change registers COCLKR, COCTLR (except bits CANM and SLPM,) and COEIER in CAN halt mode. The COBCR register can be changed in CAN halt mode only when listen-only mode is selected to use for automatic bit rate detection.

Table 25.9 Operation in CAN Reset Mode and CAN Halt Mode

Mode	Receiver	Transmitter	Bus-Off
CAN reset mode	CAN module enters CAN reset mode without waiting for the end of message reception.	CAN module enters CAN reset mode after waiting for the end of message transmission. ${ }^{(1,4)}$	CAN module enters CAN reset mode without waiting for the end of bus-off recovery.
CAN halt mode	CAN module enters CAN halt mode after waiting for the end of message reception. $(2,3)$	CAN module enters CAN halt mode after waiting for the end of message transmission. $(1,4)$	[When the BOM bit is 00b] A halt request from a program will be acknowledged only after bus-off recovery.   [When the BOM bit is 01b] CAN module enters automatically to CAN halt mode without waiting for the end of bus-off recovery (regardless of a halt request from a program).   [When the BOM bit is 10 b ] CAN module enters automatically to CAN halt mode after waiting for the end of bus-off recovery (regardless of a halt request from a program).   [When the BOM bit is 11b] CAN module enters CAN halt mode (without waiting for the end of bus-off recovery) if a halt is requested by a program during bus-off.

BOM bit: Bit in the COCTLR register
Notes:

1. If several messages are requested to be transmitted, mode transition occurs after the completion of the first transmission. In a case that the CAN reset mode is being requested during suspend transmission, mode transition occurs when the bus is idle, the next transmission ends, or the CAN module becomes a receiver.
2. If the CAN bus is locked at the dominant level, the program can detect this state by monitoring the BLIF bit in the COEIFR register.
3. If a CAN bus error occurs during reception after CAN halt mode is requested, the CAN mode transits to CAN halt mode.
4. If a CAN bus error or arbitration lost occurs during transmission after CAN reset mode or CAN halt mode is requested, the CAN mode transits to the requested CAN mode.

### 25.2.3 CAN Sleep Mode

CAN sleep mode is used for reducing current consumption by stopping the clock supply to the CAN module. After MCU hardware reset or software reset, the CAN module starts from CAN sleep mode.

When the SLPM bit in the COCTLR register is set to 1 , the CAN module enters CAN sleep mode. Then the SLPST bit in the COSTR register is set to 1 . Do not change the value of the SLPM bit until the bit is set to 1 . The other registers remain unchanged when the MCU enters CAN sleep mode.

Write to the SLPM bit in CAN reset mode and CAN halt mode. Do not change any other registers (except the SLPM bit) during CAN sleep mode. Read operation is still allowed.
When the SLPM bit is set to 0 , the CAN module is released from CAN sleep mode. When the CAN module exits CAN sleep mode, the other registers remain unchanged.

### 25.2.4 CAN Operation Mode (Excluding Bus-Off State)

CAN operation mode is used for CAN communication.
When the CANM bit in the COCTLR register is set to 00b, the CAN module enters CAN operation mode. Then bits RSTST and HLTST in the COSTR register are set to 0 . Do not change the value of the CANM bit until these bits are set to 0 .

If 11 consecutive recessive bits are detected after entering CAN operation mode, the CAN module is in the following states:

- The CAN module becomes an active node on the network that enables transmission and reception of CAN messages.
- Error monitoring of the CAN bus, such as receive and transmit error counters, is performed.

During CAN operation mode, the CAN module may be in one of the following three sub-modes, depending on the status of the CAN bus:

- Idle mode: Transmission or reception is not being performed.
- Receive mode: A CAN message sent by another node is being received.
- Transmit mode: A CAN message is being transmitted. The CAN module may receive its own message simultaneously when self-test mode 0 (TSTM bit in the COTCR register $=10 \mathrm{~b}$ ) or self-test mode 1 (TSTM bit = 11b) is selected.

Figure 25.35 shows the sub mode in CAN operation mode.


TRMST and RECST: Bits in the COSTR register

Figure 25.35 Sub Mode in CAN Operation Mode

### 25.2.5 CAN Operation Mode (Bus-Off State)

The CAN module enters the bus-off state according to the increment/decrement rules for the transmit/ error counters in the CAN Specifications.
The following cases apply when recovering from the bus-off state. When the CAN module is in bus-off state, the values of the associated registers, except registers COSTR, COEIFR, CORECR, COTECR and COTSR, remain unchanged.
(1) When the BOM bit in the C0CTLR register is 00 b (normal mode)

The CAN module enters the error-active state after it has completed the recovery from the bus-off state and CAN communication is enabled. The BORIF bit in the COEIFR register is set to 1 (bus-off recovery detected) at this time.
(2) When the RBOC bit in the C0CTLR register is set to 1 (forcible return from bus-off) The CAN module enters the error-active state when it is in bus-off state and the RBOC bit is set to 1. CAN communication is enabled again after 11 consecutive recessive bits are detected. The BORIF bit is not set to 1 at this time.
(3) When the BOM bit is 01b (entry to CAN halt mode automatically at bus-off entry) The CAN module enters CAN halt mode when it reaches the bus-off state. The BORIF bit is not set to 1 at this time.
(4) When the BOM bit is 10b (entry to CAN halt mode automatically at bus-off end) The CAN module enters CAN halt mode when it has completed the recovery from bus-off. The BORIF bit is set to 1 at this time.
(5) When the BOM bit is 11b (entry to CAN halt mode by a program) and the CANM bit in the C0CTLR register is set to 10b (CAN halt mode) during the bus-off state

The CAN module enters CAN halt mode when it is in bus-off state and the CANM bit is set to 10b (CAN halt mode). The BORIF bit is not set to 1 at this time.
If the CANM bit is not set to 10b during bus-off, the same behavior as (1) applies.

### 25.3 CAN Communication Speed Configuration

The following description explains about the CAN communication speed configuration.

### 25.3.1 CAN Clock Configuration

This group has a CAN clock selector.
The CAN clock can be configured by setting the CCLKS bit in the COCLKR register and the BRP bit in the COBCR register.
Figure 25.36 shows the block diagram of CAN clock generator.


Figure 25.36 Block Diagram of CAN Clock Generator

### 25.3.2 Bit Timing Configuration

The bit time is a single bit time for transmitting/receiving a message and consists of the following three segments.
Figure 25.37 shows the bit timing.


Figure 25.37 Bit Timing

### 25.3.3 Bit rate

The bit rate depends on the CAN clock (fCAN), the division value of the baud rate prescaler, and the number of Tq of one bit time.
Bit rate[bps] $=\frac{f C A N}{\text { Baud rate prescaler division value }{ }^{(1)} \times \text { number of } \mathrm{Tq} \text { of one bit time }}=\frac{f C A N C L K}{\text { Number of } \mathrm{Tq} \text { of one bit time }}$

Note:

1. Division value of the baud rate prescaler $=P+1(P=0$ to 1023) P : Setting value of the BRP bit in the COBCR register

Table 25.10 lists bit rate examples.

Table 25.10 Bit Rate Examples

fCAN	32 MHz		24 MHz		20 MHz		16 MHz		8 MHz	
Bit Rate	No. of Tq	$\mathrm{P}+1$	$\mathrm{No} of Tq$.	$\mathrm{P}+1$	No. of Tq	$\mathrm{P}+1$	No. of Tq	$\mathrm{P}+1$	$\mathrm{No} . \mathrm{of} \mathrm{Tq}$	$\mathrm{P}+1$
1 Mbps	8 Tq	4	8 Tq	3	10 Tq	2	8 Tq	2	8 Tq	1
	16 Tq	2			20 Tq	1	16 Tq	1		
500 kbps	8 Tq	8	8 Tq	6	10 Tq	4	8 Tq	4	8 Tq	2
	16 Tq	4	16 Tq	3	20 Tq	2	16 Tq	2	16 Tq	1
250 kbps	8 Tq	16	8 Tq	12	10 Tq	8	8 Tq	8	8 Tq	4
	16 Tq	8	16 Tq	6	20 Tq	4	16 Tq	4	16 Tq	2
83.3 kbps	8 Tq	48	8 Tq	36	8 Tq	30	8 Tq	24	8 Tq	12
	16 Tq	24	16 Tq	18	10 Tq	24	16 Tq	12	16 Tq	6
					16 Tq	15				
					20 Tq	12				
33.3 kbps	8 Tq	120	8 Tq	90	8 Tq	75	8 Tq	60	8 Tq	30
	10 Tq	96	10 Tq	72	10 Tq	60	10 Tq	48	10 Tq	24
	16 Tq	60	16 Tq	45	20 Tq	30	16 Tq	30	16 Tq	15
	20 Tq	48	20 Tq	36			20 Tq	24	20 Tq	12

### 25.4 Mailbox and Mask Register Structure

There are 32 mailboxes with the same structure.
Figure 25.38 shows the structure of COMBj register ( $\mathrm{j}=0$ to 31 ).


Figure 25.38 Structure of COMBj Register ( $\mathbf{j}=0$ to 31 )
There are 8 mask registers with the same structure.
Figure 25.39 shows the structure of COMKRk Register ( $k=0$ to 7 ).

								Address	
	b7 b0							CANO	
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EIDO	47E00h $+\mathrm{k} \times 4+0$	COMKR
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	47E00h $+\mathrm{k} \times 4+1$	
SID5	SID4	SID3	SID2	SID1	SIDO	EID17	EID16	47E00h $+\mathrm{k} \times 4+2$	register
$\bigcirc$	$\times$	,	SID10	SID9	SID8	SID7	SID6	47E00h $+\mathrm{k} \times 4+3$	

Figure 25.39 Structure of COMKRk Register (k=0 to 7)

There are 2 FIFO received ID compare registers with the same structure.
Figure 25.40 shows the structure of COFIDCRn Register ( $n=0,1$ ).


Figure 25.40 Structure of COFIDCRn Register ( $\mathrm{n}=0,1$ )

### 25.5 Acceptance Filtering and Masking Function

Acceptance filtering allows the user to receive messages with a specified range of multiple IDs for mailboxes.
Registers COMKR0 to COMKR7 can perform masking of the standard ID and the extended ID of 29 bits.

- The COMKRO register corresponds to mailboxes [0] to [3].
- The C0MKR1 register corresponds to mailboxes [4] to [7].
- The COMKR2 register corresponds to mailboxes [8] to [11].
- The COMKR3 register corresponds to mailboxes [12] to [15].
- The COMKR4 register corresponds to mailboxes [16] to [19].
- The C0MKR5 register corresponds to mailboxes [20] to [23].
- The COMKR6 register corresponds to mailboxes [24] to [27] in normal mailbox mode, and receive FIFO mailboxes [28] to [31] in FIFO mailbox mode.
- The COMKR7 register corresponds to mailboxes [28] to [31] in normal mailbox mode, and receive FIFO mailboxes [28] to [31] in FIFO mailbox mode.
The COMKIVLR register disables acceptance filtering individually for each mailbox.
The IDE bit in the COMBj register ( $\mathrm{j}=0$ to 31 ) is enabled when the IDFM bit in the C0CTLR register is 10 b (mixed ID mode).
The RTR bit in the COMBj register selects a data frame or a remote frame.
In FIFO mailbox mode, normal mailboxes (mailboxes [0] to [23]) use the single corresponding register among registers COMKR0 to COMKR5 for acceptance filtering. Receive FIFO mailboxes (mailboxes [28] to [31]) use two registers C0MKR6 and C0MKR7 for the acceptance filtering.
Also, the receive FIFO uses two registers COFIDCR0 and COFIDCR1 for ID comparison. Bits EID, SID, RTR, and IDE in registers COMB28 to COMB31 for the receive FIFO are disabled. As acceptance filtering depends on the result of two ID-mask sets, two ranges of IDs can be received into the receive FIFO.
The COMKIVLR register is disabled for the receive FIFO.
If both setting of standard ID and extended ID are set in the IDE bits in registers COFIDCR0 and COFIDCR1 individually, both ID formats are received.
If both setting of data frame and remote frame are set in the RTR bits in registers COFIDCRO and COFIDCR1 individually, both data and remote frames are received.
When combination with two ranges of IDs is not necessary, set the same mask value and the same ID into both of the FIFO ID/mask register sets.

Figure 25.41 shows the correspondence of mask registers to mailboxes, and Figure 25.42 shows acceptance filtering.


Figure 25.41 Correspondence of Mask Registers to Mailboxes


Figure 25.42 Acceptance Filtering

### 25.6 Reception and Transmission

Table 25.11 lists the CAN communication mode configuration.
Table 25.11 Configuration for CAN Reception Mode and Transmission Mode

TRMREQ	RECREQ	ONESHOT	Communication Mode of Mailbox
0	0	0	Mailbox disabled or transmission being aborted.
0	0	1	Configurable only when transmission or reception from a mailbox   (programmed in one-shot mode) is aborted.
0	1	0	Configured as a receive mailbox for a data frame or a remote frame.
0	1	1	Configured as a one-shot receive mailbox for a data frame or a   remote frame.
1	0	0	Configured as a transmit mailbox for a data frame or a remote   frame.
1	0	1	Configured as a one-shot transmit mailbox for a data frame or a   remote frame.
1	1	0	Do not set.
1	1	1	Do not set.

TRMREQ, RECREQ, ONESHOT: Bits in the COMCTLj register ( $\mathrm{j}=0$ to 31)

When a mailbox is configured as a receive mailbox or a one-shot receive mailbox, note the following:
(1) Before a mailbox is configured as a receive mailbox or a one-shot receive mailbox, set the COMCTLj register ( $\mathrm{j}=0$ to 31 ) to 00 h .
(2) A received message is stored into the first mailbox that matches the condition according to the result of receive mode configuration and acceptance filtering. Upon deciding a mailbox which stores the received message, the mailbox with the smaller number has higher priority.
(3) In CAN operation mode, when a CAN module transmits a message whose ID matches with the ID/ mask set of a mailbox configured to receive messages, the CAN module never receives the transmitted data. In self-test mode, however, the CAN module may receive its transmitted data. In this case, the CAN module sends an ACK.

When a mailbox is configured as a transmit mailbox or a one-shot transmit mailbox, note the following:
(1) Before a mailbox is configured as a transmit mailbox or one-shot transmit mailbox, ensure that the COMCTLj register is 00h and that there is no pending abort process.

### 25.6.1 Reception

Figure 25.43 shows an operation example of data frame reception in overwrite mode.
This example shows the operation of overwriting the first message when the CAN module receives two consecutive CAN messages that matches the receiving conditions of the COMCTLO register.


Figure 25.43 Operation Example of Data Frame Reception in Overwrite Mode
(1) When a SOF is detected on the CAN bus, the RECST bit in the COSTR register is set to 1 (reception in progress) if the CAN module has no message ready to start transmission.
(2) The acceptance filter procedure starts at the beginning of the CRC field to select the receive mailbox.
(3) After a message has been received, the NEWDATA bit in the COMCTLj register ( $\mathrm{j}=0$ to 31 ) for the receive mailbox is set to 1 (new data being updated/stored in the mailbox). The INVALDATA bit in the COMCTLj register is set to 1 (message is being updated) at the same time, and then the INVALDATA bit is set to 0 (message valid) again after the complete message is transferred to the mailbox.
(4) When the interrupt enable bit in the COMIER register for the receive mailbox is 1 (interrupt enabled), the CANO reception complete interrupt request is generated. This interrupt is generated when the INVALDATA bit is set to 0 .
(5) After reading the message from the mailbox, the NEWDATA bit needs to be set to 0 by a program.
(6) In overwrite mode, if the next CAN message has been received into a mailbox whose NEWDATA bit is still set to 1 , the MSGLOST bit in the COMCTLj register is set to 1 (message has been overwritten). The new received message is transferred to the mailbox. The CANO reception complete interrupt request is generated the same as in (4).

Figure 25.44 shows the operational example of data frame reception in overrun mode.
This example shows the operation of overrunning the second message when the CAN module receives two consecutive CAN messages that matches the receiving conditions of the COMCTLO register.


Figure 25.44 Operation Example of Data Frame Reception in Overrun Mode
(1) to (5) are the same as overwrite mode.
(6) In overrun mode, if the next message has been received before the NEWDATA bit is set to 0 , the MSGLOST bit in the COMCTLj register ( $\mathrm{j}=0$ to 31 ) is set to 1 (message has been overrun). The new received message is discarded and a CANO error interrupt request is generated if the corresponding interrupt enable bit in the COEIER register is set to 1 (interrupt enabled).

### 25.6.2 Transmission

Figure 25.45 shows an operation example of data frame transmission. This example shows the operation of transmitting messages that has been set in registers C0MCTL0 and C0MCTL1.


Figure 25.45 Operation Example of Data Frame Transmission
(1) When a TRMREQ bit in the COMCTLj register ( $\mathrm{j}=0$ to 31 ) is set to 1 (transmit mailbox) in bus-idle state, the mailbox scan procedure starts to decide the highest-priority mailbox for transmission. Once the transmit mailbox is decided, the TRMACTIVE bit in the COMCTLj register is set to 1 (from when a transmission request is received until transmission is completed, or an error/arbitration lost has occurred), the TRMST bit in the COSTR register is set to 1 (transmission in progress), and the CAN module starts transmission. (1)
(2) If other TRMREQ bits are set, the transmission scan procedure starts with the CRC delimiter for the next transmission.
(3) If transmission is completed without losing arbitration, the SENTDATA bit in the COMCTLj register is set to 1 (transmission completed) and the TRMACTIVE bit is set to 0 (transmission is pending, or no transmission request). If the interrupt enable bit in the COMIER register is 1 (interrupt enabled), the CANO transmission complete interrupt request is generated.
(4) When requesting the next transmission from the same mailbox, set bits SENDTDATA and TRMREQ to 0 , then set the TRMREQ bit to 1 after checking that bits SENDTDATA and TRMREQ have been set to 0 .
Note:

1. If arbitration is lost after the CAN module starts transmission, the TRMACTIVE bit is set to 0 . The transmission scan procedure is performed again to search for the highest-priority transmit mailbox from the beginning of the CRC delimiter. If an error occurs either during transmission or following the loss of arbitration, the transmission scan procedure is performed again from the start of the error delimiter to search for the highest-priority transmit mailbox.

### 25.7 CAN Interrupt

The CAN module provides the following CAN interrupts:

- CANO wakeup interrupt
- CANO reception complete interrupt
- CANO transmission complete interrupt
- CANO receive FIFO interrupt
- CANO transmit FIFO interrupt
- CANO error interrupt

There are eight types of interrupt sources for the CANO error interrupts. These sources can be determined by checking the COEIFR register.

- Bus error
- Error-warning
- Error-passive
- Bus-off entry
- Bus-off recovery
- Receive overrun
- Overload frame transmission
- Bus lock


## 26. I/O Pins

Each pin of the MCU functions as a programmable I/O port, an I/O pin for internal peripheral functions, or a bus control pin. These functions can be switched by the function select registers or the processor mode registers. This chapter particularly addresses the function select registers. For the use as the bus control pin, refer to 7. "Processor Mode" and 9. "Bus".
The pull-up resistors are enabled for every group of four pins. However, a pull-up resistor is separated from other peripheral functions even if it is enabled, when a pin functions as output pin or an analog I/O pin.
Figure 26.1 shows a block diagram of typical I/O pin.


Figure 26.1 Typical I/O Pin Block Diagram ( $\mathrm{i}=0$ to $15 ; \mathrm{j}=0$ to 7 )

The registers to control I/O pins are as follows: port Pi direction register (PDi register), output function select register and pull-up control register. The PDi register selects input or output state of pins. The output function select register which selects an output function consists of bits PSEL2 to PSELO, NOD, and ASEL. Bits PSEL2 to PSELO are to select a function as programmable I/O or peripheral function output (except analog output). The NOD bit is to select the N-channel open drain output for a pin. The ASEL bit enables to prevent the increase in power consumption of input buffer due to an intermediate potential when a pin functions as an analog I/O pin. The pull-up control register enables/disables the pull-up resistors.
To use a pin as analog I/O pin, the PDi_j bit should be set to 0 (input) and bits PSEL2 to PSELO should be set to 000b and the ASEL bit should be set to 1.
The input-only port P8_5, which shares a pin with the $\overline{\text { NMI }}$ has neither bit 5 of the function select register nor the PDi register. The port P14_1 (or P9_1 in the 100-pin package) also functions as input-only port. Bit 1 of the function select register and the PDi register is assigned for reserved bit. The port P9 is protected from unexpected write accesses by the PRC2 bit in the PRCR register. (Refer to 10. "Protection")

### 26.1 Port Pi Direction Register (PDi Register, $\mathbf{i}=0$ to 15)

The PDi register selects input or output state of pins. Each bit in this register corresponds to a respective pin.
In memory expansion mode or microprocessor mode, this register cannot control pins being used as the bus control pins (A0 to A23, D0 to D31, $\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS} 3}, \mathrm{WR} / \mathrm{WR0}, \overline{\mathrm{BCO}}, \mathrm{BC} 1 / \mathrm{WR} 1, \mathrm{BC} 2 / W R 2, B C 3 / W R 3$, $\overline{R D}$, CLKOUT/BCLK, $\overline{H L D A}, \overline{H O L D}, ~ A L E, ~ a n d ~ R D Y) . ~$
Figure 26.2 shows the PDi register.
No register bit is provided for the P8_5. For the P14_1 (or P9_1 in the 100-pin package), a reserved bit is provided.
The PD9 register is protected from unexpected write accesses by setting the PRC2 bit in the PRCR register. (Refer to 10. "Protection")

Port Pi Direction Register (i=0 to 15) ${ }^{(1)}$


Notes:

1. In memory expansion mode or microprocessor mode, the PDi register cannot control pins being used as bus control pins (A0 to A23, D0 to D31, $\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS3}}, \overline{\mathrm{WR}} / \overline{\mathrm{WRO}}, \overline{\mathrm{BC0}}, \overline{\mathrm{BC} 1} / \overline{\mathrm{WR1}}, \overline{\mathrm{BC} 2} / \overline{\mathrm{WR2}}, \overline{\mathrm{BC} 3 \mathrm{WR3}}, \overline{\mathrm{RD}}$, CLKOUT/BCLK, HLDA, $\mathrm{HOLD}, \mathrm{ALE}$, and RDY).
2. The PD8_5 bit in the PD8 register, bits PD11_5 to PD11_7 in the PD11 register, the PD14_7 bit in the PD14 register are unavailable on this MCU. These bits should be written with 0 and read as undefined value.
3. The PD9 register should be written immediately after the instruction to set the PRC2 bit in the PRC2 register to 1 (write enabled). Any interrupt or DMA transfer should not be generated between these two instructions.
4. Bits PD9_0 to PD9_2 in the PD9 register in the 100-pin package and PD14_0 to PD14_2 in the PD14 register in the 144-pin package are reserved. These bits should be written with 0 .
5. In the 100-pin package, enabled bits in registers PD11 to PD15 should be written with 1 (output port).

Figure 26.2 Registers PD0 to PD15

### 26.2 Output Function Select Register

This register selects an output function of either the programmable I/O port or a peripheral function if these two functions share a pin. Regarding input function, every connected peripheral functions obtain input signals irrespective of this register setting.
The output function select register consists of bits PSEL2 to PSELO, NOD, and ASEL. Bits PSEL2 to PSELO select a function as programmable I/O or peripheral function output (except analog output). The NOD bit is to select the N -channel open drain output. The ASEL bit enables to prevent the increase in power consumption due to an intermediate potential generated when a pin functions as an analog I/O pin. Table 26.1 shows the peripheral functions assigned for each combination of bits PSEL2 to PSEL0 and Figure 26.3 to Figure 26.19 show the function select registers.
Note that ports P8_5 and P14_1 (or P9_1 in the 100-pin package) (input only) have no output function select registers.
The P9_iS register is protected from unexpected write accesses by setting the PRC2 bit in the PRCR register (Refer to 10. "Protection")

Table 26.1 Peripheral Function Assignment

Bits PSEL2 to PSELO	Peripheral Functions
001 b	Timer
010 b	Three-phase motor control timers
011 b	UART
100 b	UART special function
101 b	Intelligent I/O groups 0 and 2, CAN channel 0
110 b	Intelligent I/O group 1
111 b	UART8

Port P0_i Function Select Register ( $\mathrm{i}=0$ to 7 )


Figure 26.3 Registers P0_0S to P0_7S

The port P0_i ( $\mathrm{i}=0$ to 7 ) shares a pin with the ANO_i input pin for the A/D converter. To use as the programmable I/O port, the PO_iS register should be set to 00h. To use as the A/D converter input pin, this register should be set to 80 h and the PDO_i bit should be set to 0 (Port P0_i functions as input port).

Port P1_i Function Select Register ( $\mathrm{i}=0$ to 7 )


Notes:

1. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSELO Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P1_0	P1_0	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIOO_0 output	IIO1_0 output	- ${ }^{(2)}$
P1_1	P1_1	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIOO_1 output	IIO1_1 output	- ${ }^{(2)}$
P1_2	P1_2	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIOO_2 output	IIO1_2 output	- ${ }^{(2)}$
P1_3	P1_3	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIOO_3 output	IIO1_3 output	- ${ }^{(2)}$
P1_4	P1_4	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIOO_4 output	IIO1_4 output	- ${ }^{(2)}$
P1_5	P1_5	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIOO_5 output	IIO1_5 output	- ${ }^{(2)}$
P1_6	P1_6	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIOO_6 output	IIO1_6 output	- ${ }^{(2)}$
P1_7	P1_7	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIOO_7 output	IIO1_7 output	- ${ }^{(2)}$

2. Do not use this combination.

## Figure 26.4 Registers P1_0S to P1_7S

The port P1_i (i=0 to 7) shares a pin with the intelligent I/O groups 0 and 1 (IIOO and IIO1), and the external interrupt input pin.
To use as an output pin, the PD1_i bit should be set to 1 (Port P1_i functions as output port) and a function should be selected according to the Figure 26.4. To use as an input pin, the PD1_i bit should be set to 0 (Port P1_i functions as input port).

Port P2_i Function Select Register ( $\mathrm{i}=0$ to 7 )


Figure 26.5 Registers P2_0S to P2_7S

The port P2_i (i=0 to 7) shares a pin with the AN2_i pin for the A/D converter.
To use as the programmable I/O port, the P2_iS register should be set to 00h. To use as the A/D converter input pin, this register should be set to 80 h and the PD2_i bit should be set to 0 (Port P2_i functions as input port).

Port P3_i Function Select Register ( $\mathrm{i}=0$ to 7 )


Notes:

1. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSEL0 Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P3_0	P3_0	TAOOUT output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P3_1	P3_1	TA3OUT output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P3_2	P3_2	TA1OUT output	V	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P3_3	P3_3	- ${ }^{(2)}$	$\overline{\mathrm{V}}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P3_4	P3_4	TA2OUT output	W	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P3_5	P3_5	- ${ }^{(2)}$	W	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P3_6	P3_6	TA4OUT output	U	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P3_7	P3_7	- ${ }^{(2)}$	$\overline{\text { U }}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$

2. Do not use this combination.

## Figure 26.6 Registers P3_0S to P3_7S

The port P3_i (i=0 to 7) shares a pin with the timer output and the three-phase motor control output. To use as an output pin, the PD3_i bit should be set to 1 (Port P3_i functions as output port) and a function should be selected according to the Figure 26.6. To use as an input pin, the PD3_i register should be set to 0 (Port P3_i functions as input port).

Port P4_i Function Select Register ( $\mathrm{i}=0$ to 7 )


Notes:

1. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSELO Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P4_0	P4_0	- ${ }^{(2)}$	- ${ }^{(2)}$	$\overline{\text { RTS3 }}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P4_1	P4_1	- ${ }^{(2)}$	- ${ }^{(2)}$	CLK3 output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P4_2	P4_2	- ${ }^{(2)}$	- ${ }^{(2)}$	SCL3 output	STXD3	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P4_3	P4_3	- ${ }^{(2)}$	- ${ }^{(2)}$	TXD3 SDA3 output	- ${ }^{(2)}$	$\begin{aligned} & \text { OUTC2_0 } \\ & \text { ISTXD2 } \\ & \text { IEOUT } \end{aligned}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P4_4	P4_4	- ${ }^{(2)}$	- ${ }^{(2)}$	$\overline{\mathrm{RTS6}}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P4_5	P4_5	- ${ }^{(2)}$	- ${ }^{(2)}$	CLK6 output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P4_6	P4_6	- ${ }^{(2)}$	- ${ }^{(2)}$	SCL6 output	STXD6	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P4_7	P4_7	- ${ }^{(2)}$	- ${ }^{(2)}$	TXD6   SDA6 output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$

2. Do not use this combination.

## Figure 26.7 Registers P4_0S to P4_7S

The port P4_i (i=0 to 7) shares a pin with the serial interface (UART3 and UART6) and the intelligent I/O group 2 (IIO2).
To use as an output pin, the PD4_i bit should be set to 1 (Port P4_i functions as output port) and a function should be selected according to the Figure 26.7. To use as an input pin, the PD4_i bit should be set to 0 (Port P4_i functions as input port).
Ports P4_0 to P4_7 are 5 V tolerant inputs. To use as an I/O pin with 5 V tolerant input enabled, the NOD bit should be set to 1 .

Port P5_i Function Select Register ( $\mathrm{i}=0$ to 7 )


Notes:

1. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSELO Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P5_0	P5_0	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P5_1	P5_1	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P5_2	P5_2	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P5_3	P5_3	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P5_4	P5_4	- ${ }^{(2)}$	- ${ }^{(2)}$	TXD7	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P5_5	P5_5	- ${ }^{(2)}$	- ${ }^{(2)}$	CLK7 output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P5_6	P5_6	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P5_7	P5_7	- ${ }^{(2)}$	- ${ }^{(2)}$	$\overline{\mathrm{RTS7}}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$

2. Do not use this combination.

## Figure 26.8 Registers P5_0S to P5_7S

The port P5_i $(\mathrm{i}=0$ to 7$)$ shares a pin with the serial interface (UART7).
To use as an output pin, the PD5_i bit should be set to 1 (Port P5_i functions as output port) and a function should be selected according to the Figure 26.8. To use as an input pin, the PD5_i bit should be set to 0 (Port P5_i functions as input port).
Ports P5_4 to P5_7 are 5 V tolerant inputs. To use as an I/O pin with 5 V tolerant input enabled, the NOD bit should be set to 1 .

Port P6_i Function Select Register ( $\mathrm{i}=0$ to 7 )


Notes:

1. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSEL0 Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P6_0	P6_0	- ${ }^{(2)}$	- ${ }^{(2)}$	$\overline{\mathrm{RTSO}}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P6_1	P6_1	- ${ }^{(2)}$	- ${ }^{(2)}$	CLKO output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P6_2	P6_2	- ${ }^{(2)}$	- ${ }^{(2)}$	SCLO output	STXD0	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P6_3	P6_3	- ${ }^{(2)}$	- ${ }^{(2)}$	TXD0 SDAO output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P6_4	P6_4	- ${ }^{(2)}$	- ${ }^{(2)}$	$\overline{\mathrm{RTS1}}$	- ${ }^{(2)}$	OUTC_1 ISCLK2 output	- ${ }^{(2)}$	- ${ }^{(2)}$
P6_5	P6_5	- ${ }^{(2)}$	- ${ }^{(2)}$	CLK1 output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P6_6	P6_6	- ${ }^{(2)}$	- ${ }^{(2)}$	SCL1 output	STXD1	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P6_7	P6_7	- ${ }^{(2)}$	- ${ }^{(2)}$	TXD1 SDA1 output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$

2. Do not use this combination.

## Figure 26.9 Registers P6_0S to P6_7S

The port P6_i (i=0 to 7) shares a pin with the serial interface (UART0 and UART1) and the intelligent I/O group 2 (IIO2).
To use as an output pin, the PD6_i bit should be set to 1 (Port P6_i functions as output port) and a function should be selected according to the Figure 26.9. To use as an input pin, the PD6_i bit should be set to 0 (Port P6_i functions as input port).
Ports P6_0 to P6_7 are 5 V tolerant inputs. To use as an I/O pin with 5 V tolerant input enabled, the NOD bit should be set to 1 .

