Preliminary Datasheet

Features

- 32-bit RX CPU core

- 32 MHz maximum operating frequency Capable of 50 DMIPS when operating at 32 MHz
- Accumulator handles 64-bit results (for a single instruction) from 32-bit $\times 32$-bit operations
- Multiplication and division unit handles 32-bit \times 32-bit operations (multiplication instructions take one CPU clock cycle)
- Fast interrupt
- CISC Harvard architecture with five-stage pipeline
- Variable-length instruction format, ultra-compact code
- On-chip debugging circuit

■ Low power consumption functions

- Operation from a single 1.8 to 3.6 V supply
- Three low power modes

- On-chip flash memory for code, no wait states

- Operation at 32 MHz , read cycle of 31.25 ns
- No wait states for reading at full CPU speed
- 8 to 128 Kbyte capacities
- Programmable at 1.8 V
- For instructions and operands

■ On-chip SRAM, no wait states

- 8 to 16 Kbyte capacities
- Data transfer controller (DTC)
- Four transfer modes
- Transfer can be set for each interrupt source.

- Reset and power supply voltage management

- Six types including the power-on reset (POR)
- Low voltage detection (LVD) with voltage settings

- Clock functions

- External clock input frequency: Up to 20 MHz
- Main clock oscillator frequency: 1 to 20 MHz
- Sub-clock oscillator frequency: 32.768 kHz
- Low-speed on-chip oscillator: 4 MHz
- High-speed on-chip oscillator: 32 MHz
- IWDT-dedicated on-chip oscillator: 15 kHz
- Generate a dedicated $32.768-\mathrm{kHz}$ clock for the RTC
- On-chip clock frequency accuracy measurement circuit (CAC)

■ Real-time clock (RTC)

- 30-second, leap year, and error adjustment functions
- Calendar count mode or binary count mode selectable
- Capable initiating exit from software standby mode

■ Independent watchdog timer (WDT)

- $15-\mathrm{kHz}$ on-chip oscillator produces a dedicated clock signal to drive IWDT operation.

- On-chip functions for IEC 60730 compliance

- Clock frequency accuracy measurement circuit, IWDT, functions to assist in RAM testing, etc.

■ Up to five channels for communication

- SCI: Asynchronous mode, clock synchronous mode, smart card interface (up to seven channels)
- $\mathrm{I}^{2} \mathrm{C}$ bus interface: Transfer at up to 400 kbps , capable of SMBus operation (one channel)
- RSPI (one channel)
- Up to 6 extended-function timers
- 16-bit MTU: Input capture/output compare, phase counting mode (four channels)
- 16-bit CMT (two channels)

■ 12-bit A/D converter

- Up to 14 channels
- $1.0 \mu \mathrm{~s}$ minimum conversion speed
- Double trigger (data duplication) function for motor control

■ Temperature sensor
■ General I/O ports

- 5-V tolerant, open drain, input pull-up
- Multi-function pin controller (MPC)
- Multiple I/O pins can be selected for peripheral functions.

- Operating temperature range

- -40 to $+85^{\circ} \mathrm{C}$
- -40 to $+105^{\circ} \mathrm{C}$

1. Overview

1.1 Outline of Specifications

Table 1.1 lists the specifications, and Table 1.2 gives a comparison of the functions of the products in different packages.
Table 1.1 is for products with the greatest number of functions, so the number of peripheral modules and channels will differ in accordance with the package type. For details, see Table 1.2, Comparison of Functions for Different Packages.

Table 1.1 Outline of Specifications (1/3)

Classification	Module/Function	Description
CPU	CPU	- Maximum operating frequency: 32 MHz - 32-bit RX CPU - Minimum instruction execution time: One instruction per one clock cycle - Address space: 4-Gbyte linear - Register set General purpose: Sixteen 32-bit registers Control: Eight 32-bit registers Accumulator: One 64-bit register - Basic instructions: 73 - DSP instructions: 9 - Addressing modes: 10 - Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian - On-chip 32-bit multiplier: 32 -bit $\times 32$-bit $\rightarrow 64$-bit - On-chip divider: 32 -bit $\div 32$-bit $\rightarrow 32$ bits - Barrel shifter: 32 bits
Memory	ROM	- Capacity: 8 K /16 K /32 K / 64 K /96 K /128 Kbytes - 32 MHz , no-wait memory access - Programming/erasing method: Serial programming (asynchronous serial communication), self-programming
	RAM	- Capacity: 8 K /10 K /16 Kbytes - 32 MHz , no-wait memory access
MCU operating mode		Single-chip mode
Clock	Clock generation circuit	- Main clock oscillator, sub-clock oscillator, low-speed on-chip oscillator, high-speed on-chip oscillator, and IWDT-dedicated on-chip oscillator - Oscillation stop detection: Available - Clock frequency accuracy measurement circuit (CAC) - Independent settings for the system clock (ICLK), peripheral module clock (PCLK), and FlashIF clock (FCLK) The CPU and system sections such as other bus masters run in synchronization with the system clock (ICLK): 32 MHz (at max.) Peripheral modules run in synchronization with the PCLK: 32 MHz (at max.) The flash peripheral circuit runs in synchronization with the FCLK: 32 MHz (at max.) - The ICLK frequency can only be set to FCLK, PCLKB, or PCLKD multiplied by $\mathrm{n}(\mathrm{n}: 1,2,4,8,16,32$, 64).
Resets		RES\# pin reset, power-on reset, voltage monitoring reset, independent watchdog timer reset, and software reset
Voltage detection	Voltage detection circuit (LVDAa)	- When the voltage on VCC falls below the voltage detection level, an internal reset or internal interrupt is generated. Voltage detection circuit 1 is capable of selecting the detection voltage from 10 levels Voltage detection circuit 2 is capable of selecting the detection voltage from 4 levels
Low power consumption	Low power consumption functions	- Module stop function - Three low power consumption modes Sleep mode, deep sleep mode, and software standby mode
	Function for lower operating power consumption	- Operating power control modes High-speed operating mode, middle-speed operating mode, and low-speed operating mode
Interrupt	Interrupt controller (ICUb)	- Interrupt vectors: 65 - External interrupts: 9 (NMI, IRQ0 to IRQ7 pins) - Non-maskable interrupts: 4 (NMI pin, voltage monitoring 1 interrupt, voltage monitoring 2 interrupt, and IWDT interrupt) - 16 levels specifiable for the order of priority
DMA	Data transfer controller (DTCa)	- Transfer modes: Normal transfer, repeat transfer, and block transfer - Activation sources: Interrupts - Chain transfer function

Table 1.1 Outline of Specifications (2/3)

Classification	Module/Function	Description
I/O ports	General I/O ports	64-pin /48-pin /40-pin /36-pin - I/O: 52/38/28/24 - Input: 2/2/1/1 - Pull-up resistors: 44/32/23/20 - Open-drain outputs: 40/32/23/20 - 5-V tolerance: 4/4/4/4
Multi-function pin controller (MPC)		Capable of selecting the input/output function from multiple pins
Timers	Multi-function timer pulse unit 2 (MTU2b)	- (16 bits $\times 4$ channels) $\times 1$ unit - Time bases for the four 16 -bit timer channels can be provided via up to 8 pulse-input/output lines and three pulse-input lines - Select from among eight or seven counter-input clock signals for each channel (PCLK/1, PCLK/4, PCLK/16, PCLK/64, PCLK/256, PCLK/1024, MTCLKA, MTCLKB, MTCLKC, MTCLKD) other than channel 5 , for which only four signals are available. - Input capture function - 13 output compare/input capture registers - Pulse output mode - Phase-counting mode - Generation of triggers for A/D converter conversion
	Compare match timer (CMT)	- (16 bits $\times 2$ channels) $\times 1$ unit - Select from among four clock signals (PCLK/8, PCLK/32, PCLK/128, PCLK/512)
	Independent watchdog timer (IWDTa)	- 14 bits $\times 1$ channel - Count clock: Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 1, 16, 32, 64, 128, or 256
	Realtime clock (RTCA)	- Clock source: Sub-clock - Calendar count mode or binary count mode selectable - Interrupts: Alarm interrupt, periodic interrupt, and carry interrupt
Communication functions	Serial communications interfaces (SCle, SCIf)	- 3 channels (channel 1, 5: SCle, channel 12: SCIf) - Serial communications modes: Asynchronous, clock synchronous, and smart card interface - On-chip baud rate generator allows selection of the desired bit rate - Choice of LSB-first or MSB-first transfer - Average transfer rate clock can be input from MTU2 timers - Simple $I^{2} \mathrm{C}$ - Simple SPI - Master/slave mode supported (SCIf only) - Start frame and information frame are included (SCIf only) - Start-bit detection in asynchronous mode: Low level or falling edge is selectable
	${ }^{2} \mathrm{C}$ bus interface (RIIC)	- 1 channel - Communications formats: ${ }^{2}{ }^{2} \mathrm{C}$ bus format/SMBus format - Master mode or slave mode selectable - Supports fast mode
	Serial peripheral interface (RSPI)	- 1 channel - Transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPI clock (RSPCK) signals enables serial transfer through SPI operation (four lines) or clocksynchronous operation (three lines) - Capable of handling serial transfer as a master or slave - Data formats - Choice of LSB-first or MSB-first transfer The number of bits in each transfer can be changed to $8,9,10,11,12,13,14,15,16,20,24$, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) - Double buffers for both transmission and reception
12-bit A/D converter (S12ADb)		- 1 unit (1 unit $\times 14$ channels) - 12-bit resolution - Minimum conversion time: $1.0 \mu \mathrm{~s}$ per channel when the ADCLK is operating at 32 MHz - Operating modes Scan mode (single scan mode, continuous scan mode, and group scan mode) - Double trigger mode (duplication of A/D conversion data) - A/D conversion start conditions A software trigger, a trigger from a timer (MTU), or an external trigger signal
Temperature sensor (TEMPSa)		- 1 channel - The voltage of the temperature is converted into a digital value by the 12-bit A/D converter.
CRC calculator (- CRC code generation for arbitrary amounts of data in 8-bit units - Select any of three generating polynomials: $x^{8}+x^{2}+x+1, x^{16}+x^{15}+x^{2}+1, \text { or } x^{16}+x^{12}+x^{5}+1$ - Generation of CRC codes for use with LSB-first or MSB-first communications is selectable.

Table 1.1 Outline of Specifications (3/3)

Classification Module/Function	Description
Data operation circuit (DOC)	Comparison, addition, and subtraction of 16-bit data
Power supply voltages/Operating frequencies	$\mathrm{VCC}=1.8$ to $2.4 \mathrm{~V}: 8 \mathrm{MHz}, \mathrm{VCC}=2.4$ to $2.7 \mathrm{~V}: 16 \mathrm{MHz}, \mathrm{VCC}=2.7$ to $3.6 \mathrm{~V}: 32 \mathrm{MHz}$
Supply current	3.2 mA at 32 MHz (typ.)
Operating temperatures	D version: -40 to $+85^{\circ} \mathrm{C}, \mathrm{G}$ version: -40 to $+105^{\circ} \mathrm{C}$
Packages	64-pin LFQFP (PLQP0064KB-A) $10 \times 10 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch 64-pin LQFP (PLQP0064GA-A) $14 \times 14 \mathrm{~mm}, 0.8 \mathrm{~mm}$ pitch 64-pin WFLGA (PWLG0064KA-A) $5 \times 5 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch 48-pin LFQFP (PLQP0048KB-A) $7 \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch 48-pin HWQFN (PWQN0048KB-A) $7 \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch 40-pin HWQFN (PWQN0040KC-A) $6 \times 6 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch 36-pin WFLGA (PWLG0036KA-A) $4 \times 4 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch
On-chip debugging system	E1 emulator (FINE interface)

Table 1.2 Comparison of Functions for Different Packages

Module/Functions		RX110 Group			
		64 Pins	48 Pins	40 Pins	36 Pins
Interrupts	External interrupts	NMI, IRQ0 to IRQ7			
DMA	Data transfer controller	Supported			
Timers	Multi-function timer pulse unit 2	4 channels (MTU0 to MTU2, MTU5)			
	Compare match timer	2 channels $\times 1$ unit			
	Realtime clock	Supported		Not supported	
	Independent watchdog timer	Supported			
Communication functions	Serial communications interfaces [simple $I^{2} \mathrm{C}$, simple SPI]	2 channels (SCI1, SCI5)			
	Serial communications interface [simple ${ }^{2} \mathrm{C}$, simple SPI]	1 channel (SCI12)			
	${ }^{12} \mathrm{C}$ bus interface	1 channel			
	Serial peripheral interface	1 channel	1 channel(SSLA1 and SSLA3 are not supported)		1 channel (SSLA1 to SSLA3 are not supported)
12-bit A/D converter (including high-precision channels)		14 channels (6 channels)	10 channels (4 channels)	8 channels (3 channels)	7 channels (2 channels)
Temperature sensor		Supported			
CRC calculator		Supported			
Packages		64-pin LFQFP 64-pin LQFP 64-pin WFLGA	48-pin LFQFP 48-pin HWQFN	40-pin HWQFN	36-pin WFLGA

1.2 List of Products

Table 1.3 is a list of products, and Figure 1.1 shows how to read the product part no., memory capacity, and package type.

Table 1.3 List of Products (1/2)

Table 1.3 List of Products (2/2)

Note: • Orderable part numbers are current as of when this manual was published. Please make sure to refer the relevant product page on the Renesas website for the latest part numbers.

Figure 1.1 How to Read the Product Part No., Memory Capacity, and Package Type

1.3 Block Diagram

Figure 1.2 shows a block diagram.

Figure 1.2 Block Diagram

1.4 Pin Functions

Table 1.4 lists the pin functions.
Table 1.4 Pin Functions (1/3)

Classifications	Pin Name	I/O	Description
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply.
	VCL	-	Connect this pin to the VSS pin via the 4.7 μ F smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.
		VSS	Input
	XTAL	Ground pin. Connect it to the system power supply (0 V).	
		EXTAL	Input *1

Table 1.4 Pin Functions (2/3)

Classifications	Pin Name	1/0	Description
Serial communications interface (SCIf)	- Asynchronous mode/clock synchronous mode		
	SCK12	I/O	Input/output pin for the clock.
	RXD12	Input	Input pin for receiving data.
	TXD12	Output	Output pin for transmitting data.
	CTS12\#	Input	Input pin for controlling the start of transmission and reception.
	RTS12\#	Output	Output pin for controlling the start of transmission and reception.
	- Simple ${ }^{2} \mathrm{C}$ mode		
	SSCL12	I/O	Input/output pin for the $\mathrm{I}^{2} \mathrm{C}$ clock.
	SSDA12	I/O	Input/output pin for the $\mathrm{I}^{2} \mathrm{C}$ data.
	- Simple SPI mode		
	SCK12	I/O	Input/output pin for the clock.
	SMISO12	I/O	Input/output pin for slave transmit data.
	SMOSI12	I/O	Input/output pin for master transmit data.
	SS12\#	Input	Chip-select input pin.
	- Extended serial mode		
	RXDX12	Input	Input pin for data reception by SCIf.
	TXDX12	Output	Output pin for data transmission by SCIf.
	SIOX12	I/O	Input/output pin for data reception or transmission by SCIf.
$1^{2} \mathrm{C}$ bus interface	SCLO	I/O	Input/output pin for $\mathrm{I}^{2} \mathrm{C}$ bus interface clocks. Bus can be directly driven by the N -channel open drain output.
	SDA0	I/O	Input/output pin for $\mathrm{I}^{2} \mathrm{C}$ bus interface data. Bus can be directly driven by the N -channel open drain output.
Serial peripheral interface	RSPCKA	I/O	Input/output pin for the RSPI clock.
	MOSIA	I/O	Input/output pin for transmitting data from the RSPI master.
	MISOA	I/O	Input/output pin for transmitting data from the RSPI slave.
	SSLA0	I/O	Input/output pin to select the slave for the RSPI.
	SSLA1 to SSLA3	Output	Output pins to select the slave for the RSPI.
12-bit A/D converter	AN000 to AN004, AN006, AN008 to AN015	Input	Input pins for the analog signals to be processed by the A/D converter.
	ADTRGO\#	Input	Input pin for the external trigger signals that start the A/D conversion.
Analog power supply	AVCC0	Input	Analog voltage supply pin for the 12-bit A/D converter. Connect this pin to VCC when not using the 12-bit A/D converter.
	AVSS0	Input	Analog ground pin for the 12-bit A/D converter. Connect this pin to VSS when not using the 12-bit A/D converter.
	VREFH0	Input	Analog reference voltage supply pin for the 12-bit A/D converter. Connect this pin to VCC when not using the 12-bit A/D converter.
	VREFLO	Input	Analog reference ground pin for the 12-bit A/D converter. Connect this pin to VSS when not using the 12-bit A/D converter.
I/O ports	P03, P05	I/O	2-bit input/output pins.
	P14 to P17	I/O	4-bit input/output pins.
	P26, P27	I/O	2-bit input/output pins.
	P30 to P32, P35	I/O	4-bit input/output pins (P35 input pin).
	P40 to P44, P46	I/O	6-bit input/output pins.
	P54, P55	I/O	2-bit input/output pins.
	PA0, PA1, PA3, PA4, PA6	I/O	5-bit input/output pins.
	PB0, PB1, PB3, PB5 to PB7	I/O	6-bit input/output pins.
	PC0 to PC7	I/O	8-bit input/output pins.
	PE0 to PE7	I/O	8-bit input/output pins.