Port P7_i Function Select Register ( $\mathrm{i}=0$ to 7 )


Notes:

1. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSELO Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P7_0	P7_0	TA0OUT output	- ${ }^{(2)}$	TXD2 SDA2 output MSDA output	- ${ }^{(2)}$	$\begin{aligned} & \text { OUTC2_0 } \\ & \text { ISTXD2 } \\ & \text { IEOUT } \end{aligned}$	IIO1_6 output	- ${ }^{(2)}$
P7_1	P7_1	- ${ }^{(2)}$	- ${ }^{(2)}$	SCL2 output MSCL output	STXD2	OUTC2_2	IIO1_7 output	- ${ }^{(2)}$
P7_2	P7_2	TA1OUT output	V	CLK2 output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P7_3	P7_3	- ${ }^{(2)}$	$\overline{\mathrm{V}}$	$\overline{\mathrm{RTS}} \mathbf{}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIO1_0 output	TXD8
P7_4	P7_4	TA2OUT output	W	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIO1_1 output	CLK8 output
P7_5	P7_5	- ${ }^{(2)}$	W	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIO1_2 output	- ${ }^{(2)}$
P7_6	P7_6	TA3OUT output	- ${ }^{(2)}$	TXD5 SDA5 output	- ${ }^{(2)}$	CANOOUT	IIO1_3 output	$\overline{\mathrm{RTS8}}$
P7_7	P7_7	- ${ }^{(2)}$	- ${ }^{(2)}$	CLK5 output	- ${ }^{(2)}$	- ${ }^{(2)}$	IIO1_4 output	- ${ }^{(2)}$

2. Do not use this combination.

Figure 26.10 Registers P7_0S to P7_7S
The port P7_i ( $\mathrm{i}=0$ to 7 ) shares a pin with the timer, the three-phase motor control, the serial interface (UART2, UART5, and UART8), the multi-master ${ }^{12} \mathrm{C}$-bus interface (MMI2C), the intelligent I/O groups 1 and 2 (IIO1 and IIO2), and the CAN module.
To use as an output pin, the PD7_i bit should be set to 1 (Port P7_i functions as output port) and a function should be selected according to the Figure 26.10. To use as an input pin, the PD7_i bit should be set to 0 (Port P7_i functions as input port).
Ports P7_0 to P7_7 are 5 V tolerant inputs. To use as an I/O pin with 5 V tolerant input enabled, the NOD bit should be set to 1 .

## Port P8_i Function Select Register ( $\mathrm{i}=0$ to 4, 6, 7)



Notes:

1. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSELO Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P8_0	P8_0	TA4OUT output	U	SCL5 output	STXD5	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P8_1	P8_1	- ${ }^{(2)}$	$\overline{\text { U }}$	RTS5	- ${ }^{(2)}$	- ${ }^{(2)}$	IIO1_5 output	- ${ }^{(2)}$
P8_2	P8_2	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	CAN0OUT	- ${ }^{(2)}$	- ${ }^{(2)}$
P8_3	P8_3	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P8_4	P8_4	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P8_6	P8_6	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P8_7	P8_7	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$

2. Do not use this combination.

## Figure 26.11 Registers P8_0S to P8_4S, P8_6S, and P8_7S

The port P8_i (i=0 to 4, 6, and 7) shares a pin with the timer, the three-phase motor control, the serial interface (UART5), the intelligent I/O group 1 (IIO1), the CAN module, and the external interrupt input pin. To use as an output pin, the PD8_i bit should be set to 1 (Port P8_i functions as output port) and a function should be selected according to the Figure 26.11. To use as an input pin, the PD8_i bit should be set to 0 (Port P8_i functions as input port).
Ports P8_0 to P8_3 are 5 V tolerant inputs. To use as an I/O pin with 5 V tolerant input enabled, the NOD bit should be set to 1 .

Port P9_i Function Select Register ( $\mathrm{i}=0$ to 7 ) ${ }^{(1)}$


Notes:

1. The instruction to set this register should be written immediately after the instruction to set the PRC2 bit in the PRCR register to 1 (write enabled). Any interrupt or DMA transfer should not be generated between these two instructions.
2. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSEL0 Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P9_0	P9_0	- ${ }^{(3)}$	- ${ }^{(3)}$	CLK3 output	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$
P9_1	P9_1	- ${ }^{(3)}$	- ${ }^{(3)}$	SCL3 output	STXD3	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$
P9_2	P9_2	- ${ }^{(3)}$	- ${ }^{(3)}$	TXD3   SDA3 output	- ${ }^{(3)}$	$\begin{aligned} & \text { OUTC2_0 } \\ & \text { ISTXD2 } \\ & \text { IEOUT } \end{aligned}$	- ${ }^{(3)}$	- ${ }^{(3)}$
P9_3	P9_3	- ${ }^{(3)}$	- ${ }^{(3)}$	$\overline{\text { RTS3 }}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$
P9_4	P9_4	- ${ }^{(3)}$	- ${ }^{(3)}$	$\overline{\text { RTS4 }}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$
P9_5	P9_5	- ${ }^{(3)}$	- ${ }^{(3)}$	CLK4 output	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$
P9_6	P9_6	- ${ }^{(3)}$	- ${ }^{(3)}$	TXD4 SDA4 output	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$
P9_7	P9_7	- ${ }^{(3)}$	- ${ }^{(3)}$	SCL4 output	STXD4	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$

3. Do not use this combination.

Figure 26.12 Registers P9_0S to P9_7S (144-pin package)


1. The instruction to set this register should be written immediately after the instruction to set the PRC2 bit in the PRCR register to 1 (write enabled). Any interrupt or DMA transfer should not be generated between these two instructions.
2. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSEL0 Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P9_3	P9_3	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$
P9_4	P9_4	- ${ }^{(3)}$	- ${ }^{(3)}$	$\overline{\mathrm{RTS4}}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$
P9_5	P9_5	- ${ }^{(3)}$	- ${ }^{(3)}$	CLK4 output	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$
P9_6	P9_6	- ${ }^{(3)}$	- ${ }^{(3)}$	TXD4 SDA4 output	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$
P9_7	P9_7	- ${ }^{(3)}$	- ${ }^{(3)}$	SCL4 output	STXD4	- ${ }^{(3)}$	- ${ }^{(3)}$	- ${ }^{(3)}$

3. Do not use this combination.

Figure 26.13 Registers P9_3S to P9_7S (100-pin package)

The port P9_i (i = 0 to 7) shares a pin with the serial interface (UART3 and UART4) and the intelligent I/O group 2 (IIO2). In particular, the port P9_i $(i=3$ to 6$)$ also shares a pin with the A/D converter I/O (ANEX0 and ANEX1) pin and the D/A converter output pin.
To use as the A/D converter pin or the D/A converter pin, the P9_iS register should be set to 80h and the PD9_i bit should be set to 0 (Port P9_i functions as input port) irrespective of the input/output state.
To use as an output pin of functions other than the A/D converter or the D/A converter, the PD9_i bit should be set to 1 (Port P9_i functions as output port) and a function should be selected according to the Figure 26.12. To use as an input pin of functions other than the A/D converter or the D/A converter, the PD9_i bit should be set to 0 (Port P9_i functions as input port).
When the NOD bit is set to 1 , the corresponding pin functions as an N-channel open drain output.

Port P10_i Function Select Register ( $\mathrm{i}=0$ to 7 )
Address

Figure 26.14 Registers P10_0S to P10_7S
The port P10_i $(i=0$ to 7$)$ shares a pin with the AN_i input pin for the A/D converter and the key input interrupt pin.
To use as the programmable I/O port, the P10_iS register should be set to 00h. To use as an input pin (except for the A/D converter), the PD10_i bit should be set to 0 (Port P10_i functions as input port). To use as an input pin for the A/D converter, the P10_iS register should be set to 80h and the PD10_i bit should be set to 0 (Port P10_i functions as input port).

## Port P11_i Function Select Register ( $\mathrm{i}=0$ to 4 )



Notes:

1. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSELO Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P11_0	P11_0	- ${ }^{(2)}$	- ${ }^{(2)}$	TXD8	- ${ }^{(2)}$	- ${ }^{(2)}$	IIO1_0 output	- ${ }^{(2)}$
P11_1	P11_1	- ${ }^{(2)}$	- ${ }^{(2)}$	CLK8 output	- ${ }^{(2)}$	- ${ }^{(2)}$	IIO1_1 output	- ${ }^{(2)}$
P11_2	P11_2	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIO1_2 output	- ${ }^{(2)}$
P11_3	P11_3	- ${ }^{(2)}$	- ${ }^{(2)}$	$\overline{\mathrm{RTS8}}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIO1_3 output	- ${ }^{(2)}$
P11_4	P11_4	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$

2. Do not use this combination.

Figure 26.15 Registers P11_0S to P11_4S
The port P11_i (i=0 to 4) shares a pin with the serial interface (UART8) and the intelligent I/O group 1 (IIO1).
To use as an output pin, the PD11_i bit should be set to 1 (Port P11_i functions as output port) and a function should be selected according to the Figure 26.15. To use as an input pin, the PD11_i bit should be set to 0 (Port P11_i functions as input port).
To use as an N-channel open drain output, the NOD bit should be set to 1.

Port P12_i Function Select Register ( $\mathrm{i}=0$ to 7 )


Notes:

1. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSEL0 Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P12_0	P12_0	- ${ }^{(2)}$	- ${ }^{(2)}$	TXD6 SDA6 output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P12_1	P12_1	- ${ }^{(2)}$	- ${ }^{(2)}$	CLK6 output	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P12_2	P12_2	- ${ }^{(2)}$	- ${ }^{(2)}$	SCL6 output	STXD6	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P12_3	P12_3	- ${ }^{(2)}$	- ${ }^{(2)}$	RTS6	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P12_4	P12_4	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P12_5	P12_5	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P12_6	P12_6	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P12_7	P12_7	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$

2. Do not use this combination.

## Figure 26.16 Registers P12_0S to P12_7S

The port P12_i $(i=0$ to 7 ) shares a pin with the serial interface (UART6).
To use as an output pin, the PD12_i bit should be set to 1 (Port P12_i functions as output port) and a function should be selected according to the Figure 26.16. To use as an input pin, the PD12_i bit should be set to 0 (Port P12_i functions as input port).
When the NOD bit is set to 1 , the corresponding pin functions as an N -channel open drain output.

Port P13_i Function Select Register ( $\mathrm{i}=0$ to 7 )


Notes:

1. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSELO Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P13_0	P13_0	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	OUTC2_4	- ${ }^{(2)}$	- ${ }^{(2)}$
P13_1	P13_1	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	OUTC2_5	- ${ }^{(2)}$	- ${ }^{(2)}$
P13_2	P13_2	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	OUTC2_6	- ${ }^{(2)}$	- ${ }^{(2)}$
P13_3	P13_3	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	OUTC2_3	- ${ }^{(2)}$	- ${ }^{(2)}$
P13_4	P13_4	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	$\begin{aligned} & \text { OUTC2_0 } \\ & \text { ISTXD2 } \\ & \text { IEOUT } \end{aligned}$	- ${ }^{(2)}$	- ${ }^{(2)}$
P13_5	P13_5	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	OUTC2_2	- ${ }^{(2)}$	- ${ }^{(2)}$
P13_6	P13_6	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	OUTC2_1 ISCLK2 output	- ${ }^{(2)}$	- ${ }^{(2)}$
P13_7	P13_7	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	OUTC2_7	- ${ }^{(2)}$	- ${ }^{(2)}$

2. Do not use this combination.

Figure 26.17 Registers P13_0S to P13_7S
The port P13_i (i=0 to 7) shares a pin with the intelligent I/O group 2 (IIO2).
To use as an output pin, the PD13_i bit should be set to 1 (Port P13_i functions as output port) and a function should be selected according to the Figure 26.17. To use as an input pin, the PD13_i bit should be set to 0 (Port P13_i functions as input port).

Port P14_i Function Select Register ( $\mathrm{i}=3$ to 6 )


Figure 26.18 Registers P14_3S to P14_6S
The port P14_i (i=3 to 6) shares a pin with the external interrupt input pin. The P14_iS register should be set to 00h (I/O port).

Port P15_i Function Select Register ( $\mathrm{i}=0$ to 7 )


Notes:

1. Refer to the table below for each pin setting.

Port	Bits PSEL2 to PSELO Setting Value							
	000b	001b	010b	011b	100b	101b	110b	111b
P15_0	P15_0	- ${ }^{(2)}$	- ${ }^{(2)}$	TXD7	- ${ }^{(2)}$	IIOO_0 output	- ${ }^{(2)}$	- ${ }^{(2)}$
P15_1	P15_1	- ${ }^{(2)}$	- ${ }^{(2)}$	CLK7 output	- ${ }^{(2)}$	IIOO_1 output	- ${ }^{(2)}$	- ${ }^{(2)}$
P15_2	P15_2	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	- ${ }^{(2)}$	IIOO_2 output	- ${ }^{(2)}$	- ${ }^{(2)}$
P15_3	P15_3	- ${ }^{(2)}$	- ${ }^{(2)}$	RTS7	- ${ }^{(2)}$	IIO0_3 output	- ${ }^{(2)}$	- ${ }^{(2)}$
P15_4	P15_4	- ${ }^{(2)}$	- ${ }^{(2)}$	TXD6 SDA6 output	- ${ }^{(2)}$	IIOO_4 output	- ${ }^{(2)}$	- ${ }^{(2)}$
P15_5	P15_5	- ${ }^{(2)}$	- ${ }^{(2)}$	SCL6 output	STXD6	IIOO_5 output	- ${ }^{(2)}$	- ${ }^{(2)}$
P15_6	P15_6	- ${ }^{(2)}$	- ${ }^{(2)}$	CLK6 output	- ${ }^{(2)}$	IIO0_6 output	- ${ }^{(2)}$	- ${ }^{(2)}$
P15_7	P15_7	- ${ }^{(2)}$	- ${ }^{(2)}$	$\overline{\text { RTS6 }}$	- ${ }^{(2)}$	IIO0_7 output	- ${ }^{(2)}$	- ${ }^{(2)}$

2. Do not use this combination.

Figure 26.19 Registers P15_0S to P15_7S
The port P15_i ( $\mathrm{i}=0$ to 7 ) shares a pin with the serial interface (UART6 and UART7), the intelligent I/O group 0 (IIO0), and the AN15_i input pin for the A/D converter.
To use as an output pin, the PD15_i bit should be set to 1 (Port P15_i functions as output port) and a function should be selected according to the Figure 26.19. To use as an input pin (except for the A/D converter), the PD15_i bit should be set to 0 (Port P15_i functions as input port). To use as an input pin for the A/D converter, the P15_iS register should be set to 80h and the PD15_i bit should be set to 0 . To use as an N-channel open drain output, the NOD bit should be set to 1.

### 26.3 Input Function Select Register

When a peripheral function input is assigned to multiple pins, this register selects which input pin should be connected to the peripheral function.
Figure 26.20 to Figure 26.23 show the input function select registers.

## Input Function Select Register 0



Notes:
ow for each pin setting of the timer $A$.

1. Refer to the table below for each pin setting of the timer $A$.

IFS00	TA0OUT input	TA1OUT input	TA1IN	TA2OUT input	TA2IN	TA3OUT input	TA4OUT input	TA4IN
0	P3_0	P3_2	P3_3	P3_4	P3_5	P3_1	P3_6	P3_7
1	P7_0	P7_2	P7_3	P7_4	P7_5	P7_6	P8_0	P8_1

2. Refer to the table below for each pin setting of the timer $B$. This bit should be set to 0 in the 100-pin package.

IFS01	TB0IN	TB1IN	TB2IN
0	P6_0	P6_1	P6_2
1	P9_0	P9_1	P9_2

3. Refer to the table below for each pin setting of UART6. This bit should be set to 00b in the 100-pin package.

IFS03	IFS02	SDA6 input/SRXD6	RXD6/SCL6 input	CLK6 input	$\overline{\text { CTS6/SS6 }}$
0	0	P4_7	P4_6	P4_5	P4_4
1	0	P15_4	P15_5	P15_6	P15_7
1	1	P12_0	P12_2	P12_1	P12_3

4. Refer to the table below for each pin setting of UART8. This bit should be set to 00b in the 100-pin package.

IFS04	CLK8 input	RXD8	$\overline{\text { CTS8 }}$
0	P7_4	P7_5	P7_6
1	P11_1	P11_2	P11_3

5. Refer to the table below for each pin setting of UART7. This bit should be set to 00b in the 100-pin package.

IFS05	CLK7 input	RXD7	$\overline{\text { CTS7 }}$
0	P5_5	P5_6	P5_7
1	P15_1	P15_2	P15_3

6. Refer to the table below for each pin setting of UART3. This bit should be set to 00b in the 100-pin package.

IFS06	SDA3 input/SRXD3	RXD3/SCL3 input	CLK3 input	$\overline{\text { CTS3/SS3 }}$
0	P4_3	P4_2	P4_1	P4_0
1	P9_2	P9_1	P9_0	P9_3

Figure 26.20 IFSO Register

## Input Function Select Register 1

Address
40099h
Reset Value
XXXX X0X0b

Figure 26.21 IFS1 Register

## Input Function Select Register 2



Notes:

1. Refer to the table below for each pin setting of the Intelligent I/O group 0 . This bit should be set to 0 in the 100-pin package.

IFS20	IIOO_0 input	IIO__1 input	IIO_2 input	IIOO_3 input	IIO0_4 input	IIO0_5 input	IIO0_6 input	IIO0_7 input
0	P1_0	P1_1	P1_2	P1_3	P1_4	P1_5	P1_6	P1_7
1	P15_0	P15_1	P15_2	P15_3	P15_4	P15_5	P15_6	P15_7

2. Refer to the table below for each pin setting of the Intelligent I/O group 0 in two-phase pulse signal processing mode.

IFS23	IFS22	UD0A	UD0B	UD0Z
0	0	P8_0	P8_1	P8_3 (NT1)
0	1	P7_6	P7_7	P8_2 (NT0)
1	0	P3_0	P3_1	P8_3 (NT1)
1	1	P3_0	P3_1	P8_2 ((NT0)

3. Refer to the table below for each pin setting of the Intelligent I/O group 1. This bit should not be set to 01b in the 100-pin package.

| IFS25 | IFS24 | IIO1_0 input | IIO1_1 input | IIO1_2 input | IIO1_3 input | IIO1_4 input $I I O 1 _5$ input | IIO1_6 input | IIO1_7 input |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | P7_3 | P7_4 | P7_5 | P7_6 | P7_7 | P8_1 | P7_0 | P7_1 |
| 0 | 1 | P11_0 | P11_1 | P11_2 | P11_3 | - | - | - | - |
| 1 | 0 | P1_0 | P1_1 | P1_2 | P1_3 | P1_4 | P1_5 | P1_6 | P1_7 |

4. Refer to the table below for each pin setting of the Intelligent I/O group 1 in two-phase pulse signal processing mode.

IFS27	IFS26	UD1A	UD1B	UD1Z
0	0	P8_0	P8_1	P8_3 (INT1)
0	1	P7_6	P7_7	P8_2 (INT0)
1	0	P3_0	P3_1	P8_3 (INT1)
1	1	P3_0	P3_1	P8_2 (INT0)

Figure 26.22 IFS2 Register

## Input Function Select Register 3



Note:

1. Refer to the table below for each pin setting of the Intelligent I/O group 2. This bit should be set to 00b or 11 b in the 100-pin package.

IFS31	IFS30	ISCLK2 input	ISRXD2/IEIN
0	0	P6_4	P7_1
0	1	P6_4	P9_1
1	0	P13_6	P13_5
1	1	P6_4	P4_2

Figure 26.23 IFS3 Register

### 26.4 Pull-up Control Registers 0 to 4 (Registers PUR0 to PUR4)

Figure 26.24 to Figure 26.28 show registers PUR0 to PUR4.
These registers enable/disable the pull-up resistors for every group of four pins. To enable the pull-up resistors, the corresponding bits in registers PUR0 to PUR4 should be set to 1 (pull-up resistor enabled) and the respective bits in the direction register should be set to 0 (input).
In memory expansion mode or microprocessor mode, the pull-up control bits for ports P0 to P5, and P11 to P 13 running as the bus control pins, should be set to 0 (pull-up resistor disabled). The pull-up resistors are enable for ports P0, P1, and P11 to P13 when these pins function as input ports in these modes.

## Pull-Up Control Register $0{ }^{(1)}$



Note:

1. In memory expansion mode or microprocessor mode, each bit of the PURO register should be set to 0 since ports P0 to P3 are used as the bus control pins. However, the pull-up resistors are enabled for ports P0 and P1 when these pins function as I/O ports with 8-bit bus or multiplexed bus format.

Figure 26.24 PUR0 Register

## Pull-Up Control Register $1{ }^{(1)}$



Note:

1. In memory expansion mode or microprocessor mode, each bit of the PUR1 register should be set to 0 since the port P5 functions as the bus control pin.

Figure 26.25 PUR1 Register

Pull-Up Control Register 2

b7 b6 b5 b4 b3 b2 b1 b0	Symbol PUR2	Address 03F2h		Reset Value 000X XXXXb
1 1 1 1	Bit Symbol	Bit Name	Function	RW
d d	(b4-b0)	No register bits; should be written with 0 and read as undefined value		-
1	PU25	P8_4 to P8_7 Pull-Up Control Bit ${ }^{(1)}$	Control pull-up setting for corresponding ports   0 : Pull-up resistor disabled   1: Pull-up resistor enabled	RW
-	PU26	P9_0 to P9_3 Pull-Up Control Bit ${ }^{(2)}$		RW
	PU27	P9_4 to P9_7 Pull-Up Control Bit		RW

Notes:

1. The port P8_5 has no pull-up resistor.
2. Ports P9_0 and P9_2 have no pull-up resistor in the 100-pin package.

Figure 26.26 PUR2 Register

## Pull-Up Control Register 3



Notes:

1. Ports P11 to P13 are not available in the 100-pin package. Bits PU32 to PU37 should be set to 0 .
2. In memory expansion mode or microprocessor mode, bits PU32 to PU37 should be set to 0 since ports P11 to P13 function as the bus control pins. However, the pull-up resistors are enabled for ports P11 to P13 when these pins function as the I/O ports with 8-/16-bit bus or multiplexed bus format.

Figure 26.27 PUR3 Register

Pull-Up Control Register $4{ }^{(1)}$


Note:

1. This register should be set to 00 h in the 100 -pin package.

Figure 26.28 PUR4 Register

### 26.5 Port Control Register (PCR Register)

Figure 26.29 shows the PCR register.
This register selects an output mode for the port P1 between push-pull output and pseudo-N-channel open drain output. When the PCR0 bit is set to 1, the P-channel transistor in the output buffer is turned off. Note that the port P1 cannot be a perfect open drain output due to remaining parasitic diode. The absolute maximum rating of the input voltage is, therefore, from -0.3 V to $\mathrm{VCC}+0.3 \mathrm{~V}$ (Refer to Figure 26.30).

In memory expansion mode or microprocessor mode, when the port P1 is used for the data bus, the PCR0 bit should be set to 0 . However, when the port P1 is used as the programmable I/O port or an I/O pin for the peripheral functions, the output mode can be selected using the PCRO bit even in these operating modes.

## Port Control Register



Notes:

1. In memory expansion mode or microprocessor mode, this bit should be set to 0 since the port P 1 is used for the data bus. However, when it is used as the I/O port or an I/O pin for the peripheral functions, the PCRO bit can select an output format between push-pull output and pseudo- N -channel open drain output.
2. This function is designated not to make the port P 1 a full open drain but to turn off the P -channel transistor in the CMOS output buffer. Therefore, the absolute maximum rating of the input voltage is from -0.3 V to VCC +0.3 V .
3. This bit should not be set to 1 in the 100-pin package.

Figure 26.29 PCR Register


Figure 26.30 Port P1 Output Buffer Configuration

### 26.6 How To Configure Unused Pins

Table 26.2, Table 26.3, and Figure 26.32 show configuring examples of unused pins on the board.
Table 26.2 Unused Pin Configuration in Single-chip Mode (1)

Pin Name	Setting
Ports P0 to P15 (excluding ports   P8_5, and P9_1 (in the 100-pin   package) or P14_1 (in the 144-pin   package))   $(2,3,4)$	Configure as input ports so that each pin is connected to VSS via its   own resistor (5); or configure as output ports to leave the pins open
P9_1 (in the 100-pin package)	Connect the pin to VSS via a resistor (5)
P14_1 (in the 144-pin package)	Connect the pin to VSS via a resistor (5)
XOUT (6)	Leave pin open
$\overline{\text { NMI (P8_5) }}$	Connect the pin to VCC via a resistor (5)
AVCC	Connect the pin to VCC
AVSS, VREF	Connect the pin to VSS
NSD	Connect the pin to VCC via a resistor of 1 to $4.7 \mathrm{k} \Omega$

Notes:

1. Unused pins should be wired as closely as possible to the MCU (within 2 cm ).
2. When configuring the pins as output ports to leave them open, note that the ports as inputs remain unchanged from when the reset is released until the mode transition is completed. During this transition, the power current may increase due to an undefined voltage level of the pins. In addition, the contents of the direction register may change because of noise or program runaway caused by the noise. To avoid these situations, reconfigure the direction register regularly by software, which may achieve the higher program reliability.
3. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only.
4. In the 100-pin package, set FFh to the following addresses: 03D7h, 03DAh, 03DBh, 03DEh, and 03DFh.
5. The resistance value appropriate to the system should be designated. The range from 10 to $100 \mathrm{k} \Omega$ is recommended.
6. The setting is applicable when an external clock is applied to the XIN pin

Table 26.3 Unused Pin Configuration in Memory Expansion Mode or Microprocessor Mode (1)

Pin Name	Setting
Ports P1 and P6 to P15 (excluding ports P8_5, and P9_1 (in the 100pin package) or P14_1 (in the 144pin package)) (2, 3, 4)	Configure as input ports so that each pin is connected to VSS via its own resistor (5); or configure as output ports to leave the pins open
P9_1 (in the 100-pin package)	Connect the pin to VSS via a resistor (5)
P14_1 (in the 144-pin package)	Connect the pin to VSS via a resistor (5)
$\overline{\mathrm{BCO}}$ to $\overline{\mathrm{BCO}}, \overline{\mathrm{WRO}}$ to $\overline{\mathrm{WR} 3}, \mathrm{ALE}$, $\overline{\mathrm{HLDA}}$, XOUT ${ }^{(6)}$, BCLK	Leave pins open
$\overline{\text { HOLD, }} \overline{\text { RDY }}$	Connect the pins to VCC via a resistor (5)
$\overline{\mathrm{NMII}}$ (P8_5)	Connect the pin to VCC via a resistor (5)
AVCC	Connect the pin to VCC
AVSS, VREF	Connect the pins to VSS
NSD	Connect the pin to VCC via a resistor of 1 to $4.7 \mathrm{k} \Omega$

Notes:

1. Unused pins should be wired as closely as possible to the MCU (within 2 cm ).
2. In case of entering output mode to leave pins open, the ports remain input mode from when the reset is released until the ports become output mode. During this input mode, the power current may increase due to undefined voltage level of the pin. In addition to that, the contents of direction register may change because of noise which may lead to the out of control of program. Consequently, the higher program reliability may depend on the regular reconfiguration of the direction register by software.
3. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only.
4. In the 100-pin package, set FFh to the following addresses: 03D7h, 03DAh, 03DBh, 03DEh, and 03DFh.
5. The resistance value appropriate to the system should be designated. The range from 10 to $100 \mathrm{k} \Omega$ is recommended.
6. The setting is applicable when an external clock is applied to the XIN pin.

Pull-up/pull-down resistors
The figure shows the equivalent circuit of an input pin.


The equivalent input resistors ( Rp and Rn ) are calculated using input power current (IIL and IIH).
(Example) When $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{IIH}=\mathrm{IIL}=5 \mu \mathrm{~A}$,

$$
\mathrm{Rp}=\mathrm{RN}=\frac{5.0}{5 \times 10^{-6}}=1 \mathrm{M} \Omega
$$

Since the voltage $\left(\mathrm{V}_{\mathrm{IH}}\right)$ defined as high is more than 0.8 VCC ,
the resistance value R should satisfy the following expression:

$$
\mathrm{R} / / \mathrm{RP}: \mathrm{RN}=0.2: 0.8
$$

That is,

$$
R=\frac{2 R p R n}{8 R p-2 R N}
$$

Specifically,
(Example) When $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{IIH}=\mathrm{IIL}=5 \mu \mathrm{~A}$,

$$
R=\frac{2 \times 10^{6} \times 10^{6}}{8 \times 10^{6}-2 \times 10^{6}}=33333
$$

The maximum pull-up resistor R is approx. $330 \mathrm{k} \Omega$.
The actual resistance value is the calculated value with some margins.

Figure 26.31 Pull-up/Pull-down Resistors


Figure 26.32 Unused Pin Configuration

## 27. Flash Memory

### 27.1 Overview

Rewrite operation to the flash memory can be performed in the following three modes: CPU rewrite mode, standard serial I/O mode, and parallel I/O mode.
Table 27.1 lists specifications of the flash memory and Table 27.2 shows the overview of each rewrite mode.

Table 27.1 Flash Memory Specifications

Item	Specification
Rewrite modes	CPU rewrite mode, standard serial I/O mode, parallel I/O mode
Structure	Block architecture. Refer to Figure 27.1
Program operation	8-byte basis
Erase operation	1-block basis
Program/erase controlled by	Software commands
Protection types	Lock bit protect, ROM code protect, ID code protect
Software commands	9 commands

Table 27.2 Flash Memory Rewrite Mode Overview

Rewrite Mode	CPU Rewrite Mode	Standard Serial I/O Mode	Parallel I/O Mode
Function	CPU executes a software   command to rewrite the flash   memory   EWO mode:   Rewritable in areas other   than the on-chip flash   memory   EW1 mode:   Rewritable in areas other   than specified blocks to be   rewritten	A dedicated serial   programmer rewrites the flash   memory   Standard serial I/O mode 1:   Synchronous serial I/O   selected   Standard serial I/O mode 2:   UART selected	A dedicated parallel   programmer rewrites the   flash memory
CPU operating   mode	Single-chip mode,   Memory expansion mode   (EWO mode)	Standard serial I/O mode	Parallel I/O mode
Programmer	-	Serial programmer	Parallel programmer
On-board   rewriting	Supported	Not supported	

Figure 27.1 shows the on-chip flash memory structure.
The on-chip flash memory contains program area to store user programs, and data area/data flash to store the result of user programs. The program area consists of blocks 0 to 17, and data area/data flash consists of blocks A and B.
Each block can be individually protected (locked) from programing or erasing by setting the lock bit.


Figure 27.1 Embedded Flash Memory Block Diagram

### 27.2 Flash Memory Protection

There are three types of protections as shown in Table 27.3. Lock bit protection is intended to prevent accidental program or erase by program runaway. ROM code protection and ID code protection are intended to prevent read or write by a third party.

Table 27.3 Protection Types and Characteristics

Protection Type	Lock Bit Protection	ROM Code Protection	ID Code Protection
Operations to be   protected	Erase, write	Read, write	Read, erase, write
Protection   available in	CPU rewrite mode   Standard serial I/O mode   Parallel I/O mode	Parallel I/O mode	Standard serial I/O mode
Protection   available for	Individual blocks	The whole flash memory	The whole flash memory
Protection   activated by	Setting 0 to the lock bit of   block to be protected	Setting 0 to any protect bit   of blocks	Writing the program which   has set an ID code to   specified address
Protection   deactivated by	Setting the LBD bit in the   FMR register to 1 (lock bit   protection disabled). Or, by   erasing the blocks whose   lock bits are set to 0 to   permanently deactivate the   protection	Erasing all blocks whose   protect bits are set to 0	Inputting a proper ID code   to the serial programmer

### 27.2.1 Lock Bit Protection

This protection is available in all three rewrite modes. When the lock bit protection is activated, all the blocks whose lock bits are set to 0 (locked) are protected against programming and erasing.
To set the lock bit to 0 , the lock bit program command must be issued.
To temporarily deactivate the protection of all protected blocks, disable the lock bit protection itself by setting the LBD bit in the FMR1 register to 1 (lock bit protection disabled). To permanently deactivate the protection of a protected block, erase the respective block to set the lock bit to 1 (unlocked).

### 27.2.2 ROM Code Protection

This protection is available only in parallel I/O mode. When the ROM code protection is activated, the whole flash memory is protected against reading and writing.
To deactivate the protection, erase all the blocks whose protect bits are set to 0 (protected).
Each block has two protect bits. Setting any protect bit to 0 by a software command activates the protection for the whole flash memory. Table 27.4 lists protect bit addresses.