Table 1.4 Pin Functions (3/3)

Classifications	Pin Name	I/O	Description
I/O ports	PH0 to PH3	I/O	4-bit input/output pins.
	PH7	Input	1-bit input pin.
	PJ6, PJ7	I/O	2-bit input/output pins.

Note 1. For external clock input.

1.5 Pin Assignments

Figure 1.3 to Figure 1.7 show the pin assignments. Table 1.5 to Table 1.9 show the lists of pins and pin functions.

Note: - This figure indicates the power supply pins and I/O ports.
For the pin configuration, see the table "List of Pins and Pin Functions (64-Pin LQFP)".

Figure 1.3
Pin Assignments of the 64-Pin LQFP

RX110 Group
 PWLG0064KA-A
 (64-pin WFLGA)
 (Upper perspective view)

Note: • This figure indicates the power supply pins and VO port pins. For the pin configuration, see the table "List of Pins and Pin Functions (64-Pin WFLGA)". - For the position of A1 pin in the package, see "Package Dimensions".

Figure 1.4 Pin Assignments of the 64-Pin WFLGA

Note: - This figure indicates the power supply pins and I/O port pins.
For the pin configuration, see the table "List of Pins and Pin Functions (48-Pin LQFP/HWQFN)".

Figure 1.5
Pin Assignments of the 48-Pin LQFP/HWQFN

Figure 1.6
Pin Assignments of the 40-Pin HWQFN

RX110 Group
 PWLG0036KA-A
 (36-pin WFLGA) (Upper perspective view)

A B C D E F
Note: - This figure indicates the power supply pins and VO port pins. For the pin configuration, see the table "List of Pins and Pin Functions (36-Pin WFLGA)".

- For the position of A1 pin in the package, see "Package Dimensions".

Figure 1.7 Pin Assignments of the 36-Pin WFLGA

Table 1.5 List of Pins and Pin Functions (64-Pin LQFP) (1/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, RTC)	Communication (SCle, SCIf, RSPI, RIIC)	Others
1		P03			
2		P27	MTIOC2B	SCK1/SCK12	IRQ3/CMPA2/ CACREF/ADTRGO\#
3		P26	MTIOC2A	TXD1/SMOSI1/SSDA1	
4		P30		RXD1/SMISO1/SSCL1	IRQ0
5		P31		CTS1\#/RTS1\#/SS1\#	IRQ1
6	MD				FINED
7	RES\#				
8	XCOUT				
9	XCIN	PH7			
10		P35			NMI
11	XTAL				
12	EXTAL				
13	VCL				
14	VSS				
15	VCC				
16		P32	MTIOCOC/RTCOUT		IRQ2
17		P17	MTIOCOC	SCK1/MISOA/SDA0/RXD12/RXDX12/ SMISO12/SSCL12	IRQ7
18		P16	RTCOUT	TXD1/SMOSI1/SSDA1/MOSIA/SCL0	IRQ6/ADTRG0\#
19		P15	MTIOCOB/MTCLKB	RXD1/SMISO1/SSCL1/RSPCKA	IRQ5/CLKOUT
20		P14	MTIOCOA/MTCLKA	CTS1\#/RTS1\#/SS1\#/SSLA0/TXD12/ TXDX12/SIOX12/SMOSI12/SSDA12	IRQ4
21		PH3	MTIOC1A		
22		PH2			IRQ1
23		PH1			IRQ0
24		PH0	MTIOC1B		CACREF
25		P55			
26		P54			
27		PC7	MTCLKB	TXD1/SMOSI1/SSDA1/MISOA	CACREF
28		PC6	MTCLKA	RXD1/SMISO1/SSCL1/MOSIA	
29		PC5	MTCLKD	SCK1/RSPCKA	
30		PC4	MTCLKC	SCK5/SSLA0	IRQ2/CLKOUT
31		PC3		TXD5/SMOSI5/SSDA5	
32		PC2		RXD5/SMISO5/SSCL5/SSLA3	
33		PB7/PC1			
34		PB6/PC0			
35		PB5	MTIOC2A/MTIOC1B		
36		PB3	MTIOCOA		
37		PB1	MTIOCOC		IRQ4
38	VCC				
39		PB0	MTIC5W/MTIOCOC/ RTCOUT	SCLO/RSPCKA	IRQ2/ADTRG0\#
40	VSS				
41		PA6	MTIC5V/MTCLKB/MTIOC2A	CTS5\#/RTS5\#/SS5\#/SDA0/MOSIA	IRQ3
42		PA4	MTIC5U/MTCLKA/MTIOC2B	TXD5/SMOSI5/SSDA5/SSLA0	IRQ5
43		PA3	MTIOCOD/MTCLKD/ MTIOC1B	RXD5/SMISO5/SSCL5/MISOA	IRQ6
44		PA1	MTIOCOB/MTCLKC/ RTCOUT	SCK5/SSLA2	

Table 1.5 List of Pins and Pin Functions (64-Pin LQFP) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, RTC)	Communication (SCle, SCIf, RSPI, RIIC)
45	PA0		SSLA1	Others

Table 1.6 List of Pins and Pin Functions (64-Pin WFLGA) (1/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, RTC)	Communication (SCle, SCIf, RSPI, RIIC)	Others
A1	AVSS0				
A2	AVCCO				
A3	VREFH0	PJ6			
A4	VREFLO	PJ7			
A5		P43			AN003
A6		P46			AN006
A7		PE2		RXD12/RXDX12/SMISO12/SSCL12	IRQ7/AN010
A8		PE3	MTIOC0A/MTIOC1B	CTS12\#/RTS12\#/SS12\#/RSPCKA	IRQ3/AN011
B1	XCOUT				
B2		P03			
B3		P40			ANOOO
B4		P42			ANOO2
B5		P44			AN004
B6		PE6			IRQ6/AN014
B7		PE1		$\begin{aligned} & \text { TXD12/TXDX12/SIOX12/SMOSI12/ } \\ & \text { SSDA12 } \end{aligned}$	IRQ1/AN009
B8		PE4	MTIOC1A	MOSIA	IRQ4/AN012
C1	XCIN	PH7			
C2		P05			
C3		P27	MTIOC2B	SCK1/SCK12	IRQ3/CMPA2/ CACREF/ADTRGO\#
C4		P41			AN001
C5		PE7			IRQ7/AN015
C6		PE5	MTIOC2B		IRQ5/AN013
C7		PA1	MTIOCOB/MTCLKC/ RTCOUT	SCK5/SSLA2	
C8		PAO		SSLA1	CACREF
D1	RES\#				
D2		P30		RXD1/SMISO1/SSCL1	IRQ0
D3		P26	MTIOC2A	TXD1/SMOSI1/SSDA1	
D4		PEO	MTIOC2A	SCK12	IRQ0/AN008
D5		PA6	MTIC5V/MTIOC2A/MTCLKB	CTS5\#/RTS5\#/SS5\#/SDA0/MOSIA	IRQ3
D6		PA4	MTIC5U/MTIOC2B/MTCLKA	TXD5/SMOSI5/SSDA5/SSLA0	IRQ5
D7		PA3	MTIOCOD/MTCLKD/ MTIOC1B	RXD5/SMISO5/SSCL5/MISOA	IRQ6
D8	VSS				
E1	XTAL				
E2	MD				FINED
E3		P31		CTS1\#/RTS1\#/SS1\#	IRQ1
E4		P55			
E5		PB3	MTIOCOA		
E6		PB1	MTIOCOC		IRQ4
E7		PB0	MTIC5W/MTIOCOC/ RTCOUT	SCLO/RSPCKA	IRQ2/ADTRG0\#
E8	VCC				
F1	EXTAL				
F2		P32	MTIOCOC/RTCOUT		IRQ2
F3		P35			NMI
F4		P14	MTIOCOA/MTCLKA	$\begin{aligned} & \text { CTS1\#/RTS1\#/SS1\#/TXD12/ } \\ & \text { TXDX12/SIOX12/SMOSI12/SSDA12/ } \\ & \text { SSLA0 } \end{aligned}$	IRQ4

Table 1.6 List of Pins and Pin Functions (64-Pin WFLGA) (2/2)

| Pin
 No. | Power Supply, Clock,
 System Control | I/O Port | Timers (MTU, RTC) | Communication
 (SCle, SCIf, RSPI, RIIC) | Others |
| :--- | :--- | :--- | :--- | :--- | :--- | (F5

Table $1.7 \quad$ List of Pins and Pin Functions (48-Pin LQFP/HWQFN) (1/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, RTC)	Communication (SCle, SCIf, RSPI, RIIC)	Others
1		P27	MTIOC2B	SCK1/SCK12	IRQ3/CMPA2/ CACREF/ADTRGO\#
2		P26	MTIOC2A	TXD1/SMOSI1/SSDA1	
3	MD				FINED
4	RES\#				
5	XCOUT				
6	XCIN	PH7			
7		P35			NMI
8	XTAL				
9	EXTAL				
10	VCL				
11	VSS				
12	VCC				
13		P17	MTIOCOC	$\begin{aligned} & \text { SCK1/MISOA/SDA0/RXD12/RXDX12/ } \\ & \text { SMISO12/SSCL12 } \end{aligned}$	IRQ7
14		P16	RTCOUT	TXD1/SMOSI1/SSDA1/MOSIA/SCL0	IRQ6/ADTRG0\#
15		P15	MTIOCOB/MTCLKB	RXD1/SMISO1/SSCL1/RSPCKA	IRQ5/CLKOUT
16		P14	MTIOCOA/MTCLKA	CTS1\#/RTS1\#/SS1\#/SSLA0/TXD12/ TXDX12/SIOX12/SMOSI12/SSDA12	IRQ4
17		PH3	MTIOC1A		
18		PH2			IRQ1
19		PH1			IRQ0
20		PH0	MTIOC1B		CACREF
21		PC7	MTCLKB	TXD1/SMOSI1/SSDA1/MISOA	CACREF
22		PC6	MTCLKA	RXD1/SMISO1/SSCL1/MOSIA	
23		PC5	MTCLKD	SCK1/RSPCKA	
24		PC4	MTCLKC	SCK5/SSLAO	IRQ2/CLKOUT
25		PB5/PC3	MTIOC2A/MTIOC1B		
26		PB3/PC2	MTIOCOA		
27		PB1/PC1	MTIOCOC		IRQ4
28	VCC				
29		PB0/PC0	MTIC5W/MTIOC0C/ RTCOUT	SCLO/RSPCKA	IRQ2/ADTRG0\#
30	VSS				
31		PA6	MTIC5V/MTCLKB/MTIOC2A	CTS5\#/RTS5\#/SS5\#/SDA0/MOSIA	IRQ3
32		PA4	MTIC5U/MTCLKA/MTIOC2B	TXD5/SMOSI5/SSDA5/SSLA0	IRQ5
33		PA3	MTIOCOD/MTCLKD/ MTIOC1B	RXD5/SMISO5/SSCL5/MISOA	IRQ6
34		PA1	MTIOCOB/MTCLKC/ RTCOUT	SCK5/SSLA2	
35		PE4	MTIOC1A	MOSIA	IRQ4/AN012
36		PE3	MTIOC0A/MTIOC1B	CTS12\#/RTS12\#/SS12\#/RSPCKA	IRQ3/AN011
37		PE2		RXD12/RXDX12/SMISO12/SSCL12	IRQ7/AN010
38		PE1		$\begin{aligned} & \text { TXD12/TXDX12/SIOX12/SMOSI12/ } \\ & \text { SSDA12 } \end{aligned}$	IRQ1/AN009
39		PE0	MTIOC2A	SCK12	IRQ0/AN008
40		PE7			IRQ7/AN015
41		P46			AN006
42		P42			AN002
43		P41			AN001
44	VREFLO	PJ7			

Table 1.7 List of Pins and Pin Functions (48-Pin LQFP/HWQFN) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, RTC)	Communication (SCle, SCIf, RSPI, RIIC)	Others
45		P40			ANOOO
46	VREFH0	PJ6			
47	AVSSO				
48	AVCC0				

Table $1.8 \quad$ List of Pins and Pin Functions (40-Pin HWQFN)
$\left.\begin{array}{llllll}\hline \begin{array}{l}\text { Pin } \\ \text { No. }\end{array} & \begin{array}{l}\text { Power Supply, Clock, } \\ \text { System Control }\end{array} & \text { I/O Port } & \text { Timers (MTU, RTC) } & \begin{array}{l}\text { Communication } \\ \text { (SCle, SCIf, RSPI, RIIC) }\end{array} & \text { Others } \\ \hline 1 & & \text { P27 } & \text { MTIOC2B } & \text { SCK1/SCK12 } & \text { IRQ3/CMPA2/ } \\ \text { CACREF/ADTRG0\# }\end{array}\right]$

Table 1.9 List of Pins and Pin Functions (36-Pin WFLGA)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, RTC)	Communication (SCle, SCIf, RSPI, RIIC)	Others
A1	AVSS0				
A2	AVCCO				
A3	VREFH0	PJ6			
A4		P42			AN002
A5		P41			AN001
A6		PE2		RXD12/RXDX12/SMISO12/SSCL12	IRQ7/AN010
B1	RES\#				
B2		P27	MTIOC2B	SCK1/SCK12	IRQ3/CMPA2/ CACREF/ADTRGO\#
B3	VREFLO	PJ7			
B4		PE0	MTIOC2A	SCK12	IRQO/AN008
B5		PE1		$\begin{aligned} & \text { TXD12/TXDX12/SIOX12/SMOSI12/ } \\ & \text { SSDA12 } \end{aligned}$	IRQ1/AN009
B6		PA3	MTIOCOD/MTCLKD/ MTIOC1B	RXD5/SMISO5/SSCL5/MISOA	IRQ6
C1	XTAL				
C2	MD				FINED
C3		PE3	MTIOC0A/MTIOC1B	CTS12\#/RTS12\#/SS12\#/RSPCKA	IRQ3/AN011
C4		PE4	MTIOC1A	MOSIA	IRQ4/AN012
C5		PA4	MTIOC2B/MTIC5U/MTCLKA	TXD5/SMOSI5/SSDA5/SSLA0	IRQ5
C6	VSS				
D1	EXTAL				
D2		P35			NMI
D3		P14	MTIOCOA/MTCLKA	$\begin{aligned} & \text { CTS1\#/RTS1\#/SS1\#/SSLA0/TXD12/ } \\ & \text { TXDX12/SIOX12/SMOSI12/SSDA12 } \end{aligned}$	IRQ4
D4		PA6	MTIC5V/MTCLKB/MTIOC2A	CTS5\#/RTS5\#/SS5\#/SDA0/MOSIA	IRQ3
D5		PB3	MTIOCOA		
D6		PB0	MTIOCOC/MTIC5W	SCLO/RSPCKA	IRQ2/ADTRG0\#
E1	VCL				
E2		P17	MTIOCOC	SCK1/MISOA/SDA0/RXD12/RXDX12/ SMISO12/SSCL12	IRQ7
E3		P16		TXD1/SMOSI1/SSDA1/SCL0/MOSIA	IRQ6/ADTRG0\#
E4		P15	MTIOCOB/MTCLKB	RXD1/SMISO1/SSCL1/RSPCKA	IRQ5/CLKOUT
E5		PC4	MTCLKC	SCK5/SSLA0	IRQ2/CLKOUT
E6	VCC				
F1	VSS				
F2	VCC				
F3		PH3	MTIOC1A		
F4		PH2			IRQ1
F5		PH1			IRQ0
F6		PHO	MTIOC1B		CACREF

2. CPU

Figure 2.1 shows the register set of the CPU.