Table 27.4 Protect Bit Addresses

Block	Protect Bit 0	Protect Bit 1
Block B	00060100h	00060300h
Block A	00061100h	00061300h
Block 17	FFF00100h	FFF00300h
Block 16	FFF10100h	FFF10300h
Block 15	FFF20100h	FFF20300h
Block 14	FFF30100h	FFF30300h
Block 13	FFF40100h	FFF40300h
Block 12	FFF50100h	FFF50300h
Block 11	FFF60100h	FFF60300h
Block 10	FFF70100h	FFF70300h
Block 9	FFF80100h	FFF80300h
Block 8	FFF90100h	FFF90300h
Block 7	FFFA0100h	FFFFB0300h
Block 6	FFFFB0100h	FFFC0300h
Block 5	FFFD0100h	FFFD0300h
Block 4	FFFE0100h	FFFE0300h
Block 3	FFFE8100h	FFFE8300h
Block 2	FFFF0100h	FFFF0300h
Block 1	FFFF8100h	FFFF8300h
Block 0		

### 27.2.3 ID Code Protection

This protection is available only in standard serial I/O mode. When the ID code protection is activated, a command sent from the serial programmer is accepted only if the 7-byte ID code sent from the serial programmer is identical to the ID code programmed in the flash memory. However, if the reset vector is FFFFFFFFh, the ID code check is skipped because the flash memory is considered as "erase completed". When the reset vector is FFFFFFFFh and the ROM code protection is activated, only the block erase command is accepted.
The ID codes sent from the serial programmer are consecutively numbered as ID1, ID2, ..., and ID7. On the other hand, the ID codes programmed in the flash memory, also numbered as ID1, ID2, ..., and ID7, are respectively assigned for addresses FFFFFFE8h, FFFFFFE9h, ..., and FFFFFFEEh as shown in Figure 27.2. The ID code protection is activated when a program which has an ID code set in the corresponding address is written to the flash memory.
In the high speed version ( 64 MHz version), the following two ASCII code combinations are specified as reserved ID codes: "ALeRASE" and "Protect". Refer to Table 27.5, 27.2.4 "Forcible Erase Function", and 27.2.5 "Standard Serial I/O Mode Disable Function" for details.


Figure 27.2 Addresses for ID Code Stored

Table 27.5 Reserved ID Codes

ID Code		ID1	ID2	ID3	ID4	ID5	ID6	ID7
ALeRASE	Glyph	A	L	e	R	A	S	E
	ASCII code	41 h	4 Ch	65 h	52 h	41 h	53 h	45 h
Protect	Glyph	P	r	o	t	e	C	t
	ASCII code	50 h	72 h	6 Fh	74 h	65 h	63 h	74 h

### 27.2.4 Forcible Erase Function

The forcible erase function is available in standard serial I/O mode in the high speed version ( 64 MHz version). It is not available in the normal speed version ( 50 MHz version). With this function, all blocks of the flash memory are forcibly erased when ID codes sent from the serial programmer matches the ASCII code corresponding to the following sequential ASCII-glyphs: "A", "L", "e", "R", "A", "S", and "E". However, the function is ignored when the ROM code protection is activated and ID codes other than "ALeRASE" are programmed in the flash memory.

Table 27.6 Operational Conditions for Forcible Erase Function

ID Codes Sent From   the Serial Programmer	ID Codes Programmed in   the Flash Memory	ROM Code   Protection	Function
"ALeRASE"	"ALeRASE"	-	Erase all blocks of the flash memory
	Any codes other than   "ALeRASE" or "Protect"	Activated	Inactivated   Codes)
	"ALeRASE"	-	Check ID codes (resulted in unmatched   codes)
	Any codes other than   "ALeRASE" or "Protect"	-	Check ID codes

### 27.2.5 Standard Serial I/O Mode Disable Function

The standard serial I/O mode disable function is available in the high speed version ( 64 MHz version) It is not available in the normal speed version ( 50 MHz version). With the standard serial I/O mode disable function, the flash memory in standard serial I/O mode is inaccessible from the CPU when ID code programmed in the flash memory are ASCII codes corresponding to the following sequential ASCII-glyphs: "P", "r", "o", "t", "e", "c", and "t".
When the ROM code protection is activated and ID codes corresponding to "Protect" are programmed, the serial programmer cannot deactivate the ROM code protection. In this case, the flash memory is not accessible from the outside of MCU other than to delete the flash memory with parallel programmer.

### 27.3 CPU Rewrite Mode

In CPU rewrite mode, CPU executes software commands to rewrite the flash memory. The CPU accesses the flash memory not via the CPU buses but via the dedicated flash memory rewrite buses (refer to Figure 27.3).


Figure 27.3 Flash Memory Access Path in CPU Rewrite Mode
Bus setting for flash memory rewrite should be performed by the FEBC0 and/or FEBC3 registers. Refer to 27.3.2 "Flash Memory Rewrite Bus Timing" and 28. "Electrical Characteristics" for the appropriate bus setting. Note that registers FEBC0 and FEBC3 share respective addresses with registers EBCO and $E B C 3$, that is, a rewrite of these registers affects the external bus setting. Set the EBCO and/or EBC3 registers again after rewriting the FEBCO and/or FEBC3 registers.

The CPU rewrite mode contains two sub modes: EWO mode and EW1 mode as shown in Table 27.7.

Table 27.7 Modes EWO and EW1

Item	EWO Mode	EW1 Mode
CPU operating modes	Single-chip mode   Memory expansion mode (1)	Single-chip mode
Rewrite program executable spaces	Spaces other than the on-chip flash memory	Internal spaces other than specified blocks to be rewritten, internal RAM
Restriction on software command	None	- Do not execute either the program command or the block erase command for blocks where the rewrite control programs are written to   - Do not execute the enter read status register mode command   - Execute the enter read lock bit status mode command in RAM   - Execute the enter read protect bit status mode command in RAM
Mode after program/ erase operation	Read status register mode	Read array mode
CPU state during program/erase operation	Operating	In a hold state (I/O ports maintain the state before the command was executed)
Flash memory state detection by	- Reading the FMSRO register by a program   - Executing the enter read status register mode command to read data	- Reading the FMSR0 register by a program
Other restrictions	None	- Disable interrupts (except NMI) and DMA transfer during program/erase operation

Note:

1. The $\overline{\mathrm{CSO}}$ space and $\overline{\mathrm{CS3}}$ space are conditionally available in memory expansion mode. Refer to 27.3.1 "CPU Operating Mode and Flash Memory Rewrite" for details.

To select CPU rewrite mode, the FEW bit in the FMCR register should be set to 1. Then, EW0 mode/EW1 mode can be selected by setting the EWM bit in the FMRO register.
Registers FMCR and FMR0 are protected by registers PRR and FPR0, respectively.
Figure 27.4 to Figure 27.12 show associated registers.

Flash Memory Control Register (1)


Notes:

1. Set the PRR register to AAh (write enabled) before rewriting this register.
2. When the MRS bit in the VRCR register is 1 (main regulator stopped), this bit should not be set to 1 .

Figure 27.4 FMCR Register

Flash Memory Rewrite Bus Control Register i $(\mathrm{i}=0,3)^{(1)}$


Note:

1. Set the PRR register to AAh (write enabled) before rewriting this register.

Figure 27.5 Registers FEBC0 and FEBC3

Flash Register Protection Unlock Register 0


Figure 27.6 FPRO Register

Flash Memory Control Register $0{ }^{(1,2)}$


Notes:

1. Set the PRO bit in the FPRO register to 1 (write enabled) before rewriting this register.
2. This register is reset after exiting wait mode or stop mode.
3. After entering read lock bit status mode, if any even address in the corresponding block is read, the lock bit status is indicated in bit 6 of read data.
4. The LBS bit indicates the lock bit status by the read lock bit status command.

Figure 27.7 FMR0 Register

Flash Memory Control Register $1{ }^{(1)}$


Note:

1. Set the PRO bit in the FPRO register to 1 (write enabled) before rewriting this register.

Figure 27.8 FMR1 Register

Flash Memory Status Register 0


Note:

1. If an erase error has occurred, issue the clear status register command first, then re-issue the block erase command repeatedly until no more erase error occurs. After that, execute three more extra block erase operations.

Figure 27.9 FMSR0 Register

## Block Protect Bit Monitor Register $0{ }^{(1)}$



Note:

1. This register is updated only once after exiting reset mode. The protect bit status at that time is applied as reset value.

Figure 27.10 FBPMO Register

## Block Protect Bit Monitor Register $1{ }^{(1)}$



Note:

1. This register is updated only once after exiting reset mode. The protect bit status at that time is applied as reset value.

Figure 27.11 FBPM1 Register

Block Protect Bit Monitor Register $2{ }^{(1)}$


Note:

1. This register is updated only once after exiting reset mode. The protect bit status at that time is applied as reset value.

Figure 27.12 FBPM2 Register

### 27.3.1 CPU Operating Mode and Flash Memory Rewrite

To rewrite the flash memory, the bus setting using by the FEBC0 and/or FEBC3 registers is required. For exclusive use of single-chip mode, the FEBC3 register is not used. In this mode, do not change the reset value 00h of registers CB01, CB12, and CB23. The bus setting for both program area and data area can be performed by the FEBCO register.
In other cases than the above, when the CPU operation is performed in memory expansion mode more than once, set registers CB01, CB12, and CB23 according to each setting range as shown in Table 27.8. The bus setting for program area and data area can be respectively performed by the FEBC0 register and FEBC3 register.
Note that registers FEBC0 and FEBC3 in memory expansion mode share respective addresses with registers EBC0 and EBC3, that is, when the FEBCi register ( $i=0,3$ ) is set for the flash memory rewrite, the setting value for EBCi register is accordingly changed. This may cause external devices allocated for $\overline{\mathrm{CS} 0}$ space and/or $\overline{\mathrm{CS3}}$ space in CPU rewrite mode to become inaccessible.
Table 27.8 lists the details of bus setting for the flash memory rewrite in each CPU operating mode.
Table 27.8 CPU Operating Mode and Flash Memory Rewrite

Item	CPU Operating Mode	
	Single-chip mode	Memory expansion mode
CB01 register	Hold the reset value 00h	Setting range: 04h to F8h   Set an value higher than that for the CB12 register
CB12 register	Hold the reset value 00h	Setting range: 03h to F7h   Set an value higher than that for the CB23 register and lower than that for the CB01 register
CB23 register	Hold the reset value 00h	Setting range: 02h to F6h Set an value lower than that for the CB12 register
Bus setting for program area	FEBC0 register	FEBC0 register
Bus setting for data area	FEBC0 register	FEBC3 register
State of $\overline{\mathrm{CSO}}$ space and $\overline{\mathrm{CS3}}$ space after the FEBCi register is set	N/A	- Separate bus format   - 16-bit bus width   - $\overline{R D Y}$ ignored
Restrictions for the use of $\overline{\mathrm{CSO}}$ space and $\overline{\mathrm{CS}}$ space	None	- $\overline{\mathrm{HOLD}}$ is ignored   - In CPU rewrite mode, external devices become inaccessible to data with the bus format set for $\overline{\mathrm{CSO}}$ space and/or $\overline{\mathrm{CS3}}$ space as multiplexed bus   - The change of bus timing may cause external devices in $\overline{\mathrm{CSO}}$ space and/or $\overline{\mathrm{CS3}}$ space to become inaccessible

### 27.3.2 Flash Memory Rewrite Bus Timing

As mentioned in 27.3.1, the bus setting for the flash memory rewrite is performed by using the FEBC0 and/or FEBC3 registers. This section specifically describes the setting of registers FEBCO and FEBC3. The reference clock is the base clock set using bits BCD1 and BCD0 in the CCR register. Time duration including tsu, tw, tc and th are specified by base clock cycles.
Table 27.9 to Table 27.11 show the correlation of read cycle and setting of following bits: MPY1, MPY0, and FWR4 to FWR0, according to respective peripheral bus clock divide ratio. Table 27.12 to Table 27.14 show the correlation of write cycle and setting of following bits: MPY1, MPY0, FSUW1, FSUW0, FWW1, and FWW0. Associated read/write timings are respectively illustrated in Figure 27.13 and Figure 27.14.
Read/write cycle timing is selected from these tables below to meet the timing requirements in CPU rewrite mode described in the electrical characteristics.


Figure 27.13 Read Timing

Table 27.9 The Read Cycle and Bit Settings: MPY1, MPY0, and FWR4 to FWR0, When Peripheral Bus Clock is Divided by 2 (unit: cycles)

FWR3 to FWR0 Bit Settings		FWR4   Bit   Settings	MPY1 and MPY0 bit settings								
		10b	11b								
		$m p y=3$	$m p y=4$								
		$\begin{aligned} & \text { tsu(S-R), } \\ & \text { tsu(A-R) } \end{aligned}$	tw(R)	tcR	$\begin{aligned} & \text { th(R-S), } \\ & \operatorname{th}(R-A) \end{aligned}$	$\begin{gathered} \hline \text { tsu(S-R), } \\ \text { tsu(A-R) } \end{gathered}$	tw(R)	tcR	$\begin{aligned} & \text { th(R-S), } \\ & \text { th(R-A) } \end{aligned}$		
0000b	$w r=1$		0	4	3	4	0	6	5	6	0
			1	6	5	6	0	6	5	6	0
0001b	$w r=2$		0	8	7	8	0	10	9	10	0
		1	8	7	8	0	10	9	10	0	
0101b	$w r=3$	0	10	9	10	0	14	13	14	0	
		1	12	11	12	0	14	13	14	0	
0110b	$w r=4$	0	14	13	14	0	18	17	18	0	
		1	14	13	14	0	18	17	18	0	
1010b	$w r=5$	0	16	15	16	0	22	21	22	0	
		1	18	17	18	0	22	21	22	0	
1011b	$w r=6$	0	20	19	20	0	26	25	26	0	
		1	20	19	20	0	26	25	26	0	
1111b	$w r=7$	0	22	21	22	0	30	29	30	0	
		1	24	23	24	0	30	29	30	0	

Table 27.10 The Read Cycle and Bit Settings: MPY1, MPY0, and FWR4 to FWR0, When Peripheral Bus Clock is Divided by 3 (unit: cycles)

FWR3 to FWR0 Bit Settings		FWR4   Bit   Settings	MPY1 and MPY0 bit settings								
		10b	11b								
		$m p y=3$	$m p y=4$								
		tsu(S-R),   tsu(A-R)	tw(R)	tcR	$\begin{aligned} & \text { th(R-S), } \\ & \text { th(R-A) } \end{aligned}$	tsu(S-R), tsu(A-R)	tw(R)	tcR	$\begin{aligned} & \text { th(R-S), } \\ & \text { th(R-A) } \end{aligned}$		
0000b	$w r=1$		0	6	4.5	6	0	6	4.5	6	0
			1	6	4.5	6	0	6	4.5	6	0
0001b	$w r=2$		0	9	7.5	9	0	9	7.5	9	0
		1	9	7.5	9	0	12	10.5	12	0	
0101b	$w r=3$	0	12	10.5	12	0	15	13.5	15	0	
		1	12	10.5	12	0	15	13.5	15	0	
0110b	$w r=4$	0	15	13.5	15	0	18	16.5	18	0	
		1	15	13.5	15	0	18	16.5	18	0	
1010b	$w r=5$	0	18	16.5	18	0	21	19.5	21	0	
		1	18	16.5	18	0	24	22.5	24	0	
1011b	$w r=6$	0	21	19.5	21	0	27	25.5	27	0	
		1	21	19.5	21	0	27	25.5	27	0	
1111b	$w r=7$	0	24	22.5	24	0	30	28.5	30	0	
		1	24	22.5	24	0	30	28.5	30	0	

Table 27.11 The Read Cycle and Bit Settings: MPY1, MPY0, and FWR4 to FWR0, When Peripheral Bus Clock is Divided by 4 (unit: cycles)

FWR3 to FWR0 Bit Settings		FWR4   Bit   Settings	MPY1 and MPY0 bit settings								
		10b	11b								
		$m p y=3$	$m p y=4$								
		tsu(S-R), tsu(A-R)	tw(R)	tcR	$\begin{aligned} & \text { th(R-S), } \\ & \text { th(R-A) } \end{aligned}$	$\begin{aligned} & \hline \text { tsu(S-R), } \\ & \text { tsu(A-R) } \end{aligned}$	tw(R)	tCR	$\begin{aligned} & \text { th(R-S), } \\ & \text { th(R-A) } \end{aligned}$		
0000b	$w r=1$		0	4	2	4	0	8	6	8	0
			1	8	6	8	0	8	6	8	0
0001b	$w r=2$		0	8	6	8	0	12	10	12	0
		1	8	6	8	0	12	10	12	0	
0101b	$w r=3$	0	12	10	12	0	16	14	16	0	
		1	12	10	12	0	16	14	16	0	
0110b	$w r=4$	0	16	14	16	0	20	18	20	0	
		1	16	14	16	0	20	18	20	0	
1010b	$w r=5$	0	16	14	16	0	24	22	24	0	
		1	20	18	20	0	24	22	24	0	
1011b	$w r=6$	0	20	18	20	0	28	26	28	0	
		1	20	18	20	0	28	26	28	0	
1111b	$w r=7$	0	24	22	24	0	32	30	32	0	
		1	24	22	24	0	32	30	32	0	



Figure 27.14 Write Timing

Table 27.12 The Write Cycle and Bit Settings: MPY1, MPY0, FSUW1, FSUW0, FWW1, and FWW0, When Peripheral Bus Clock is Divided by 2 (unit: cycles)

$\begin{aligned} & \hline \text { FSUW1 and } \\ & \text { FSUW0 } \\ & \text { Bit Settings } \\ & \hline \end{aligned}$		FWW1andFWW0Bit Settings		MPY1 and MPY0 Bit Settings									
		10b	11b										
		$m p y=3$	$m p y=4$										
						$\begin{aligned} & \hline \text { tsu(S-W), } \\ & \text { tsu(A-W) } \end{aligned}$	tw(W)	tcw	th(W-S), th(W-A)	tsu(S-W), tsu(A-W)	tw(W)	tcw	th(W-S), th(W-A)
00b	suw $=0$			00b	$w w=1$	1	3	6	2	1	4	6	1
		01b	$w w=2$	1	6	8	1	1	8	10	1		
		10b	$w w=3$	1	9	12	2	1	12	14	1		
		11b	$w w=4$	1	12	14	1	1	16	18	1		
01b	suw $=1$	00b	$w w=1$	4	3	8	1	5	4	10	1		
		01b	$w w=2$	4	6	12	2	5	8	14	1		
		10b	$w w=3$	4	9	14	1	5	12	18	1		
		11b	$w w=4$	4	12	18	2	5	16	22	1		
10b	suw $=2$	00b	$w w=1$	7	3	12	2	9	4	14	1		
		01b	$w w=2$	7	6	14	1	9	8	18	1		
		10b	$w w=3$	7	9	18	2	9	12	22	1		
		11b	$w w=4$	7	12	20	1	9	16	26	1		
11b	suw $=3$	00b	$w w=1$	10	3	14	1	13	4	18	1		
		01b	$w w=2$	10	6	18	2	13	8	22	1		
		10b	$w w=3$	10	9	20	1	13	12	26	1		
		11b	$w w=4$	10	12	24	2	13	16	30	1		

Table 27.13 The Write Cycle and Bit Settings: MPY1, MPY0, FSUW1, FSUW0, FWW1, and FWW0, When Peripheral Bus Clock is Divided by 3 (unit: cycles)

$\begin{aligned} & \text { FSUW1 and } \\ & \text { FSUW0 } \\ & \text { Bit Settings } \end{aligned}$		FWW1andFWW0Bit Settings		MPY1 and MPY0 Bit Settings									
		10b	11b										
		$m p y=3$	$m p y=4$										
						tsu(S-W),   tsu(A-W)	tw(W)	tcw	th(W-S), th(W-A)	tsu(S-W),   tsu(A-W)	tw(W)	tcw	th(W-S), th(W-A)
00b	suw $=0$			00b	$w w=1$	1	3	6	2	1	4	6	1
		01b	$w w=2$	1	6	9	2	1	8	12	3		
		10b	$w w=3$	1	9	12	2	1	12	15	2		
		11b	$w w=4$	1	12	15	2	1	16	18	1		
01b	suw $=1$	00b	$w w=1$	4	3	9	2	6	3	12	3		
		01b	$w w=2$	4	6	12	2	6	7	15	2		
		10b	$w w=3$	4	9	15	2	6	11	18	1		
		11b	$w w=4$	4	12	18	2	6	15	24	3		
10b	suw $=2$	00b	$w w=1$	7	3	12	2	9	4	15	2		
		01b	$w w=2$	7	6	15	2	9	8	18	1		
		10b	$w w=3$	7	9	18	2	9	12	24	3		
		11b	$w w=4$	7	12	21	2	9	16	27	2		
11b	suw $=3$	00b	$w w=1$	10	3	15	2	13	4	18	1		
		01b	$w w=2$	10	6	18	2	13	8	24	3		
		10b	$w w=3$	10	9	21	2	13	12	27	2		
		11b	$w w=4$	10	12	24	2	13	16	30	1		

Table 27.14 The Write Cycle and Bit Settings: MPY1, MPY0, FSUW1, FSUW0, FWW1, and FWW0, When Peripheral Bus Clock is Divided by 4 (unit: cycles)

FSUW1 and FSUWO Bit Settings		FWW1and   FWWO   Bit Settings		MPY1 and MPY0 Bit Settings									
		10b	11b										
		$m p y=3$	$m p y=4$										
						tsu(S-W),   tsu(A-W)	tw(W)	tcw	th(W-S),   th(W-A)	tsu(S-W),   tsu(A-W)	tw(W)	tcw	th(W-S),   th(W-A)
00b	suw $=0$			00b	$w w=1$	1	3	8	4	1	4	8	3
		01b	$w w=2$	1	6	8	1	1	8	12	3		
		10b	$w w=3$	1	9	12	2	1	12	16	3		
		11b	$w w=4$	1	12	16	3	1	16	20	3		
01b	suw $=1$	00b	$w w=1$	4	3	8	1	5	4	12	3		
		01b	$w w=2$	4	6	12	2	5	8	16	3		
		10b	$w w=3$	4	9	16	3	5	12	20	3		
		11b	$w w=4$	4	12	20	4	5	16	24	3		
10b	suw $=2$	00b	$w w=1$	8	2	12	2	9	4	16	3		
		01b	$w w=2$	8	5	16	3	9	8	20	3		
		10b	$w w=3$	8	8	20	4	9	12	24	3		
		11b	$w w=4$	8	11	20	1	9	16	28	3		
11b	suw $=3$	00b	$w w=1$	10	3	16	3	13	4	20	3		
		01b	$w w=2$	10	6	20	4	13	8	24	3		
		10b	$w w=3$	10	9	20	1	13	12	28	3		
		11b	$w w=4$	10	12	24	2	13	16	32	3		

### 27.3.3 Software Commands

In CPU rewrite mode, software commands enable to rewrite or erase the flash memory. A write of command and read of data should be performed in 16-bit units.
Table 27.15 lists the software commands.

Table 27.15 Software Commands

Command	First Command Cycle		Second Command Cycle	
	Address	Data	Address	Data
Enter read array mode	FFFFF800h	$00 F F h$	-	-
Enter read status register mode (1)	FFFFF8800h	0070 h	-	-
Clear status register	FFFFF800h	0050 h	-	-
Program (2)	FFFFF800h	0043 h	WA	WD
Block erase	FFFFF800h	0020 h	BA	00D0h
Lock bit program	FFFFF800h	0077 h	BA	00D0h
Read lock bit status	FFFFF800h	0071 h	BA	00D0h
Enter read lock bit status mode (3)	FFFFF800h	0071 h	-	-
Protect bit program	FFFFF800h	0067 h	PBA	00D0h
Enter read protect bit status mode (3)	FFFFF800h	0061 h	-	-

WA: Even address to be written
WD: 16-bit data to be written
BA: An even address within a specific block
PBA: Protect bit address (Refer to Table 27.4)

## Notes:

1. This command cannot be executed in EW1 mode.
2. A set of command consists of five words from the first command to the fifth. The program is performed in 64-bit (four-word) unit. The higher 29 bits of the address WA should be fixed and the lower three bits of respective commands from the second to fifth should be set to 000b, 010b, 100b, and 110b for the addresses 0h, 2h, 4h, and 6h, or 8h, Ah, Ch, and Eh.
3. This command should be executed in RAM.

### 27.3.4 Mode Transition

CPU rewrite mode supports four flash memory operating modes:

- Read array mode
- Read status register mode
- Read lock bit status mode
- Read protect bit status mode

When reading the flash memory in these modes, the content of memory, the content of status register, the state of lock bit of read block, and the state of protect bit are respectively read. The details are listed in Table 27.16 to Table 27.18.

Table 27.16 Status Register

Bit	Bit Symbol	Bit Name		Definition	
		0	1		
b15-b8	-	Disabled bit	-	-	
b7	SR7	Sequencer status	BUSY	READY	
b6	-	Reserved bit	-	-	
b5	SR5	Erase status	Successfully   completed	Error	
b4	SR4	Program status	Successfully   completed	Error	
b3	-	Reserved bit	-	-	
b2	-	Reserved bit	-	-	
b1	-	Reserved bit	-	-	
b0	-	Reserved bit	-	-	

Table 27.17 Lock Bit Status

Bit	Bit Symbol	Bit Name	Definition	
			0	1
b15-b7	-	Disabled bit	-	-
b6	LBS	Lock bit status	Locked	Unlocked
b5-b0	-	Disabled bit	-	-

Table 27.18 Protect Bit Status

Bit	Bit Symbol	Bit Name	Definition	
			0	1
b15-b7	-	Disabled bit	-	-
b6	PBS	Protect bit status	Protected	Unprotected
b5-b0	-	Disabled bit	-	-

In these operating modes, a program or erase operation can be performed by software commands. After the operation is completed, the flash memory module automatically enters read array mode (in EW1 mode) or read status register mode (in EWO mode).

### 27.3.5 How to Issue Software Commands

This section describes how to issue the software commands.
These commands should be issued while the RDY bit in the FMSR0 register is 1 (ready).

### 27.3.5.1 Enter Read Array Mode Command

This command is executed to enter read array mode.
When 00FFh is written to address FFFFF800h, the flash memory enters read array mode. In this mode, data stored to a given address in memory can be read.
In EW1 mode, the flash memory is always in read array mode.

### 27.3.5.2 Enter Read Status Register Mode

This command is executed to enter read status register mode.
When 0070h is written to address FFFFF800h, data of the status register is read in any address of the flash memory.
Do not execute this command in EW1 mode.

### 27.3.5.3 Clear Status Register

This command is executed to reset the status register in the flash memory. When 0050h is written to address FFFFF800h, bits SR5 and SR4 in the status register become 0 (successfully completed) (Refer to Table 27.16). Consequently, bits EERR and WERR in the FMSR0 register become 0 (no errors).

### 27.3.5.4 Program Command

This command is executed to program the flash memory in eight-byte (four-word) unit.
To start automatic programming (program and program-verify operation), write 0043h to address FFFFF800h, then write data to addresses $8 n+0$ to $8 n+6$. Verify that the FCA bit in the FMR0 register is 0 just before executing the final command.
To monitor the automatic program operation, read the RDY bit in the FMSR0 register. This bit indicates 0 (busy) when the operation is in progress and 1 (ready) when the operation is completed.
The operation result can be verified by the WERR bit in the FMSRO register (Refer to 27.3.6 "Status Check").
Do not write additional data to the address already programmed.


Figure 27.15 Program Command Flow

### 27.3.5.5 Block Erase Command

This command is executed to erase a specified block in the flash memory.
To start automatic erasing of the specified block (erase and erase-verify operation), write 0020h to address FFFFF800h, verify that the FCA bit in the FMR0 register is 0, then write 00D0h to an even address of the corresponding block.
To monitor the automatic erase operation, read the RDY bit in the FMSRO register. This bit indicates 0 (busy) when the operation is in progress and 1 (ready) when the operation is completed.
The operation result can be verified by the EERR bit in the FMSRO register (Refer to 27.3.6 "Status Check").


Figure 27.16 Block Erase Command Flow

### 27.3.5.6 Lock Bit Program Command

This command is executed to lock a specified block in the flash memory.
To lock the block, write 0077h to address FFFFF800h, verify that the FCA bit in the FMR0 register is 0, then write 00DOh to an even address of the corresponding block. Then the lock bit of the block becomes 0 (locked).
To monitor the lock bit program, read the RDY bit in the FMSR0 register. This bit indicates 0 (busy) when the operation is in progress and 1 (ready) when the operation is completed.
The state of lock bit can be verified by the read lock bit status command if the LBM bit in the FMR0 register is 1 (read by the LBS bit) (Refer to 27.3.5.7 "Read Lock Bit Status Command"). If the LBM bit is 0 (read via data bus), enter read lock bit status mode (Refer to 27.3.5.8 "Enter Read Lock Bit Status Mode Command").


Figure 27.17 Lock Bit Program Command Flow

### 27.3.5.7 Read Lock Bit Status Command

This command is executed to verify if a specified block in the flash memory is locked. This command is available when the LBM bit in the FMRO register is 1 (read by the LBS bit).
To read the LBS bit from the FMR0 register, write 0071 h to address FFFFF800h, verify that the FCA bit in the FMRO register is 0 , then write 00DOh to an even address of the corresponding block. Read the LBS bit after the RDY bit in the FMSR0 register becomes 1 (ready).


Figure 27.18 Read Lock Bit Status Command Flow

### 27.3.5.8 Enter Read Lock Bit Status Mode Command

This command is executed to enter read lock bit status mode. This command is enabled when the LBM bit in the FMRO register is 0 (read via data bus).
To read the lock bit status of the read block, write 0071h to address FFFFF800h (Refer to Table 27.17). The status is read in any address of the flash memory.
Execute this command in RAM.

### 27.3.5.9 Protect Bit Program Command

This command is executed to protect a block specified in the flash memory. ROM code protection is enabled by setting any protect bit of blocks to 0 .
To program the protect bit of the designated block to 0 (protected), write 0067h to address FFFFF800h, verify that the FCA bit in the FMRO register is 0 , then write 00DOh to the protect bit of the corresponding block (Refer to Table 27.4).
To monitor the protect bit program, read the RDY bit in the FMSR0 register. This bit shows 0 (busy) when the operation is in progress and 1 (ready) when the operation is completed.
To verify the state of protect bit, enter read protect bit status mode (Refer to 27.3.5.10 "Enter Read Protect Bit Status Mode Command"), then read the flash memory.


Figure 27.19 Protect Bit Program Command Flow

### 27.3.5.10 Enter Read Protect Bit Status Mode Command

This command is executed to enter read protect bit status mode.
To read the protect bit status of the read block, write 0061h to address FFFFF800h (Refer to Table
27.18). The status is read from any address of the flash memory.

Execute this command in RAM.

### 27.3.6 Status Check

To verify if a software command is successfully executed, read EERR or WERR bit in the FMSR0 register, or SR5 or SR4 bit in the status register.
Table 27.19 lists status and errors indicated by these bits and Figure 27.20 shows the flow of status check.

Table 27.19 Status and Errors

FMSR0 register (Status register)		Error	Causes for Error
EERR bit (SR5 bit)	WERR bit (SR4 bit)		
1	1	Command sequence error	- Data other than 00DOh or 00FFh (command to cancel) was written as the last command of two commands   - An unavailable address was specified by an address specifying command
1	0	Erase error	- A locked block was tried to erase   - Corresponding block was not erased properly
0	1	Program error	- A locked block was tried to program   - Data was not programmed properly   - Lock bit was not programmed properly   - Protect bit was not programmed properly
0	0	No error	



Figure 27.20 Status Check Flow
When an error occurs, execute clear status register command, then handle the error properly.
If erase errors or program errors occur frequently even though the program is correct, the corresponding block may be disabled.

### 27.4 Standard Serial I/O Mode

In standard serial I/O mode, the serial programmer supporting the R32C/117 Group can be used to rewrite the flash memory, while the MCU is mounted on a board.
For further information on the serial programmer, please contact your serial programmer manufacturer and refer to the user's manual included with your serial programmer for instructions.
This mode provides two types of transmit/receive mode: Standard serial I/O mode 1 which uses synchronous serial interface and standard serial I/O mode 2 which uses UART as shown in Table 27.20.

Table 27.20 Standard Serial I/O Mode Specifications

Item		Standard Serial I/O Mode 1	Standard Serial I/O Mode 2
Transmit/receive mode	Synchronous serial I/O	UART	
Transmit/receive bit rate	High	Low	
Serial interface to be used	UART1	UART1	
Pin setting	CNVSS	High	High
	$\overline{\text { CE (P5_0) }}$	High	High
	$\overline{\text { EPM (P5_5) }}$	Low	Low
	SCLK (P6_5)	In reset: Low   In transmission/reception:   Transmit/receive clock	In reset: Low   In transmission/reception: Unused
Pin function	BUSY (P6_4)	BUSY signal	Monitor to check program   operation
	RXD (P6_6)	Serial data input	Serial data input
	RXD (P6_7)	Serial data output	Serial data output
	TXD		

Table 27.21 lists the pin definitions and functions in standard serial I/O mode. Figure 27.21 and Figure 27.22 show examples of a circuit application in standard serial I/O modes 1 and 2, respectively. Refer to the user's manual of your serial programmer to handle pins controlled by the serial programmer.

Table 27.21 Pin Definitions and Functions in Standard Serial I/O Mode

Symbol	Function	1/O	Description
VCC, VSS	Power supply input	1	Applicable as follows: VCC = guaranteed voltage for program/ erase operation, VSS $=0 \mathrm{~V}$
VDC1, VDC0	Connecting pins for decoupling capacitor	-	A decoupling capacitor for internal voltage should be connected between VDC0 and VDC1
CNVSS	CNVSS	I	This pin should be connected to VCC via a resistor
RESET	Reset input	1	Reset input pin. While the $\overline{\text { RESET }}$ pin is driven low, a clock of 20 cycles or more should be input at the XIN pin
XIN	Main clock input	1	A ceramic resonator or a crystal oscillator should be connected
XOUT	Main clock output	O	between pins XIN and XOUT. An external clock should be input at the XIN while leaving the XOUT open
NSD	Debug port	I/O	This pin should be connected to VCC via a resistor of 1 to $4.7 \mathrm{k} \Omega$
AVCC, AVSS	Analog power supply	1	AVCC and AVSS should be connected to VCC and VSS, respectively
VREF	Reference voltage input	1	Reference voltage input for the A/D converter and D/A converter
	Input port	1	High or low should be input, or the ports should be left open
P5_0	$\overline{\mathrm{CE}}$ input	1	High should be input
P5_1 to P5_4	Input port	I	High or low should be input, or the ports should be left open
P5_5	EPM input	1	Low should be input
$\begin{aligned} & \text { P5_6, P5_7, } \\ & \text { P6_0 to P6_3 } \end{aligned}$	Input port	I	High or low should be input, or the ports should be left open
P6_4	BUSY output	O	Standard serial I/O mode 1: BUSY output pin Standard serial I/O mode 2: Program operation monitor
P6_5	SCLK input	1	Standard serial I/O mode 1: Serial clock input pin Standard serial I/O mode 2: Low should be input
P6_6	Data input RXD	1	Serial data input pin
P6_7	Data output TXD	0	Serial data output pin
$\left\lvert\, \begin{aligned} & \text { P7_0 to P7_7, } \\ & \text { P8_0 to P8_4 } \end{aligned}\right.$	Input port	1	High or low should be input, or the ports should be left open
P8_5	$\overline{\mathrm{NMII}}$ input	1	This pin should be connected to VCC via a resistor
P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_1,   P14_3 to P14_6, P15_0 to P15_7 (1)	Input port	I	High or low should be input, or the ports should be left open

Note:

1. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only.


Figure 27.21 Circuit Application in Standard Serial I/O Mode 1


Notes:

1. Control pins and external circuitry vary with the serial programmer. Refer to the user's manual included with the serial programmer.
2. In this example, a selector controls the voltage applied to the CNVSS pin to switch between in single-chip mode and in standard serial I/O mode 2.
3. If the user reset signal becomes low while the MCU is communicating with the serial programmer, the connection between the user reset signal and the RESET pin by, for example, a jumper selector.

Figure 27.22 Circuit Application in Standard Serial I/O Mode 2

### 27.5 Parallel I/O mode

In parallel I/O mode, the parallel programmer supporting the R32C/117 Group can be used to rewrite the flash memory.
For further information on the parallel programmer, please contact your parallel programmer manufacturer and refer to the user's manual included with your parallel programmer for instructions.

### 27.6 Notes on Flash Memory Rewriting

### 27.6.1 Note on Power Supply

- Keep the supply voltage constant within the range specified in the electrical characteristics while a rewrite operation on flash memory is in progress. If the supply voltage becomes beyond the guaranteed value, the device cannot be guaranteed.


### 27.6.2 Note on Hardware Reset

- Do not perform a hardware reset while a rewrite operation on flash memory is in progress.


### 27.6.3 Note on Flash Memory Protection

- If an ID code written in an assigned address has an error, any read/write operation of flash memory in standard serial I/O mode is disabled.


### 27.6.4 Notes on Programming

- Do not set the FEW bit in the FMCR register to 1 (CPU rewrite mode) in low speed mode or low power mode.
- Four software commands of program, block erase, lock bit program, and protect bit program are interrupted by an NMI, a watchdog timer interrupt, an oscillator stop detection interrupt, or a low voltage detection interrupt. If any of the software commands above is interrupted, erase the corresponding block and then execute the same command again. If the block erase command is interrupted, values of lock bits and protect bits become undefined. Therefore, disable the lock bit, and then execute the block erase command again.


### 27.6.5 Notes on Interrupts

- EWO mode
- To use interrupts assigned to the relocatable vector table, the vector table should be addressed in RAM space.
- If either of an NMI, a watchdog timer interrupt, an oscillator stop detection interrupt, or a low voltage detection interrupt is generated, the flash memory module automatically enters read array mode. Therefore these interrupts are enabled even during a rewrite operation. On the other hand, the rewrite operation in progress is aborted by the interrupt and registers FMR0 and FRSR0 are reset. When the interrupt handler has ended, set the LBD bit in the FMR1 register to 1 (lock bit protection disabled) to re-execute the rewrite operation.
- Instructions BRK, INTO, and UND, which refer to data on the flash memory, are unavailable in this mode.
- EW1 mode
- Interrupts assigned to the relocatable vector table should not be accepted during a program or block erase operation.
- The watchdog timer interrupt should not be generated, either.
- If either of an NMI, a watchdog timer interrupt, an oscillator stop detection interrupt, or a low voltage detection interrupt is generated, the flash memory module automatically enters read array mode. Therefore this interrupt is enabled even during a rewrite operation. On the other hand, the rewrite operation in progress is aborted by the interrupt and registers FMR0 and FRSR0 are reset. When the interrupt handler has ended, set the EWM bit in the FMR0 register to 1 (set as EW1 mode) and the LBD bit in the FMR1 register to 1 (lock bit protection disabled) to re-execute the rewrite operation.


### 27.6.6 Notes on Rewrite Control Program

- EWO mode
- If the supply voltage lowers during the rewrite operation of blocks having the rewrite control program, the rewrite control program may not be successfully rewritten, then the rewrite operation itself may not be performed. In this case perform the rewrite operation by serial programmer or parallel programmer.
- EW1 mode
- Do not rewrite blocks having the rewrite control program.


### 27.6.7 Notes on Number of Programming/Erasure and Software Command Execution Time

- According to the increase of program/erase operation, the four software commands: program, block erase, lock bit program, and protect bit program require more time to be executed. If the number of programming/erasure exceeds the minimum endurance value specified in the electrical characteristics, it may take unpredictable time to execute the software commands. The waiting time for the execution of software commands should be set much longer than the execution time specified in the electrical characteristics.


### 27.6.8 Other Notes

- The required time to perform the program or erase operation specified in the electrical characteristics can be guaranteed within the minimum values of programming/erasure endurance specified in the same table. Even if the number of programming/erasure exceeds the minimum endurance value, the program or erase operation may be unguaranteedly performed.
- Chips repeatedly programmed and erased for debugging are not allowed to be used for commercial products.


## 28. Electrical Characteristics

Table 28.1 Absolute Maximum Ratings (1)

Symbol		Characteristic	Condition	Value	Unit
$\mathrm{V}_{\mathrm{CC}}$	Supply voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}$	-0.3 to 6.0	V
$\mathrm{AV}_{\mathrm{CC}}$	Analog supply voltage		$\mathrm{V}_{\mathrm{CC}}=A V_{\mathrm{CC}}$	-0.3 to 6.0	V
$\mathrm{V}_{1}$	Input voltage	$\begin{aligned} & \text { XIN, } \overline{\text { RESET, }} \text { CNVSS, NSD, } \mathrm{V}_{\text {REF }} \\ & \text { P0_0 to P0_7, P1_0 to P1_7, } \\ & \text { P2_0 to P2_7, P3_0 to P3_7, } \\ & \text { P5_0 to P5_3, P8_4 to P8_7, } \\ & \text { P9_0 to P9_7, P10_0 to P10_7, } \\ & \text { P11_0 to P11_4, P12_0 to P12_7, } \\ & \text { P13_0 to P13_7, P14_1, } \\ & \text { P14_3 to P14_6, P15_0 to P15_7 (2) } \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
		$\begin{aligned} & \text { P4_0 to P4_7, P5_4 to P5_7, } \\ & \text { P6_0 to P6_7, P7_0 to P7_7, } \\ & \text { P8_0 to P8_3 } \end{aligned}$		-0.3 to 6.0	V
$\mathrm{V}_{\mathrm{O}}$	Output voltage	XOUT, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 (2)		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{P}_{\mathrm{d}}$	Power consumption		$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	500	mW
-	Operating temperature range			-40 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range			-65 to 150	${ }^{\circ} \mathrm{C}$

Notes:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only. Port P9_1 is designated as input pin in the 100-pin package.

Table 28.2 Operating Conditions (1/5) (1)

Symbol	Characteristic				Value		Unit
				Min.	Typ.	Max.	
$\mathrm{V}_{\mathrm{Cc}}$	Digital supply voltage			3.0	5.0	5.5	V
$\mathrm{AV}_{\mathrm{CC}}$	Analog supply voltage				$\mathrm{V}_{\mathrm{CC}}$		V
$\mathrm{V}_{\text {REF }}$	Reference voltage			3.0		$\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {SS }}$	Digital ground voltage				0		V
$\mathrm{AV}_{\text {SS }}$	Analog ground voltage				0		V
$\mathrm{dV}_{\mathrm{CC}} / \mathrm{dt}$	$\mathrm{V}_{\mathrm{CC}}$ ramp up rate ( $\mathrm{V}_{\mathrm{CC}}<2.0 \mathrm{~V}$ )			0.05			V/ms
$\mathrm{V}_{\mathrm{IH}}$	High level input voltage	```XIN, \overline{RESET, CNVSS, NSD, P2_0 to P2_7,} P3_0 to P3_7, P5_0 to P5_3, P8_4 to P8_7 (2), P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P14_1, P14_3 to P14_6, P15_0 to P15_7 (3)```		$0.8 \times \mathrm{V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}$	V
		P4_0 to P4_7, P5_4 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_3		$0.8 \times \mathrm{V}_{\mathrm{CC}}$		6.0	V
		$\begin{aligned} & \mathrm{P0} 0 \text { 0 to P0_7, } \\ & \mathrm{P} 1 _0 \text { to } \mathrm{P}_{1} 7, \end{aligned}$	in single-chip mode	$0.8 \times \mathrm{V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}$	V
		$\begin{aligned} & \mathrm{P} 12 _0 \text { to P12_7, } \\ & \mathrm{P} 13 _0 \text { to P13_7 } \\ & \text { (3) } \end{aligned}$	in memory expansion mode or microprocessor mode	$0.5 \times \mathrm{V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{CC}}$	V
VIL	Low level input voltage	XIN, $\overline{R E S E T}$, CNVSS, NSD, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7 (2), P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P14_1, P14_3 to P14_6, P15_0 to P15_7 ${ }^{(3)}$		0		$0.2 \times \mathrm{V}_{\mathrm{Cc}}$	V
		$\begin{aligned} & \mathrm{P} 0 _0 \text { to P0_7, } \\ & \mathrm{P} 1 _0 \text { to P1_7, } \\ & \mathrm{P} 12 _0 \text { to } \mathrm{P} 12 _7, \\ & \mathrm{P} 13 _0 \text { to P13_7 } \\ & \text { (3) } \end{aligned}$	in single-chip mode	0		$0.2 \times \mathrm{V}_{\mathrm{CC}}$	V
			in memory expansion mode or microprocessor mode	0		$0.16 \times \mathrm{V}_{\mathrm{cc}}$	V
$\mathrm{T}_{\text {opr }}$	Operating temperature range	N version		-20		85	${ }^{\circ} \mathrm{C}$
		D version		-40		85	${ }^{\circ} \mathrm{C}$
		P version		-40		85	${ }^{\circ} \mathrm{C}$

Notes:

1. The device is operationally guaranteed under these operating conditions.
2. $\quad \mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ for $\mathrm{P} 8 _7$ are specified for $\mathrm{P} 8 _7$ as a programmable port. These values are not applicable to P8_7 as XCIN.
3. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only. Port P9_1 is designated as input pin in the 100-pin package.

Table 28.3 Operating Conditions (2/5)
( $\mathrm{V}_{\mathrm{CC}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted) (1)

Symbol	Characteristic		Value (2)			Unit
			Min.	Typ.	Max.	
$\mathrm{C}_{\text {VDC }}$	Decoupling capacitance for voltage regulator	Inter-pin voltage: 1.5 V	2.4		10.0	$\mu \mathrm{F}$

Notes:

1. The device is operationally guaranteed under these operating conditions.
2. This value should be satisfied with due consideration of every condition as follows: operating temperature, DC bias, aging, etc.

Table 28.4 Operating Conditions (3/5)
$\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted) (1)

Symbol	Characteristic		Value			Unit
			Min.	Typ.	Max.	
IOH(peak)	High level peak output current (2)	```P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 (3)```			-10.0	mA
IOH(avg)	High level average output current (4)	```P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 (3)```			-5.0	mA
loL(peak)	Low level peak output current (2)	```P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 (3)```			10.0	mA
IOL(avg)	Low level average output current (4)	$\begin{aligned} & \text { P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, } \\ & \text { P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, } \\ & \text { P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, } \\ & \text { P8_7, P9_0 to P9_7, P10_0 to P10_7, } \\ & \text { P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, } \\ & \text { P14_3 to P14_6, P15_0 to P15_7 (3) } \end{aligned}$			5.0	mA

Notes:

1. The device is operationally guaranteed under these operating conditions.
2. The following conditions should be satisfied:

- The sum of $\mathrm{I}_{\mathrm{OL}(\text { peak })}$ of ports $\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 8 _6, \mathrm{P} 8 _7, \mathrm{P} 9, \mathrm{P} 10, \mathrm{P} 11, \mathrm{P} 14$, and P 15 is 80 mA or less.
- The sum of $\mathrm{I}_{\mathrm{OL}(\text { peak })}$ of ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 is 80 mA or less.
- The sum of $\mathrm{I}_{\mathrm{OH}(\text { peak })}$ of ports P0, P1, P2, and P11 is -40 mA or less.
- The sum of $\mathrm{I}_{\mathrm{OH} \text { (peak) }}$ of ports P8_6, P8_7, P9, P10, P14, and P15 is -40 mA or less.
- The sum of $\mathrm{I}_{\mathrm{OH}(\text { peak })}$ of ports P3, P4, P5, P12, and P13 is -40 mA or less.
- The sum of $\mathrm{I}_{\mathrm{OH}(\text { peak })}$ of ports P6, P7, and P8_0 to P8_4 is -40 mA or less.

3. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only. Port P9_1 is designated as input pin in the 100-pin package.
4. Average value within 100 ms .

Table 28.5 Operating Conditions (4/5)
( $\mathrm{V}_{\mathrm{CC}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted) (1)

Symbol	Characteristic		Value			Unit
			Min.	Typ.	Max.	
$\mathrm{f}_{(\mathrm{XIN})}$	Main clock oscillator frequency		4		16	MHz
${ }^{\mathrm{f}}$ (XRef)	Reference clock frequency		2		4	MHz
$\mathrm{f}_{(\mathrm{PLL}}$ )	PLL clock oscillator frequency		96		128	MHz
${ }^{\text {f (Base) }}$	Base clock frequency	High speed			64	MHz
		Normal speed			50	MHz
$\mathrm{t}_{\mathrm{c} \text { (Base) }}$	Base clock cycle time	High speed	15.625			ns
		Normal speed	20			ns
${ }^{\mathrm{f}}$ (CPU)	CPU operating frequency	High speed			64	MHz
		Normal speed			50	MHz
$\mathrm{t}_{\mathrm{C} \text { (CPU) }}$	CPU clock cycle time	High speed	15.625			ns
		Normal speed	20			ns
$\mathrm{f}_{\text {(BCLK }}$	Peripheral bus clock operating frequency	High speed			32	MHz
		Normal speed			25	MHz
${ }^{\mathrm{t}}$ (BCLK)	Peripheral bus clock cycle time	High speed	31.25			ns
		Normal speed	40			ns
${ }^{\text {f(PER) }}$	Peripheral clock source frequency				32	MHz
$\mathrm{f}_{(\mathrm{XCIN})}$	Sub clock oscillator frequency			32.768	62.5	kHz

Note:

1. The device is operationally guaranteed under these operating conditions.

Base clock (Internal signal)


CPU clock (Internal signal)


Peripheral bus clock (Internal signal)


Figure 28.1 Clock Cycle Time

Table 28.6 Operating Conditions (5/5)
( $\mathrm{V}_{\mathrm{CC}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted) (1)

Symbol	Characteristic		Value			Unit
			Min.	Typ.	Max.	
$\mathrm{V}_{\mathrm{r} \text { (VCC) }}$	Allowable ripple voltage	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			0.5	Vp-p
		$\mathrm{V}_{\mathrm{Cc}}=3.0 \mathrm{~V}$			0.3	Vp-p
$\mathrm{dV}_{\mathrm{r}(\mathrm{VCC})} / \mathrm{dt}$	Ripple voltage gradient	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			$\pm 0.3$	V/ms
		$\mathrm{V}_{\mathrm{Cc}}=3.0 \mathrm{~V}$			$\pm 0.3$	V/ms
$\left.\mathrm{fr}_{\mathrm{r}} \mathrm{VCC}\right)$	Allowable ripple frequency				10	kHz

Note:

1. The device is operationally guaranteed under these operating conditions.


Figure 28.2 Ripple Waveform

Table 28.7 RAM Electrical Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{Ta}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)

Symbol	Characteristic	Measurement condition	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{V}_{\text {RDR }}$	RAM data retention voltage	in stop mode	2.0			V

Table 28.8 Flash Memory Electrical Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{Ta}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)

Symbol	Characteristic		Value			Unit
			Min.	Typ.	Max.	
-	Programming and erasure endurance of flash memory (1)	Program area	1000			times
		Data area	10000			times
-	4-word program time	Program area		150	900	$\mu \mathrm{s}$
		Data area		300	1700	$\mu \mathrm{s}$
-	Lock bit-program time	Program area		70	500	$\mu \mathrm{s}$
		Data area		140	1000	$\mu \mathrm{s}$
-	Block erasure time	4 Kbyte block		0.12	3.0	S
		32 Kbyte block		0.17	3.0	S
		64 Kbyte block		0.20	3.0	s
-	Data retention (2)	$\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$ (3)	10			years

Notes:

1. Program/erase definition

This value represents the number of erasures per block.
If the flash memory is programmed/erased $n$ times, each block can be erased $n$ times.
i.e. If 4 -word write is performed in 512 different addresses in the block A of 4 Kbyte and then the block is erased, it is considered the programming/erasure is performed just once.
However a write in the same address more than once for one erasure is disabled (overwrite disabled).
2. The data retention time includes the periods when the supply voltage is not applied and no clock is provided.
3. Please contact a Renesas Electronics sales office regarding data retention time other than the above.

Table 28.9 Power Supply Circuit Timing Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)

Symbol	Characteristic	Measurement condition	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{t}_{\mathrm{d}}(\mathrm{P}-\mathrm{R})$	Internal power supply start-up stabilization time after the main power supply is turned on				2	ms



Figure 28.3 Power Supply Circuit Timing

Table 28.10 Electrical Characteristics of Voltage Regulator for Internal Logic $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)

Symbol	Characteristics	Measurement condition	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{V}_{\text {VDC1 }}$	Output voltage			1.5		V

Table 28.11 Electrical Characteristics of Low Voltage Detector $\left(\mathrm{V}_{\mathrm{CC}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)

Symbol	Characteristics	Measurement condition	Value			Unit
			Min.	Typ.	Max.	
$\Delta \mathrm{Vdet}$	Detected voltage error				$\pm 0.3$	V
$V \operatorname{det}(\mathrm{R})-\mathrm{Vdet}(\mathrm{F})$	Hysteresis width		0			V
-	Self-consuming current	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, low voltage detector enabled		4		$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{d}(\mathrm{E}-\mathrm{A})}$	Operation start time of low voltage detector				150	$\mu \mathrm{s}$

Table 28.12 Electrical Characteristics of Oscillator $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)

Symbol	Characteristics	Measurement condition	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{f}_{\mathrm{SO}}(\mathrm{PLL}$ )	PLL clock self-oscillation frequency		35	50	65	MHz
tLOCK(PLL)	PLL lock time ${ }^{(1)}$				1	ms
$\mathrm{t}_{\text {jitter(p-p) }}$	PLL jitter period (p-p)				2.0	ns
${ }^{\text {f }}$ (OCO)	On-chip oscillator frequency		62.5	125	250	kHz

Note:

1. This value is applicable only when the main clock oscillation is stable.

Table 28.13 Electrical Characteristics of Clock Circuitry
$\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)

Symbol	Characteristics	Measurement condition	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{t}_{\text {rec }}$ (WAIT)	Recovery time from wait mode to low power mode				225	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{rec}(\mathrm{STOP})}$	Recovery time from stop mode (1)				225	$\mu \mathrm{s}$

Note:

1. This recovery time does not include the period until the main clock oscillator is stabilized. The CPU starts operating before the oscillator is stabilized.


Figure 28.4 Clock Circuit Timing

Timing Requirements $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{Ta}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.14 Flash Memory CPU Rewrite Mode Timing

Symbol	Characteristics	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{cR}}$	Read cycle time	200		ns
$\mathrm{t}_{\text {su(S-R) }}$	Chip-select setup time for read	200		ns
$t_{\text {h(R-S }}$	Chip-select hold time after read	0		ns
$t_{s u}(A-R)$	Address setup time for read	200		ns
$t_{\text {h( }}(\mathrm{R}-\mathrm{A})$	Address hold time after read	0		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{R})}$	Read pulse width	100		ns
$\mathrm{t}_{\mathrm{c} W}$ W	Write cycle time	200		ns
$\mathrm{t}_{\text {su( }}$ (S-W)	Chip-select setup time for write	0		ns
$\mathrm{th}_{\mathrm{h}}(\mathrm{W}-\mathrm{S})$	Chip-select hold time after write	30		ns
$\mathrm{t}_{\text {su }}(\mathrm{A}-\mathrm{W})$	Address setup time for write	0		ns
$t_{\text {h }}(\mathrm{W}-\mathrm{A})$	Address hold time after write	30		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{W})$	Write pulse width	50		ns



Figure 28.5 Flash Memory CPU Rewrite Mode Timing

$$
\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}
$$

Table 28.15 Electrical Characteristics (1/3)
$\left(\mathrm{V}_{\mathrm{CC}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, and $\mathrm{f}_{(\mathrm{CPU})}=64 \mathrm{MHz}$, unless otherwise noted)

Symbol	Characteristic		Measurement condition	Value			Unit	
			Min.	Typ.	Max.			
$\mathrm{V}_{\mathrm{OH}}$	High level output voltage	```P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 (1)```		$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{C C}-2.0$		$\mathrm{V}_{\mathrm{Cc}}$	V
		```P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 (1)```	$\mathrm{l}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.3$		$\mathrm{V}_{\mathrm{Cc}}$	V	
V_{OL}	Low level output voltage	```P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 (1)```	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}$			2.0	V	
		```P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 (1)```	$\mathrm{I}_{\mathrm{OL}}=200 \mu \mathrm{~A}$			0.45	V	

Note:

1. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only. Port P9_1 is designated as input pin in the 100-pin package.

$$
V_{\mathrm{Cc}}=5 \mathrm{~V}
$$

Table 28.16 Electrical Characteristics (2/3)
$\left(\mathrm{V}_{\mathrm{CC}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, and $\mathrm{f}_{(\mathrm{CPU})}=64 \mathrm{MHz}$, unless otherwise noted)

Symbol	Characteristic		Measurement condition	Value			Unit	
			Min.	Typ.	Max.			
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis	$\overline{\mathrm{HOLD}}, \overline{\mathrm{RDY}}, \overline{\mathrm{NMI}}, \overline{\mathrm{INTO}}$ to $\overline{\mathrm{INT8}}, \overline{\mathrm{KIO}}$ to $\overline{\mathrm{KI3}}$, TAOIN to TA4IN, TA0OUT to TA4OUT, TBOIN to TB5IN, $\overline{\mathrm{CTS}}$ to $\overline{\mathrm{CTS}}$, CLK0 to CLK8, RXD0 to RXD8, SCL0 to SCL6, SDA0 to SDA6, $\overline{\mathrm{SS} 0}$ to $\overline{\mathrm{SS6}}$, SRXD0 to SRXD6, $\overline{\text { ADTRG, }}$ IIO0_0 to IIO0_7, IIO1_0 to IIO1_7, UD0A, UD0B, UD1A, UD1B, ISCLK2, ISRXD2, IEIN, CANOIN, CANOWU (1)			0.2		1.0	V
		RESET		0.2		1.8	V	
$\mathrm{I}_{\mathrm{H}}$	High level input current	XIN, $\overline{R E S E T}, ~ C N V S S, ~ N S D, ~$   P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7,   P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7,   P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7,   P9_0 to P9_7, P10_0 to P10_7,   P11_0 to P11_4, P12_0 to P12_7,   P13_0 to P13_7, P14_1, P14_3 to P14_6,   P15_0 to P15_7 (2)	$V_{1}=5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {IL }}$	Low level input current	XIN, $\overline{R E S E T}, \mathrm{CNVSS}, \mathrm{NSD}$,   P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7,   P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7,   P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7,   P9_0 to P9_7, P10_0 to P10_7,   P11_0 to P11_4, P12_0 to P12_7,   P13_0 to P13_7, P14_1, P14_3 to P14_6,   P15_0 to P15_7 (2)	$V_{1}=0 \mathrm{~V}$			-5.0	$\mu \mathrm{A}$	
$\mathrm{R}_{\text {PULLUP }}$	Pull-up resistor	$\begin{aligned} & \text { P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, } \\ & \text { P3_0 to P3_7, P5_0 to P5_3, P8_4, P8_6, } \\ & \text { P8_7, P9_0 to P9_7, P10_0 to P10_7, } \\ & \text { P11_0 to P11_4, P12_0 to P12_7, } \\ & \text { P13_0 to P13_7, P14_1, P14_3 to P14_6, } \\ & \text { P15_0 to P15_7 (2) } \end{aligned}$	$V_{1}=0 \mathrm{~V}$	30	50	170	k $\Omega$	
$\mathrm{R}_{\mathrm{fXIN}}$	Feedback resistor	XIN			1.5		$\mathrm{M} \Omega$	
$\mathrm{R}_{\mathrm{fXCIN}}$	Feedback resistor	XCIN			15		$\mathrm{M} \Omega$	

Notes:

1. Pins $\overline{\mathrm{NT} 6}$ to $\overline{\mathrm{INT}}$ are available in the 144-pin package only.
2. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only. Port P9_1 is designated as input pin in the 100-pin package.

$$
V_{\mathrm{Cc}}=5 \mathrm{~V}
$$

Table 28.17 Electrical Characteristics (3/3)
$\left(\mathrm{V}_{\mathrm{CC}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)

Symbol	Characterist ic	Measurement condition		Value			Unit
				Min.	Typ.	Max.	
${ }^{\text {cc }}$	Power supply current	In single-chip mode, output pins are left open and others are connected to $\mathrm{V}_{\mathrm{SS}}$   XIN-XOUT Drive power: low   XCIN-XCOUT Drive power: low	$\begin{aligned} & \mathrm{f}_{(\mathrm{CPU})}=64 \mathrm{MHz}, \mathrm{f}_{(\mathrm{BCLK})}=32 \mathrm{MHZ}, \\ & \mathrm{f}_{\mathrm{XII})}=8 \mathrm{MHz}, \\ & \text { Active: XIN, PLL, } \\ & \text { Stopped: XCIN, OCO } \end{aligned}$		45	60	mA
			$\begin{aligned} & \mathrm{f}_{(\mathrm{CPU})}=50 \mathrm{MHz}, \mathrm{f}_{(\mathrm{BCLK})}=25 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{XII})}=8 \mathrm{MHz}, \\ & \text { Active: XIN, PLL, } \\ & \text { Stopped: XCIN, OCO } \end{aligned}$		35	50	mA
			$f_{(C P U)}=f_{S O(P L L)} / 24 M H z,$   Active: PLL (self-oscillation), Stopped: XIN, XCIN, OCO		12		mA
			$\begin{aligned} & f_{(\mathrm{CPU})}=\mathrm{f}_{(\mathrm{BCLK})}=\mathrm{f}_{(\mathrm{XIN})} / 256 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{XIN})}=8 \mathrm{MHz}, \\ & \text { Active: XIN, } \\ & \text { Stopped: PLL, XCIN, OCO } \end{aligned}$		1.2		mA
			$\begin{aligned} & { }^{f_{(C P U)}=} f_{(\text {BCLK })}=32.768 \mathrm{kHz}, \\ & \text { Active: XCIN, } \\ & \text { Stopped: XIN, PLL, OCO, } \\ & \text { Main regulator: shutdown } \end{aligned}$		220		$\mu \mathrm{A}$
			$\begin{aligned} & f_{(C P U)}=f_{(B C L K)}=f_{(O C O)} / 4 \mathrm{kHz}, \\ & \text { Active: OCO, } \\ & \text { Stopped: XIN, PLL, XCIN, } \\ & \text { Main regulator: shutdown } \end{aligned}$		230		$\mu \mathrm{A}$
			$\begin{aligned} & f_{(\mathrm{CPU})}=\mathrm{f}_{(\mathrm{BCLK})}=\mathrm{f}_{(\mathrm{XIN})} / 256 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{XIN})}=8 \mathrm{MHz}, \\ & \text { Active: XIN, } \\ & \text { Stopped: PLL, XCIN, OCO, } \\ & \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \text {, Wait mode } \end{aligned}$		960	1600	$\mu \mathrm{A}$
			$f_{(C P U)}=f_{(B C L K)}=32.768 \mathrm{kHz},$   Active: XCIN,   Stopped: XIN, PLL, OCO, Main regulator: shutdown, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, Wait mode		8	140	$\mu \mathrm{A}$
			$\mathrm{f}_{(\mathrm{CPU})}=\mathrm{f}_{(\mathrm{BCLK})}=\mathrm{f}_{(\mathrm{OCO})} / 4 \mathrm{kHz},$   Active: OCO,   Stopped: XIN, PLL, XCIN, Main regulator: shutdown, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, Wait mode		10	150	$\mu \mathrm{A}$
			Stopped: all clocks, Main regulator: shutdown, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$		5	70	$\mu \mathrm{A}$

$$
V_{\mathrm{Cc}}=5 \mathrm{~V}
$$

Table 28.18 A/D Conversion Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=A \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=A \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, and $\mathrm{f}_{(\mathrm{BCLK})}=32 \mathrm{MHz}$, unless otherwise noted)