DSP instruction register

Note 1. The stack pointer (SP) can be the interrupt stack pointer (ISP) or user stack pointer (USP), according to the value of the U bit in the PSW register.

Figure 2.1 Register Set of the CPU

2.1 General-Purpose Registers (R0 to R15)

This CPU has 16 general-purpose registers (R0 to R15). R0 to R15 can be used as data registers or address registers. R0, a general-purpose register, also functions as the stack pointer (SP). The stack pointer is switched to operate as the interrupt stack pointer (ISP) or user stack pointer (USP) by the value of the stack pointer select bit (U) in the processor status word (PSW).

2.2 Control Registers

(1) Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)

The stack pointer (SP) can be either of two types, the interrupt stack pointer (ISP) or the user stack pointer (USP). Whether the stack pointer operates as the ISP or USP depends on the value of the stack pointer select bit (U) in the processor status word (PSW).
Set the ISP or USP to a multiple of 4, as this reduces the numbers of cycles required to execute interrupt sequences and instructions entailing stack manipulation.

(2) Interrupt Table Register (INTB)

The interrupt table register (INTB) specifies the address where the relocatable vector table starts.

(3) Program Counter (PC)

The program counter (PC) indicates the address of the instruction being executed.

(4) Processor Status Word (PSW)

The processor status word (PSW) indicates the results of instruction execution or the state of the CPU.

(5) Backup PC (BPC)

The backup PC (BPC) is provided to speed up response to interrupts.
After a fast interrupt has been generated, the contents of the program counter (PC) are saved in the BPC register.

(6) Backup PSW (BPSW)

The backup PSW (BPSW) is provided to speed up response to interrupts.
After a fast interrupt has been generated, the contents of the processor status word (PSW) are saved in the BPSW. The allocation of bits in the BPSW corresponds to that in the PSW.

(7) Fast Interrupt Vector Register (FINTV)

The fast interrupt vector register (FINTV) is provided to speed up response to interrupts.
The FINTV register specifies a branch destination address when a fast interrupt has been generated.

2.3 Register Associated with DSP Instructions

(1) Accumulator (ACC)

The accumulator (ACC) is a 64-bit register used for DSP instructions. The accumulator is also used for the multiply and multiply-and-accumulate instructions; EMUL, EMULU, MUL, and RMPA, in which case the prior value in the accumulator is modified by execution of the instruction.
Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The MVTACHI and MVTACLO instructions write data to the higher-order 32 bits (bits 63 to 32) and the lower-order 32 bits (bits 31 to 0), respectively. Use the MVFACHI and MVFACMI instructions for reading data from the accumulator. The MVFACHI and MVFACMI instructions read data from the higher-order 32 bits (bits 63 to 32) and the middle 32 bits (bits 47 to 16), respectively.

3. Address Space

3.1 Address Space

This MCU has a 4-Gbyte address space, consisting of the range of addresses from 00000000 h to FFFF FFFFh. That is, linear access to an address space of up to 4 Gbytes is possible, and this contains program area.
Figure 3.1 shows the memory map.

Note 1. The address space in boot mode is the same as the address space in single-chip mode.
Note 2. The capacity of ROM/RAM differs depending on the products.

ROM (bytes)		RAM (bytes)	
Capacity	Address	Capacity	Address
128 K	FFFE 0000h to FFFF FFFFh	16 K	00000000 h to 0000 3FFFh
96 K	FFFE 8000h to FFFF FFFFh		
64 K	FFFF 0000h to FFFF FFFFh	10 K	00000000 h to 0000 27FFh
32 K	FFFF 8000h to FFFF FFFFFh		
16 K	FFFF C000h to FFFF FFFFh	8 K	00000000 h to 0000 1FFFh
8 K	FFFF E000h to FFFF FFFFh		

Note: • See Table 1.3, List of Products, for the product type name.

Note 3. Reserved areas should not be accessed.
Figure 3.1 Memory Map

4. I/O Registers

This section provides information on the on-chip I/O register addresses and bit configuration. The information is given as shown below. Notes on writing to I/O registers are also given below.

(1) I/O register addresses (address order)

- Registers are listed from the lower allocation addresses.
- Registers are classified according to module symbols.
- Numbers of cycles for access indicate numbers of cycles of the given base clock.
- Among the internal I/O register area, addresses not listed in the list of registers are reserved. Reserved addresses must not be accessed. Do not access these addresses; otherwise, the operation when accessing these bits and subsequent operations cannot be guaranteed.

(2) Notes on writing to I/O registers

While writing to an I/O register, the CPU starts executing subsequent instructions before the I/O register write access is completed. This may cause the subsequent instructions to be executed before the write value is reflected in the operation. The examples below show how subsequent instructions must be executed after a write access to an I/O register is completed.

[Examples of cases requiring special care]

- The subsequent instruction must be executed while an interrupt request is disabled with the IENj bit in IERn of the ICU (interrupt request enable bit) cleared to 0 .
- A WAIT instruction is executed immediately after the preprocessing for causing a transition to the low power consumption state.

In the above cases, after writing to an I/O register, wait until the write operation is completed using the following procedure and then execute the subsequent instruction.
(a) Write to an I/O register.
(b) Read the value in the I/O register and write it to a general register.
(c) Execute the operation using the value read.
(d) Execute the subsequent instruction.

Example of instructions

- Byte-size I/O registers

MOV.L \#SFR_ADDR, R1
MOV.B \#SFR_DATA, [R1]
CMP [R1].UB, R1
;; Next process

- Word-size I/O registers

MOV.L \#SFR_ADDR, R1
MOV.W \#SFR_DATA, [R1]
CMP [R1].W, R1
;; Next process

- Longword-size I/O registers

MOV.L \#SFR_ADDR, R1
MOV.L \#SFR_DATA, [R1]
CMP [R1].L, R1
;; Next process

When executing an instruction after writing to multiple registers, only read the last I/O register written to and execute the instruction using that value; it is not necessary to execute the instruction using the values written to all the registers.

(3) Number of cycles necessary for accessing I/O registers

See Table 4.1 for details on the number of clock cycles necessary for accessing I/O registers.
The number of access cycles to I/O registers is obtained by following equation. ${ }^{* 1}$

Number of access cycles to I/O registers = Number of bus cycles for internal main bus $1+$
Number of divided clock synchronization cycles +
Number of bus cycles for internal peripheral buses 1, 2, and 4 to 6

The number of bus cycles of internal peripheral buses 1,2 , and 4 to 6 differs according to the register to be accessed. When peripheral functions connected to internal peripheral buses 2 , and 4 to 6 or registers for the external bus control unit (except for bus error related registers) are accessed, the number of divided clock synchronization cycles is added. The number of divided clock synchronization cycles differs depending on the frequency ratio between ICLK and PCLK (or FCLK) or bus access timing.
In the peripheral function unit, when the frequency ratio of ICLK is equal to or greater than that of PCLK (or FCLK), the sum of the number of bus cycles for internal main bus 1 and the number of the divided clock synchronization cycles will be one cycle of PCLK (or FCLK) at a maximum. Therefore, one PCLK (or FCLK) has been added to the number of access cycles shown in Table 4.1.
When the frequency ratio of ICLK is lower than that of PCLK (or FCLK), the subsequent bus access is started from the ICLK cycle following the completion of the access to the peripheral functions. Therefore, the access cycles are described on an ICLK basis.

Note 1. This applies to the number of cycles when the access from the CPU does not conflict with the instruction fetching to the external memory or bus access from the different bus master (DTC).

(4) Notes on sleep mode and mode transitions

During sleep mode or mode transitions, do not write to the system control related registers (indicated by 'SYSTEM' in the Module Symbol column in Table 4.1, List of I/O Registers (Address Order)).

4.1 I/O Register Addresses (Address Order)

Table 4.1 List of I/O Registers (Address Order) (1/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 0000h	SYSTEM	Mode Monitor Register	MDMONR	16	16	3 ICLK
00080008 h	SYSTEM	System Control Register 1	SYSCR1	16	16	3 ICLK
0008 000Ch	SYSTEM	Standby Control Register	SBYCR	16	16	3 ICLK
0008 0010h	SYSTEM	Module Stop Control Register A	MSTPCRA	32	32	3 ICLK
00080014 h	SYSTEM	Module Stop Control Register B	MSTPCRB	32	32	3 ICLK
0008 0018h	SYSTEM	Module Stop Control Register C	MSTPCRC	32	32	3 ICLK
0008 0020h	SYSTEM	System Clock Control Register	SCKCR	32	32	3 ICLK
0008 0026h	SYSTEM	System Clock Control Register 3	SCKCR3	16	16	3 ICLK
0008 0032h	SYSTEM	Main Clock Oscillator Control Register	MOSCCR	8	8	3 ICLK
0008 0033h	SYSTEM	Sub-Clock Oscillator Control Register	SOSCCR	8	8	3 ICLK
0008 0034h	SYSTEM	Low-Speed On-Chip Oscillator Control Register	LOCOCR	8	8	3 ICLK
0008 0035h	SYSTEM	IWDT-Dedicated On-Chip Oscillator Control Register	ILOCOCR	8	8	3 ICLK
0008 0036h	SYSTEM	High-Speed On-Chip Oscillator Control Register	HOCOCR	8	8	3 ICLK
0008 003Ch	SYSTEM	Oscillation Stabilization Flag Register	OSCOVFSR	8	8	3 ICLK
0008 003Eh	SYSTEM	CLKOUT Output Control Register	CKOCR	16	16	3 ICLK
0008 0040h	SYSTEM	Oscillation Stop Detection Control Register	OSTDCR	8	8	3 ICLK
0008 0041h	SYSTEM	Oscillation Stop Detection Status Register	OSTDSR	8	8	3 ICLK
0008 00AOh	SYSTEM	Operating Power Control Register	OPCCR	8	8	3 ICLK
0008 00A1h	SYSTEM	Sleep Mode Return Clock Source Switching Register	RSTCKCR	8	8	3 ICLK
0008 00A2h	SYSTEM	Main Clock Oscillator Wait Control Register	MOSCWTCR	8	8	3 ICLK
0008 00A5h	SYSTEM	High-Speed On-Chip Oscillator Wait Control Register	HOCOWTCR	8	8	3 ICLK
0008 00AAh	SYSTEM	Sub Operating Power Control Register	SOPCCR	8	8	3 ICLK
0008 00C0h	SYSTEM	Reset Status Register 2	RSTSR2	8	8	3 ICLK
0008 00C2h	SYSTEM	Software Reset Register	SWRR	16	16	3 ICLK
0008 00EOh	SYSTEM	Voltage Monitoring 1 Circuit Control Register 1	LVD1CR1	8	8	3 ICLK
0008 00E1h	SYSTEM	Voltage Monitoring 1 Circuit Status Register	LVD1SR	8	8	3 ICLK
0008 00E2h	SYSTEM	Voltage Monitoring 2 Circuit Control Register 1	LVD2CR1	8	8	3 ICLK
0008 00E3h	SYSTEM	Voltage Monitoring 2 Circuit Status Register	LVD2SR	8	8	3 ICLK
0008 03FEh	SYSTEM	Protect Register	PRCR	16	16	3 ICLK
0008 1300h	BSC	Bus Error Status Clear Register	BERCLR	8	8	2 ICLK
0008 1304h	BSC	Bus Error Monitoring Enable Register	BEREN	8	8	2 ICLK
0008 1308h	BSC	Bus Error Status Register 1	BERSR1	8	8	2 ICLK
0008 130Ah	BSC	Bus Error Status Register 2	BERSR2	16	16	2 ICLK
0008 1310h	BSC	Bus Priority Control Register	BUSPRI	16	16	2 ICLK
0008 2400h	DTC	DTC Control Register	DTCCR	8	8	2 ICLK
0008 2404h	DTC	DTC Vector Base Register	DTCVBR	32	32	2 ICLK
0008 2408h	DTC	DTC Address Mode Register	DTCADMOD	8	8	2 ICLK
0008 240Ch	DTC	DTC Module Start Register	DTCST	8	8	2 ICLK
0008 240Eh	DTC	DTC Status Register	DTCSTS	16	16	2 ICLK
0008 7010h	ICU	Interrupt Request Register 016	IR016	8	8	2 ICLK
0008 701Bh	ICU	Interrupt Request Register 027	IR027	8	8	2 ICLK
0008 701Ch	ICU	Interrupt Request Register 028	IR028	8	8	2 ICLK
0008 701Dh	ICU	Interrupt Request Register 029	IR029	8	8	2 ICLK
0008 7020h	ICU	Interrupt Request Register 032	IR032	8	8	2 ICLK
00087021 h	ICU	Interrupt Request Register 033	IR033	8	8	2 ICLK
0008 7022h	ICU	Interrupt Request Register 034	IR034	8	8	2 ICLK
0008 7024h	ICU	Interrupt Request Register 036	IR036	8	8	2 ICLK
0008 7025h	ICU	Interrupt Request Register 037	IR037	8	8	2 ICLK
0008 7026h	ICU	Interrupt Request Register 038	IR038	8	8	2 ICLK