Symbol	Characteristic	Measurement condition		Value			Unit
				Min.	Typ.	Max.	
-	Resolution	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {CC }}$				10	Bits
-	Absolute error	$\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	AN_0 to AN_7,   ANO_0 to ANO_7,   AN2_0 to AN2_7,   AN15_0 to AN15_7,   ANEXO, ANEX1 (1)			$\pm 3$	LSB
			External op-amp connection mode			$\pm 7$	LSB
INL	Integral non-linearity error	$\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	AN_0 to AN_7, ANO_0 to ANO_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEXO, ANEX1 (1)			$\pm 3$	LSB
			External op-amp connection mode			$\pm 7$	LSB
DNL	Differential non-linearity error					$\pm 1$	LSB
-	Offset error					$\pm 3$	LSB
-	Gain error					$\pm 3$	LSB
$\mathrm{R}_{\text {LADDER }}$	Resistor ladder	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {CC }}$		4		20	k $\Omega$
$\mathrm{t}_{\text {conv }}$	Conversion time (10 bits)	$\phi_{\mathrm{AD}}=16 \mathrm{MHz}$, with sample and hold function		2.06			$\mu \mathrm{s}$
		$\phi_{\mathrm{AD}}=16 \mathrm{MHz}$, without sample and hold function		3.69			$\mu \mathrm{s}$
${ }^{\text {t }}$ CONV	Conversion time (8 bits)	$\phi_{A D}=16 \mathrm{MHz}$, with sample and hold function		1.75			$\mu \mathrm{s}$
		$\phi_{\mathrm{AD}}=16 \mathrm{MHz}$, without sample and hold function		3.06			$\mu \mathrm{s}$
$\mathrm{t}_{\text {SAMP }}$	Sampling time	$\phi_{\text {AD }}=16 \mathrm{MHz}$		0.188			$\mu \mathrm{s}$
$\mathrm{V}_{\text {IA }}$	Analog input voltage			0		$\mathrm{V}_{\text {REF }}$	V
$\phi_{A D}$	Operating clock frequency	without sample and hold function   with sample and hold function		0.25		16	MHz
				1		16	MHz

Note:

1. Pins AN15_0 to AN15_7 are available in the 144-pin package only.

$$
\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}
$$

Table 28.19 D/A Conversion Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=A \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=A V_{\mathrm{SS}}=0 \mathrm{~V}$, and $T_{a}=T_{\text {opr }}$, unless otherwise noted)

Symbol	Characteristic	Measurement condition	Value			Unit
			Min.	Typ.	Max.	
-	Resolution				8	Bits
-	Absolute precision				1.0	$\%$
$\mathrm{t}_{\mathrm{S}}$	Settling time				3	$\mu \mathrm{~s}$
$\mathrm{R}_{\mathrm{O}}$	Output resistance		4	10	20	$\mathrm{k} \Omega$
$\mathrm{I}_{\text {VREF }}$	Reference input current	$(1)$			1.5	mA

Note:

1. One D/A converter is used. The DAi register $(i=0,1)$ of the other unused converter is set to 00h. The resistor ladder for A/D converter is not considered.
Even when the VCUT bit in the AD0CON1 register is set to $0\left(\mathrm{~V}_{\mathrm{REF}}\right.$ disconnected $)$, $\mathrm{I}_{\mathrm{VREF}}$ is supplied.

$$
\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}
$$

Timing Requirements $\left(\mathrm{V}_{\mathrm{CC}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.20 External Clock Input

Symbol	Characteristic		Value	
		Mnit		
$\mathrm{t}_{\mathrm{c}(\mathrm{X})}$	External clock input period	62.5	250	ns
$\mathrm{t}_{\mathrm{w}(\mathrm{XH})}$	External clock input high level pulse width	25		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{XL})}$	External clock input low level pulse width	25		ns
$\mathrm{t}_{\mathrm{r}(\mathrm{X})}$	External clock input rise time		5	ns
$\mathrm{t}_{\mathrm{f}(\mathrm{X})}$	External clock input fall time		5	ns
$\mathrm{t}_{\mathrm{w}} / \mathrm{t}_{\mathrm{C}}$	External clock input duty	40	60	$\%$

Table 28.21 External Bus Timing

Symbol	Characteristic		Value	
		Mnin.	Max.	
$\mathrm{t}_{\text {su(D-R) }}$	Data setup time for read	40		ns
$\mathrm{t}_{\mathrm{h}(\mathrm{R}-\mathrm{D})}$	Data hold time after read	0		ns
$\mathrm{t}_{\text {dis(R-D) }}$	Data disable time after read		$0.5 \times \mathrm{t}_{\mathrm{c}(\text { Base })}+10$	ns

$$
V_{C C}=5 \mathrm{~V}
$$

Timing Requirements $\left(\mathrm{V}_{\mathrm{CC}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)

Table 28.22 Timer A Input (Counting input in event counter mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{C}(\mathrm{TA})}$	TAilN input clock cycle time	200		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TAH})}$	TAilN input high level pulse width	80		ns
$\mathrm{t}_{\mathrm{W}(\mathrm{TAL})}$	TAilN input low level pulse width	80	ns	

Table 28.23 Timer A Input (Gating input in timer mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{C}}$ (TA)	TAilN input clock cycle time	400		ns
$\mathrm{t}_{\mathrm{W} \text { (TAH) }}$	TAilN input high level pulse width	180		ns
$\mathrm{t}_{\mathrm{w} \text { (TAL) }}$	TAilN input low level pulse width	180		ns

Table 28.24 Timer A Input (External trigger input in one-shot timer mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{C} \text { (TA) }}$	TAilN input clock cycle time	200		ns
$\mathrm{t}_{\mathrm{w} \text { (TAH) }}$	TAilN input high level pulse width	80		ns
$\mathrm{t}_{\mathrm{w} \text { (TAL) }}$	TAilN input low level pulse width	80		ns

Table 28.25 Timer A Input (External trigger input in pulse-width modulation mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
${ }^{\text {tw }}$ (TAH $)$	TAilN input high level pulse width	80		ns
$t_{\text {w(TAL })}$	TAilN input low level pulse width	80		ns

Table 28.26 Timer A Input (Increment/decrement count switching input in event counter mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
${ }^{\mathrm{t}}$ (UP)	TAiOUT input clock cycle time	2000		ns
${ }^{\text {tw }}$ (UPH)	TAiOUT input high level pulse width	1000		ns
${ }^{\text {t }}$ (UPL)	TAiOUT input low level pulse width	1000		ns
$\mathrm{t}_{\text {su(UP-TIN) }}$	TAiOUT input setup time	400		ns
$\mathrm{t}_{\mathrm{h} \text { (TIN-UP) }}$	TAiOUT input hold time	400		ns

$$
\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}
$$

Timing Requirements ( $\mathrm{V}_{\mathrm{CC}}=4.2$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)

Table 28.27 Timer B Input (Counting input in event counter mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c} \text { ( } \mathrm{TB})}$	TBilN input clock cycle time (one edge counting)	200		ns
$\mathrm{t}_{\mathrm{w} \text { (TBH) }}$	TBilN input high level pulse width (one edge counting)	80		ns
$\mathrm{t}_{\mathrm{w}}$ (TBL)	TBilN input low level pulse width (one edge counting)	80		ns
$\mathrm{t}_{\mathrm{c} \text { (TB) }}$	TBilN input clock cycle time (both edges counting)	200		ns
$\mathrm{t}_{\mathrm{w} \text { (TBH) }}$	TBilN input high level pulse width (both edges counting)	80		ns
$\mathrm{t}_{\text {w }}$ (TBL)	TBilN input low level pulse width (both edges counting)	80		ns

Table 28.28 Timer B Input (Pulse period measure mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c}(\mathrm{TB})}$	TBilN input clock cycle time	400		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBH})}$	TBilN input high level pulse width	180		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBL})}$	TBilN input low level pulse width	180		

Table 28.29 Timer B Input (Pulse-width measure mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c}(\mathrm{TB})}$	TBilN input clock cycle time	400		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBH})}$	TBilN input high level pulse width	180		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBL})}$	TBilN input low level pulse width	180		ns

$$
V_{C C}=5 \mathrm{~V}
$$

Timing Requirements $\left(\mathrm{V}_{\mathrm{CC}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.30 Serial Interface

Symbol	Characteristic		Value	
		Min.	Max.	
$\mathrm{t}_{\mathrm{C}(\mathrm{CK})}$	CLKi input clock cycle time	200		ns
$\mathrm{t}_{\mathrm{W}(\mathrm{CKH})}$	CLKi input high level pulse width	80	ns	
$\mathrm{t}_{\mathrm{W}(\mathrm{CKL})}$	CLKi input low level pulse width	80		ns
$\mathrm{t}_{\text {su(D-C) }}$	RXDi input setup time	80		ns
$\mathrm{t}_{\mathrm{h}(\mathrm{C}-\mathrm{D})}$	RXDi input hold time	90	ns	

Table 28.31 AID Trigger Input

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{w} \text { (ADH) }}$	ADTRG input high level pulse width   Hardware trigger input high level pulse width	$\frac{3}{\phi_{\mathrm{AD}}}$		ns
$\mathrm{t}_{\mathrm{w} \text { (ADL) }}$	ADTRG input low level pulse width   Hardware trigger input high level pulse width	125		

Table 28.32 External Interrupt $\overline{\mathrm{INTi}}$ Input

Symbol	Characteristic		Value		Unit
			Min.	Max.	
$\mathrm{t}_{\mathrm{w} \text { (INH) }}$	$\overline{\text { INTi input high level pulse width }}$	Edge sensitive	250		ns
		Level sensitive	$\mathrm{t}_{\mathrm{c}(\mathrm{CPU})}+200$		ns
${ }^{\text {w }}$ (INL)	$\overline{\text { INTi input low level pulse width }}$	Edge sensitive	250		ns
		Level sensitive	$\mathrm{t}_{\mathrm{c}(\mathrm{CPU})}+200$		ns

Table 28.33 Intelligent I/O

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\text {c (ISCLK2) }}$	ISCLK2 input clock cycle time	600		ns
$\mathrm{t}_{\text {W(ISCLK2H) }}$	ISCLK2 input high level pulse width	270		ns
$\mathrm{t}_{\mathrm{w} \text { (ISCLK2L) }}$	ISCLK2 input low level pulse width	270		ns
$\mathrm{t}_{\text {su(RXD-ISCLK2) }}$	ISRXD2 input setup time	150		ns
$\mathrm{t}_{\mathrm{h} \text { (ISCLK2-RXD) }}$	ISRXD2 input hold time	100		ns

$$
\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}
$$

Timing Requirements $\left(\mathrm{V}_{\mathrm{CC}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.34 Multi-master $\mathrm{I}^{2} \mathrm{C}$-bus Interface

Symbol	Characteristic	Value				Unit
		Standard-mode		Fast-mode		
		Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{w}}$ (SCLH)	MSCL input high level pulse width	600		600		ns
$\mathrm{t}_{\mathrm{w} \text { (SCLL) }}$	MSCL input low level pulse width	600		600		ns
$\mathrm{tr}_{\text {r(SCL) }}$	MSCL input rise time		1000		300	ns
$\mathrm{t}_{\text {f(SCL) }}$	MSCL input fall time		300		300	ns
$\mathrm{tr}_{\text {( }}$ SDA)	MSDA input rise time		1000		300	ns
$\mathrm{t}_{\mathrm{f}}$ (SDA)	MSDA input fall time		300		300	ns
$\mathrm{t}_{\mathrm{h}}$ (SDA-SCL) S	MSCL high level hold time after start condition/restart condition	(1)		$2 \times \mathrm{t}_{\mathrm{c}(\text { ¢IIC) }}+40$		ns
$\mathrm{t}_{\text {su }}(\mathrm{SCL}$-SDA)P	MSCL high level setup time for restart condition/stop condition	(1)		$2 \times \mathrm{t}_{\mathrm{c}(\text { ¢IIC) }}+40$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{SDAH}) \mathrm{P}$	MSDA high level pulse width after stop condition	(1)		$4 \times \mathrm{t}_{\mathrm{C}(\text { (IIC) })}+40$		ns
$\mathrm{t}_{\text {su }}$ (SDA-SCL)	MSDA input setup time	100		100		ns
$\mathrm{t}_{\mathrm{h} \text { (SCL-SDA) }}$	MSDA input hold time	0		0		ns

## Note:

1. The value is calculated by the following formulas based on a value SSC set by bits SSC4 to SSC0 in the I2CSSCR register:

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{h}(\mathrm{SDA}-\mathrm{SCL}) \mathrm{S}}=\mathrm{SSC} \div 2 \times \mathrm{t}_{\mathrm{c}(\phi \| \mathrm{C})}+40[\mathrm{~ns}] \\
& \mathrm{t}_{\mathrm{su}(\mathrm{SCL}-\mathrm{SDA}) \mathrm{P}}=(\mathrm{SSC} \div 2+1) \times \mathrm{t}_{\mathrm{c}(\phi \| \mathrm{C})}+40[\mathrm{~ns}] \\
& \mathrm{t}_{\mathrm{w}(\mathrm{SDAH}) \mathrm{P}}=(\mathrm{SSC}+1) \times \mathrm{t}_{\mathrm{c}(\phi \| \mathrm{C})}+40[\mathrm{~ns}]
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}
$$

Switching Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.35 External Bus Timing (Separate bus)

Symbol	Characteristic	Measurement condition	Value		Unit
			Min.	Max.	
$\mathrm{t}_{\text {su(S-R) }}$	Chip-select setup time for read	Refer to   Figure 28.6	(1)		ns
$\mathrm{th}_{\text {( }}^{\text {R-S }}$ )	Chip-select hold time after read		$\mathrm{t}_{\mathrm{c} \text { (Base) }}-15$		ns
$t_{\text {su }}(\mathrm{A}-\mathrm{R})$	Address setup time for read		(1)		ns
$\left.\mathrm{th}_{\mathrm{h}} \mathrm{R}-\mathrm{A}\right)$	Address hold time after read		$\mathrm{t}_{\mathrm{c} \text { (Base) }}-15$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{R})$	Read pulse width		(1)		ns
$\mathrm{t}_{\text {su }}(\mathrm{S}-\mathrm{W})$	Chip-select setup time for write		(1)		ns
th(w-S)	Chip-select hold time after write		$1.5 \times \mathrm{t}_{\mathrm{c}(\text { (Base })}-15$		ns
$\mathrm{t}_{\text {su }}(\mathrm{A}-\mathrm{W})$	Address setup time for write		(1)		ns
$\mathrm{th}_{\text {( }}(\mathrm{W}-\mathrm{A})$	Address hold time after write		$1.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}-15$		ns
$\mathrm{t}_{\mathrm{w}}$ (W)	Write pulse width		(1)		ns
$\mathrm{t}_{\text {su }}(\mathrm{D}-\mathrm{W})$	Data setup time for write		(1)		ns
$t_{\text {h ( }}$ W-D $)$	Data hold time after write		0		ns

## Note:

1. The value is calculated by the following formulas based on the base clock cycles $\left(\mathrm{t}_{\mathrm{c}(\mathrm{Base})}\right)$ and respective cycles of $\operatorname{Tsu}(A-R), \operatorname{Tw}(R)$, $\operatorname{Tsu}(A-W)$, and $T w(W)$ set by registers EBC0 to EBC3. If the calculation results in a negative value, modify the value to be set. For details on how to set values, refer to 9.3.5 "External Bus Timing".
$t_{s u(S-R)}=t_{s u(A-R)}=T s u(A-R) \times t_{c(\text { Base })}-15[n s]$
$t_{w(R)}=\operatorname{Tw}(R) \times t_{c(\text { Base })}-10[n s]$
$\mathrm{t}_{\mathrm{su}(\mathrm{S}-\mathrm{W})}=\mathrm{t}_{\mathrm{su}(\mathrm{A}-\mathrm{W})}=\operatorname{Tsu}(\mathrm{A}-\mathrm{W}) \times \mathrm{t}_{\mathrm{c}(\text { Base })}-15$ [ns]
$\mathrm{t}_{\mathrm{w}(\mathrm{W})}=\mathrm{t}_{\mathrm{su}(\mathrm{D}-\mathrm{W})}=\operatorname{Tw}(\mathrm{W}) \times \mathrm{t}_{\mathrm{c}(\text { Base })}-10$ [ns]

$$
\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}
$$

Switching Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.36 External Bus Timing (Multiplexed bus)

Symbol	Characteristic	Measurement condition	Value		Unit
			Min.	Max.	
$\mathrm{t}_{\text {su }}$ (S-ALE)	Chip-select setup time for ALE	Refer to Figure 28.6	(1)		ns
$\mathrm{t}_{\mathrm{h}(\mathrm{R}-\mathrm{S})}$	Chip-select hold time after read		$1.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}-15$		ns
$\mathrm{t}_{\text {su }}$ (A-ALE)	Address setup time for ALE		(1)		ns
$\mathrm{t}_{\mathrm{h} \text { (ALE-A) }}$	Address hold time after ALE		$0.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}-5$		ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{R}-\mathrm{A})$	Address hold time after read		$1.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}-15$		ns
$\mathrm{t}_{\mathrm{d} \text { (ALE-R) }}$	ALE-read delay time		$0.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}-5$	$0.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}+10$	ns
$\mathrm{t}_{\mathrm{w} \text { (ALE) }}$	ALE pulse width		(1)		ns
$\mathrm{t}_{\text {dis }(\mathrm{R}-\mathrm{A})}$	Address disable time after read			8	ns
$\mathrm{t}_{\mathrm{w}(\mathrm{R})}$	Read pulse width		(1)		ns
$t_{\text {h }}(\mathrm{W}-\mathrm{S})$	Chip-select hold time after write		$1.5 \times \mathrm{t}_{\text {(Base) }}-15$		ns
$t_{\text {h }}(\mathrm{W}-\mathrm{A})$	Address hold time after write		$1.5 \times \mathrm{t}_{\text {c(Base) }}-15$		ns
$\mathrm{t}_{\text {d(ALE-W) }}$	ALE-write delay time		$0.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) })^{-5}}$	$0.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}+10$	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{W})$	Write pulse width		(1)		ns
$\mathrm{t}_{\text {su( }}$ D-W)	Data setup time for write		(1)		ns
$t_{\text {h( }}(\mathrm{W}-\mathrm{D})$	Data hold time after write		$0.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}$		ns

Note:

1. The value is calculated by the following formulas based on the base clock cycles $\left(\mathrm{t}_{\mathrm{c}(\mathrm{Base})}\right)$ and respective cycles of $\operatorname{Tsu}(A-R)$, $\operatorname{Tw}(R)$, $\operatorname{Tsu}(A-W)$, and $T w(W)$ set by registers EBC0 to EBC3. If the calculation results in a negative value, modify the value to be set. For details on how to set values, refer to 9.3.5 "External Bus Timing".

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{su}(\mathrm{~S}-\mathrm{ALE})}=\mathrm{t}_{\text {su(A-ALE })}=\mathrm{t}_{\mathrm{w}(\mathrm{ALE})}=(\mathrm{Tsu}(\mathrm{~A}-\mathrm{R})-0.5) \times \mathrm{t}_{\mathrm{c}(\text { Base })}-15[\mathrm{~ns}] \\
& \mathrm{t}_{\mathrm{w}(\mathrm{R})}=\mathrm{Tw}(\mathrm{R}) \times \mathrm{t}_{\mathrm{c}(\text { Base })}-10[\mathrm{~ns}] \\
& \mathrm{t}_{\mathrm{w}(\mathrm{~W})}=\mathrm{t}_{\mathrm{su}(\mathrm{D}-\mathrm{W})}=\mathrm{Tw}(\mathrm{~W}) \times \mathrm{t}_{\mathrm{c}(\text { Base })}-10[\mathrm{~ns}]
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}
$$

Switching Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=4.2\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.37 Serial Interface

Symbol	Characteristic	Measurement condition	Value		Unit
			Min.	Max.	
$\mathrm{t}_{\mathrm{d}(\mathrm{C}-\mathrm{Q})}$	TXDi output delay time	Refer to   Figure 28.6		80	ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{C}-\mathrm{Q})$	TXDi output hold time		0		ns

Table 28.38 Intelligent I/O

Symbol	Characteristic	Measurement condition	Value		Unit
			Min.	Max.	
$\mathrm{t}_{\mathrm{d} \text { (ISCLK2-TXD) }}$	ISTXD2 output delay time	Refer to   Figure 28.6		180	ns
$\mathrm{t}_{\mathrm{h}}$ (ISCLK2-RXD)	ISTXD2 output hold time		0		ns

Table 28.39 Multi-master ${ }^{2}$ ² -bus Interface (Standard-mode)

Symbol	Characteristic	Measurement condition	Value		Unit
			Min.	Max.	
$\mathrm{t}_{\text {f(SCL) }}$	MSCL output fall time	Refer to   Figure 28.6	2		ns
$\mathrm{t}_{\text {( }}$ SDA)	MSDA output fall time		2		ns
$\mathrm{t}_{\mathrm{d}(\mathrm{SDA}}$-SCL)S	MSCL output delay time after start condition/restart condition		$20 \times \mathrm{t}_{\text {( } \text { (1IC) })}-120$	$52 \times \mathrm{t}_{\mathrm{c}(\text { ¢IIC) })}-40$	ns
$\mathrm{t}_{\mathrm{d} \text { (SCL-SDA)P }}$	Restart condition/stop condition output delay time after MSCL becomes high		$20 \times \mathrm{t}_{\mathrm{c}(\text { (IIC) }}+40$	$52 \times \mathrm{t}_{\mathrm{C}(\text { ¢IIC })}+120$	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{SCL} \text {-SDA) }}$	MSDA output delay time		$2 \times \mathrm{t}_{\mathrm{c}(\text { (IIC) }}+40$	$3 \times \mathrm{t}_{\mathrm{c}(\text { (IIC) }}+120$	ns

Table 28.40 Multi-master ${ }^{2}$ ²C-bus Interface (Fast-mode)

Symbol	Characteristic	Measurement condition	Value		Unit	
			Min.	Max.		
$\mathrm{t}_{\text {f(SCL) }}$	MSCL output fall time	Refer to   Figure 28.6	2 (1)		ns	
$\mathrm{t}_{\text {f(SDA }}$	MSDA output fall time		2 (1)		ns	
$\mathrm{t}_{\mathrm{d}(\text { SDA-SCL) }}$	MSCL output delay time after start condition/restart condition		$10 \times \mathrm{t}_{\mathrm{c} \text { ( } \text { IIC) })^{-120}}$	$26 \times \mathrm{t}_{\mathrm{c}(\text { ¢IC) })}-40$	ns	
$\mathrm{t}_{\mathrm{d}(\mathrm{SCL}-\text { SDA }) \mathrm{P}}$	Restart condition/stop condition output delay time after MSCL becomes high		$10 \times \mathrm{t}_{\mathrm{c}(\text { (\$IC) }}+40$	$26 \times \mathrm{t}_{\mathrm{c}(\text { ¢IIC) }}+120$	ns	
$\mathrm{t}_{\mathrm{d} \text { (SCL-SDA) }}$	MSDA output delay time		$2 \times \mathrm{t}_{\mathrm{c}(\text { (IIC) }}+40$	$3 \times \mathrm{t}_{\mathrm{c}(\phi \\| \mathrm{C})}+120$	ns	

Note:

1. External circuits are required to satisfy the $\mathrm{I}^{2} \mathrm{C}$-bus specification.

$$
V_{C C}=3.3 \mathrm{~V}
$$

Table 28.41 Electrical Characteristics (1/3) $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, and $f_{(C P U)}=64 \mathrm{MHz}$, unless otherwise noted)

Symbol	Characteristic								Measurement   condition	Value		Min.	Typ.	Max.	

Note:

1. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only. Port P9_1 is designated as input pin in the 100-pin package.

$$
V_{C C}=3.3 \mathrm{~V}
$$

Table 28.42 Electrical Characteristics (2/3) $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, and $f_{(C P U)}=64 \mathrm{MHz}$, unless otherwise noted)

Symbol	Characteristic		Measurement condition	Value			Unit	
			Min.	Typ.	Max.			
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis	$\overline{\mathrm{HOLD}}, \overline{\mathrm{RDY}}, \overline{\mathrm{NMI}}, \overline{\overline{N T O}}$ to $\overline{\mathrm{INT}}, \overline{\mathrm{KIO}}$ to $\overline{\mathrm{KIJ}}$, TAOIN to TA4IN, TAOOUT to TA4OUT, TBOIN to TB5IN, CTSO to CTS8, CLK0 to CLK8, RXD0 to RXD8, SCL0 to SCL6, SDA0 to SDA6, $\overline{\mathrm{SSO}}$ to $\overline{\mathrm{SS} 6}$, SRXD0 to SRXD6, $\overline{\text { ADTRG, }}$ IIOO_0 to IIOO_7, IIO1_0 to IIO1_7, UDOA, UD0B, UD1A, UD1B, ISCLK2, ISRXD2, IEIN, CANOIN, CANOWU (1)			0.2		1.0	V
		RESET		0.2		1.8	V	
$\mathrm{I}_{\mathrm{H}}$	High level input current	XIN, $\overline{\text { RESET, }}$ CNVSS, NSD, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_1, P14_3 to P14_6, P15_0 to P15_7 (2)	$\mathrm{V}_{1}=3.3 \mathrm{~V}$			4.0	$\mu \mathrm{A}$	
IIL	Low level input current	XIN, $\overline{\text { RESET, CNVSS, NSD, }}$ P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_1, P14_3 to P14_6, P15_0 to P15_7 (2)	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$			-4.0	$\mu \mathrm{A}$	
$\mathrm{R}_{\text {PULLUP }}$	Pull-up resistor	$\begin{aligned} & \mathrm{P} 0 _0 \text { to P0_7, P1_0 to P1_7, P2_0 to P2_7, } \\ & \text { P3_0 to P3_7, P5_0 to P5_3, P8_4, P8_6, } \\ & \text { P8_7, P9_0 to P9_7, P10_0 to P10_7, } \\ & \text { P11_0 to P11_4, P12_0 to P12_7, } \\ & \text { P13_0 to P13_7, P14_1, P14_3 to P14_6, } \\ & \text { P15_0 to P15_7 (2) } \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	50	100	500	$k \Omega$	
$\mathrm{R}_{\mathrm{fXIN}}$	Feedback resistor	XIN			3		$\mathrm{M} \Omega$	
$\mathrm{R}_{\mathrm{fXCIN}}$	Feedback resistor	XCIN			25		$\mathrm{M} \Omega$	

Notes:

1. Pins $\overline{\mathrm{INT}}$ to $\overline{\mathrm{INT}}$ are available in the 144-pin package only.
2. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only. Port P9_1 is designated as input pin in the 100-pin package.

$$
V_{C C}=3.3 \mathrm{~V}
$$

Table 28.43 Electrical Characteristics (3/3)
$\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)

Symbol	Characte ristic	Measurement condition		Value			Unit
				Min.	Typ.	Max.	
${ }^{\text {cc }}$	Power supply curren	In single-chip mode, output pins are left open and others are connected to $\mathrm{V}_{\mathrm{SS}}$   XIN-XOUT Drive power: low   XCIN-XCOUT Drive power: low	$\begin{aligned} & \mathrm{f}_{(\mathrm{CPU})}=64 \mathrm{MHz}, \mathrm{f}_{(\mathrm{BCLK})}=32 \mathrm{MHz}, \\ & \mathrm{f}_{(\text {XIN })}=8 \mathrm{MHz}, \\ & \text { Active: XIN, PLL, } \\ & \text { Stopped: XCIN, OCO } \end{aligned}$		40	55	mA
			$\begin{aligned} & \mathrm{f}_{(\mathrm{CPU})}=50 \mathrm{MHz}, \mathrm{f}_{(\mathrm{BCLK})}=25 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{XII})}=8 \mathrm{MHz}, \\ & \text { Active: XIN, PLL, } \\ & \text { Stopped: XCIN, OCO } \end{aligned}$		32	45	mA
			$\mathrm{f}_{(\mathrm{CPU})}=\mathrm{f}_{\mathrm{SO}(\mathrm{PLL})} / 24 \mathrm{MHz},$   Active: PLL (self-oscillation),   Stopped: XIN, XCIN, OCO		9		mA
			$\begin{aligned} & \mathrm{f}_{(\mathrm{CPU})}=\mathrm{f}_{(\mathrm{BCLK})}=\mathrm{f}_{(\mathrm{XIN})} / 256 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{XIN})}=8 \mathrm{MHz}, \\ & \text { Active: XIN, } \\ & \text { Stopped: PLL, XCIN, OCO } \end{aligned}$		670		$\mu \mathrm{A}$
			$\mathrm{f}_{(\mathrm{CPU})}=\mathrm{f}_{(\mathrm{BCLK})}=32.768 \mathrm{kHz},$   Active: XCIN,   Stopped: XIN, PLL, OCO, Main regulator: shutdown		180		$\mu \mathrm{A}$
			$\mathrm{f}_{(\mathrm{CPU})}=\mathrm{f}_{(\mathrm{BCLK})}=\mathrm{f}_{(\mathrm{OCO})} / 4 \mathrm{kHz},$   Active: OCO,   Stopped: XIN, PLL, XCIN, Main regulator: shutdown		190		$\mu \mathrm{A}$
			$\begin{aligned} & \mathrm{f}_{(\mathrm{CPU})}=\mathrm{f}_{(\mathrm{BCLK})}=\mathrm{f}_{(\mathrm{XIN})} / 256 \mathrm{MHz}, \\ & \mathrm{f}_{(\mathrm{XIN})}=8 \mathrm{MHz}, \\ & \text { Active: XIN, } \\ & \text { Stopped: PLL, XCIN, OCO, } \\ & \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \text {, Wait mode } \end{aligned}$		500	900	$\mu \mathrm{A}$
			$f_{(\mathrm{CPU})}=\mathrm{f}_{(\mathrm{BCLK})}=32.768 \mathrm{kHz},$   Active: XCIN,   Stopped: XIN, PLL, OCO,   Main regulator: shutdown, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, Wait mode		8	140	$\mu \mathrm{A}$
			$\mathrm{f}_{(\mathrm{CPU})}=\mathrm{f}_{(\mathrm{BCLK})}=\mathrm{f}_{(\mathrm{OCO})} / 4 \mathrm{kHz},$   Active: OCO,   Stopped: XIN, PLL, XCIN, Main regulator: shutdown, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, Wait mode		10	150	$\mu \mathrm{A}$
			Stopped: all clocks, Main regulator: shutdown, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$		5	70	$\mu \mathrm{A}$

$$
V_{C C}=3.3 \mathrm{~V}
$$

Table 28.44 A/D Conversion Characteristics ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{AV} \mathrm{CC}=\mathrm{V}_{\mathrm{REF}}=3.0$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=A \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\text {opr }}$, and $\mathrm{f}_{(\mathrm{BCLK})}=32 \mathrm{MHz}$, unless otherwise noted)

Symbol	Characteristic	Measurement condition		Value			Unit
				Min.	Typ.	Max.	
-	Resolution	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {CC }}$				10	Bits
-	Absolute error	$\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	AN_0 to AN_7,   ANO_0 to ANO_7,   AN2_0 to AN2_7,   AN15_0 to AN15_7,   ANEXO, ANEX1 (1)			$\pm 5$	LSB
			External op-amp connection mode			$\pm 7$	LSB
INL	Integral non-linearity error	$\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	AN_0 to AN_7,   ANO_0 to ANO_7,   AN2_0 to AN2_7,   AN15_0 to AN15_7,   ANEX0, ANEX1 (1)			$\pm 5$	LSB
			External op-amp connection mode			$\pm 7$	LSB
DNL	Differential nonlinearity error	$\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$				$\pm 1$	LSB
-	Offset error					$\pm 3$	LSB
-	Gain error					$\pm 3$	LSB
$\mathrm{R}_{\text {LADDER }}$	Resistor ladder	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{CC}}$		4		20	$\mathrm{k} \Omega$
$\mathrm{t}^{\text {conv }}$	Conversion time (10 bits)	$\phi_{A D}=10 \mathrm{MHz},$   with sample and hold function		3.3			$\mu \mathrm{s}$
$\mathrm{t}_{\text {conv }}$	Conversion time (8 bits)	$\phi_{\mathrm{AD}}=10 \mathrm{MHz},$   with sample and hold function		2.8			$\mu \mathrm{s}$
$\mathrm{t}_{\text {SAMP }}$	Sampling time	$\phi_{\text {AD }}=10 \mathrm{MHz}$		0.3			$\mu \mathrm{s}$
$\mathrm{V}_{\text {IA }}$	Analog input voltage			0		$\mathrm{V}_{\text {REF }}$	V
$\phi_{\mathrm{AD}}$	Operating clock frequency	without sample and hold function		0.25		10	MHz
		with sample and hold function		1		10	MHz

Note:

1. Pins AN15_0 to AN15_7 are available in the 144-pin package only.

$$
V_{C C}=3.3 \mathrm{~V}
$$

Table 28.45 D/A Conversion Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=A \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=A V_{\mathrm{SS}}=0 \mathrm{~V}$, and $T_{a}=T_{\text {opr }}$, unless otherwise noted)

Symbol	Characteristic	Measurement condition	Value			Unit
			Min.	Typ.	Max.	
-	Resolution				8	Bits
-	Absolute precision				1.0	\%
ts	Settling time				3	$\mu \mathrm{s}$
$\mathrm{R}_{\mathrm{O}}$	Output resistance		4	10	20	k $\Omega$
$\mathrm{l}_{\text {VREF }}$	Reference input current	(1)			1.0	mA

Note:

1. One D/A converter is used. The DAi register $(i=0,1)$ of the other unused converter is set to 00h. The resistor ladder for A/D converter is not considered.
Even when the VCUT bit in the AD0CON1 register is set to $0\left(\mathrm{~V}_{\mathrm{REF}}\right.$ disconnected $)$, $\mathrm{I}_{\mathrm{VREF}}$ is supplied.

$$
V_{C C}=3.3 \mathrm{~V}
$$

Timing Requirements $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.46 External Clock Input

Symbol	Characteristic		Value	
		Min.	Max.	
$\mathrm{t}_{\mathrm{C}(\mathrm{X})}$	External clock input period	62.5	250	ns
$\mathrm{t}_{\mathrm{w}(\mathrm{XH})}$	External clock input high level pulse width	25		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{XL})}$	External clock input low level pulse width	25		ns
$\mathrm{t}_{\mathrm{r}(\mathrm{X})}$	External clock input rise time		5	ns
$\mathrm{t}_{\mathrm{f}(\mathrm{X})}$	External clock input fall time		5	ns
$\mathrm{t}_{\mathrm{w}} / \mathrm{t}_{\mathrm{C}}$	External clock input duty	40	60	$\%$

Table 28.47 External Bus Timing

Symbol	Characteristic		Value	
		Min.	Max.	
$\mathrm{t}_{\text {su(D-R) }}$	Data setup time for read	40		ns
$\mathrm{t}_{\mathrm{h}(\mathrm{R}-\mathrm{D})}$	Data hold time after read	0		ns
$\mathrm{t}_{\text {dis(R-D) }}$	Data disable time after read		$0.5 \times \mathrm{t}_{\mathrm{c}(\text { Base })}+10$	ns

$$
V_{C C}=3.3 \mathrm{~V}
$$

Timing Requirements $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.48 Timer A Input (Counting input in event counter mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c}(\mathrm{TA})}$	TAilN input clock cycle time	200		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TAH})}$	TAilN input high level pulse width	80		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TAL})}$	TAilN input low level pulse width	80		

Table 28.49 Timer A Input (Gating input in timer mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c}(\mathrm{TA})}$	TAilN input clock cycle time	400		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TAH})}$	TAilN input high level pulse width	180		
$\mathrm{t}_{\mathrm{w}(\mathrm{TAL})}$	TAilN input low level pulse width	180	ns	

Table 28.50 Timer A Input (External trigger input in one-shot timer mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c}(\mathrm{TA})}$	TAilN input clock cycle time	200		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TAH})}$	TAilN input high level pulse width	80		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TAL})}$	TAilN input low level pulse width	80	ns	

Table 28.51 Timer A Input (External trigger input in pulse-width modulation mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$t_{\text {w(TAH })}$	TAilN input high level pulse width	80		ns
$t_{w(\text { TAL })}$	TAilN input low level pulse width	80		ns

Table 28.52 Timer A Input (Increment/decrement count switching input in event counter mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c} \text { (UP) }}$	TAiOUT input clock cycle time	2000		ns
$\mathrm{t}_{\mathrm{w} \text { (UPH) }}$	TAiOUT input high level pulse width	1000		ns
$\mathrm{t}_{\mathrm{w} \text { (UPL) }}$	TAiOUT input low level pulse width	1000		ns
$\mathrm{t}_{\text {su( }}$ (UP-TIN)	TAiOUT input setup time	400		ns
$\mathrm{t}_{\mathrm{h}}$ (TIN-UP)	TAiOUT input hold time	400		ns

$$
V_{C C}=3.3 \mathrm{~V}
$$

Timing Requirements $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.53 Timer B Input (Counting input in event counter mode)

Symbol	Characteristic		Value	
		Mnit		
$t_{c}(\mathrm{~TB})$	TBilN input clock cycle time (one edge counting)	200		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBH})}$	TBilN input high level pulse width (one edge counting)	80		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBL})}$	TBilN input low level pulse width (one edge counting)	80		ns
$\mathrm{t}_{\mathrm{c}(\mathrm{TB})}$	TBilN input clock cycle time (both edges counting)	200		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBH})}$	TBilN input high level pulse width (both edges counting)	80		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBL})}$	TBilN input low level pulse width (both edges counting)	80	ns	

Table 28.54 Timer B Input (Pulse period measure mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c}(\mathrm{TB})}$	TBiIN input clock cycle time	400		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBH})}$	TBilN input high level pulse width	180		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBL})}$	TBilN input low level pulse width	180	ns	

Table 28.55 Timer B Input (Pulse-width measure mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$t_{c(T B)}$	TBilN input clock cycle time	400		$n s$
$t_{w(T B H)}$	TBilN input high level pulse width	180		$n s$
$t_{w(T B L)}$	TBilN input low level pulse width	180		$n s$

$$
V_{C C}=3.3 \mathrm{~V}
$$

Timing Requirements $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.56 Serial Interface

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{C} \text { (CK) }}$	CLKi input clock cycle time	200		ns
$\mathrm{t}_{\mathrm{w} \text { (CKH) }}$	CLKi input high level pulse width	80		ns
$\mathrm{t}_{\mathrm{w} \text { (CKL) }}$	CLKi input low level pulse width	80		ns
$\mathrm{t}_{\text {su( }}$ (D-C)	RXDi input setup time	80		ns
$\mathrm{t}_{\mathrm{h}(\mathrm{C}-\mathrm{D})}$	RXDi input hold time	90		ns

Table 28.57 A/D Trigger Input

Symbol	Characteristic	Value		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{w}(\mathrm{ADH})}$	ADTRG input high level pulse width   Hardware trigger input high level pulse width	$\frac{3}{\phi_{\mathrm{AD}}}$		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{ADL})}$	ADTRG input low level pulse width   Hardware trigger input high level pulse width	125		n

Table 28.58 External Interrupt $\overline{\mathrm{INTi}}$ Input

Symbol	Characteristic		Value		Unit
			Min.	Max.	
$\mathrm{t}_{\mathrm{w} \text { (INH) }}$	$\overline{\text { INTi input high level pulse width }}$	Edge sensitive	250		ns
		Level sensitive	$\mathrm{t}_{\mathrm{C}(\mathrm{CPU})}+200$		ns
$\mathrm{t}_{\mathrm{W} \text { (INL) }}$	$\overline{\text { INTi input low level pulse width }}$	Edge sensitive	250		ns
		Level sensitive	$\mathrm{t}_{\mathrm{C}(\mathrm{CPU})}+200$		ns

Table 28.59 Intelligent I/O

Symbol	Characteristic		Value	
		Min.	Max.	
$t_{\text {C(ISCLK2) }}$	ISCLK2 input clock cycle time	600		ns
$\mathrm{t}_{\mathrm{w} \text { (ISCLK2H) }}$	ISCLK2 input high level pulse width	270	ns	
$\mathrm{t}_{\mathrm{w} \text { (ISCLK2L) }}$	ISCLK2 input low level pulse width	270		ns
$\mathrm{t}_{\text {Su(RXD-ISCLK2) }}$	ISRXD2 input setup time	150		ns
$\mathrm{t}_{\mathrm{h}(\text { ISCLK2-RXD })}$	ISRXD2 input hold time	100	ns	

$$
V_{C C}=3.3 \mathrm{~V}
$$

Timing Requirements ( $\mathrm{V}_{\mathrm{CC}}=3.0$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.60 Multi-master $\mathrm{I}^{2} \mathrm{C}$-bus Interface

Symbol	Characteristic	Value				Unit
		Standard-mode		Fast-mode		
		Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{w} \text { (SCLH) }}$	MSCL input high level pulse width	600		600		ns
$\mathrm{t}_{\text {w(SCLL) }}$	MSCL input low level pulse width	600		600		ns
$\mathrm{tr}_{\text {r }} \mathrm{SCL}$ )	MSCL input rise time		1000		300	ns
$\mathrm{t}_{\text {f(SCL) }}$	MSCL input fall time		300		300	ns
$\mathrm{tr}_{\text {(SDA) }}$	MSDA input rise time		1000		300	ns
$\mathrm{t}_{\text {f(SDA }}$	MSDA input fall time		300		300	ns
$t_{\text {h(SDA-SCL) }}$	MSCL high level hold time after start condition/restart condition	(1)		$\left.2 \times \mathrm{t}_{\mathrm{c}(\text { ( }} \mathrm{IIC}\right)+40$		ns
$\mathrm{t}_{\text {su(SCL-SDA)P }}$	MSCL high level setup time for restart condition/stop condition	(1)		$2 \times \mathrm{t}_{\mathrm{c}(\text { ¢IIC) }}+40$		ns
$\mathrm{t}_{\mathrm{w} \text { (SDAH) }}$	MSDA high level pulse width after stop condition	(1)		$4 \times \mathrm{t}_{\mathrm{c}(\text { ¢IIC) }}+40$		ns
$\mathrm{t}_{\text {su( }}$ (SDA-SCL)	MSDA input setup time	100		100		ns
$\mathrm{t}_{\mathrm{h}}$ (SCL-SDA)	MSDA input hold time	0		0		ns

Note:

1. The value is calculated by the following formulas based on a value SSC set by bits SSC4 to SSC0 in the I2CSSCR register:

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{h}(\mathrm{SDA}-\mathrm{SCL}) \mathrm{S}}=\mathrm{SSC} \div 2 \times \mathrm{t}_{\mathrm{c}(\phi \| \mathrm{C})}+40[\mathrm{~ns}] \\
& \mathrm{t}_{\mathrm{su}(\mathrm{SCL}-\mathrm{SDA}) \mathrm{P}}=(\mathrm{SSC} \div 2+1) \times \mathrm{t}_{\mathrm{c}(\phi \| \mathrm{C})}+40[\mathrm{~ns}] \\
& \mathrm{t}_{\mathrm{w}(\mathrm{SDAH}) \mathrm{P}}=(\mathrm{SSC}+1) \times \mathrm{t}_{\mathrm{c}(\phi \| \mathrm{C})}+40[\mathrm{~ns}]
\end{aligned}
$$

$$
V_{c c}=3.3 \mathrm{~V}
$$

Switching Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.61 External Bus Timing (Separate bus)

Symbol	Characteristic	Measurement condition	Value		Unit
			Min.	Max.	
$\mathrm{t}_{\text {su(S-R) }}$	Chip-select setup time for read	Refer to   Figure 28.6	(1)		ns
$\mathrm{t}_{\mathrm{h}(\mathrm{R}-\mathrm{S})}$	Chip-select hold time after read		$\mathrm{t}_{\mathrm{c}(\text { Base) })}-15$		ns
$\mathrm{t}_{\text {su( }}(\mathrm{A}-\mathrm{R})$	Address setup time for read		(1)		ns
$\mathrm{t}_{\mathrm{h}(\mathrm{R}-\mathrm{A})}$	Address hold time after read		$\mathrm{t}_{\mathrm{c} \text { (Base) })}-15$		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{R})}$	Read pulse width		(1)		ns
$\mathrm{t}_{\text {su( }} \mathrm{S}-\mathrm{W}$ )	Chip-select setup time for write		(1)		ns
$\mathrm{t}_{\mathrm{h}(\mathrm{W}-\mathrm{S})}$	Chip-select hold time after write		$1.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) })^{-15}}$		ns
$\mathrm{t}_{\text {su( }}(\mathrm{A}-\mathrm{W})$	Address setup time for write		(1)		ns
$\mathrm{t}_{\mathrm{h}(\mathrm{W}-\mathrm{A})}$	Address hold time after write		$1.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) })^{-15}}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{W})$	Write pulse width		(1)		ns
$\mathrm{t}_{\text {su( }}$ ( W W)	Data setup time for write		(1)		ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{W}-\mathrm{D})$	Data hold time after write		0		ns

Note:

1. The value is calculated by the following formulas based on the base clock cycles $\left(\mathrm{t}_{\mathrm{c}(\mathrm{Base})}\right)$ and respective cycles of $\operatorname{Tsu}(A-R), \operatorname{Tw}(R)$, $\operatorname{Tsu}(A-W)$, and $\operatorname{Tw}(W)$ set by registers EBC0 to EBC3. If the calculation results in a negative value, modify the value to be set. For details on how to set values, refer to 9.3.5 "External Bus Timing".
$t_{s u(S-R)}=t_{s u(A-R)}=\operatorname{Tsu}(A-R) \times t_{c(\text { Base })}-15[n s]$
$t_{w(R)}=\operatorname{Tw}(R) \times t_{c(\text { Base })}-10[\mathrm{~ns}]$
$\mathrm{t}_{\mathrm{su}(\mathrm{S}-\mathrm{W})}=\mathrm{t}_{\mathrm{su}(\mathrm{A}-\mathrm{W})}=\operatorname{Tsu}(\mathrm{A}-\mathrm{W}) \times \mathrm{t}_{\mathrm{c}(\text { Base })}-15$ [ns]
$t_{w(W)}=t_{s u(D-W)}=T w(W) \times t_{c(\text { Base })}-10[n s]$

$$
V_{c c}=3.3 \mathrm{~V}
$$

Switching Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.62 External Bus Timing (Multiplexed bus)

Symbol	Characteristic	Measurement condition	Value		Unit
			Min.	Max.	
$\mathrm{t}_{\text {su }}$ (S-ALE)	Chip-select setup time for ALE	Refer to   Figure 28.6	(1)		ns
$\mathrm{th}_{\mathrm{h}(\mathrm{R}-\mathrm{S})}$	Chip-select hold time after read		$1.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}-15$		ns
$\mathrm{t}_{\text {su }}(\mathrm{A}-\mathrm{ALE})$	Address setup time for ALE		(1)		ns
$\mathrm{t}_{\mathrm{h}}$ (ALE-A)	Address hold time after ALE		$0.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}-5$		ns
$\mathrm{t}_{\mathrm{h}(\mathrm{R}-\mathrm{A})}$	Address hold time after read		$1.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}-15$		ns
$\mathrm{t}_{\mathrm{d}}($ ALE-R)	ALE-read delay time		$0.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}-5$	$0.5 \times \mathrm{t}_{\mathrm{c}(\text { Base })}+10$	ns
$\mathrm{t}_{\mathrm{w} \text { (ALE) }}$	ALE pulse width		(1)		ns
$\mathrm{t}_{\text {dis(R-A) }}$	Address disable time after read			8	ns
$\mathrm{t}_{\mathrm{w}(\mathrm{R})}$	Read pulse width		(1)		ns
$t_{\text {h }}(\mathrm{W}-\mathrm{S})$	Chip-select hold time after write		$1.5 \times \mathrm{t}_{\text {(Base) }}-15$		ns
$t_{\text {h }}(\mathrm{W}-\mathrm{A})$	Address hold time after write		$1.5 \times \mathrm{t}_{\text {c(Base) }}-15$		ns
$\mathrm{t}_{\text {d(ALE-W) }}$	ALE-write delay time		$0.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}-5$	$0.5 \times \mathrm{t}_{\mathrm{c}(\text { Base })}+10$	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{W})$	Write pulse width		(1)		ns
$\mathrm{t}_{\text {su( }}$ D-W)	Data setup time for write		(1)		ns
$t_{\text {h( }}(\mathrm{W}-\mathrm{D})$	Data hold time after write		$0.5 \times \mathrm{t}_{\mathrm{c} \text { (Base) }}$		ns

Note:

1. The value is calculated by the following formulas based on the base clock cycles $\left(\mathrm{t}_{\mathrm{c}(\mathrm{Base})}\right)$ and respective cycles of $\operatorname{Tsu}(A-R), \operatorname{Tw}(R)$, $\operatorname{Tsu}(A-W)$, and $\operatorname{Tw}(W)$ set by registers EBC0 to EBC3. If the calculation results in a negative value, modify the value to be set. For details on how to set values, refer to 9.3.5 "External Bus Timing".
$\mathrm{t}_{\mathrm{su}(\mathrm{S}-\mathrm{ALE})}=\mathrm{t}_{\text {su(A-ALE })}=(\operatorname{Tsu}(\mathrm{A}-\mathrm{R})-0.5) \times \mathrm{t}_{\mathrm{c}(\text { Base })}-15$ [ns]
$t_{w(A L E)}=(T s u(A-R)-0.5) \times t_{c(B a s e)}-20[n s]$
$t_{w(R)}=\operatorname{Tw}(R) \times t_{c(\text { Base })}-10[n s]$
$t_{w(W)}=t_{s u(D-W)}=T w(W) \times t_{c(\text { Base })}-10[n s]$

$$
V_{C C}=3.3 \mathrm{~V}
$$

Switching Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{opr}}$, unless otherwise noted)
Table 28.63 Serial Interface

Symbol	Characteristic	Measurement condition	Value		Unit
			Min.	Max.	
$\mathrm{t}_{\mathrm{d}(\mathrm{C}-\mathrm{Q})}$	TXDi output delay time	Refer to   Figure 28.6		80	ns
$t_{h(C-Q)}$	TXDi output hold time		0		ns

Table 28.64 Intelligent I/O

Symbol	Characteristic	Measurement condition	Value		Unit
			Min.	Max.	
$\mathrm{t}_{\mathrm{d}(\text { ISCLK2-TXD }}$	ISTXD2 output delay time	Refer to   Figure 28.6		180	ns
$\mathrm{th}_{\text {(ISCLK2-RXD }}$	ISTXD2 output hold time		0		ns

Table 28.65 Multi-master I²C-bus Interface (Standard-mode)

Symbol	Characteristic	Measurement condition	Value		Unit
			Min.	Max.	
$\mathrm{t}_{\text {( }} \mathrm{SCL}$ )	MSCL output fall time	Refer to   Figure 28.6	2		ns
$\mathrm{t}_{\text {(SDA) }}$	MSDA output fall time		2		ns
$\mathrm{t}_{\mathrm{d}(\mathrm{SDA}-\mathrm{SCL}) \mathrm{S}}$	MSCL output delay time after start condition/restart condition		$20 \times \mathrm{t}_{\mathrm{c}(\text { (اIC) })}-120$	$52 \times \mathrm{t}_{\mathrm{c}(\text { ¢וС })}-40$	ns
$\mathrm{t}_{\mathrm{d} \text { (SCL-SDA)P }}$	Restart condition/stop condition output delay time after MSCL becomes high		$20 \times \mathrm{t}_{\mathrm{c}(\text { (IIC) })}+40$	$52 \times \mathrm{t}_{\mathrm{c}(\text { ¢IIC) }}+120$	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{SCL}-\text { SDA }}$	MSDA output delay time		$2 \times \mathrm{t}_{\mathrm{c}(\text { (IIC) }}+40$	$3 \times \mathrm{t}_{\mathrm{c}(\text { (اIC) })}+120$	ns

Table 28.66 Multi-master I²C-bus Interface (Fast-mode)

Symbol	Characteristic	Measurement condition	Value		Unit	
			Min.	Max.		
$\mathrm{t}_{\text {( }} \mathrm{SCL}$ )	MSCL output fall time	Refer to Figure 28.6	2 (1)		ns	
$\mathrm{t}_{\mathrm{f}(\mathrm{SDA}}$ )	MSDA output fall time		2 (1)		ns	
$\mathrm{t}_{\mathrm{d} \text { (SDA-SCL) }}$	MSCL output delay time after start condition/restart condition		$10 \times \mathrm{t}_{\mathrm{c}(\text { ¢IIC) }}-120$	$26 \times \mathrm{t}_{\mathrm{c}(\phi \\| \mathrm{C})}-40$	ns	
$\mathrm{t}_{\mathrm{d}(\mathrm{SCL}-\text { SDA }) \mathrm{P}}$	Restart condition/stop condition output delay time after MSCL becomes high		$10 \times \mathrm{t}_{\mathrm{c}(\text { (IIC) })}+40$	$26 \times \mathrm{t}_{\mathrm{c} \text { (фIIC) }}+120$	ns	
$\mathrm{t}_{\mathrm{d} \text { (SCL-SDA) }}$	MSDA output delay time		$2 \times \mathrm{t}_{\mathrm{c}(\text { (IIC) }}+40$	$3 \times \mathrm{t}_{\mathrm{c}(\text { ¢IC) }}+120$	ns	

Note:

1. External circuits are required to satisfy the $\mathrm{I}^{2} \mathrm{C}$-bus specification.


Figure 28.6 Switching Characteristic Measurement Circuit


Figure 28.7 External Clock Input Timing

External bus timing (Separate bus)

Read cycle


Write cycle


Measurement conditions

Item		$\mathrm{V}_{\mathrm{CC}}=4.2$ to 5.5 V	$\mathrm{~V}_{\mathrm{CC}}=3.0$ to 3.6 V
Criterion for   input voltage	$\mathrm{V}_{\mathrm{IH}}$	2.5 V	1.5 V
	$\mathrm{~V}_{\mathrm{IL}}$	0.8 V	0.5 V
Criterion for   output voltage	$\mathrm{V}_{\mathrm{OH}}$	2.0 V	2.4 V
	$\mathrm{~V}_{\mathrm{OL}}$	0.8 V	0.5 V

Figure 28.8 External Bus Timing (Separate Bus)

External bus timing (Multiplexed bus)
Read timing


Write cycle
$\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS} 3}$

A23 to $\mathrm{A} 8, \overline{\mathrm{BCO}}$ to $\overline{\mathrm{BC3}}$


Measurement conditions

Item		$\mathrm{V}_{\mathrm{CC}}=4.2$ to 5.5 V	$\mathrm{~V}_{\mathrm{CC}}=3.0$ to 3.6 V
Criterion for   input voltage	$\mathrm{V}_{\mathrm{IH}}$	2.5 V	1.5 V
	$\mathrm{~V}_{\mathrm{IL}}$	0.8 V	0.5 V
Criterion for   output voltage	$\mathrm{V}_{\mathrm{OH}}$	2.0 V	2.4 V
	$\mathrm{~V}_{\mathrm{OL}}$	0.8 V	0.5 V

Figure 28.9 External Bus Timing (Multiplexed Bus)


Figure 28.10 Timing of Peripheral Functions


Figure 28.11 Timing of Multi-master $\mathrm{I}^{2} \mathrm{C}$-bus Interface

## 29. Usage Notes

### 29.1 Notes on Board Designing

### 29.1.1 Power Supply Pins

The board should be designed so that there is no potential difference between pins with the same name. Note the following points:

- Connect all VSS pins to an identical GND. The traces for the pins should be as wide as physically possible so that the same voltage can be applied to every VSS pin.
- Connect all VCC pins to an identical power supply. The traces for the pins should be as wide as physically possible so that the same voltage can be applied to every VCC pin.

Insert a capacitor between each VCC pin and the VSS pin to ensure the noise tolerance. The capacitor should be beneficially effective at high/low frequencies and should have around $0.1 \mu \mathrm{~F}$ of capacitance. The traces for the capacitor and the power supply pins should be short and wide as much as physically possible.

### 29.1.2 Supply Voltage

The device is operationally guaranteed under operating conditions specified in electrical characteristics.
Drive the $\overline{\text { RESET }}$ pin low before the supply voltage becomes lower than the recommended value.

### 29.2 Notes on Register Setting

### 29.2.1 Registers with Write-only Bits

Table 29.1 lists registers containing write-only bits. For the setting of these registers, read-modify-write instructions listed in Table 29.2 cannot be used since each of these instructions reads the value of an address, modifies the value, and writes to the same address. To set a new value by modifying the previous one, write the previous value into RAM as well as to the register, change the contents of the RAM and then transfer the new value to the register by the MOV instruction.

Table 29.1 Registers with Write-only Bit(s)

Module	Register	Symbol	Address(es)
Watchdog timer	Watchdog timer start register	WDTS	04404Eh
Timer A	Timer A0 register (1)	TA0	0347h-0346h
	Timer A1 register (1)	TA1	0349h-0348h
	Timer A2 register (1)	TA2	034Bh-034Ah
	Timer A3 register (1)	TA3	034Dh-034Ch
	Timer A4 register (1)	TA4	034Fh-034Eh
	Increment/decrement counting select register	UDF	0344h
Three-phase motor control timers	Timer B2 interrupt generating frequency set counter	ICTB2	030Dh
	Timer A1-1 register	TA11	0303h-0302h
	Timer A2-1 register	TA21	0305h-0304h
	Timer A4-1 register	TA41	0307h-0306h
	Dead time timer	DTT	030Ch
Serial interface	UART0 bit rate register	U0BRG	0369h
	UART1 bit rate register	U1BRG	02E9h
	UART2 bit rate register	U2BRG	0339h
	UART3 bit rate register	U3BRG	0329h
	UART4 bit rate register	U4BRG	02F9h
	UART5 bit rate register	U5BRG	01C9h
	UART6 bit rate register	U6BRG	01D9h
	UART7 bit rate register	U7BRG	01E1h
	UART8 bit rate register	U8BRG	01E9h
	UART0 transmit buffer register	U0TB	036Bh-036Ah
	UART1 transmit buffer register	U1TB	02EBh-02EAh
	UART2 transmit buffer register	U2TB	033Bh-033Ah
	UART3 transmit buffer register	U3TB	032Bh-032Ah
	UART4 transmit buffer register	U4TB	02FBh-02FAh
	UART5 transmit buffer register	U5TB	01CBh-01CAh
	UART6 transmit buffer register	U6TB	01DBh-01DAh
	UART7 transmit buffer register	U7TB	01E3h-01E2h
	UART8 transmit buffer register	U8TB	01EBh-01EAh
Intelligent I/O	Group 2 SIO transmit buffer register	G2TB	016Dh-016Ch
CAN module	CAN0 receive FIFO pointer control register	CORFPCR	047F49h
	CANO transmit FIFO pointer control register	COTFPCR	047F4Bh

Note:

1. The register has write-only bits in one-shot timer mode and pulse-width modulation mode.

Table 29.2 Read-Modify-Write Instructions

Function	Mnemonic
Transfer	MOVDir
Bit processing	BCLR, BMCnd, BNOT, BSET, BTSTC, and BTSTS
Shifting	ROLC, RORC, ROT, SHA, and SHL
Arithmetic operation	ABS, ADC, ADCF, ADD, ADSF, DEC, DIV, DIVU, DIVX, EXTS, EXTZ, INC, MUL,   MULU, NEG, SBB, and SUB
Decimal operation	DADC, DADD, DSBB, and DSUB
Floating-point operation	ADDF, DIVF, MULF, and SUBF
Logical operation	AND, NOT, OR, and XOR

### 29.3 Notes on Clock Generator

### 29.3.1 Sub Clock

### 29.3.1.1 Oscillation Parameter Matching

The constant matching of sub clock oscillator should be evaluated in both cases when the drive power is high and low.
Contact your oscillator manufacturer for details on the oscillation circuit constant matching.

### 29.3.2 Power Control

Do not switch the base clock source until the oscillation of the clock to be used has stabilized. However, this does not apply to the on-chip oscillator since the on-chip oscillator starts running immediately after the CM31 bit in the CM3 register is set to 1 .
To switch the base clock source from PLL clock to a low speed clock, that is, to set the BCS bit in the CCR register to 1 , use either the MOV.L or OR.L instruction.

- Program example in assembly language

> OR.L \#80h, 0004h

- Program example in C language
asm("OR.L \#80h, 0004h");


### 29.3.2.1 Stop Mode

- To exit stop mode by reset, apply a low signal to RESET pin until a main clock oscillation stabilizes.


### 29.3.2.2 Suggestions to Power Saving

The followings are suggestions to reduce power consumption when programming or designing systems.

- I/O pins:

If inputs are floating, both transistors may be conducting. Set unassigned pins to input mode and connect each of them to VSS via a resistor, or set them to output mode and leave them open.

- A/D converter:

When the A/D conversion is not performed, set the VCUT bit in the ADOCON1 register to 0 (VREF disconnected). To perform the A/D conversion, set the VCUT bit to 1 (VREF connected) and wait 1 $\mu \mathrm{s}$ or more for the operation.

- D/A converter:

When the D/A conversion is not performed, set the DAiE bit in the DACON register ( $\mathrm{i}=0,1$ ) to 0 (output disabled) and the DAi register to 00h.

- Peripheral clock stop: When entering wait mode, power consumption can be reduced by setting the CM02 bit in the CMO register to 1 to stop peripheral clock source. However, the fC32 does not stop by the CM02 bit setting.


### 29.4 Notes on Bus

### 29.4.1 Notes on System Designing

When the flash memory rewrite is performed in CPU rewrite mode using memory expansion mode, the use of $\overline{\mathrm{CSO}}$ space and $\overline{\mathrm{CS3}}$ space has the following restrictions:

- If the FEBCO and/or FEBC3 registers are set in CPU rewrite mode, the bus format for the corresponding space functions as separate bus. Any external devices connected in multiplexed bus format become inaccessible.
- If the FEBC0 and/or FEBC3 registers are set in CPU rewrite mode, the bus timing for the corresponding space changes. This may cause external devices to become inaccessible depending on the register settings.
Devices required to be accessed in CPU rewrite mode should be allocated in $\overline{\mathrm{CS} 1}$ space and/or $\overline{\mathrm{CS} 2}$ space.


### 29.4.2 Notes on Register Settings

### 29.4.2.1 Chip Select Boundary Select Registers

When not using memory expansion mode, do not change values after a reset for registers CB01, CB12, and CB23.
When the CPU operation is performed in memory expansion mode more than once, set a value within the specified range to all of these registers irrespective of the use of them.

### 29.4.2.2 External Bus Control Registers

Registers EBCO and EBC3 share respective addresses with registers FEBC0 and FEBC3. If the FEBC0 and/or FEBC3 registers are set while the flash memory is being rewritten, set the EBC0 and/ or EBC3 registers again after rewriting the flash memory.

### 29.5 Notes on Interrupts

### 29.5.1 ISP Setting

The interrupt stack pointer (ISP) is initialized to 00000000 h after a reset. Set a value to the ISP before an interrupt is accepted, otherwise the program may go out of control. A multiple of 4 should be set to the ISP, which enables faster interrupt sequence due to less memory access.
For the use of NMI, in particular, since this interrupt cannot be disabled, the PM24 bit in the PM2 register should be set to 1 (NMI enabled) after the ISP is set at the beginning of program.

### 29.5.2 NMI

- The NMI cannot be disabled once the PM24 bit in the PM2 register is set to 1 (NMI enabled). This bit setting should be done only for the use of NMI.
- When the PM24 bit in the PM2 register is set to 1 (NMI enabled), the P8_5 bit in the P8 register is enabled just for monitoring the $\overline{\mathrm{NMI}}$ pin state. It is not enabled as a general port.


### 29.5.3 External Interrupt

- The input signal to the $\overline{\mathrm{INTi}}$ pin $(\mathrm{i}=0$ to 8 ) requires the pulse width specified by the electrical characteristics. If a pulse width is narrower than the specification, the external interrupt may not be accepted.
- When the effective level and/or edge of $\overline{\mathrm{INTi}}$ pin ( $\mathrm{i}=0$ to 8 ) are/is changed by the following bits: bits POL and/or LVS in the INTiIC register, the IFSROi bit ( $i=0$ to 5 ) in the IFSR0 register, and/or the IFSR1j bit ( $\mathrm{j}=\mathrm{i}-6 ; \mathrm{i}=6$ to 8 ) in the IFSR1 register, the corresponding IR bit may become 1 (interrupt requested). When setting the above mentioned bits, preset bits ILVL2 to ILVLO in the INTiIC register to 000b (interrupt disabled). After setting the above mentioned bits, set the corresponding IR bit to 0 (no interrupt requested), then set bits ILVL2 to ILVLO.
- The interrupt input signals to pins $\overline{\mathrm{INT}}$ to $\overline{\mathrm{INT8}}$ are also connected to bits INT6R to INT8R in registers IIO9IR to IIO11IR. Therefore, these input signals, when assigned to the intelligent I/O, can be used as a source for exiting wait mode or stop mode. Note that these signals are enabled only on the falling edge and not affected by the following bit settings: bits POL and LVS in the INTiIC register ( $\mathrm{i}=0$ to 8 ), IFSROi bit ( $\mathrm{i}=0$ to 5 ) in the IFSR0 register, and the IFSR1j bit $(\mathrm{j}=\mathrm{i}-6 ; \mathrm{i}=6$ to 8) in the IFSR1 register.