Table 4.1 List of I/O Registers (Address Order) (2/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 702Ch	ICU	Interrupt Request Register 044	IR044	8	8	2 ICLK
0008 702Dh	ICU	Interrupt Request Register 045	IR045	8	8	2 ICLK
0008 702Eh	ICU	Interrupt Request Register 046	IR046	8	8	2 ICLK
0008 702Fh	ICU	Interrupt Request Register 047	IR047	8	8	2 ICLK
0008 7039h	ICU	Interrupt Request Register 057	IR057	8	8	2 ICLK
0008 703Fh	ICU	Interrupt Request Register 063	IR063	8	8	2 ICLK
0008 7040h	ICU	Interrupt Request Register 064	IR064	8	8	2 ICLK
0008 7041h	ICU	Interrupt Request Register 065	IR065	8	8	2 ICLK
0008 7042h	ICU	Interrupt Request Register 066	IR066	8	8	2 ICLK
00087043 h	ICU	Interrupt Request Register 067	IR067	8	8	2 ICLK
00087044 h	ICU	Interrupt Request Register 068	IR068	8	8	2 ICLK
00087045 h	ICU	Interrupt Request Register 069	IR069	8	8	2 ICLK
00087046 h	ICU	Interrupt Request Register 070	IR070	8	8	2 ICLK
00087047 h	ICU	Interrupt Request Register 071	IR071	8	8	2 ICLK
00087058 h	ICU	Interrupt Request Register 088	IR088	8	8	2 ICLK
0008 7059h	ICU	Interrupt Request Register 089	IR089	8	8	2 ICLK
0008 705Ah	ICU	Interrupt Request Register 090	IR090	8	8	2 ICLK
0008 705Ch	ICU	Interrupt Request Register 092	IR092	8	8	2 ICLK
0008 705Dh	ICU	Interrupt Request Register 093	IR093	8	8	2 ICLK
0008 7066h	ICU	Interrupt Request Register 102	IR102	8	8	2 ICLK
00087067 h	ICU	Interrupt Request Register 103	IR103	8	8	2 ICLK
0008 706Ah	ICU	Interrupt Request Register 106	IR106	8	8	2 ICLK
0008 7072h	ICU	Interrupt Request Register 114	IR114	8	8	2 ICLK
0008 7073h	ICU	Interrupt Request Register 115	IR115	8	8	2 ICLK
00087074 h	ICU	Interrupt Request Register 116	IR116	8	8	2 ICLK
0008 7075h	ICU	Interrupt Request Register 117	IR117	8	8	2 ICLK
0008 7076h	ICU	Interrupt Request Register 118	IR118	8	8	2 ICLK
0008 7077h	ICU	Interrupt Request Register 119	IR119	8	8	2 ICLK
00087078 h	ICU	Interrupt Request Register 120	IR120	8	8	2 ICLK
0008 7079h	ICU	Interrupt Request Register 121	IR121	8	8	2 ICLK
0008 707Ah	ICU	Interrupt Request Register 122	IR122	8	8	2 ICLK
0008 707Bh	ICU	Interrupt Request Register 123	IR123	8	8	2 ICLK
0008 707Ch	ICU	Interrupt Request Register 124	IR124	8	8	2 ICLK
0008 707Dh	ICU	Interrupt Request Register 125	IR125	8	8	2 ICLK
0008 707Eh	ICU	Interrupt Request Register 126	IR126	8	8	2 ICLK
0008 707Fh	ICU	Interrupt Request Register 127	IR127	8	8	2 ICLK
0008 7080h	ICU	Interrupt Request Register 128	IR128	8	8	2 ICLK
00087081 h	ICU	Interrupt Request Register 129	IR129	8	8	2 ICLK
0008 7082h	ICU	Interrupt Request Register 130	IR130	8	8	2 ICLK
0008 7083h	ICU	Interrupt Request Register 131	IR131	8	8	2 ICLK
00087084 h	ICU	Interrupt Request Register 132	IR132	8	8	2 ICLK
0008 7085h	ICU	Interrupt Request Register 133	IR133	8	8	2 ICLK
0008 7086h	ICU	Interrupt Request Register 134	IR134	8	8	2 ICLK
0008 7087h	ICU	Interrupt Request Register 135	IR135	8	8	2 ICLK
0008 7088h	ICU	Interrupt Request Register 136	IR136	8	8	2 ICLK
0008 7089h	ICU	Interrupt Request Register 137	IR137	8	8	2 ICLK
0008 708Ah	ICU	Interrupt Request Register 138	IR138	8	8	2 ICLK
0008 708Bh	ICU	Interrupt Request Register 139	IR139	8	8	2 ICLK
0008 708Ch	ICU	Interrupt Request Register 140	IR140	8	8	2 ICLK
0008 708Dh	ICU	Interrupt Request Register 141	IR141	8	8	2 ICLK
0008 70AAh	ICU	Interrupt Request Register 170	IR170	8	8	2 ICLK
0008 70ABh	ICU	Interrupt Request Register 171	IR171	8	8	2 ICLK

Table 4.1 List of I/O Registers (Address Order) (3/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 70DAh	ICU	Interrupt Request Register 218	IR218	8	8	2 ICLK
0008 70DBh	ICU	Interrupt Request Register 219	IR219	8	8	2 ICLK
0008 70DCh	ICU	Interrupt Request Register 220	IR220	8	8	2 ICLK
0008 70DDh	ICU	Interrupt Request Register 221	IR221	8	8	2 ICLK
0008 70DEh	ICU	Interrupt Request Register 222	IR222	8	8	2 ICLK
0008 70DFh	ICU	Interrupt Request Register 223	IR223	8	8	2 ICLK
0008 70EOh	ICU	Interrupt Request Register 224	IR224	8	8	2 ICLK
0008 70E1h	ICU	Interrupt Request Register 225	IR225	8	8	2 ICLK
0008 70EEh	ICU	Interrupt Request Register 238	IR238	8	8	2 ICLK
0008 70EFh	ICU	Interrupt Request Register 239	IR239	8	8	2 ICLK
0008 70FOh	ICU	Interrupt Request Register 240	IR240	8	8	2 ICLK
000870 F 1 h	ICU	Interrupt Request Register 241	IR241	8	8	2 ICLK
000870 F 2 h	ICU	Interrupt Request Register 242	IR242	8	8	2 ICLK
$000870 \mathrm{F3h}$	ICU	Interrupt Request Register 243	IR243	8	8	2 ICLK
0008 70F4h	ICU	Interrupt Request Register 244	IR244	8	8	2 ICLK
0008 70F5h	ICU	Interrupt Request Register 245	IR245	8	8	2 ICLK
0008 70F6h	ICU	Interrupt Request Register 246	IR246	8	8	2 ICLK
0008 70F7h	ICU	Interrupt Request Register 247	IR247	8	8	2 ICLK
0008 70F8h	ICU	Interrupt Request Register 248	IR248	8	8	2 ICLK
0008 70F9h	ICU	Interrupt Request Register 249	IR249	8	8	2 ICLK
0008 711Bh	ICU	DTC Activation Enable Register 027	DTCER027	8	8	2 ICLK
0008 711Ch	ICU	DTC Activation Enable Register 028	DTCER028	8	8	2 ICLK
0008 711Dh	ICU	DTC Activation Enable Register 029	DTCER029	8	8	2 ICLK
0008 712Dh	ICU	DTC Activation Enable Register 045	DTCER045	8	8	2 ICLK
0008 712Eh	ICU	DTC Activation Enable Register 046	DTCER046	8	8	2 ICLK
0008 7140h	ICU	DTC Activation Enable Register 064	DTCER064	8	8	2 ICLK
00087141 h	ICU	DTC Activation Enable Register 065	DTCER065	8	8	2 ICLK
00087142 h	ICU	DTC Activation Enable Register 066	DTCER066	8	8	2 ICLK
00087143 h	ICU	DTC Activation Enable Register 067	DTCER067	8	8	2 ICLK
00087144 h	ICU	DTC Activation Enable Register 068	DTCER068	8	8	2 ICLK
0008 7145h	ICU	DTC Activation Enable Register 069	DTCER069	8	8	2 ICLK
00087146 h	ICU	DTC Activation Enable Register 070	DTCER070	8	8	2 ICLK
0008 7147h	ICU	DTC Activation Enable Register 071	DTCER071	8	8	2 ICLK
00087166 h	ICU	DTC Activation Enable Register 102	DTCER102	8	8	2 ICLK
0008 7167h	ICU	DTC Activation Enable Register 103	DTCER103	8	8	2 ICLK
00087172 h	ICU	DTC Activation Enable Register 114	DTCER114	8	8	2 ICLK
0008 7173h	ICU	DTC Activation Enable Register 115	DTCER115	8	8	2 ICLK
0008 7174h	ICU	DTC Activation Enable Register 116	DTCER116	8	8	2 ICLK
0008 7175h	ICU	DTC Activation Enable Register 117	DTCER117	8	8	2 ICLK
0008 7179h	ICU	DTC Activation Enable Register 121	DTCER121	8	8	2 ICLK
0008 717Ah	ICU	DTC Activation Enable Register 122	DTCER122	8	8	2 ICLK
0008 717Dh	ICU	DTC Activation Enable Register 125	DTCER125	8	8	2 ICLK
0008 717Eh	ICU	DTC Activation Enable Register 126	DTCER126	8	8	2 ICLK
0008 718Bh	ICU	DTC Activation Enable Register 139	DTCER139	8	8	2 ICLK
0008718 Ch	ICU	DTC Activation Enable Register 140	DTCER140	8	8	2 ICLK
0008718 Dh	ICU	DTC Activation Enable Register 141	DTCER141	8	8	2 ICLK
0008 71DBh	ICU	DTC Activation Enable Register 219	DTCER219	8	8	2 ICLK
0008 71DCh	ICU	DTC Activation Enable Register 220	DTCER220	8	8	2 ICLK
0008 71DFh	ICU	DTC Activation Enable Register 223	DTCER223	8	8	2 ICLK
0008 71EOh	ICU	DTC Activation Enable Register 224	DTCER224	8	8	2 ICLK
0008 71EFh	ICU	DTC Activation Enable Register 239	DTCER239	8	8	2 ICLK
0008 71FOh	ICU	DTC Activation Enable Register 240	DTCER240	8	8	2 ICLK

Table 4.1 List of I/O Registers (Address Order) (4/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
000871 F h	ICU	DTC Activation Enable Register 247	DTCER247	8	8	2 ICLK
000871 F 8 h	ICU	DTC Activation Enable Register 248	DTCER248	8	8	2 ICLK
00087202 h	ICU	Interrupt Request Enable Register 02	IER02	8	8	2 ICLK
00087203 h	ICU	Interrupt Request Enable Register 03	IER03	8	8	2 ICLK
0008 7204h	ICU	Interrupt Request Enable Register 04	IER04	8	8	2 ICLK
00087205 h	ICU	Interrupt Request Enable Register 05	IER05	8	8	2 ICLK
0008 7207h	ICU	Interrupt Request Enable Register 07	IER07	8	8	2 ICLK
00087208 h	ICU	Interrupt Request Enable Register 08	IER08	8	8	2 ICLK
0008 720Bh	ICU	Interrupt Request Enable Register OB	IEROB	8	8	2 ICLK
0008 720Ch	ICU	Interrupt Request Enable Register OC	IEROC	8	8	2 ICLK
0008 720Eh	ICU	Interrupt Request Enable Register OE	IEROE	8	8	2 ICLK
0008 720Fh	ICU	Interrupt Request Enable Register OF	IEROF	8	8	2 ICLK
0008 7210h	ICU	Interrupt Request Enable Register 10	IER10	8	8	2 ICLK
0008 7211h	ICU	Interrupt Request Enable Register 11	IER11	8	8	2 ICLK
0008 721Bh	ICU	Interrupt Request Enable Register 1B	IER1B	8	8	2 ICLK
0008 721-h	ICU	Interrupt Request Enable Register 1C	IER1C	8	8	2 ICLK
0008 721Dh	ICU	Interrupt Request Enable Register 1D	IER1D	8	8	2 ICLK
0008 721Eh	ICU	Interrupt Request Enable Register 1E	IER1E	8	8	2 ICLK
0008 721Fh	ICU	Interrupt Request Enable Register 1F	IER1F	8	8	2 ICLK
0008 72EOh	ICU	Software Interrupt Activation Register	SWINTR	8	8	2 ICLK
0008 72FOh	ICU	Fast Interrupt Set Register	FIR	16	16	2 ICLK
0008 7300h	ICU	Interrupt Source Priority Register 000	IPR000	8	8	2 ICLK
0008 7303h	ICU	Interrupt Source Priority Register 003	IPR003	8	8	2 ICLK
0008 7304h	ICU	Interrupt Source Priority Register 004	IPR004	8	8	2 ICLK
00087305 h	ICU	Interrupt Source Priority Register 005	IPR005	8	8	2 ICLK
0008 7320h	ICU	Interrupt Source Priority Register 032	IPR032	8	8	2 ICLK
0008 7321h	ICU	Interrupt Source Priority Register 033	IPR033	8	8	2 ICLK
0008 7322h	ICU	Interrupt Source Priority Register 034	IPR034	8	8	2 ICLK
0008 732Ch	ICU	Interrupt Source Priority Register 044	IPR044	8	8	2 ICLK
0008 7339h	ICU	Interrupt Source Priority Register 057	IPR057	8	8	2 ICLK
0008 733Fh	ICU	Interrupt Source Priority Register 063	IPR063	8	8	2 ICLK
0008 7340h	ICU	Interrupt Source Priority Register 064	IPR064	8	8	2 ICLK
00087341 h	ICU	Interrupt Source Priority Register 065	IPR065	8	8	2 ICLK
00087342 h	ICU	Interrupt Source Priority Register 066	IPR066	8	8	2 ICLK
0008 7343h	ICU	Interrupt Source Priority Register 067	IPR067	8	8	2 ICLK
0008 7344h	ICU	Interrupt Source Priority Register 068	IPR068	8	8	2 ICLK
0008 7345h	ICU	Interrupt Source Priority Register 069	IPR069	8	8	2 ICLK
0008 7346h	ICU	Interrupt Source Priority Register 070	IPR070	8	8	2 ICLK
0008 7347h	ICU	Interrupt Source Priority Register 071	IPR071	8	8	2 ICLK
0008 7358h	ICU	Interrupt Source Priority Register 088	IPR088	8	8	2 ICLK
0008 7359h	ICU	Interrupt Source Priority Register 089	IPR089	8	8	2 ICLK
0008 735Ch	ICU	Interrupt Source Priority Register 092	IPR092	8	8	2 ICLK
0008 735Dh	ICU	Interrupt Source Priority Register 093	IPR093	8	8	2 ICLK
0008 7366h	ICU	Interrupt Source Priority Register 102	IPR102	8	8	2 ICLK
0008 7367h	ICU	Interrupt Source Priority Register 103	IPR103	8	8	2 ICLK
0008 7372h	ICU	Interrupt Source Priority Register 114	IPR114	8	8	2 ICLK
0008 7376h	ICU	Interrupt Source Priority Register 118	IPR118	8	8	2 ICLK
0008 7379h	ICU	Interrupt Source Priority Register 121	IPR121	8	8	2 ICLK
0008 737Bh	ICU	Interrupt Source Priority Register 123	IPR123	8	8	2 ICLK
0008 737Dh	ICU	Interrupt Source Priority Register 125	IPR125	8	8	2 ICLK
0008 737Fh	ICU	Interrupt Source Priority Register 127	IPR127	8	8	2 ICLK
0008 738Bh	ICU	Interrupt Source Priority Register 139	IPR139	8	8	2 ICLK