### 29.6 Notes on DMAC

### 29.6.1 DMAC-associated Register Settings

- Set the DMAC-associated registers while bits MDi1 and MDiO ( $\mathrm{i}=0$ to 3 ) in the DMDi register are 00b (DMA transfer disabled). Then, set bits MDi1 and MDi0 to 01b (single transfer) or 11b (repeat transfer) at the end of the setup procedure. This procedure is also applied to rewriting bits UDAi, USAi, and BWi1 and BWiO in the DMDi register.
- In case the DMAC-associated registers are to be rewritten while DMA transfer is enabled, disable the peripheral function as DMA request source so that no DMA transfer request is generated, then set bits MDi1 and MDi0 in the DMDi register of the corresponding channel to 00b (DMA transfer disabled).
- Once a DMA transfer request is accepted, DMA transfer cannot be disabled even if setting bits MDi1 and MDi0 in the DMDi register to 00b (DMA transfer disabled). Do not change the settings of any DMAC-associated registers other than bits MDi1 and MDi0 until the DMA transfer is completed.
- Wait six or more peripheral bus clocks to set bits MDi1 and MDi0 in the DMDi register to 01b (single transfer) or 11b (repeat transfer) after setting registers DMiSL and DMiSL2.


### 29.6.2 Read from DMAC-associated Registers

- To sequentially read respective registers DMiSL and DMiSL2, follow the reading order as below: DM0SL, DM1SL, DM2SL, and DM3SL DM0SL2, DM1SL2, DM2SL2, and DM3SL2


### 29.7 Notes on Timers

### 29.7.1 Timer A and Timer B

All timers are stopped after a reset. To restart timers, configure parameters such as operating mode, count source, and counter value, then set the TAiS bit ( $\mathrm{i}=0$ to 4 ) or TBjS bit $(\mathrm{j}=0$ to 5 ) in the TABSR or TBSR register to 1 (count starts).
The following registers and bits should be set while the TAiS bit or TBjS bit is 0 (count stops):

- Registers TAiMR and TBjMR
- The UDF register
- Bits TAZIE, TAOTGL, and TAOTGH in the ONSF register
- The TRGSR register


### 29.7.2 Timer A

### 29.7.2.1 Timer Mode

- While the timer counter is running, the TAi register indicates a counter value at any given time. However, FFFFh is read while reloading is in progress. A set value is read if the TAi register is set while the timer counter is stopped.


### 29.7.2.2 Event Counter Mode

- While the timer counter is running, the TAi register indicates a counter value at any given time. However, FFFFh is read if the timer counter underflows or 0000h if overflows while reloading is in progress. A set value is read if the TAi register is set while the timer counter is stopped.


### 29.7.2.3 One-shot Timer Mode

- If the TAiS bit in the TABSR register is set to 0 (count stops) while the timer counter is running, the following operations are performed:
- The timer counter stops and the setting value of the TAi register is reloaded.
- A low signal is output at the TAiOUT pin.
- The IR bit in the TAilC register becomes 1 (interrupts requested) after one CPU clock cycle.
- One-shot timer is operated by an internal count source. When the trigger is an input to the TAilN pin, the signal is output with a maximum of one count source clock delay after a trigger input to the TAilN pin.
- The IR bit becomes 1 by any of the settings below. To use the timer Ai interrupt, set the IR bit to 0 after one of the settings below is done:
- Select one-shot timer mode after a reset.
- Switch the operating mode from timer mode to one-shot timer mode.
- Switch the operating mode from event counter mode to one-shot timer mode.
- If a retrigger occurs while counting, the timer counter decrements by one, reloads the setting value of the TAi register, and then continues counting. To generate a retrigger while counting, wait one or more count source cycles after the last trigger is generated.
- When an external trigger input is selected to start counting in timer A one-shot mode, do not provide an external retrigger for 300 ns before the timer counter reaches 0000h. Otherwise, it may stop counting.


### 29.7.2.4 Pulse-width Modulation Mode

- The IR bit becomes 1 by any of the settings below. To use the timer Ai interrupt ( $i=0$ to 4 ), set the IR bit to 0 after one of the settings below is done:
- Select pulse-width modulation mode after a reset.
- Switch the operating mode from timer mode to pulse-width modulation mode.
- Switch the operating mode from event counter mode to pulse-width modulation mode.
- If the TAiS bit in the TABSR register is set to 0 (count stops) while PWM pulse is output, the following operations are performed:
- The timer counter stops.
- The output level at the TAiOUT pin changes from high to low. The IR bit becomes 1.
- When a low signal is output at the TAiOUT pin, it remains unchanged. The IR bit does not change, either.


### 29.7.3 Timer B

### 29.7.3.1 Timer Mode and Event Counter Mode

- While the timer counter is running, the TBj register ( $\mathrm{j}=0$ to 5 ) indicates a counter value at any given time. However, FFFFh is read while reloading is in progress. A set value is read if the TBj register is set while the timer counter is stopped.


### 29.7.3.2 Pulse Period/Pulse-width Measure Mode

- To set the MR3 bit in the TBjMR register to 0 (no overflow), wait one or more count source cycles to write to the TBjMR register after the MR3 bit becomes 1 (overflow), while the TBjS bit is set to 1 (count starts).
- Use the IR bit in the TBjIC register to detect overflow. The MR3 bit is used only to determine an interrupt request source within the interrupt handler.
- The counter value is undefined when the timer counter starts. Therefore, the timer counter may overflow before a pulse to be measured is applied on the initial valid edge and cause a timer Bj interrupt request to be generated.
- When the pulse to be measured is applied on the initial valid edge after the timer counter starts, an undefined value is transferred to the reload register. At this time, the timer Bj interrupt request is not generated.
- The IR bit may become 1 (interrupt requested) by changing bits MR1 and MR0 in the TBjMR register after the timer counter starts. However, if the same value is rewritten to bits MR1 and MR0, the IR bit is not changed.
- Pulse width is repeatedly measured in pulse-width measure mode. Whether the measurement result is high-level width or not is determined by a program.
- If an overflow occurs simultaneously when a pulse is applied on the valid edge, this pulse is not recognized since an interrupt request is generated only once. Do not let an overflow occur in pulse period measure mode.
- In pulse-width measure mode, determine whether an interrupt source is a pulse applied on the valid edge or an overflow by reading the port level in the TBj interrupt handler.


### 29.8 Notes on Three-phase Motor Control Timers

### 29.8.1 Shutdown

- When a low signal is applied to the $\overline{\mathrm{NMI}}$ pin with the bit settings below, pins TA1OUT, TA2OUT, and TA4OUT become high-impedance: the PM24 bit in the PM2 register is 1 (NMI enabled), the INV02 bit in the INVCO register is 1 (the three-phase motor control timers used) and the INV03 bit is 1 (the three-phase motor control timer output enabled).


### 29.8.2 Register setting

- Do not write to the TAi1 register ( $\mathrm{i}=1,2,4$ ) in the timing that timer B2 underflows. Before writing to the TAi1 register, read the TB2 register to verify that sufficient time is left until timer B2 underflows. Then, immediately write to the TAi1 register so that no interrupt handler is performed during this write procedure. If the TB2 register indicates little time is left until the underflow, write to the TAi1 register after timer B2 underflows.


### 29.9 Notes on Serial Interface

### 29.9.1 Changing the UiBRG Register ( $\mathrm{i}=0$ to 8 )

- Set the UiBRG register after setting bits CLK1 and CLK0 in the UiC0 register. When these bits are changed, the UiBRG register must be set again.
- If a clock is input immediately after the UiBRG register is set to 00h, the counter reaches FFh. In this case, it requires an extra 256 clocks to reload 00h into the register. Once the 00h is reloaded, the counter performs the operation without dividing the count source according to the setting.


### 29.9.2 Synchronous Serial Interface Mode

### 29.9.2.1 Selecting an External Clock

- If an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit in the UiC0 register ( $\mathrm{i}=0$ to 8 ) is set to 0 (transmit data output on the falling edge of the transmit/receive clock and receive data input on the rising edge), or while the external clock is held low when the CKPOL bit is set to 1 (transmit data output on the rising edge of the transmit/receive clock and receive data input on the falling edge):
- The TE bit in the UiC1 register is set to 1 (transmission enabled).
- The RE bit in the UiC1 register is set to 1 (reception enabled). This bit setting is not required in transmit operation only.
- The TI bit in the UiC1 register is set to 0 (data held in the UiTB register).


### 29.9.2.2 Receive Operation

- In synchronous serial interface mode, the transmit/receive clock is controlled by the transmit control circuit. Set the UARTi-associated registers ( $\mathrm{i}=0$ to 8 ) for a transmit operation, even if the MCU is used only for receive operation. Dummy data is output from the TXDi pin while receiving if the TXDi pin is set to output mode.
- If data is received continuously, an overrun error occurs when the RI bit in the UiC1 register is 1 (data held in the UiRB register) and the seventh bit of the next data is received in the UARTi receive shift register. Then, the OER bit in the UiRB register becomes 1 (overrun error occurred). In this case, the UiRB register becomes undefined. If an overrun error occurs, the IR bit in the SiRIC register is not changed to 1.


### 29.9.3 Special Mode 1 ( ${ }^{2}$ C Mode)

- To generate a start condition, stop condition, or restart condition, set the STSPSEL bit in the UiSMR4 register ( $\mathrm{i}=0$ to 6 ) to 0 . Then, wait a half or more clock cycles of the transmit/receive clock to change the respective condition generate bit (the STAREQ, RSTAREQ, or STPREQ bit) from 0 to 1.


### 29.9.4 Reset Procedure on Communication Error

- Operations which result in communication errors such as rewritting function select registers during transmission/reception should not be performed. Follow the procedure below to reset the internal circuit once the communication error occurs in the following cases: when the operation above is performed by a receiver or transmitter or when a bit slip is caused by noise.


## A. Synchronous Serial Interface Mode

(1) Set the TE bit in the UiC1 register ( $\mathrm{i}=0$ to 8 ) to 0 (transmission disabled) and the RE bit to 0 (reception disabled).
(2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
(3) Set bits SMD2 to SMD0 in the UiMR register to 001b (synchronous serial interface mode).
(4) Set the TE bit in the UiC1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled) if necessary.
B. UART Mode
(1) Set the TE bit in the UiC1 register to 0 (transmittion disabled) and the RE bit to 0 (reception disabled).
(2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
(3) Set bits SMD2 to SMD0 in the UiMR register to 100b (UART mode, 7-bit character length), 101b (UART mode, 8-bit character length), or 110b (UART mode, 9-bit character length).
(4) Set the TE bit in the UiC1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled) if necessary.

### 29.10 Notes on A/D Converter

### 29.10.1 Notes on Designing Boards

- Three capacitors should be respectively placed between the AVSS pin and such pins as AVCC, VREF, and analog inputs (AN_0 to AN_7, ANO_0 to ANO_7, AN2_0 to AN2_7, and AN15_0 to AN15_7) to avoid error operations caused by noise or latchup, and to reduce conversion errors. Figure 29.1 shows an example of pin configuration for $A / D$ converter.


Notes:

1. $\mathrm{C} 1 \geq 0.47 \mu \mathrm{~F}, \mathrm{C} 2 \geq 0.47 \mu \mathrm{~F}$, and $\mathrm{C} 3 \geq 100 \mathrm{pF}$ (reference values)
2. The traces for the capacitor and the MCU should be as short and wide as physically possible.

Figure 29.1 Pin Configuration for AID Converter

- Do not use any of the four pins AN_4 to AN_7 for analog input if the key input interrupt is to be used. Otherwise, a key input interrupt request occurs when the A/D input voltage becomes VIL or lower.
- When $\operatorname{AVCC}=$ VREF = VCC, A/D input voltage for pins AN_0 to AN_7, ANO_0 to ANO_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, and ANEX1 should be VCC or lower.


### 29.10.2 Notes on Programming

- The following registers should be written while the A/D conversion is stopped, that is, before a trigger occurs: ADOCON0 (except the ADST bit), AD0CON1, AD0CON2, AD0CON3, and AD0CON4.
- If the VCUT bit in the AD0CON1 register is switched from 0 (VREF connected) to 1 (VREF disconnected), the A/D conversion should be started after $1 \mu \mathrm{~s}$ or more. Set the VCUT bit to 0 when A/D conversion is not used to reduce power consumption.
- Set the port direction bit for the pin to be used as an analog input pin to 0 (input). Set the ASEL bit of the corresponding port function select register to 1 (the port is used as A/D input).
- If the TRG bit in the ADOCONO register is set to 1 (external trigger or hardware trigger is selected), set the corresponding port direction bit (PD9_7 bit) for the ADTRG pin to 0 (input).
- The $\phi A D$ frequency should be 16 MHz or below when VCC is 4.2 to 5.5 V , and 10 MHz or below when VCC is 3.0 to 4.2 V . It should be 1 MHz or above if the sample and hold function is enabled. If not, it should be 250 kHz or above.
- If A/D operating mode (bits MD1 and MD0 in the AD0CON0 register or the MD2 bit in the AD0CON1 register) has been changed, re-select analog input pins by using bits CH 2 to CH 0 in the AD0CON0 register or bits SCAN1 and SCAN0 in the AD0CON1 register.
- If the ADOi register ( $\mathrm{i}=0$ to 7 ) is read when the $A / D$ converted result is stored to the register, the stored value may have an error. Read the AD0i register after the A/D conversion has been completed.
In one-shot mode or single sweep mode, read the respective AD0i register after the IR bit in the ADOIC register has become 1 (interrupt requested).
In repeat mode, repeat sweep mode 0 , or repeat sweep mode 1 , an interrupt request can be generated each time when an A/D conversion has been completed if the DUS bit in the ADOCON3 register is set to 1 (DMAC operating mode enabled). Similar to the other modes above, read the AD00 register after the IR bit in the ADOIC register has become 1 (interrupt requested).
- If the A/D conversion in progress is halted by setting the ADST bit in the ADOCONO register to 0 , the converted result is undefined. In addition, the unconverted ADOi register may also become undefined. Consequently, the ADOi register should not be used just after A/D conversion is halted.
- The external trigger cannot be used in DMAC operating mode. When the DMAC is configured to transfer converted results, do not read the ADOi register by a program.
- If, in single sweep mode, the A/D conversion in progress is halted by setting the ADST bit in the ADOCONO register to 0 (A/D conversion is stopped), an interrupt request may be generated even though the sweep is not completed. To halt the A/D conversion, first disable interrupts, then set the ADST bit to 0 .


### 29.11 Notes on Flash Memory Rewriting

### 29.11.1 Note on Power Supply

- Keep the supply voltage constant within the range specified in the electrical characteristics while a rewrite operation on flash memory is in progress. If the supply voltage becomes beyond the guaranteed value, the device cannot be guaranteed.


### 29.11.2 Note on Hardware Reset

- Do not perform a hardware reset while a rewrite operation on flash memory is in progress.


### 29.11.3 Note on Flash Memory Protection

- If an ID code written in an assigned address has an error, any read/write operation of flash memory in standard serial I/O mode is disabled.


### 29.11.4 Notes on Programming

- Do not set the FEW bit in the FMCR register to 1 (CPU rewrite mode) in low speed mode or low power mode.
- Four software commands of program, block erase, lock bit program, and protect bit program are interrupted by an NMI, a watchdog timer interrupt, an oscillator stop detection interrupt, or a low voltage detection interrupt. If any of the software commands above is interrupted, erase the corresponding block and then execute the same command again. If the block erase command is interrupted, values of lock bits and protect bits become undefined. Therefore, disable the lock bit, and then execute the block erase command again.


### 29.11.5 Notes on Interrupts

- EWO mode
- To use interrupts assigned to the relocatable vector table, the vector table should be addressed in RAM space.
- If either of an NMI, a watchdog timer interrupt, an oscillator stop detection interrupt, or a low voltage detection interrupt is generated, the flash memory module automatically enters read array mode. Therefore these interrupts are enabled even during a rewrite operation. On the other hand, the rewrite operation in progress is aborted by the interrupt and registers FMR0 and FRSR0 are reset. When the interrupt handler has ended, set the LBD bit in the FMR1 register to 1 (lock bit protection disabled) to re-execute the rewrite operation.
- Instructions BRK, INTO, and UND, which refer to data on the flash memory, are unavailable in this mode.
- EW1 mode
- Interrupts assigned to the relocatable vector table should not be accepted during a program or block erase operation.
- The watchdog timer interrupt should not be generated, either.
- If either of an NMI, a watchdog timer interrupt, an oscillator stop detection interrupt, or a low voltage detection interrupt is generated, the flash memory module automatically enters read array mode. Therefore this interrupt is enabled even during a rewrite operation. On the other hand, the rewrite operation in progress is aborted by the interrupt and registers FMRO and FRSR0 are reset. When the interrupt handler has ended, set the EWM bit in the FMR0 register to 1 (set as EW1 mode) and the LBD bit in the FMR1 register to 1 (lock bit protection disabled) to re-execute the rewrite operation.


### 29.11.6 Notes on Rewrite Control Program

- EWO mode
- If the supply voltage lowers during the rewrite operation of blocks having the rewrite control program, the rewrite control program may not be successfully rewritten, then the rewrite operation itself may not be performed. In this case perform the rewrite operation by serial programmer or parallel programmer.
- EW1 mode
- Do not rewrite blocks having the rewrite control program.


### 29.11.7 Notes on Number of Programming/Erasure and Software Command Execution Time

- According to the increase of program/erase operation, the four software commands: program, block erase, lock bit program, and protect bit program require more time to be executed. If the number of programming/erasure exceeds the minimum endurance value specified in the electrical characteristics, it may take unpredictable time to execute the software commands. The waiting time for the execution of software commands should be set much longer than the execution time specified in the electrical characteristics.


### 29.11.8 Other Notes

- The required time to perform the program or erase operation specified in the electrical characteristics can be guaranteed within the minimum values of programming/erasure endurance specified in the same table. Even if the number of programming/erasure exceeds the minimum endurance value, the program or erase operation may be unguaranteedly performed.
- Chips repeatedly programmed and erased for debugging are not allowed to be used for commercial products.


## Appendix 1. Package Dimensions



s




Detail F

NOTE)
DIMENSIONS "*1" AND "*2"
DIMENSION "*3" DOES NOT
INCLUDE TRIM OFFSET.

Reference   Symbol	Dimension in Millimeters		
	Min	Nom	Max
	13.9	14.0	14.1
E	13.9	14.0	14.1
$\mathrm{~A}_{2}$	-	1.4	-
$\mathrm{H}_{\mathrm{D}}$	15.8	16.0	16.2
$\mathrm{H}_{\mathrm{E}}$	15.8	16.0	16.2
A	-	-	1.7
$\mathrm{~A}_{1}$	0.05	0.1	0.15
$\mathrm{~b}_{\mathrm{p}}$	0.15	0.20	0.25
$\mathrm{~b}_{1}$	-	0.18	-
c	0.09	0.145	0.20
$\mathrm{C}_{1}$	-	0.125	-
$\theta$	$0^{\circ}$	-	$8^{\circ}$
e	-	0.5	-
x	-	-	0.08
y	-	-	0.08
$\mathrm{Z}_{\mathrm{D}}$	-	1.0	-
$\mathrm{Z}_{\mathrm{E}}$	-	1.0	-
L	0.35	0.5	0.65
$\mathrm{~L}_{1}$	-	1.0	-

INDEX
A
A0 ..... 25
A1 ..... 25
A2 ..... 25
A3 ..... 25
AD00 to AD07 ..... 306
ADOCONO ..... 302
AD0CON1 ..... 303
AD0CON2 ..... 304
AD0CON3 ..... 305
AD0CON4 ..... 306
ADOIC ..... 151
Address Register ..... 25
B
B Flag ..... 26
BCNOIC to BCN6IC ..... 151
BRK Instruction Interrupt ..... 142
BRK2 Instruction Interrupt ..... 142
BTSR ..... 337
C
C Flag ..... 25
COAFSR ..... 444
COBCR ..... 416
COCLKR ..... 415
C0CSSR ..... 443
C0CTLR ..... 411
COECSR ..... 452
COEIC ..... 151
COEIER ..... 445
COEIFR ..... 447
C0FIDCR0, C0FIDCR1 ..... 419
COFRIC ..... 151
COFTIC ..... 151
C0MB0 to C0MB31 ..... 423
C0MCTL0 to C0MCTL31 ..... 427
COMIER ..... 426
COMKIVLR ..... 421
COMKRO to COMKR7 ..... 418
COMSMR ..... 440
COMSSR ..... 441
CORECR ..... 450
CORFCR ..... 430
CORFPCR ..... 433
CORIC ..... 151
COSTR ..... 437
E
EBC0 to EBC3 ..... 122
F
Fast Interrupt ..... 144
FB ..... 25
FBPM0 ..... 520
FBPM1 ..... 520
FBPM2 ..... 521
FEBC0, FEBC3 ..... 517
Fixed-Point Designation Bit ..... 26
Flag Register ..... 25
FLG ..... 25
Floating-Point Overflow Flag ..... 26
Floating-Point Rounding Mode ..... 26
Floating-Point Underflow Flag ..... 26
FMCR ..... 516
FMRO ..... 518
FMR1 ..... 519
FMSR0 ..... 519
FO Flag ..... 26
FPR0 ..... 518
Frame Base Register ..... 25
FU Flag ..... 26
G
GOBCR0 to G2BCR0 ..... 334
G0BCR1, G1BCR1 ..... 335
G0BT to G2BT ..... 333
G0FE to G2FE ..... 343
G0FS, G1FS ..... 342
GOPO0 to GOPO7 ..... 342
GOPOCR0 to GOPOCR7 ..... 340
GOTMO to GOTM7 ..... 339
G0TMCR0 to G0TMCR7 ..... 338
G0TPR6, G0TPR7 ..... 338
G1PO0 to G1PO7 ..... 342
G1POCR0 to G1POCR7 ..... 340
G1TM0 to G1TM7 ..... 339
G1TMCR0 to G1TMCR7 ..... 338
G1TPR6, G1TPR7 ..... 338
G2BCR1 ..... 336
G2CR ..... 370
G2MR ..... 369
G2PO0 to G2PO7 ..... 342
G2POCR0 to G2POCR7 ..... 341
G2RB ..... 369
G2RTP ..... 343
G2TB ..... 368

## H

Hardware Interrupt ..... 143
I
I Flag ..... 26
I2CCCR ..... 382
I2CCR0 ..... 380
I2CCR1 ..... 385
I2CCR2 ..... 388
I2CIC ..... 151
I2CLIC ..... 151
I2CMR ..... 394
I2CSAR ..... 379
I2CSR ..... 390
I2CSSCR ..... 384
I2CTRSR ..... 378
ICTB2 ..... 235
IDB0, IDB1 ..... 234
IEAR ..... 371
IECR ..... 370
IERIF ..... 372
IETIF ..... 371
IFS0 ..... 497
IFS1 ..... 498
IFS2 ..... 499
IFS3 ..... 500
IFSR0 ..... 160, 262
IFSR1 ..... 161, 263
IIOOIC to IIO11IC ..... 151
IIOOIE to IIO11IE ..... 165
IIO0IR to IIO11IR ..... 164
INT Instruction Interrupt ..... 142
INTOIC to INT8IC ..... 152
INTB ..... 25
Interrupt Control Register ..... 151
Interrupt Enable Flag ..... 26
Interrupt request level ..... 152
Interrupt Response Time ..... 156
Interrupt Sequence ..... 155
Interrupt Stack Pointer ..... 25
Interrupt Types ..... 141
Interrupt Vector Table Base Register ..... 25
INVCO ..... 231
INVC1 ..... 232
IOBC ..... 233
IPL ..... 26, 150
ISP ..... 25
K
KUPIC151
L
Low Voltage Detection Interrupt ..... 77, 143 ..... 77, 143
Low Voltage Detector ..... 74 ..... 74
LVDC ..... 75
M
Maskable Interrupt ..... 141
MOD ..... 188
N
NMI (Non Maskable Interrupt) ..... 143
Non-maskable Interrupt ..... 141
0
26
O Flag
202
ONSF
143
Oscillator Stop Detection Interrupt
26
Overflow Flag142
P
P0 to P15 ..... 195
PO_OS to PO_7S ..... 479
P10_0S to P10_7S ..... 490
P1_0S to P1_7S ..... 480
P11_0S to P11_4S ..... 491
P12_0S to P12_7S ..... 492
P13_0S to P13_7S ..... 493
P14_3S to P14_6S ..... 494
P15_0S to P15_7S ..... 495
P2_0S to P2_7S ..... 481
P3_0S to P3_7S ..... 482
P4_0S to P4_7S ..... 483
P5_0S to P5_7S ..... 484
P6_0S to P6_7S ..... 485
P7_0S to P7_7S ..... 486
P8_0S to P8_4S, P8_6S, P8_7S ..... 487
P9_0S to P9_7S (144-pin package) ..... 488
P9_3S to P9_7S (100-pin package) ..... 489
PBC ..... 114
PC ..... 25
PCR ..... 504
PD0 to PD15 ..... 477
Peripheral Interrupt ..... 143
PLCO ..... 93
PLC1 ..... 94
PMO ..... 80
PM2 ..... 89
PM3 ..... 90
PRCR ..... 138
PRCR2 ..... 139
PRCR3 ..... 139
Processor Interrupt Priority Level ..... 26, 150
Program Counter ..... 25
PRR ..... 140
PURO ..... 501
PUR1 ..... 502
PUR2 ..... 502
PUR3 ..... 503
PUR4 ..... 503

## R

R2R0 ..... 25
R3R1 ..... 25
R6R4 ..... 25
R7R5 ..... 25
Register Bank Select Flag ..... 26
Register Saving ..... 157
RIPL1, RIPL2 ..... 154, 185
RND ..... 26
S
S Flag ..... 25
SORIC to S8RIC ..... 151
SOTIC to S8TIC ..... 151
Save Flag Register ..... 27
Save PC Register ..... 27
SB ..... 25
Sign Flag ..... 25
Single-step Interrupt ..... 143
Software Interrupt ..... 142
SP ..... 25
Special Interrupt ..... 143
Stack Pointer ..... 25
Stack Pointer Select Flag ..... 26
Static Base Register ..... 25
SVF ..... 27
SVP ..... 27

## T

TA0 to TA4 ..... 199
TAOIC to TA4IC ..... 151
TAOMR to TA4MR .. 200, 206, 209, 212 ..... 214
TA1, TA2, TA4, TA11, TA21, TA41 ..... 239
TA1MR, TA2MR, TA4MR ..... 240
TABSR ..... 200, 218, 241
TB0 to TB5 ..... 217
TBOIC to TB5IC ..... 151
TB0MR to TB5MR ..... 217, 220, 222, 224
TB2 ..... 237
TB2MR ..... 237
TB2SC ..... 238
TBSR ..... 218
TCSPR ..... 88, 204
TRGSR ..... 203, 241
U
U Flag ..... 26
U0BRG to U8BRG ..... 259
U0C0 to U6C0 ..... 252
U0C1 to U6C1 ..... 254
U0MR to U6MR ..... 250
U0RB to U6RB ..... 260
U0SMR to U6SMR ..... 256
U0SMR2 to U6SMR2 ..... 257
U0SMR3 to U6SMR3 ..... 258
U0SMR4 to U6SMR4 ..... 259
U0TB to U8TB ..... 260
U78CON ..... 255
U7C0, U8C0 ..... 253
U7C1, U8C1 ..... 254
U7MR, U8MR ..... 251
U7RB, U8RB ..... 261
UDF ..... 201
Undefined Instruction Interrupt ..... 142
User Stack Pointer ..... 25
USP ..... 25
V
VCT ..... 27
Vector Register ..... 27
VRCR ..... 72
W
Watchdog Timer Interrupt ..... 143
WDC ..... 168
WDTS ..... 168
X
X0R to X15R ..... 325
XYC ..... 325
Y
Y0R to Y15R326

Revision History $\quad$ R32C/117 Group User's Manual: Hardware

Rev.	Date	Description	
		Page	Summary
0.62	Apr 08, 2009	-	Initial release
1.00	Nov 24, 2009	-	Second edition released
		-	This manual in general   - Changed the following expressions: "start/stop condition", to "start condition/stop condition" (under Chapters 4, 11, 13, 18, and 24); "Pins/ports/bits/registers $x x x, x x x$, and $x x x$ are provided in the $x x$-pin package", to "Pins/ports/bits/registers $x x x, x x x$, and $x x x$ are available in the xx-pin package" (under Chapters 5, 9, 15, 16, 19, 23, 26, and 28); "reset operation", to "reset" (under Chapters 4, 7-9, 11, 12, 25, and 27)   - Modified the following descriptions: "multimaster $\mathrm{I}^{2} \mathrm{C}$-bus interface", to "multi-master ${ }^{2} \mathrm{C}$-bus interface" (under Chapters 1 and 26); "This register should be rewritten after (the xxx bit in) the xxx register is set to 1/AAh/00b ((re)write enabled).", to "Set (the xxx bit in) the xxx register to 1/AAh/00b (write enabled) before rewriting this register." (under Chapters 6, 8, 9, 13, 18, 24, and 27)
			About This Manual
		-	- Corrected typos "Hardware Manual" and "characteristics)" in 1. Purpose and Target User, to "Hardware" and "characteristics", respectively   - Made major text modifications to 2. Numbers and Symbols   - Revised the illustration in 3. Registers
			Chapter 1. Overview
		$\begin{gathered} 1 \\ 2,4 \\ 3,5 \\ 5 \\ \\ 6 \\ 9,14 \end{gathered}$	- Modified description for 1.1.1   - Modified description for "External Bus Expansion" in Tables 1.1 and   1.3; Moved this unit below "Clock"   - Modified description for "Flash memory" in Tables 1.2 and 1.4   - Modified the position of note symbol (1) in Table 1.4   - Modified description "32-slot message buffer" for "CAN Module" in Table 1.4, to "32 mailboxes"   - Completed all "under development" products in Table 1.5   - Corrected a typo "R5_3" for pin No. 62 in Figure 1.3 and for pin No. 41 in Figure 1.4, to "P5_3"
			Chapter 2. CPU
		25	- Modified the second sentence of 2.1.8.8 descriptively
			Chapter 4. SFRs
		28 37 38 66	- Changed hexadecimal format of reset values for registers CCR and FMCR in Table 4.1, to binary   - Changed reset values " XXXX XXXXb" and " XXXX 000 Xb " for registers U7RB and U8RB in Table 4.10, to " $X X X X h$ "   - Changed expression of register name "Xi Register Yi Register" (i=0 to 15) and register symbol "XiR, YiR" in Table 4.11, to "Xi Register/ Yi Register" and "XiR/YiR", respectively   - Changed reset value for COCLKR in Table 4.39 from "00h", to "000X 0000b"