Table 4.1 List of I/O Registers (Address Order) (5/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 73DAh	ICU	Interrupt Source Priority Register 218	IPR218	8	8	2 ICLK
0008 73DEh	ICU	Interrupt Source Priority Register 222	IPR222	8	8	2 ICLK
0008 73EEh	ICU	Interrupt Source Priority Register 238	IPR238	8	8	2 ICLK
$000873 F 2 h$	ICU	Interrupt Source Priority Register 242	IPR242	8	8	2 ICLK
000873 F 3 h	ICU	Interrupt Source Priority Register 243	IPR243	8	8	2 ICLK
0008 73F4h	ICU	Interrupt Source Priority Register 244	IPR244	8	8	2 ICLK
0008 73F5h	ICU	Interrupt Source Priority Register 245	IPR245	8	8	2 ICLK
0008 73F6h	ICU	Interrupt Source Priority Register 246	IPR246	8	8	2 ICLK
0008 73F7h	ICU	Interrupt Source Priority Register 247	IPR247	8	8	2 ICLK
0008 73F8h	ICU	Interrupt Source Priority Register 248	IPR248	8	8	2 ICLK
0008 73F9h	ICU	Interrupt Source Priority Register 249	IPR249	8	8	2 ICLK
0008 7500h	ICU	IRQ Control Register 0	IRQCRO	8	8	2 ICLK
00087501 h	ICU	IRQ Control Register 1	IRQCR1	8	8	2 ICLK
00087502 h	ICU	IRQ Control Register 2	IRQCR2	8	8	2 ICLK
00087503 h	ICU	IRQ Control Register 3	IRQCR3	8	8	2 ICLK
00087504 h	ICU	IRQ Control Register 4	IRQCR4	8	8	2 ICLK
0008 7505h	ICU	IRQ Control Register 5	IRQCR5	8	8	2 ICLK
00087506 h	ICU	IRQ Control Register 6	IRQCR6	8	8	2 ICLK
00087507 h	ICU	IRQ Control Register 7	IRQCR7	8	8	2 ICLK
00087510 h	ICU	IRQ Pin Digital Filter Enable Register 0	IRQFLTE0	8	8	2 ICLK
00087514 h	ICU	IRQ Pin Digital Filter Setting Register 0	IRQFLTC0	16	16	2 ICLK
00087580 h	ICU	Non-Maskable Interrupt Status Register	NMISR	8	8	2 ICLK
00087581 h	ICU	Non-Maskable Interrupt Enable Register	NMIER	8	8	2 ICLK
00087582 h	ICU	Non-Maskable Interrupt Status Clear Register	NMICLR	8	8	2 ICLK
00087583 h	ICU	NMI Pin Interrupt Control Register	NMICR	8	8	2 ICLK
00087590 h	ICU	NMI Pin Digital Filter Enable Register	NMIFLTE	8	8	2 ICLK
00087594 h	ICU	NMI Pin Digital Filter Setting Register	NMIFLTC	8	8	2 ICLK
00088000 h	Смт	Compare Match Timer Start Register 0	CMSTRO	16	16	2 or 3 PCLKB
00088002 h	смто	Compare Match Timer Control Register	CMCR	16	16	2 or 3 PCLKB
00088004 h	смто	Compare Match Timer Counter	CMCNT	16	16	2 or 3 PCLKB
00088006 h	смто	Compare Match Timer Constant Register	CMCOR	16	16	2 or 3 PCLKB
00088008 h	CMT1	Compare Match Timer Control Register	CMCR	16	16	2 or 3 PCLKB
0008 800Ah	CMT1	Compare Match Timer Counter	CMCNT	16	16	2 or 3 PCLKB
0008800 Ch	CMT1	Compare Match Timer Constant Register	CMCOR	16	16	2 or 3 PCLKB
00088030 h	IWDT	IWDT Refresh Register	IWDTRR	8	8	2 or 3 PCLKB
00088032 h	IWDT	IWDT Control Register	IWDTCR	16	16	2 or 3 PCLKB
0008 8034h	IWDT	IWDT Status Register	IWDTSR	16	16	2 or 3 PCLKB
0008 8036h	IWDT	IWDT Reset Control Register	IWDTRCR	8	8	2 or 3 PCLKB
0008 8038h	IWDT	IWDT Count Stop Control Register	IWDTCSTPR	8	8	2 or 3 PCLKB
0008 8280h	CRC	CRC Control Register	CRCCR	8	8	2 or 3 PCLKB
00088281 h	CRC	CRC Data Input Register	CRCDIR	8	8	2 or 3 PCLKB
0008 8282h	CRC	CRC Data Output Register	CRCDOR	16	16	2 or 3 PCLKB
0008 8300h	RIIC0	${ }^{12} \mathrm{C}$ Bus Control Register 1	ICCR1	8	8	2 or 3 PCLKB
0008 8301h	RIIC0	$1^{2} \mathrm{C}$ Bus Control Register 2	ICCR2	8	8	2 or 3 PCLKB
0008 8302h	RIIC0	${ }^{12} \mathrm{C}$ Bus Mode Register 1	ICMR1	8	8	2 or 3 PCLKB
0008 8303h	RIICO	${ }^{12} \mathrm{C}$ Bus Mode Register 2	ICMR2	8	8	2 or 3 PCLKB
0008 8304h	RIIC0	${ }^{12} \mathrm{C}$ Bus Mode Register 3	ICMR3	8	8	2 or 3 PCLKB
0008 8305h	RIIC0	$1^{2} \mathrm{C}$ Bus Function Enable Register	ICFER	8	8	2 or 3 PCLKB
0008 8306h	RIICO	${ }^{12} \mathrm{C}$ Bus Status Enable Register	ICSER	8	8	2 or 3 PCLKB
0008 8307h	RIIC0	${ }^{2} \mathrm{C}$ C Bus Interrupt Enable Register	ICIER	8	8	2 or 3 PCLKB
0008 8308h	RIICO	${ }^{2} \mathrm{C}$ C Bus Status Register 1	ICSR1	8	8	2 or 3 PCLKB
0008 8309h	RIIC0	${ }^{12} \mathrm{C}$ Bus Status Register 2	ICSR2	8	8	2 or 3 PCLKB

Table 4.1 List of I/O Registers (Address Order) (6/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 830Ah	RIIC0	Slave Address Register L0	SARLO	8	8	2 or 3 PCLKB
0008 830Ah	RIICO	Timeout Internal Counter L	TMOCNTL	8	8	2 or 3 PCLKB
0008 830Bh	RIICO	Slave Address Register U0	SARUO	8	8	2 or 3 PCLKB
0008 830Bh	RIICO	Timeout Internal Counter U	TMOCNTU	8	$8{ }^{* 1}$	2 or 3 PCLKB
0008830 Ch	RIIC0	Slave Address Register L1	SARL1	8	8	2 or 3 PCLKB
0008 830Dh	RIICO	Slave Address Register U1	SARU1	8	8	2 or 3 PCLKB
0008830 Eh	RIICO	Slave Address Register L2	SARL2	8	8	2 or 3 PCLKB
0008830 Fh	RIICO	Slave Address Register U2	SARU2	8	8	2 or 3 PCLKB
0008 8310h	RIICO	${ }^{12} \mathrm{C}$ Bus Bit Rate Low-Level Register	ICBRL	8	8	2 or 3 PCLKB
0008 8311h	RIICO	${ }^{2}{ }^{2} \mathrm{C}$ Bus Bit Rate High-Level Register	ICBRH	8	8	2 or 3 PCLKB
0008 8312h	RIICO	${ }^{12} \mathrm{C}$ Bus Transmit Data Register	ICDRT	8	8	2 or 3 PCLKB
0008 8313h	RIICO	${ }^{12} \mathrm{C}$ Bus Receive Data Register	ICDRR	8	8	2 or 3 PCLKB
0008 8380h	RSPIO	RSPI Control Register	SPCR	8	8	2 or 3 PCLKB
0008 8381h	RSPIO	RSPI Slave Select Polarity Register	SSLP	8	8	2 or 3 PCLKB
0008 8382h	RSPIO	RSPI Pin Control Register	SPPCR	8	8	2 or 3 PCLKB
0008 8383h	RSPIO	RSPI Status Register	SPSR	8	8	2 or 3 PCLKB
0008 8384h	RSPIO	RSPI Data Register	SPDR	32	16, 32	2 or 3 PCLKB/2ICLK
0008 8388h	RSPIO	RSPI Sequence Control Register	SPSCR	8	8	2 or 3 PCLKB
0008 8389h	RSPIO	RSPI Sequence Status Register	SPSSR	8	8	2 or 3 PCLKB
0008 838Ah	RSPIO	RSPI Bit Rate Register	SPBR	8	8	2 or 3 PCLKB
0008 838Bh	RSPIO	RSPI Data Control Register	SPDCR	8	8	2 or 3 PCLKB
0008 838Ch	RSPIO	RSPI Clock Delay Register	SPCKD	8	8	2 or 3 PCLKB
0008 838Dh	RSPIO	RSPI Slave Select Negation Delay Register	SSLND	8	8	2 or 3 PCLKB
0008 838Eh	RSPIO	RSPI Next-Access Delay Register	SPND	8	8	2 or 3 PCLKB
0008 838Fh	RSPIO	RSPI Control Register 2	SPCR2	8	8	2 or 3 PCLKB
0008 8390h	RSPIO	RSPI Command Register 0	SPCMD0	16	16	2 or 3 PCLKB
0008 8392h	RSPIO	RSPI Command Register 1	SPCMD1	16	16	2 or 3 PCLKB
00088394 h	RSPIO	RSPI Command Register 2	SPCMD2	16	16	2 or 3 PCLKB
0008 8396h	RSPIO	RSPI Command Register 3	SPCMD3	16	16	2 or 3 PCLKB
0008 8398h	RSPIO	RSPI Command Register 4	SPCMD4	16	16	2 or 3 PCLKB
0008 839Ah	RSPIO	RSPI Command Register 5	SPCMD5	16	16	2 or 3 PCLKB
0008 839Ch	RSPIO	RSPI Command Register 6	SPCMD6	16	16	2 or 3 PCLKB
0008 839Eh	RSPIO	RSPI Command Register 7	SPCMD7	16	16	2 or 3 PCLKB
0008 8680h	MTU	Timer Start Register	TSTR	8	8, 16	2 or 3 PCLKB
0008 8681h	MTU	Timer Synchronous Register	TSYR	8	8, 16	2 or 3 PCLKB
00088690 h	MTU0	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8691h	MTU1	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8692h	MTU2	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8695h	MTU5	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8700h	MTU0	Timer Control Register	TCR	8	8	2 or 3 PCLKB
0008 8701h	MTU0	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB
0008 8702h	MTU0	Timer I/O Control Register H	TIORH	8	8	2 or 3 PCLKB
0008 8703h	MTU0	Timer I/O Control Register L	TIORL	8	8	2 or 3 PCLKB
00088704 h	MTU0	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 8705h	mTU0	Timer Status Register	TSR	8	8	2 or 3 PCLKB
0008 8706h	MTU0	Timer Counter	TCNT	16	16	2 or 3 PCLKB
0008 8708h	MTU0	Timer General Register A	TGRA	16	16	2 or 3 PCLKB
0008 870Ah	MTU0	Timer General Register B	TGRB	16	16	2 or 3 PCLKB
0008 870Ch	MTU0	Timer General Register C	TGRC	16	16	2 or 3 PCLKB
0008 870Eh	MTU0	Timer General Register D	TGRD	16	16	2 or 3 PCLKB
0008 8720h	MTU0	Timer General Register E	TGRE	16	16	2 or 3 PCLKB
0008 8722h	MTUO	Timer General Register F	TGRF	16	16	2 or 3 PCLKB

Table 4.1 List of I/O Registers (Address Order) (7/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
00088724 h	MTU0	Timer Interrupt Enable Register 2	TIER2	8	8	2 or 3 PCLKB
0008 8726h	MTUO	Timer Buffer Operation Transfer Mode Register	TBTM	8	8	2 or 3 PCLKB
0008 8780h	MTU1	Timer Control Register	TCR	8	8	2 or 3 PCLKB
0008 8781h	MTU1	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB
0008 8782h	MTU1	Timer I/O Control Register	TIOR	8	8	2 or 3 PCLKB
00088784 h	MTU1	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 8785h	MTU1	Timer Status Register	TSR	8	8	2 or 3 PCLKB
0008 8786h	MTU1	Timer Counter	TCNT	16	16	2 or 3 PCLKB
0008 8788h	MTU1	Timer General Register A	TGRA	16	16	2 or 3 PCLKB
0008 878Ah	MTU1	Timer General Register B	TGRB	16	16	2 or 3 PCLKB
0008 8790h	MTU1	Timer Input Capture Control Register	TICCR	8	8	2 or 3 PCLKB
00088800 h	MTU2	Timer Control Register	TCR	8	8	2 or 3 PCLKB
00088801 h	MTU2	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB
00088802 h	MTU2	Timer I/O Control Register	TIOR	8	8	2 or 3 PCLKB
0008 8804h	MTU2	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 8805h	MTU2	Timer Status Register	TSR	8	8	2 or 3 PCLKB
0008 8806h	MTU2	Timer Counter	TCNT	16	16	2 or 3 PCLKB
0008 8808h	MTU2	Timer General Register A	TGRA	16	16	2 or 3 PCLKB
0008 880Ah	MTU2	Timer General Register B	TGRB	16	16	2 or 3 PCLKB
00088880 h	MTU5	Timer Counter U	TCNTU	16	16	2 or 3 PCLKB
0008 8882h	MTU5	Timer General Register U	TGRU	16	16	2 or 3 PCLKB
0008 8884h	MTU5	Timer Control Register U	TCRU	8	8	2 or 3 PCLKB
0008 8886h	MTU5	Timer I/O Control Register U	TIORU	8	8	2 or 3 PCLKB
0008 8890h	MTU5	Timer Counter V	TCNTV	16	16	2 or 3 PCLKB
0008 8892h	MTU5	Timer General Register V	TGRV	16	16	2 or 3 PCLKB
00088894 h	MTU5	Timer Control Register V	TCRV	8	8	2 or 3 PCLKB
0008 8896h	MTU5	Timer I/O Control Register V	TIORV	8	8	2 or 3 PCLKB
0008 88AOh	MTU5	Timer Counter W	TCNTW	16	16	2 or 3 PCLKB
0008 88A2h	MTU5	Timer General Register W	TGRW	16	16	2 or 3 PCLKB
0008 88A4h	MTU5	Timer Control Register W	TCRW	8	8	2 or 3 PCLKB
0008 88A6h	MTU5	Timer I/O Control Register W	TIORW	8	8	2 or 3 PCLKB
0008 88B2h	MTU5	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 88B4h	MTU5	Timer Start Register	TSTR	8	8	2 or 3 PCLKB
0008 88B6h	MTU5	Timer Compare Match Clear Register	TCNTCMPCLR	8	8	2 or 3 PCLKB
00089000 h	S12AD	A/D Control Register	ADCSR	16	16	2 or 3 PCLKB
00089004 h	S12AD	A/D Channel Select Register A	ADANSA	16	16	2 or 3 PCLKB
0008 9008h	S12AD	A/D-Converted Value Addition Mode Select Register	ADADS	16	16	2 or 3 PCLKB
0008 900Ch	S12AD	A/D-Converted Value Addition Count Select Register	ADADC	8	8	2 or 3 PCLKB
0008 900Eh	S12AD	A/D Control Extended Register	ADCER	16	16	2 or 3 PCLKB
0008 9010h	S12AD	A/D Start Trigger Select Register	ADSTRGR	16	16	2 or 3 PCLKB
00089012 h	S12AD	A/D Converted Extended Input Control Register	ADEXICR	16	16	2 or 3 PCLKB
00089014 h	S12AD	A/D Channel Select Register B	ADANSB	16	16	2 or 3 PCLKB
00089018 h	S12AD	A/D Data Duplication Register	ADDBLDR	16	16	2 or 3 PCLKB
0008901 Ah	S12AD	A/D Temperature Sensor Data Register	ADTSDR	16	16	2 or 3 PCLKB
0008901 Ch	S12AD	A/D Internal Reference Voltage Data Register	ADOCDR	16	16	2 or 3 PCLKB
0008 9020h	S12AD	A/D Data Register 0	ADDR0	16	16	2 or 3 PCLKB
00089022 h	S12AD	A/D Data Register 1	ADDR1	16	16	2 or 3 PCLKB
00089024 h	S12AD	A/D Data Register 2	ADDR2	16	16	2 or 3 PCLKB
0008 9026h	S12AD	A/D Data Register 3	ADDR3	16	16	2 or 3 PCLKB
00089028 h	S12AD	A/D Data Register 4	ADDR4	16	16	2 or 3 PCLKB
0008 902Ch	S12AD	A/D Data Register 6	ADDR6	16	16	2 or 3 PCLKB
0008 9030h	S12AD	A/D Data Register 8	ADDR8	16	16	2 or 3 PCLKB

Table 4.1 List of I/O Registers (Address Order) (8/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 9032h	S12AD	A/D Data Register 9	ADDR9	16	16	2 or 3 PCLKB
00089034 h	S12AD	A/D Data Register 10	ADDR10	16	16	2 or 3 PCLKB
00089036 h	S12AD	A/D Data Register 11	ADDR11	16	16	2 or 3 PCLKB
00089038 h	S12AD	A/D Data Register 12	ADDR12	16	16	2 or 3 PCLKB
0008903 Ah	S12AD	A/D Data Register 13	ADDR13	16	16	2 or 3 PCLKB
0008903 Ch	S12AD	A/D Data Register 14	ADDR14	16	16	2 or 3 PCLKB
0008903 Eh	S12AD	A/D Data Register 15	ADDR15	16	16	2 or 3 PCLKB
00089060 h	S12AD	A/D Sampling State Register 0	ADSSTR0	8	8	2 or 3 PCLKB
00089061 h	S12AD	A/D Sampling State Register L	ADSSTRL	8	8	2 or 3 PCLKB
00089070 h	S12AD	A/D Sampling State Register T	ADSSTRT	8	8	2 or 3 PCLKB
00089071 h	S12AD	A/D Sampling State Register O	ADSSTRO	8	8	2 or 3 PCLKB
00089073 h	S12AD	A/D Sampling State Register 1	ADSSTR1	8	8	2 or 3 PCLKB
00089074 h	S12AD	A/D Sampling State Register 2	ADSSTR2	8	8	2 or 3 PCLKB
00089075 h	S12AD	A/D Sampling State Register 3	ADSSTR3	8	8	2 or 3 PCLKB
00089076 h	S12AD	A/D Sampling State Register 4	ADSSTR4	8	8	2 or 3 PCLKB
0008 9078h	S12AD	A/D Sampling State Register 6	ADSSTR6	8	8	2 or 3 PCLKB
0008 A020h	SCI1	Serial Mode Register	SMR	8	8	2 or 3 PCLKB
0008 A021h	SCI1	Bit Rate Register	BRR	8	8	2 or 3 PCLKB
0008 A022h	SCI1	Serial Control Register	SCR	8	8	2 or 3 PCLKB
0008 A023h	SCI1	Transmit Data Register	TDR	8	8	2 or 3 PCLKB
0008 A024h	SCl1	Serial Status Register	SSR	8	8	2 or 3 PCLKB
0008 A025h	SCI1	Receive Data Register	RDR	8	8	2 or 3 PCLKB
0008 A026h	SCI1	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB
0008 A027h	SCI1	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB
0008 A028h	SCI1	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB
0008 A029h	SCI1	${ }^{2} \mathrm{C}$ C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB
0008 A02Ah	SCI1	${ }^{2} \mathrm{C}$ C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB
0008 A02Bh	SCI1	$1^{2} \mathrm{C}$ Mode Register 3	SIMR3	8	8	2 or 3 PCLKB
0008 A02Ch	SCI1	${ }^{12} \mathrm{C}$ Status Register	SISR	8	8	2 or 3 PCLKB
0008 A02Dh	SCI1	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB
0008 A0AOh	SCl5	Serial Mode Register	SMR	8	8	2 or 3 PCLKB
0008 A0A1h	SC15	Bit Rate Register	BRR	8	8	2 or 3 PCLKB
0008 A0A2h	SCI5	Serial Control Register	SCR	8	8	2 or 3 PCLKB
0008 A0A3h	SCI5	Transmit Data Register	TDR	8	8	2 or 3 PCLKB
0008 A0A4h	SC15	Serial Status Register	SSR	8	8	2 or 3 PCLKB
0008 A0A5h	SCI5	Receive Data Register	RDR	8	8	2 or 3 PCLKB
0008 A0A6h	SCl5	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB
0008 A0A7h	SCl5	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB
0008 A0A8h	SCl5	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB
0008 A0A9h	SCl5	${ }^{2} \mathrm{C}$ C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB
0008 A0AAh	SCI5	${ }^{2} \mathrm{C}$ C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB
0008 A0ABh	SCI5	${ }^{12} \mathrm{C}$ Mode Register 3	SIMR3	8	8	2 or 3 PCLKB
0008 AOACh	SCI5	$1^{2} \mathrm{C}$ Status Register	SISR	8	8	2 or 3 PCLKB
0008 A0ADh	SC15	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB
0008 B000h	CAC	CAC Control Register 0	CACRO	8	8	2 or 3 PCLKB
0008 B001h	CAC	CAC Control Register 1	CACR1	8	8	2 or 3 PCLKB
0008 B002h	CAC	CAC Control Register 2	CACR2	8	8	2 or 3 PCLKB
0008 B003h	CAC	CAC Interrupt Control Register	CAICR	8	8	2 or 3 PCLKB
0008 B004h	CAC	CAC Status Register	CASTR	8	8	2 or 3 PCLKB
0008 B006h	CAC	CAC Upper-Limit Value Setting Register	CAULVR	16	16	2 or 3 PCLKB
0008 B008h	CAC	CAC Lower-Limit Value Setting Register	CALLVR	16	16	2 or 3 PCLKB
0008 B00Ah	CAC	CAC Counter Buffer Register	CACNTBR	16	16	2 or 3 PCLKB

Table 4.1 List of I/O Registers (Address Order) (9/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 B080h	DOC	DOC Control Register	DOCR	8	8	2 or 3 PCLKB
0008 B082h	DOC	DOC Data Input Register	DODIR	16	16	2 or 3 PCLKB
0008 B084h	DOC	DOC Data Setting Register	DODSR	16	16	2 or 3 PCLKB
0008 B300h	SCl12	Serial Mode Register	SMR	8	8	2 or 3 PCLKB
0008 B301h	SCI12	Bit Rate Register	BRR	8	8	2 or 3 PCLKB
0008 B302h	SCI12	Serial Control Register	SCR	8	8	2 or 3 PCLKB
0008 B303h	SCI12	Transmit Data Register	TDR	8	8	2 or 3 PCLKB
0008 B304h	SCl12	Serial Status Register	SSR	8	8	2 or 3 PCLKB
0008 B305h	SCI12	Receive Data Register	RDR	8	8	2 or 3 PCLKB
0008 B306h	SCI12	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB
0008 B307h	SCI12	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB
0008 B308h	SCI12	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB
0008 B309h	SCl12	${ }^{2} \mathrm{C}$ C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB
0008 B30Ah	SCI12	${ }^{2} \mathrm{C}$ Mode Register 2	SIMR2	8	8	2 or 3 PCLKB
0008 B30Bh	SCI12	${ }^{2} \mathrm{C}$ Mode Register 3	SIMR3	8	8	2 or 3 PCLKB
0008 B30Ch	SCl12	${ }^{2} \mathrm{C}$ S Status Register	SISR	8	8	2 or 3 PCLKB
0008 B30Dh	SCI12	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB
0008 B320h	SCI12	Extended Serial Mode Enable Register	ESMER	8	8	2 or 3 PCLKB
0008 B321h	SCI12	Control Register 0	CRO	8	8	2 or 3 PCLKB
0008 B322h	SCI12	Control Register 1	CR1	8	8	2 or 3 PCLKB
0008 B323h	SCl12	Control Register 2	CR2	8	8	2 or 3 PCLKB
0008 B324h	SCl12	Control Register 3	CR3	8	8	2 or 3 PCLKB
0008 B325h	SCl12	Port Control Register	PCR	8	8	2 or 3 PCLKB
0008 B326h	SCI12	Interrupt Control Register	ICR	8	8	2 or 3 PCLKB
0008 B327h	SCI12	Status Register	STR	8	8	2 or 3 PCLKB
0008 B328h	SCI12	Status Clear Register	STCR	8	8	2 or 3 PCLKB
0008 B329h	SCI12	Control Field 0 Data Register	CFODR	8	8	2 or 3 PCLKB
0008 B32Ah	SCI12	Control Field 0 Compare Enable Register	CFOCR	8	8	2 or 3 PCLKB
0008 B32Bh	SCl12	Control Field 0 Receive Data Register	CFORR	8	8	2 or 3 PCLKB
0008 B32Ch	SCI12	Primary Control Field 1 Data Register	PCF1DR	8	8	2 or 3 PCLKB
0008 B32Dh	SCI12	Secondary Control Field 1 Data Register	SCF1DR	8	8	2 or 3 PCLKB
0008 B32Eh	SCI12	Control Field 1 Compare Enable Register	CF1CR	8	8	2 or 3 PCLKB
0008 B32Fh	SCI12	Control Field 1 Receive Data Register	CF1RR	8	8	2 or 3 PCLKB
0008 B330h	SCI12	Timer Control Register	TCR	8	8	2 or 3 PCLKB
0008 B331h	SCI12	Timer Mode Register	TMR	8	8	2 or 3 PCLKB
0008 B332h	SCI12	Timer Prescaler Register	TPRE	8	8	2 or 3 PCLKB
0008 B333h	SCl12	Timer Count Register	TCNT	8	8	2 or 3 PCLKB
0008 C000h	PORTO	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C001h	PORT1	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C002h	PORT2	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 c003h	PORT3	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C004h	PORT4	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C005h	PORT5	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C00Ah	PORTA	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C00Bh	PORTB	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C00Ch	PORTC	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C00Eh	PORTE	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C011h	PORTH	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C012h	PORTJ	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C020h	PORTO	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C021h	PORT1	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C022h	PORT2	Port Output Data Register	PODR	8	8	2 or 3 PCLKB

Table 4.1 List of I/O Registers (Address Order) (10/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 C023h	PORT3	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C024h	PORT4	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C025h	PORT5	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C02Ah	PORTA	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C02Bh	PORTB	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C02Ch	PORTC	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C02Eh	PORTE	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C031h	PORTH	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C032h	PORTJ	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C040h	PORTO	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing
0008 C041h	PORT1	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing
0008 C042h	PORT2	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing
0008 C043h	PORT3	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing
0008 C044h	PORT4	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing
0008 C045h	PORT5	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing
0008 C04Ah	PORTA	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing
0008 C04Bh	PORTB	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing
0008 C04Ch	PORTC	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing
0008 C04Eh	PORTE	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing
0008 C051h	PORTH	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing
0008 C052h	PORTJ	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing
0008 C060h	PORTO	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C061h	PORT1	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C062h	PORT2	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C063h	PORT3	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C064h	PORT4	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C065h	PORT5	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C06Ah	PORTA	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C06Bh	PORTB	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C06Ch	PORTC	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C06Eh	PORTE	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C071h	PORTH	Port Mode Register	PMR	8	8	2 or 3 PCLKB

Table 4.1 List of I/O Registers (Address Order) (11/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 C072h	PORTJ	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C083h	PORT1	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 C085h	PORT2	Open Drain Control Register 1	ODR1	8	8,16	2 or 3 PCLKB
0008 C086h	PORT3	Open Drain Control Register 0	ODRO	8	8, 16	2 or 3 PCLKB
0008 C094h	PORTA	Open Drain Control Register 0	ODRO	8	8, 16	2 or 3 PCLKB
0008 C095h	PORTA	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 C096h	PORTB	Open Drain Control Register 0	ODRO	8	8,16	2 or 3 PCLKB
0008 C097h	PORTB	Open Drain Control Register 1	ODR1	8	8,16	2 or 3 PCLKB
0008 C098h	PORTC	Open Drain Control Register 0	ODRO	8	8, 16	2 or 3 PCLKB
0008 C099h	PORTC	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 c09Ch	PORTE	Open Drain Control Register 0	ODRO	8	8, 16	2 or 3 PCLKB
0008 C09Dh	PORTE	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 COCOh	PORTO	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
0008 COC 1 h	PORT1	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
$0008 \mathrm{COC2h}$	PORT2	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
0008 C0C3h	PORT3	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
0008 C0C5h	PORT5	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
0008 C0CAh	PORTA	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
0008 C0CBh	PORTB	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
0008 cocch	PORTC	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
0008 C0CEh	PORTE	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
0008 C0D1h	PORTH	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
0008 C11Fh	MPC	Write-Protect Register	PWPR	8	8	2 or 3 PCLKB
0008 C 120 h	PORT	Port Switching Register B	PSRB	8	8	2 or 3 PCLKB
0008 C 121 h	PORT	Port Switching Register A	PSRA	8	8	2 or 3 PCLKB
0008 C14Ch	MPC	P14 Pin Function Control Register	P14PFS	8	8	2 or 3 PCLKB
0008 C14Dh	MPC	P15 Pin Function Control Register	P15PFS	8	8	2 or 3 PCLKB
0008 C14Eh	MPC	P16 Pin Function Control Register	P16PFS	8	8	2 or 3 PCLKB
0008 C 14 Fh	MPC	P17 Pin Function Control Register	P17PFS	8	8	2 or 3 PCLKB
0008 C156h	MPC	P26 Pin Function Control Register	P26PFS	8	8	2 or 3 PCLKB
$0008 \mathrm{C157h}$	MPC	P27 Pin Function Control Register	P27PFS	8	8	2 or 3 PCLKB
0008 C 158 h	MPC	P30 Pin Function Control Register	P30PFS	8	8	2 or 3 PCLKB
0008 C159h	MPC	P31 Pin Function Control Register	P31PFS	8	8	2 or 3 PCLKB
0008 C15Ah	MPC	P32 Pin Function Control Register	P32PFS	8	8	2 or 3 PCLKB
0008 C15Dh	MPC	P35 Pin Function Control Register	P35PFS	8	8	2 or 3 PCLKB
0008 C 160 h	MPC	P40 Pin Function Control Register	P40PFS	8	8	2 or 3 PCLKB
0008 C161h	MPC	P41 Pin Function Control Register	P41PFS	8	8	2 or 3 PCLKB
0008 C162h	MPC	P42 Pin Function Control Register	P42PFS	8	8	2 or 3 PCLKB
0008 C163h	MPC	P43 Pin Function Control Register	P43PFS	8	8	2 or 3 PCLKB
0008 C 164 h	MPC	P44 Pin Function Control Register	P44PFS	8	8	2 or 3 PCLKB
0008 C166h	MPC	P46 Pin Function Control Register	P46PFS	8	8	2 or 3 PCLKB
0008 C190h	MPC	PAO Pin Function Control Register	PAOPFS	8	8	2 or 3 PCLKB
0008 C191h	MPC	PA1 Pin Function Control Register	PA1PFS	8	8	2 or 3 PCLKB
0008 C193h	MPC	PA3 Pin Function Control Register	PA3PFS	8	8	2 or 3 PCLKB
0008 C 194 h	MPC	PA4 Pin Function Control Register	PA4PFS	8	8	2 or 3 PCLKB
0008 C196h	MPC	PA6 Pin Function Control Register	PA6PFS	8	8	2 or 3 PCLKB
0008 C198h	MPC	PB0 Pin Function Control Register	PBOPFS	8	8	2 or 3 PCLKB
0008 C 199 h	MPC	PB1 Pin Function Control Register	PB1PFS	8	8	2 or 3 PCLKB
0008 C19Bh	MPC	PB3 Pin Function Control Register	PB3PFS	8	8	2 or 3 PCLKB
0008 C19Dh	MPC	PB5 Pin Function Control Register	PB5PFS	8	8	2 or 3 PCLKB
0008 C19Eh	MPC	PB6 Pin Function Control Register	PB6PFS	8	8	2 or 3 PCLKB
0008 C19Fh	MPC	PB7 Pin Function Control Register	PB7PFS	8	8	2 or 3 PCLKB