## Revision History

R32C/117 Group User's Manual: Hardware


## Revision History

R32C/117 Group User's Manual: Hardware

Rev.	Date	Description	
		Page	Summary
		$\begin{gathered} \hline 160 \\ 162 \\ 163,164 \end{gathered}$	- Modified Note 1 for 11.11 descriptively   - Moved "(i = 0 to 11)" in Figure 11.12 to the title   - Modified the following register names: "Intelligent I/O Interrupt Request Register" in Figure 11.13, and "Intelligent I/O Interrupt Enable Register" in Figure 11.14, to "Intelligent I/O Interrupt Request Register i (i=0 to 11)", and "Intelligent I/O Interrupt Enable Register i ( $\mathrm{i}=0$ to 11 )", respectively   - Changed variables "i"s, "j"s, and "k"s for description of bits in Figures 11.13 and 11.14, to " $x$ "s, " $y$ "s, and " $z$ "s, respectively; Added expression "channel", to descriptions for BTxR, TMxyR, POxyR, IEzR, BTxE, TMxyE, POxyE, and IEzE
			Chapter 12. Watchdog Timer
		-	- Revised this chapter entirely   - Modified description "bus clock"s, to "peripheral bus clock"s
			Chapter 13. DMAC
		170	- Changed the following principle expressions: "transfer unit" to "transfer size", "destination address" to "addressing mode", "fixed" to "non-incrementing addressing", "forward" to "incrementing addressing"   - Modified the following description: "registers DMiSL and DMiSL2" in line 3 of the paragraph above Figure 13.2, to "the DMiSL register, and in bits DSEL24 to DSEL20 in the DMiSL2 register"   - Changed the following expressions in Table 13.2: "Multi-master $\mathrm{I}^{2} \mathrm{C}$ bus interface interrupt" to " ${ }^{2} \mathrm{C}$-bus interface interrupt", "Multi-master $I^{2} \mathrm{C}$-bus line interrupt" to " $\mathrm{I}^{2} \mathrm{C}$-bus line interrupt", and "Multi-master $\mathrm{I}^{2} \mathrm{C}$-bus interface" in Note 4 to " $\mathrm{I}^{2} \mathrm{C}$-bus interface"   - Modified description "the INTiIC register, IFSRO register)" in Note 1 of Table 13.3, to "the INTiIC register and the IFSR1 register)"   - Changed bit names USAi and UDAi for DMDi register in Figure 13.4 and their function descriptively   - Deleted the second sentence of Note 2 for DMDi register in Figure 13.4; Added Note 3   - Modified description for Note 2 in Figure 13.5; Deleted Note 3   - Modified description "channel $i$ " in line 1 of the first bullet point of 13.4.1, to "the DMDi register"; Added one sentence to the same bullet point; Deleted whole description of the second and third bullet points; Added two new paragraphs
		-	Chapter 14. DMAC II
			- Revised this chapter entirely   - Changed the following principle expressions: "transfer data" to "transfer type", "transfer data unit" to "transfer size", "transfer space" to "transfer memory space", "transfer direction" to "addressing mode", "fixed address" to "non-incrementing/constant address", "forward address" to "incrementing address", "end-of-transfer interrupt" to "DMA II transfer complete interrupt", "transfer source address" to "source addressing", and "transfer destination address" to "destination addressing"

## Revision History

R32C/117 Group User's Manual: Hardware

Rev.	Date	Description	
		Page	Summary
		183   187   188   190   191	- Corrected a typo "64 Kbyte-space" in Table 14.1, to "64-Mbyte space"   - Modified description "The relocatable vector table" in the forth bullet point of 14.1, to "The relocatable vector"   - Modified description for MOD in Figure 14.3; Divided the figure into two according to the MULT bit setting; Modified function of b14 to b8 from "No register bits", to "Reserved"   - Moved and modified description below previous Figure 14.5, to lines 7 to 10 of $\mathbf{1 4 . 2}$   - Modified description "CADR1 to CADR0" in Figure 14.4, to "CADR"; Changed "(1)", "(2)", and "(3)", to "(a)", "(b)", and "(c)", respectively   - Modified description "IADR1 and IADR0" in line 2 of 14.6 (previous 14.4.5), to "IADR"   - Moved a sentence from previous 14.5 , to lines 5 and 6 of 14.6   - Modified formulas in Figure 14.5
			Chapter 16. Timers
		195   197   212   213   215   216   227	- Corrected the following typos: "TTAOTGL" and "TAiGH and TAiGL" in Figure 16.1, to "TAOTGL" and "TAiTGH and TAiTGL", respectively   - Corrected a typo "TBiS bit" in Figure 16.3, to "TAiS"   - Corrected a typo "FEh" as value of $m$ for " 8 -bit PWM" in Table 16.5, to "FFh"   - Modified reset value for TAiMR register in Figure 16.16 from "0000 000b" to "0000 0000b"   - Changed expression "TBiS bit" in Figure 16.19, to "TBiS"   - Changed description for Note 1 of TBiMR in Figure 16.21 descriptively   - Deleted " $\mathrm{j}=0$ to 5 )" from the eighth bullet point of 16.3.3.2
			Chapter 17. Three-phase Motor Control Timers
		229   230   236   243	- Made minor text modifications to the this chapter   - Added description "P3_2 to P3_7" to paragraph below "Inverse control" unit in Figure 17.1   - Modified the expression of Note 8 for INVCO in Figure 17.2 descriptively   - Modified reset value for TB2MR in Figure 17.8   - Corrected a typo "TA4-1 register" in Figure 17.17, to "TA41 register"
			Chapter 18. Serial Interface
		$\begin{aligned} & - \\ & 250 \\ & 256 \\ & 257 \\ & 258 \end{aligned}$	- Made minor text modifications to the this chapter   - Modified expression "7 (, 8, and 9)-bit transfer data" for "Function" of UiMR register in Figure 18.4, to "7(, 8, and 9)-bit character length"   - Modified "SCL pin" for SWC bit of UiSMR2 in Figure 18.11, to "SCLi pin"   - Modified description "To set the SS" in Note 2 for UiSMR3 register in Figure 18.12, to "To use the SS function"; Corrected a typo "UiCO register" in Note 2, to "UiC0 register"   - Modified description for the SWC9 bit of UiSMR4 in Figure 18.13

## Revision History

R32C/117 Group User's Manual: Hardware


## Revision History

R32C/117 Group User's Manual: Hardware

Rev.	Date	Description	
		Page	Summary
		$\begin{gathered} \hline 353,355, \\ 358 \\ 360 \\ 361 \\ 363 \end{gathered}$	- Modified "IIOi_j pin function" in "Item" in Table 23.7, and "IIOi_j pin function (output)" in "Item" in Tables 23.8 and 23.9, to "IIOi_j output pin (or OUTC2 j pin for Group 2) function"   - Modified description "G2PO0 register" for "Output waveform" in Table 23.10, to "G2POj register ( $\mathrm{j}=0$ to 7 )"   - Corrected following typos: "fBTi" in Figure 23.28, to "fBT2"; "G2POCR register", to "G2POCRj register"   - Added description "in the G2RTP register" to "RTPj bit" in Figure 23.30
			Chapter 24. Multi-master I²C-bus Interface
		- 382 383 386 392	- Made minor text modifications to the this chapter   - Modified description "SCL/SDA Interrupt"s for bits SIP and SIS in Figure 24.8, to "I2Cbus-line Interrupt"   - Modified description "(b2-b3)" for I2CCR1 register in Figure 24.9, to "(b3-b2)"   - Modified description "(b5)" for I2CCR2 register in Figure 24.11, to "(b6)"   - Modified description "b2 b1 b0" for bits CLK2 to CLK0 in Figure 24.14, to "b3 b2 b1"   - Modified description below Figure 24.14 and 24.1.9.1
			Chapter 25. CAN Module
		$\begin{gathered} - \\ 407 \\ 413 \\ 414 \end{gathered}$	- Made minor text modifications to the this chapter   - Modified description "XIN" in Figure 25.1, to "Main clock"   - Modified read value of b4 for C0CLKR in Figure 25.3, to be as undefined   - Added description "from CAN reset mode" to Note 1 for COBCR in Figure 25.4   - Corrected a typo "(b23-22)" for C0BCR register in Figure 25.4, to "(b23-b22)"
		$\begin{gathered} 416,417 \\ 417 \end{gathered}$	- Modified function of b31 to b29 for COMKRk in Figure 25.5 and b29 for COFIDCRn in Figure 25.6, to "Reserved"   - Deleted description "and read as 0" from Note 2 for COFIDCRn in Figure 25.6
		421	- Modified function of b29, b39 to b32, and b47 to b44 for C0MBj in Figure 25.8, to "Reserved; Changed description for Note 2; Deleted description "and read as 0 " from Note 4
		423	- Changed expression "-"s in Table 25.6, to "X"s
		425	- Modified Note 4 for COMCTLj register in Figure $\mathbf{2 5 . 1 0}$ descriptively
		428	- Deleted description of a maximum delay from lines 7 to 8 of 25.1.9.9
		433	- Modified description for 25.1.12.2
		442	- Modified description for Note 2 of COCSSR in Figure 25.20   - Modified "0"s for b3 and b4 of 4th read in Figure 25.21, to " X "s
		443	- Modified description for Note 1 of COAFSR in Figure 25.22
		449, 450	- Deleted "(8 bits)" from "Function" for CORECR in Figure 25.26 and COTECR in Figure 25.27
		457	- Modified description of Note 2 for Figure 25.34

## Revision History

R32C/117 Group User's Manual: Hardware

Rev.	Date	Description	
		Page	Summary
		$\begin{aligned} & \hline 463 \\ & 464 \\ & 474 \end{aligned}$	- Deleted description of BRP from Figure 25.36   - Deleted description "division value of the" for fCAN from line 1 of 25.3.3   - Moved description for "CANO wake-up interrupt" in 25.7, to an upper line
			Chapter 26. I/O Pins
		$\begin{gathered} 477 \\ 479 \\ 484,490 \\ 487 \\ 490 \\ 496 \\ 499 \end{gathered}$	- Made minor text modifications to the this chapter   - Added "b" to binary form in Table 26.1   - Changed "IIO0_i output" and "IIO1_i output" in "Function" of P1_iS register in Figure 26.4, to "IIOO output" and "IIO1 output", respectively   - Modified description "b7-b3" for P6_iS in Figure 26.9 and P11_iS in Figure 26.15, to "b7"   - Modified bit symbol for b6 of registers P9_3S to P9_0S in Figure 26.12, to be exclusively as NOD   - Modified the explanation about the usage of an N-channel open drain output in the paragraphs below Figure 26.15   - Modified expression "TAilN input" in Note 1 for IFS0 in Figure 26.20, to "TAilN"   - Modified description for IFS30 and IFS31 in Figure 26.23 from "port P9", to "port P6/port P9"
			Chapter 27. Flash Memory
		$\begin{gathered} - \\ \\ 507 \\ 517 \\ 519 \\ 526 \\ 533 \\ 538 \end{gathered}$	- Revised this chapter entirely   - Changed expressions "write" and "rewrite", to "program" when this word is used in combination with "erase"   - Revised Table 27.1   - Corrected a typo "(b7-4)" for FMR1 register in Figure 27.8, to "(b7b4)"   - Corrected address and "Function" of BP15 bit in Figure 27.12   - Corrected a typo "b5-0" in Tables 27.15 and 27.16, to "b5-b0"   - Modified expression "Status/Error" in Table 27.17, to "Error"   - Modified description for the third bullet point of EW1 mode in 27.6.5
			Chapter 28. Electrical Characteristics
		$\begin{gathered} 543 \\ 548 \\ 558,571 \\ 559,562, \\ 572,575 \\ 561,574 \\ \hline 562,575 \end{gathered}$	- Made minor text modifications to the this chapter   - Corrected a typo "pots" in line 2 of Note 2 for Table 28.4, to "ports"   - Changed the order of description of trec(STOP) and trec(WAIT) in Table 28.13 and Figure 28.4   - Changed the minimum value for "t $\mathrm{w}_{\mathrm{w}(\mathrm{ADH})}$ " in Tables 28.31 and 28.57 from " $2 / \phi_{A D}$ ", to " $3 / \phi_{\text {AD }}$ "   - Newly Added characteristics for multi-master $I^{2} \mathrm{C}$-bus to Tables 28.34, 28.39, 28.40, 28.60, 28.65, and 28.66   - Modified "Characteristics" for $\mathrm{t}_{\text {su(S-ALE) }}$ in Tables 28.36 and 28.62, from "Chip-select hold time for ALE" to "Chip-select setup time for ALE"   - Modified "Characteristics" for $\mathrm{t}_{\mathrm{h}(\mathrm{C}-\mathrm{Q})}$ in Tables 28.37 and 28.63, from "TXDi hold time" to "TXDi output hold time"

Revision History
R32C/117 Group User's Manual: Hardware

Rev.	Date	Description	
		Page	Summary
		$\begin{gathered} 562,575 \\ 568 \\ 580 \end{gathered}$	- Added "Measurement condition" to Tables 28.38 and 28.64   - Corrected typos " $\mathrm{t}_{\mathrm{w}(\mathrm{H})}$ " " $\mathrm{t}_{\mathrm{w}(\mathrm{L})}$ ", " $\mathrm{t}_{\mathrm{r}}$ ", and " $\mathrm{t}_{\mathrm{f}}$ " in Table 28.46, to " $\mathrm{t}_{\mathrm{w}(\mathrm{XH})}$ ", " $t_{w(X L)}$ ", " $t_{(X)}$ ", and " $t_{(X)}$ ", respectively   - Newly Added timing diagram for multi-master $I^{2} \mathrm{C}$-bus to Figure 28.11
			Chapter 29. Usage Notes
		587   590   592   594   595	- Made minor text modifications to the this chapter   - Modified description "channel i" in line 1 of the first bullet point of 29.6.1, to "the DMDi register"; Added one sentence to the same bullet point; Deleted whole description of the second and third bullet points; Added two new paragraphs   - Deleted " $(\mathrm{j}=0$ to 5 )" from the eighth bullet point of 29.7.3.2   - Deleted whole description from the third bullet point of 29.9.2.2   - Deleted "( $\mathrm{i}=0$ to 7 )" from the eighth bullet point of 29.10.2   - Modified description for the third bullet point of EW1 mode in 29.11.5
1.10	Sep 08, 2010	-	Third edition released
		-	This manual in general   - Applied new Renesas templates and formats to the manual   - Changed company name to "Renesas Electronics Corporation" and changed related descriptions due to business merger of Renesas Technology Corporation and NEC Electronics Corporation (under Chapters 1, 7, 18, 23, and 28)   - Added specifications of 64 MHz version   - Added "128 KB/20 KB" and "256 KB/20 KB" for ROM/RAM capacity   - Modified expressions "version N", "version D", and "version P" to " N version", "D version", and "P version", respectively (under Chapters 1 and 28)
			Chapter 1. Overview
		$\begin{gathered} - \\ 3,5 \\ 9 \\ 19 \\ 23 \end{gathered}$	- Modified wording and enhanced description in this chapter   - Deleted Note 1 from Tables 1.2 and 1.4   - Deleted Note 4 from Figure 1.2   - Modified expression "fC" in description for "Clock output" in Table 1.14 to "low speed clocks"   - Modified the following descriptions in "Pin names" in Table 1.18: "P14_1" to "P14_1, P14_3", and "P14_3 to P14_6" to "P14_4 to P14_6"
			Chapter 4. SFRs
		$\begin{gathered} 30,53 \\ 34,37 \\ \\ 36 \\ 39 \end{gathered}$	- Modified expressions " ${ }^{2}$ C-Bus" and " ${ }^{2}$ C Bus" in Tables 4.2 and 4.25 to "I2C-bus"   - Changed register name "Group i Timer Measurement Prescaler Register" in Tables 4.6 and 4.9 to "Group i Time Measurement Prescaler Register"   - Modified expression "IE Bus" in Table 4.8 to "IEBus"   - Modified expression "XY Control Register" in Table 4.11 to " $X-Y$ Control Register"



Revision History $\quad$ R32C/117 Group User's Manual: Hardware

\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Rev.} \& \multirow[b]{2}{*}{Date} \& \multicolumn{2}{|r|}{Description} <br>
\hline \& \& Page \& Summary <br>
\hline \multirow[t]{5}{*}{} \& \multirow[t]{5}{*}{} \& 97
99
100
101

102
$103-105$
103
104
105
106
107
107
108
109

110 \& | - Added description "the main clock oscillator should be stopped from resuming (set the CM05 bit in the CM0 register to 1) or" to the second paragraph in 8.2.1 |
| :--- |
| - Modified expressions "fC" in 8.6 and "fC" in Tables 8.3 and 8.4 to "low speed clocks" and "low speed clock", respectively |
| - Revised the entire paragraph of 8.7 |
| - Added explanation for each mode to (1) to (5) in 8.7.1; Changed the following expressions: "peripheral clock source" to "peripheral clocks", and "The PLL clock or the main clock" to "fAD, f1, f8, f32, and f2n" |
| - Added description for Figures 8.17 to 8.19 to 8.7.1 |
| - Moved Figures 8.17 to 8.19 from 8.7 to 8.7.1; Explained "main clock stop" and "CM05 = 1" separately; Added explanation for the SEO bit |
| - Corrected a typo "f(XPLL)" in the third row of Figure 8.17 to "f(PLL)"; Deleted Note 4 |
| - Deleted Note 3 in Figure 8.18 |
| - Corrected "CM31 = 1" in the first row and "CM10 = 0" in the second row of Figure 8.19 to "CM31 = 0" and "CM10 = 1", respectively; Deleted Note 3 |
| - Changed expression "Before executing WAIT instruction" in 8.7.2.2 to "Steps before entering wait mode"; Changed steps before entering wait mode |
| - Modified expression "fC" in Tables 8.5 and 8.7 to "a low speed clock" |
| - Modified description in 8.7.2.4 |
| - Added Note 1 to Table 8.6 |
| - Changed the first sentence in 8.7.3 |
| - Changed expression "Before entering stop mode" in 8.7.3.1 to "Steps before entering stop mode"; Changed steps before entering stop mode |
| - Modified the first sentence in 8.7.3.3 |
| - Added the usage condition for "External interrupt" to Table 8.8 | <br>

\hline \& \& \& Chapter 9. Bus <br>

\hline \& \& $$
\begin{gathered}
117,118 \\
124
\end{gathered}
$$

\[
132

\] \& | - Deleted Note 2 from Figures 9.4 to 9.6 |
| :--- |
| - Added EXMPX bit values to the bus format row in Table 9.2; Modified function of P4_0 to P4_3 for memory expansion mode to "I/ O ports" only |
| - Added period of address becoming undefined to "(1) 8-bit data bus" in Figure 9.15; Added Note 2 | <br>

\hline \& \& \& Chapter 10. Protection <br>
\hline \& \& - \& - Modified subchapter titles <br>
\hline
\end{tabular}



Rev.	Date	Description	
		Page	Summary
		305 306 $307-313$ 319	- Changed Note 5 in Figure 19.5   - Changed Notes 1, 3, and 4 in Figure 19.7   - Changed description in "Specification" for "Start conditions" and "Reading of A/D converted result" in Tables 19.2 to 19.8   - Modified description in the ninth bullet of 19.3.2
			Chapter 21. CRC Calculator
		322	- Corrected a typo "CRC_CCITT" in line 2 of 21. CRC Calculator to "CRC-CCITT"
			Chapter 22. X-Y Conversion
		325, 326	- Changed figure titles "XiR Register" and "YjR Register" for Figures 22.2 and 22.3 to "Registers X0R to X15R" and "Registers Y0R to Y15R", respectively; Changed preposition "to" in between addresses to "-"
			Chapter 23. Intelligent I/O
		$\begin{gathered} 330,331 \\ 332 \\ \\ 335 \\ \\ 337 \\ \\ 341 \\ 344 \\ \\ 345 \\ \\ 347,348 \\ 362 \\ 368 \\ 370 \\ 374 \end{gathered}$	- Made minor text modifications to this chapter   - Modified descriptions "Request from the $\overline{\text { INTO }}$ pin" in Figure 23.1 and "Request from the $\overline{\text { INT1 }}$ pin" in Figure 23.2 to "Request from the $\overline{\text { INT0 }}$ pin or the $\overline{\text { INT1 }}$ pin"   - Corrected the following typos in Figure 23.3: "IE_IN" to "IEIN", "IE_OUT" to "IEOUT", "ISRxD2" to "ISRXD2", and "ISTxD2" to "ISTXD2"   - Changed expression "INTi pin" in Figure 23.6 to "INT0/INT1 pin"; Changed Note 3   - Corrected a typo "bits BTOS to BT3S" in (2) of Note 1 in Figure 23.8 to "bits BTOS to BT2S"   - Corrected a typo "ISTxD2" in Figure 23.13 to "ISTXD2"   - Changed description in the second bullet of "Specification" for "Reset conditions" in Table 23.2   - Changed expression "INTi pin" in Figure 23.18 to "INT0/INT1 pin"; Moved " $\mathrm{i}=0$ to 2 " to the title   - Moved " $(\mathrm{i}=0,1)$ " to the title of Figures 23.19 and 23.20   - Corrected a typo "00h to 3FFh" in Table 23.10 to "000h to 3FFh"   - Deleted Note 1 from 23.4   - Changed "ISTxD" and "ISRxD" in Figure 23.36 to "ISTXD2" and "ISRXD2", respectively   - Corrected a typo "ISRX2" in Table 23.15 to "ISRXD2"
			Chapter 24. Multi-master $\mathrm{I}^{\mathbf{2}} \mathrm{C}$-bus Interface
		-	- Modified wording and enhanced description in this chapter   - Modified expression "general call" to "general call address"   - Modified expression "flag" to "bit" when it is used with bit symbols   - Modified expressions "standard-mode" and "fast-mode" to "Standard-mode" and "Fast-mode", respectively   - Modified expression "set to" for the RST bit in the I2CCCR0 register to "written with"

Revision History
R32C/117 Group User's Manual: Hardware

Rev.	Date	Description	
		Page	Summary
		376 377	- Modified expressions "START condition and STOP condition" and "START condition or STOP condition" to "START and STOP conditions" and "START or STOP condition", respectively   - Modified description for "Timeout detector" in Table 24.1   - Modified "Bus is busy detector" in Table 24.2 to "Bus busy detector"; Modified specifications of "Slave-address match detector" and "Arbitration lost detector"
		378	- Modified description in the Function column in Figure 24.2
		380	- Changed bit name "Transmit/Receive Bit Number Set Bit" in Figure 24.5 to "Transmit/Receive Bit Length Setting Bit"
		381	- Modified expression "slave address data" in line 2 of 24.1.3.3 to "slave address"   - Modified expression "I2C reset signal" in Figure 24.6 to " ${ }^{2} \mathrm{C}$-bus interface reset signal"
		382	- Modified "ACKCLK bit" in line 2 of $\mathbf{2 4 . 1 . 4}$ to "ACKD bit"   - Corrected descriptions "below 100 kHz" and "below 400 kHz" in Note 1 of Table 24.3 to " 100 kHz or less" and " 400 kHz or less", respectively
		383	- Corrected a typo "фIIO" in line 2 of 24.1.4.2 to "фIIC"   - Modified expressions "MSDA pin level" in line 4 of 24.1.4.3 and Table 24.4 and "MSDA Pin Levels" for table title of Table 24.4 to "MSDA pin state" and "MSDA Pin States", respectively
		384	- Changed expressions " $\left.\right\|^{2} \mathrm{C}$ Bus-line" in Figure 24.8 and " ${ }^{2} \mathrm{C}$ bus line" in 24.1.5.2 and 24.1.5.3 to "I 2 C -bus line"
		385	- Moved "(2)" from "Function" to "Bit Name" in Figure 24.9; Changed expression "1-bit instruction" to "bit processing instruction" in Note 1; Switched Notes 2 and 3
		387	- Corrected a typo "SDO" in line 3 of 26.1.6.3 to "SDAO"
		388	- Changed symbol "/" in function description of bits ICK4 to ICK2 in Figure 24.11 to "divided-by-"
		389	- Modified setting value of TOSEL bit in 24.1.7.3
		390	- Moved "(1)" to "(3)" from "Function" to "Bit Name" in Figure 24.13; Added "(1)" to "Function"
		391	- Deleted explanation in parentheses in line 1 of 24.1.8.2   - Modified description in Line 3 and 4 of 24.1.8.4
		392	- Modified "R/W bit" in Line 6 of 24.1.8.7 to "R/W bit"
		393	- Modified description "lost byte of data" in the second bullet point of 24.1.8.8 to "corresponding byte"
		397	- Modified "( ${ }^{2} \mathrm{C}$-bus interface enabled)" in line 5 of the second paragraph below Figure 24.18 to "( ${ }^{2} \mathrm{C}$-bus interface disabled)"
		398, 399	- Modified expression "VIIC" in Figures $\mathbf{2 4 . 1 9}$ and 24.22 to " CIIC "
		399	- Modified expression "high period of MSCL" in lines 4 to 5 in the first paragraph of $\mathbf{2 4 . 5}$ to "high period of MSCL pin"
		400	- Changed "Standard Clock Mode" and "Fast Clock Mode" in Table 24.10 to "Standard-mode" and "Fast-mode"; Changed parameter "BBSY flag setting time" to "BBSY bit set/reset time"

## Revision History

R32C/117 Group User's Manual: Hardware

Rev.	Date	Description	
		Page	Summary
		$\begin{aligned} & 401 \\ & 403 \\ & 404 \\ & 405 \\ & \\ & \hline 406 \end{aligned}$	-Changed parameter "Successful receive interrupt" for I2CCR1 register in Table 24.12 to "Successful data receive interrupt"   - Modified description "For (A) to (C) in the figure, see $A$ to $C$ " in 24.6.2 to "For (A) to (D) in the figure, see $A$ to $D$ "   - Modified description for I2CCCR register in 24.7.1   - Modified expression "Bits to be zero" in Figures 24.25 and 24.26 to "Bits to be reset"   - Modified "TRX bit" in Figure 24.27 to "TRS bit"; Modified the following expressions: "Bits to be zero" to "Bits to be reset", and "Bit to be zero" to "Bit to be set"; Modified description of TRS bit   - Modified "By a program" in Figure 24.28 to "Software wait"
			Chapter 25. CAN Module
		407   419   423   427   430   436   443   444   452   462	- Made minor text modifications to this chapter   - Changed expression "8/3 encoder" to "8-to-3 priority encoder"   - Modified description "Table 25.1 lists" in line 5 of 25 to "Table 25.1 and Table 25.2 list"   - Changed Note 2 in Figure 25.6   - Changed description "Setting Value" in Figure 25.8 to "Setting Range"; Changed Note 4   - Modified register name "CANi Message Control Register" in 25.1.9 to "CANi Message Control Register j"   - Modified Note 2 in Figure 25.11   - Corrected a typo "CiTFPCR register" in line 3 of 25.1.13 to "CiTFCR register"   - Modified description in line 3 of 25.1.17   - Changed expression "3/8 decoder" in Figure 25.23 to "3-to-8 decoder"   -Moved "(4)" from "Bit Name" to "Function" in Figure 25.28   -Corrected a typo "CiSTR register" in the fourth paragraph of 25.2.4 to "CiTCR register"
			Chapter 26. I/O Pins
		486   489   492   497   502   503	- Made minor text modifications to this chapter   - Added "(MMI2C)" to line 2 below Figure 26.10   - Modified reset value "OXXX X000b" of P9_3S in Figure 26.13 to "00XX X000b"; Modified description for b6   - Modified bit symbol "PD_9i" in line 4 of the third paragraph below Figure 26.13 to "PD9_i"   - Modified reset values "0XXX X000b" of P12_0S to P12_3S in Figure 26.16 to "X0XX X000b"; Modified description for b7 to b3   - Changed description "1: Port P7/port P9" in "Function" of the IFS01 bit in Figure 26.20 to "1: Port P9"   - Corrected a typo "P9_1 to P9_3 Pull-Up Control Bit" in "Bit Name" of the PU26 bit in Figure 26.26 to "P9_0 to P9_3 Pull-Up Control Bit"   - Corrected a typo "P14_1 to P14_3 Pull-Up Control Bit" in "Bit Name" of the PU26 bit in Figure 26.28 to "P14_1 and P14_3 Pull-Up Control Bit"

## Revision History

R32C/117 Group User's Manual: Hardware

Rev.	Date	Description	
		Page	Summary
		505, 506	- Added description "P9_0, P9_2, and" to Note 3 of Tables 26.2 and 26.3
			Chapter 27. Flash Memory
		$510$ $511$ $515$   523, 525	- Made minor text modifications to this chapter   - Added forcible erase function and standard serial I/O mode disable function for high speed version ( 64 MHz version)   - Deleted description "erase" from "ROM Code Protection" of "Operations to be protected" in Table 27.3; Added description "erase" to "ID Code Protection" of "Operations to be protected"; Deleted description "by using the serial programmer" from "ROM Code Protection" of "Protection deactivated by"   - Deleted description "use the serial programmer to" from the second paragraph of 27.2.2   - Corrected a typo "FFFFFE8h" in line 9 of $\mathbf{2 7 . 2 . 3}$ to "FFFFFFE8h"   - Changed the following descriptions in Table 27.7: "the program or the block erase command" to "the program command or the block erase command", and "read status register command" and "ready status register command" to "enter read status register mode"   - Modified figure number "Figure 27.11 " in the last line below Table 27.7 to "Figure 27.12"   - Changed the following descriptions in Figures 27.13 and 27.14: " $\overline{\mathrm{CSO}}$ " and " $\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS} 3}$ " to "Chip select", and "A23 to $\mathrm{A} 0, \overline{\mathrm{BCO}}$ to BC3" to "Address"
			Chapter 28. Electrical Characteristics
		$\begin{gathered} 551 \\ 552,553, \\ 565,566 \\ 555,568 \end{gathered}$	- Made minor text modifications to this chapter   - Added electrical characteristics of 64 MHz version   - Changed expression "input clock period" to "input clock cycle time"   - Changed the following descriptions in Figure 28.5: "政" and "政0 to $\overline{\mathrm{CS} 3}$ " to "Chip select", and "A23 to A0, $\overline{\mathrm{BCO}}$ to $\overline{\mathrm{BC}}$ " to "Address"   - Changed values of $f_{(C P U)}$ under the titles of Tables 28.15, 28.16, 28.41, and 28.42   - Changed values of $f_{(B C L K)}$ under the titles of Tables 28.18 and 28.44
			Chapter 29. Usage Notes
		588   593   594   595   597	- Made minor text modifications to this chapter   - Revised the third bullet point of description in 29.5.3   - Changed the order of descriptions for bits INV02 and INV03 in 29.8.1   - Modified "overflow" in $\mathbf{2 9 . 8} \mathbf{8}$. to "underflow"   - Moved description in the fourth dash in 29.9.2.1 to the second dash   - Added 29.9.4 "Reset Procedure on Communication Error"   - Modified description in the ninth bullet of 29.10.2
			Appendix 1. Package Dimensions
		600	- Added a seating plane to the drawing of package dimension

## R32C/117 Group User's Manual: Hardware

Publication Date:	Rev.0.62 Apr 08, 2009   Rev.1.10 Sep 08, 2010	
Published by:	Renesas Electronics Corporation	

## ReNESAS

Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858/-7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwa
-
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, \#06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

R32C/117 Group

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for 16-bit Microcontrollers - MCU category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MB90F036APMC-GSE1 MB90F342CASPMC-GSE1 MB90F345CESPMC-GE1 MB90F349CAPFR-GSE1 MB90F428GCPFR-GSE1
MB90F462APFM-GE1 MB90F462APMC-G-SNE1 MB90F497GPF-GE1 MB90F546GSPFR-GE1 MB90F947APFR-GS-SPE1
MB96F346RSBPMC-GS-N2E2 MB96F683RBPMC-GSAE1 R5F11BGEAFB\#30 DF3026XBL25V S912ZVFP64F1VLL
R4F24268NVRFQV R5F107DEGSP\#X0 R5F11B7EANA\#U0 R5F21172DSP\#U0 M30622F8PGP\#U3C MB90092PF-G-BNDE1
MB90F335APMC1-G-SPE1 MB90F342CASPFR-GS-N2E1 MB90F345CAPFR-GSE1 MB90F543GPF-GE1 MB90F546GSPF-GE1 MB90F568PMCR-GE1 MB90F594APFR-GE1 MB90F882ASPMC-GE1 MB96F346RSAPQCR-GS-N2E2 MB96F387RSBPMC-GSE2

MB96F387RSBPMC-GS-N2E2 MB96F395RSAPMC-GSE2 MB96F623RBPMC1-GSE1 MB96F646RBPMC-GSE1
XE167F96F66LACFXUMA1 MB96F696RBPMC-GSAE1 MB96F018RBPMC-GSE1 MB90F962SPMCR-GE1 MB90F867ASPFR-GE1
MB90F543GPF-G-FLE1 MB90F345CESPF-GE1 M30290FCHP\#U3A DF2239FA20IV HD64F3672FPV R5F104AEASP\#V0
R5F100BCANA\#U0 R5F100BFANA\#U0 S9S12H256J2VFVER R5F100ACASP\#V0


[^0]:    X: Undefined
    Blanks are reserved. No access is allowed.

[^1]:    X: Undefined
    Blanks are reserved. No access is allowed.

[^2]:    X: Undefined
    Blanks are reserved. No access is allowed.

[^3]:    X: Undefined
    Blanks are reserved. No access is allowed.