Table 4.1 List of I/O Registers (Address Order) (12/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 C1A2h	MPC	PC2 Pin Function Control Register	PC2PFS	8	8	2 or 3 PCLKB
0008 C1A3h	MPC	PC3 Pin Function Control Register	PC3PFS	8	8	2 or 3 PCLKB
0008 C1A4h	MPC	PC4 Pin Function Control Register	PC4PFS	8	8	2 or 3 PCLKB
0008 C1A5h	MPC	PC5 Pin Function Control Register	PC5PFS	8	8	2 or 3 PCLKB
0008 C1A6h	MPC	PC6 Pin Function Control Register	PC6PFS	8	8	2 or 3 PCLKB
0008 C1A7h	MPC	PC7 Pin Function Control Register	PC7PFS	8	8	2 or 3 PCLKB
0008 C1B0h	MPC	PE0 Pin Function Control Register	PEOPFS	8	8	2 or 3 PCLKB
0008 C 1 B 1 h	MPC	PE1 Pin Function Control Register	PE1PFS	8	8	2 or 3 PCLKB
0008 C 1 B 2 h	MPC	PE2 Pin Function Control Register	PE2PFS	8	8	2 or 3 PCLKB
0008 C1B3h	MPC	PE3 Pin Function Control Register	PE3PFS	8	8	2 or 3 PCLKB
0008 C1B4h	MPC	PE4 Pin Function Control Register	PE4PFS	8	8	2 or 3 PCLKB
$0008 \mathrm{C} 1 \mathrm{B5}$ h	MPC	PE5 Pin Function Control Register	PE5PFS	8	8	2 or 3 PCLKB
$0008 \mathrm{C1B6h}$	MPC	PE6 Pin Function Control Register	PE6PFS	8	8	2 or 3 PCLKB
0008 C1B7h	MPC	PE7 Pin Function Control Register	PE7PFS	8	8	2 or 3 PCLKB
$0008 \mathrm{C1C8h}$	MPC	PH0 Pin Function Control Register	PHOPFS	8	8	2 or 3 PCLKB
0008 C1C9h	MPC	PH1 Pin Function Control Register	PH1PFS	8	8	2 or 3 PCLKB
0008 C1CAh	MPC	PH2 Pin Function Control Register	PH2PFS	8	8	2 or 3 PCLKB
0008 C 1 CBh	MPC	PH3 Pin Function Control Register	PH3PFS	8	8	2 or 3 PCLKB
0008 C1D6h	MPC	PJ6 Pin Function Control Register	PJ6PFS	8	8	2 or 3 PCLKB
0008 C1D7h	MPC	PJ7 Pin Function Control Register	PJ7PFS	8	8	2 or 3 PCLKB
0008 C290h	SYSTEM	Reset Status Register 0	RSTSR0	8	8	4 or 5 PCLKB
0008 C291h	SYSTEM	Reset Status Register 1	RSTSR1	8	8	4 or 5 PCLKB
0008 C293h	SYSTEM	Main Clock Oscillator Forced Oscillation Control Register	MOFCR	8	8	4 or 5 PCLKB
0008 C297h	SYSTEM	Voltage Monitoring Circuit Control Register	LVCMPCR	8	8	4 or 5 PCLKB
0008 C 298 h	SYSTEM	Voltage Detection Level Select Register	LVDLVLR	8	8	4 or 5 PCLKB
0008 C29Ah	SYSTEM	Voltage Monitoring 1 Circuit Control Register 0	LVD1CR0	8	8	4 or 5 PCLKB
0008 C29Bh	SYSTEM	Voltage Monitoring 2 Circuit Control Register 0	LVD2CR0	8	8	4 or 5 PCLKB
0008 C400h	RTC	64-Hz Counter	R64CNT	8	8	2 or 3 PCLKB
0008 C 402 h	RTC	Second Counter	RSECCNT	8	8	2 or 3 PCLKB
0008 C 402 h	RTC	Binary Counter 0	BCNTO	8	8	2 or 3 PCLKB
0008 C 404 h	RTC	Minute Counter	RMINCNT	8	8	2 or 3 PCLKB
0008 C404h	RTC	Binary Counter 1	BCNT1	8	8	2 or 3 PCLKB
0008 C406h	RTC	Hour Counter	RHRCNT	8	8	2 or 3 PCLKB
0008 C406h	RTC	Binary Counter 2	BCNT2	8	8	2 or 3 PCLKB
0008 C408h	RTC	Day-Of-Week Counter	RWKCNT	8	8	2 or 3 PCLKB
0008 C408h	RTC	Binary Counter 3	BCNT3	8	8	2 or 3 PCLKB
0008 C40Ah	RTC	Date Counter	RDAYCNT	8	8	2 or 3 PCLKB
0008 C40Ch	RTC	Month Counter	RMONCNT	8	8	2 or 3 PCLKB
0008 C40Eh	RTC	Year Counter	RYRCNT	16	16	2 or 3 PCLKB
0008 C410h	RTC	Second Alarm Register	RSECAR	8	8	2 or 3 PCLKB
0008 C410h	RTC	Binary Counter 0 Alarm Register	BCNTOAR	8	8	2 or 3 PCLKB
0008 C412h	RTC	Minute Alarm Register	RMINAR	8	8	2 or 3 PCLKB
$0008 \mathrm{C412h}$	RTC	Binary Counter 1 Alarm Register	BCNT1AR	8	8	2 or 3 PCLKB
0008 C 414 h	RTC	Hour Alarm Register	RHRAR	8	8	2 or 3 PCLKB
0008 C 414 h	RTC	Binary Counter 2 Alarm Register	BCNT2AR	8	8	2 or 3 PCLKB
0008 C416h	RTC	Day-of-Week Alarm Register	RWKAR	8	8	2 or 3 PCLKB
0008 C416h	RTC	Binary Counter 3 Alarm Register	BCNT3AR	8	8	2 or 3 PCLKB
0008 C418h	RTC	Date Alarm Register	RDAYAR	8	8	2 or 3 PCLKB
0008 C418h	RTC	Binary Counter 0 Alarm Enable Register	BCNTOAER	8	8	2 or 3 PCLKB
0008 C41Ah	RTC	Month Alarm Register	RMONAR	8	8	2 or 3 PCLKB
0008 C41Ah	RTC	Binary Counter 1 Alarm Enable Register	BCNT1AER	8	8	2 or 3 PCLKB
0008 C41Ch	RTC	Year Alarm Register	RYRAR	16	16	2 or 3 PCLKB

Table 4.1 List of I/O Registers (Address Order) (13/13)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 C41Ch	RTC	Binary Counter 2 Alarm Enable Register	BCNT2AER	16	16	2 or 3 PCLKB
0008 C41Eh	RTC	Year Alarm Enable Register	RYRAREN	8	8	2 or 3 PCLKB
0008 C41Eh	RTC	Binary Counter 3 Alarm Enable Register	BCNT3AER	8	8	2 or 3 PCLKB
0008 C 422 h	RTC	RTC Control Register 1	RCR1	8	8	2 or 3 PCLKB
0008 C 424 h	RTC	RTC Control Register 2	RCR2	8	8	2 or 3 PCLKB
0008 C 426 h	RTC	RTC Control Register 3	RCR3	8	8	2 or 3 PCLKB
0008 C42Eh	RTC	Time Error Adjustment Register	RADJ	8	8	2 or 3 PCLKB

Note 1. Odd addresses should not be accessed in 16-bit units. When accessing a register in 16 -bit units, access the address of the TMRO or TMR2 register.

5. Electrical Characteristics (Target Values)

5.1 Absolute Maximum Ratings

Table 5.1 Absolute Maximum Ratings
Conditions: $\mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}$

Item	Symbol	Value	Unit
Power supply voltage	VCC	-0.3 to +4.6	V
Input voltage (except for ports for 5 V tolerant*11)	$V_{\text {in }}$	-0.3 to VCC +0.3	V
Input voltage (ports for 5 V tolerant*1)	$\mathrm{V}_{\text {in }}$	-0.3 to +6.5	V
Reference power supply voltage	VREFH0	-0.3 to AVCC +0.3	V
Analog power supply voltage	AVCC0	-0.3 to +4.6	V
Analog input voltage	$\mathrm{V}_{\text {AN }}$	-0.3 to +4.6	V
Operating temperature*2	$\mathrm{T}_{\text {opr }}$	$-0.3 \text { to AVCC }+0.3$ (when ANOOO to ANOO4 and ANOO6 used) $-0.3 \text { to VCC }+0.3$ (when AN008 to AN015 used)	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Caution: Permanent damage to the MCU may result if absolute maximum ratings are exceeded.
To preclude any malfunctions due to noise interference, insert capacitors of high frequency characteristics between the VCC and VSS pins, between the AVCCO and AVSSO pins, and between the VREFHO and VREFLO pins. Place capacitors of about $0.1 \mu \mathrm{~F}$ as close as possible to every power supply pin and use the shortest and heaviest possible traces. Also, connect capacitors as stabilization capacitance.
Connect the VCL pin to a VSS pin via a $4.7 \mu \mathrm{~F}$ capacitor. The capacitor must be placed close to the pin.
Note 1. Ports 16, 17, A6, and B0 are 5 V tolerant.
Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.
Note 2. The upper limit of operating temperature is $85^{\circ} \mathrm{C}$ or $105^{\circ} \mathrm{C}$, depending on the product. For details, refer to 1.2 List of Products.

Table 5.2 Recommended Operating Voltage Conditions

Item	Symbol	Value	Unit
Recommended operating voltage conditions	VCC	1.8 to 3.6	V
		AVCC0*1	1.8 to 3.6

Note 1. AVCCO and VCC can be set individually within the operating range. For details, 27.6.10 Voltage Range of Analog Power Supply Pins.

5.2 DC Characteristics

Table 5.3 DC Characteristics (1)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=2.7$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Table 5.4 DC Characteristics (2)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $2.7 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFL}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

	Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	Ports 16, 17, port A6, port B0 (5 V tolerant)	V_{IH}	VCC $\times 0.8$	-	5.8	V	
	Other pins Ports 03, 05, ports 14,15 ports 26, 27, ports 30 to 32,35 ports 54,55 , ports A0, A1, A3, A4 ports B1, B3, B5 to B7 ports C0 to C7 port E, ports H0 to H3, H7, RES\#		VCC $\times 0.8$	-	VCC + 0.3		
	All pins		-0.3	-	VCC $\times 0.2$		
	All pins	$\Delta \mathrm{V}_{\mathrm{T}}$	VCC $\times 0.01$	-	-		
Input level voltage (except for Schmitt trigger input pins)	MD	V_{IH}	$\mathrm{VCC} \times 0.9$	-	VCC + 0.3	V	
	XTAL (external clock input)		$\mathrm{VCC} \times 0.8$	-	VCC + 0.3		
	Ports 40 to 44, 46, ports J6, J7		$\mathrm{VCC} \times 0.7$	-	VCC + 0.3		
	MD	V_{IL}	-0.3	-	VCC $\times 0.1$		
	XTAL (external clock input)		-0.3	-	VCC $\times 0.2$		
	Ports 40 to 44, 46, ports J6, J7		-0.3	-	VCC $\times 0.3$		

Table 5.5 DC Characteristics (3)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to 3.6 V , VSS $=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Input leakage current	RES\#, MD, port 35 port H7	$\mathrm{I}_{\text {in }}$	-	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{VCC}$
Three-state leakage current (off-state)	Ports for 5 V tolerant	$\left\|\mathrm{I}_{\text {TSI }}\right\|$	-	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, 5.8 \mathrm{~V}$
	Pins other than above		-	-	1.0		$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{VCC}$
Input capacitance	All input pins (except for port 35, port 16)	$\mathrm{C}_{\text {in }}$	-	-	15	pF	$\begin{aligned} & \mathrm{V}_{\text {in }}=0 \mathrm{mV}, \\ & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{aligned}$
	Port 35, port 16		-	-	30		

Table 5.6 DC Characteristics (4)
Conditions: $\quad \mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	
Input pull-up resistor	All ports (except for ports 35, PH7)	R_{U}	10	20	100	$\mathrm{k} \Omega$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$

Table 5.7 DC Characteristics (5)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item					Symbol	Typ	Max	Unit	Test Conditions
Supply current*1	Low-speed operating mode	Normal operating mode	No peripheral operation*7	ICLK $=32.768 \mathrm{kHz}$	I_{CC}	4.0	-	$\mu \mathrm{A}$	
			All peripheral operation: Normal*8, *9	ICLK $=32.768 \mathrm{kHz}$		11.5	-		
			All peripheral operation: Max.*8, *9	ICLK $=32.768 \mathrm{kHz}$		-	T.B.D		
		Sleep mode	No peripheral operation*7	ICLK $=32.768 \mathrm{kHz}$		2.2	-		
			All peripheral operation: Normal*8	ICLK $=32.768 \mathrm{kHz}$		7.1	-		
		Deep sleep	No peripheral operation*7	ICLK $=32.768 \mathrm{kHz}$		1.8	-		
			All peripheral operation: Normal*8	ICLK $=32.768 \mathrm{kHz}$		5.3			

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.
Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is HOCO. FCLK and PCLK are set to divided by 64.
Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is HOCO. FCLK and PCLK are set to the same frequency as ICLK.
Note 4. Values when VCC $=3.3 \mathrm{~V}$.
Note 5. Clock supply to the peripheral functions is stopped. The clock source is the main oscillation circuit when ICLK = 12 MHz and HOCO when ICLK = 8 or 1 MHz . FCLK and PCLK are set to divided by 64 .
Note 6. Clocks are supplied to the peripheral functions. The clock source is the main oscillation circuit when ICLK $=12 \mathrm{MHz}$ and HOCO when ICLK $=8$ or 1 MHz . FCLK and PCLK are set to the same frequency as ICLK.
Note 7. Clock supply to the peripheral functions is stopped. The clock source is the sub-clock oscillator. FCLK and PCLK are set to divided by 64.
Note 8. Clocks are supplied to the peripheral functions. The clock source is the sub-clock oscillator. FCLK and PCLK are set to the same frequency as ICLK.
Note 9. Values when the MSTPCRA.MSTPA17 bit (12-bit A/D converter module stop bit) is set to "transition to the module stop state is made".

Figure 5.1 Voltage Dependency in High-Speed Operating Mode (Reference Data)

Figure 5.2 Voltage Dependency in Middle-Speed Operating Mode (Reference Data)

Figure $5.3 \quad$ Voltage Dependency in Low-Speed Operating Mode (Reference Data)

Table 5.8 DC Characteristics (6)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item			Symbol	Typ.*3	Max.	Unit	Test Conditions
Supply current*1	Software standby mode*2	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	${ }^{\text {cc }}$	0.35	T.B.D	$\mu \mathrm{A}$	
		$\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$		0.58	T.B.D		
		$\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$		1.60	T.B.D		
		$\mathrm{T}_{\mathrm{a}}=105^{\circ} \mathrm{C}$		3.30	T.B.D		1
	Increment for RTC operation*4			0.31	-		RCR3.RTCDV[1:0] set to low drive capacity

Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.
Note 2. The IWDT and LVD are stopped.
Note 3. VCC = 3.3 V.
Note 4. Includes the oscillation circuit.

Figure 5.4 Voltage Dependency in Software Standby Mode (Reference Data)

Figure 5.5 Temperature Dependency in Software Standby Mode (Reference Data)

Table 5.9 DC Characteristics (7)
Conditions: Products with operating temperature $\left(T_{\mathrm{a}}\right)-40$ to $+105^{\circ} \mathrm{C}$ $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}$

Item	Symbol	Typ.	Max.	Unit	Test Conditions
Permissible junction temperature		-	120	${ }^{\circ} \mathrm{C}$	High-speed operating mode
		-	105		Middle-speed operating mode
		-	120		Low-speed operating mode

Note: • Make sure that $\mathrm{Tj}<\mathrm{Ta}+0.1$ * total power consumption (mW), where total power consumption $=\left(\mathrm{VCC}-\mathrm{V}_{\mathrm{OH}}\right) \times \Sigma \mathrm{I}_{\mathrm{OH}}+\mathrm{V}_{\mathrm{OL}} \times$ $\Sigma \mathrm{I}_{\mathrm{OL}}+\mathrm{I}_{\mathrm{CC}} \max \times \mathrm{VCC}$.

Table 5.10 DC Characteristics (8)
Conditions: Products with operating temperature $\left(T_{a}\right)-40$ to $+85^{\circ} \mathrm{C}$
$\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}$

Item	Symbol	Typ.	Max.	Unit	Test Conditions
Permissible junction temperature	Tj	-	120	${ }^{\circ} \mathrm{C}$	High-speed operating mode
		-	105		Middle-speed operating mode
		-	120		Low-speed operating mode

Note: • Make sure that $\mathrm{Tj}<\mathrm{Ta}+0.1$ * total power consumption (mW), where total power consumption $=\left(\mathrm{VCC}-\mathrm{V}_{\mathrm{OH}}\right) \times \Sigma \mathrm{l}_{\mathrm{OH}}+\mathrm{V}_{\mathrm{OL}} \times$ $\Sigma \mathrm{I}_{\mathrm{OL}}+\mathrm{I}_{\mathrm{CC}} \max \times \mathrm{VCC}$.

Table 5.11 DC Characteristics (9)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Analog power supply current	During A/D conversion	$\mathrm{I}_{\text {AVCC }}$	-	0.7	1.2	mA	
	Temperature sensor		-	75	-	$\mu \mathrm{A}$	
	Waiting for A/D conversion (all units)		-	-	0.3		
Reference power supply current	During A/D conversion	$\mathrm{I}_{\text {REFHO }}$	-	25	52	$\mu \mathrm{A}$	
	Waiting for A/D conversion (all units)		-	-	60	nA	

Table 5.12 DC Characteristics (10)
Conditions: $\operatorname{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
RAM standby voltage	$\mathrm{V}_{\text {RAM }}$	1.8	-	3.6	V	

Table 5.13 DC Characteristics (11)
Conditions: $\operatorname{VCC}=\mathrm{AVCCO}=0$ to $3.6 \mathrm{~V}, \mathrm{VREFHO}=0$ to $\mathrm{AVCCO}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

	Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Power-on VCC rising gradient	At normal startup*1	SrVCC	0.02	-	20	ms/V	
	During fast startup time*2		0.02	-	2		
	Voltage monitoring 1 reset enabled at startup $* 3, * 4$		0.02	-	-		

Note 1. When OFS1.(STUPLVD1REN, FASTSTUP) $=11 \mathrm{~b}$.
Note 2. When OFS1.(STUPLVD1REN, FASTSTUP) $=10 \mathrm{~b}$.
Note 3. When OFS1.STUPLVD1REN $=0$.
Note 4. Turn on the power supply voltage according to the normal startup rising gradient because the register settings set by OFS1 are not read in boot mode.

Table 5.14 DC Characteristics (12)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$
The ripple voltage must meet the allowable ripple frequency $f_{r(V C C)}$ within the range between the VCC upper limit (3.6 V) and lower limit (1.8 V).

When VCC change exceeds VCC $\pm 10 \%$, the allowable voltage change rising/falling gradient dt/dVCC must be met.

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Allowable ripple frequency	$\mathrm{fr}_{\mathrm{r}}(\mathrm{VCC})$	-	-	10	kHz	Figure 5.6 $\mathrm{V}_{\mathrm{r}(\mathrm{VCC})} \leq \mathrm{VCC} \times 0.2$
		-	-	1	MHz	Figure 5.6 $\mathrm{V}_{\mathrm{r}(\mathrm{VCC})} \leq \mathrm{VCC} \times 0.08$
		-	-	10	MHz	Figure 5.6 $\mathrm{V}_{\mathrm{r}(\mathrm{VCC})} \leq \mathrm{VCC} \times 0.06$
Allowable voltage change rising/ falling gradient	dt/dVCC	1.0	-	-	ms / V	When VCC change exceeds VCC $\pm 10 \%$

vcc

Figure 5.6 Ripple Waveform

Table 5.15 DC Characteristics (13)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to 3.6 V , VSS $=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Permissible error of VCL pin external capacitance	$\mathrm{C}_{\mathrm{VCL}}$	1.4	4.7	7.0	$\mu \mathrm{~F}$	

Note: • The recommended capacitance is $4.7 \mu \mathrm{~F}$. Variations in connected capacitors should be within the above range.

Table 5.16 Permissible Output Currents
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Max.	Unit
Permissible output low current (average value per pin)	Ports 40 to 44, 46, ports J6, J7	$\mathrm{I}_{\text {OL }}$	0.4	mA
	Ports other than above		8.0	
Permissible output low current (maximum value per pin)	Ports 40 to 44, 46, ports J6, J7		0.4	
	Ports other than above		8.0	
Permissible output low current	Total of ports 40 to 44, 46, ports J6, 37	${ }^{\Sigma 1} \mathrm{OL}$	2.4	
	Total of ports 03, 05, ports 26,27 , ports 30, 31		30	
	Total of ports 14 to 17 , port 32 , ports 54,55 , ports C2 to C7, ports $\mathrm{B} 0, \mathrm{~B} 1, \mathrm{~B} 3, \mathrm{~B} 5$ to B 7 ports H0 to H3		30	
	Total of ports A0, A1, A3, A4, A6, port E		30	
	Total of all output pins		60	
Permissible output high current (average value per pin)	Ports 40 to 44, 46, ports J6, J7	IOH	-0.1	
	Ports other than above		-4.0	
Permissible output high current (maximum value per pin)	Ports 40 to 44, 46, ports J6, J7		-0.1	
	Ports other than above		-4.0	
Permissible output high current	Total of ports 40 to 44, 46, ports J6, J7	${ }^{\Sigma} \mathrm{l}_{\mathrm{OH}}$	-0.6	
	Total of ports 03,05 , ports 26,27 , ports 30,31		-10	
	Total of ports $14,15,16,17$, port 32 , ports 54,55 , ports C2 to C7, ports $\mathrm{B} 0, \mathrm{~B} 1, \mathrm{~B} 3, \mathrm{~B} 5$ to B 7 ports H0 to H3		-15	
	Total of ports A0, A1, A3, A4, A6, port E		-15	
	Total of all output pins		-40	

[^0]Table 5.17 Output Values of Voltage (1)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=2.7$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+10^{\circ} \mathrm{C}$

Item			Symbol	Min.	Max.	Unit	Test Conditions	
Output low	All output ports (except for RIIC, port 4, and port J)		V_{OL}	-	0.6	V	$\mathrm{I}_{\mathrm{OL}}=3.0 \mathrm{~mA}$	
			-	0.4	$\mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA}$			
	Ports 40 to 44, 46, ports J6, J7			-	0.4		$\mathrm{I}_{\mathrm{OL}}=0.4 \mathrm{~mA}$	
	RIIC pins	Standard mode		-	0.4		$\mathrm{l}_{\mathrm{OL}}=3.0 \mathrm{~mA}$	
		Fast mode		-	0.6		$\mathrm{I}_{\mathrm{OL}}=6.0 \mathrm{~mA}$	
Output high	All output ports (except for port 4 and port J)			V_{OH}	VCC - 0.5	-	V	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$
	Ports 40 to 44, 46, ports J6, J7		VCC - 0.5		-		$\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$	

Table 5.18 Output Values of Voltage (2)
Conditions: $\quad \mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $2.7 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Max.	Unit	Test Conditions
Output low	All output ports (except for port 4 and port J)	V_{OL}	-	0.6	V	$\mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA}$
	Ports 40 to 44, 46, ports J6, J7		-	0.4		$\mathrm{I}_{\mathrm{OL}}=0.4 \mathrm{~mA}$
Output high	All output ports (except for port 4 and port J)	V_{OH}	VCC - 0.5		V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	Ports 40 to 44, 46, ports J6, J7		VCC-0.5	-		$\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$

5.2.1 Standard I/O Pin Output Characteristics (1)

Figure 5.7 to Figure 5.10 show the characteristics of general ports (except for the RIIC output pin, port 4, and port J).

Figure 5.7 VOH/VOL and IOH/IOL Voltage Characteristics of General Ports (Except for RIIC Output Pin, Port 4, and Port J) at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (Reference Data)

Figure $5.8 \mathrm{VOH} / \mathrm{VOL}$ and IOH/IOL Temperature Characteristics of General Ports (Except for RIIC Output Pin, Port 4, and Port J) at VCC = 1.8 V (Reference Data)

Figure $5.9 \quad \mathrm{VOH} / \mathrm{VOL}$ and IOH/IOL Temperature Characteristics of General Ports (Except for RIIC Output Pin, Port 4, and Port J) at VCC = 2.7 V (Reference Data)

Figure 5.10 VOH/VOL and IOH/IOL Temperature Characteristics of General Ports (Except for RIIC Output Pin, Port 4, and Port J) at VCC = 3.3 V (Reference Data)

5.2.2 Standard I/O Pin Output Characteristics (2)

Figure 5.11 to Figure 5.13 show the characteristics of the RIIC output pin.

Figure 5.11 VOL and IOL Voltage Characteristics of RIIC Output Pin at $\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (Reference Data)

Figure 5.12 VOL and IOL Temperature Characteristics of RIIC Output Pin at VCC = 2.7 V (Reference Data)

Figure 5.13 VOL and IOL Temperature Characteristics of RIIC Output Pin at VCC = 3.3 V (Reference Data)

5.2.3 Standard I/O Pin Output Characteristics (3)

Figure 5.14 to Figure 5.17 show the characteristics of port 4 and port J.

Figure 5.14 VOH/VOL and IOH/IOL Voltage Characteristics of Port 4 and Port J at $\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (Reference Data)

[^1]

Figure 5.16 VOH/VOL and IOH/IOL Temperature Characteristics of Port 4 and Port J at VCC = 2.7 V (Reference Data)

Figure 5.17 VOH/VOL and IOH/IOL Temperature Characteristics of Port 4 and Port J at VCC = 3.3 V (Reference Data)

5.3 AC Characteristics

5.3.1 Clock Timing

Table 5.19 Operation Frequency Value (High-Speed Operating Mode)
Conditions: $\quad \mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	VCC			Unit	
		1.8 to 2.4 V	2.4 to 2.7 V	2.7 to 3.6 V			
Maximum operating frequency	System clock (ICLK)		$\mathrm{f}_{\text {max }}$	8	16	32	MHz
	FlashIF clock (FCLK)*1, *2	8		16	32		
	Peripheral module clock (PCLKB)	8		16	32		
	Peripheral module clock (PCLKD)*3	8		16	32		

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz , the frequency can be set to $1 \mathrm{MHz}, 2 \mathrm{MHz}$, or 3 MHz . A non-integer frequency such as 1.5 MHz cannot be set.
Note 2. The frequency accuracy of FCLK should be $\pm 3.5 \%$. Confirm the frequency accuracy of the clock source.
Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the A / D converter is in use.

Table 5.20 Operation Frequency Value (Middle-Speed Operating Mode)
Conditions: \quad VCC $=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	VCC			Unit	
		1.8 to 2.4 V	2.4 to 2.7 V	2.7 to 3.6 V			
Maximum operating frequency	System clock (ICLK)		$\mathrm{f}_{\max }$	8	12	12	MHz
	FlashIF clock (FCLK)*1, *2	8		12	12		
	Peripheral module clock (PCLKB)	8		12	12		
	Peripheral module clock (PCLKD)*3	8		12	12		

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz , the frequency can be set to $1 \mathrm{MHz}, 2 \mathrm{MHz}$, or 3 MHz . A non-integer frequency such as 1.5 MHz cannot be set.
Note 2. The frequency accuracy of FCLK should be $\pm 3.5 \%$.
Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the A / D converter is in use.

Table 5.21 Operation Frequency Value (Low-Speed Operating Mode)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

[^2]Note 2. The A/D converter cannot be used.

Table 5.22 Clock Timing
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions	
XTAL external clock input cycle time		${ }^{\text {X }}$ ¢ ${ }^{\text {cyc }}$	50	-	-	ns	Figure 5.18	
XTAL external clock input high pulse width		t_{XH}	20	-	-	ns		
XTAL external clock input low pulse width		t_{XL}	20	-	-	ns		
XTAL external clock rising time		t_{Xr}	-	-	5	ns		
XTAL external clock falling time		$t_{\text {Xf }}$	-	-	5	ns		
XTAL external clock input wait time*1		$\mathrm{t}_{\text {EXWT }}$	0.5	-	-	$\mu \mathrm{s}$		
Main clock oscillator oscillation frequency*2	$2.4 \leq \mathrm{VCC} \leq 3.6$	$\mathrm{f}_{\text {MAIN }}$	1	-	20	MHz		
	$1.8 \leq$ VCC <2.4		1	-	8			
Main clock oscillation stabilization time (crystal)*2		$\mathrm{t}_{\text {MAINOSC }}$	-	3	-	ms	Figure 5.20	
Main clock oscillation stabilization time (ceramic resonator)*2		$\mathrm{t}_{\text {MAINOSC }}$	-	50		$\mu \mathrm{s}$		
LOCO clock oscillation frequency		$\mathrm{f}_{\text {LOCO }}$	3.44	4.0	4.56	MHz		
LOCO clock oscillation stabilization time		$\mathrm{t}_{\text {LOCO }}$	-	-	0.5	$\mu \mathrm{s}$	Figure 5.21	
IWDT-dedicated clock oscillation frequency		$\mathrm{f}_{\text {ILOCO }}$	12.75	15	17.25	kHz		
IWDT-dedicated clock oscillation stabilization time		tiLoco		-	50	$\mu \mathrm{s}$	Figure 5.19	
HOCO clock oscillation frequency		$\mathrm{f}_{\mathrm{HOCO}}$	31.52	32	32.48	MHz	$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$	
		31.68	32	32.32	$\mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$			
		31.36	32	32.64	$\mathrm{Ta}=-40$ to $105^{\circ} \mathrm{C}$			
HOCO clock oscillation stabilization time			$\mathrm{t}_{\mathrm{HOCO}}$		-	56	$\mu \mathrm{s}$	Figure 5.23
Sub-clock oscillator oscillation frequency			$\mathrm{f}_{\text {SUB }}$	-	32.768	-	kHz	
Sub-clock oscillation stabilization time*3		tsubosc	-	0.5	-	S	Figure 5.24	

Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable.
Note 2. Reference values when an $8-\mathrm{MHz}$ oscillator is used.
When specifying the main clock oscillator stabilization time, set the MOSCWTCR register with a stabilization time value that is equal to or greater than the oscillator-manufacturer-recommended value.
After changing the setting of the MOSCCR.MOSTP bit so that the main clock oscillator operates, read the OSCOVFSR.MOOVF flag to confirm that is has become 1, and then start using the main clock.
Note 3. After changing the setting of the SOSCCR.SOSTP bit or RCR3.RTCEN bit so that the sub-clock oscillator operates, only start using the sub-clock after the sub-clock oscillation stabilization time with an adequate margin (2 times is recommended) has elapsed.

Figure 5.18 XTAL External Clock Input Timing

Figure 5.19 IWDT-Dedicated Clock Oscillation Start Timing

Figure 5.20 Main Clock Oscillation Start Timing

Figure 5.21 LOCO Clock Oscillation Start Timing

Figure 5.22 HOCO Clock Oscillation Start Timing (After Reset is Canceled by Setting OFS1.HOCOEN Bit to 0)

Figure 5.23 HOCO Clock Oscillation Start Timing (Oscillation is Started by Setting HOCOCR.HCSTP Bit)

Figure 5.24 Sub-Clock Oscillation Start Timing

5.3.2 Reset Timing

Table 5.23 Reset Timing
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
RES\# pulse width	At power-on	$\mathrm{t}_{\text {RESWP }}$	3	-	-	ms	Figure 5.25
	Other than above	$\mathrm{t}_{\text {RESW }}$	30	-	-	$\mu \mathrm{s}$	Figure 5.26
Wait time after RES\# cancellation (at power-on)	At normal startup*1	$\mathrm{t}_{\text {ReSWt }}$	-	8.5	-	ms	Figure 5.25
	During fast startup time*2	$\mathrm{t}_{\text {ReSWt }}$	-	560	-	$\mu \mathrm{s}$	
Wait time after RES\# cancellation (during powered-on state)		$\mathrm{t}_{\text {RESWT }}$	-	114	-	$\mu \mathrm{s}$	Figure 5.26
Independent watchdog timer reset period		$t_{\text {RESWIW }}$	-	1	-	IWDT clock cycle	Figure 5.27
Software reset period		treswsw	-	1	-	ICLK cycle	
Wait time after independent watchdog timer reset cancellation*3		tresw2	-	300		$\mu \mathrm{s}$	
Wait time after software reset cancellation		$\mathrm{t}_{\text {RESW2 }}$	-	168	-	$\mu \mathrm{s}$	

Note 1. When OFS1.(STUPLVD1REN, FASTSTUP) $=11 \mathrm{~b}$.
Note 2. When OFS1.(STUPLVD1REN, FASTSTUP) $\neq 11 \mathrm{~b}$.
Note 3. When IWDTCR.CKS[3:0] = 0000b.

Figure 5.25 Reset Input Timing at Power-On

Figure 5.26 Reset Input Timing (1)

Figure 5.27 Reset Input Timing (2)

5.3.3 Timing of Recovery from Low Power Consumption Modes

Table 5.24 Timing of Recovery from Low Power Consumption Modes (1)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item				Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Recovery time from software standby mode*1	High-speed mode	Crystal connected to main clock oscillator	Main clock oscillator operating*2	$t_{\text {SBYMC }}$	-	2	3	ms	Figure 5.28
			Main clock oscillator	$\mathrm{t}_{\text {SBYPC }}$	-	2	3	ms	
		External clock input to main	Main clock oscillator operating*3	$\mathrm{t}_{\text {SBYEX }}$	-	35	50	$\mu \mathrm{s}$	
		clock oscillator	Main clock oscillator	$\mathrm{t}_{\text {SBYPE }}$	-	70	95	$\mu \mathrm{s}$	
		Sub-clock oscillator operating		$\mathrm{t}_{\text {SBYSC }}$	-	650	800	$\mu \mathrm{s}$	
		HOCO clock oscillator operating*4		$\mathrm{t}_{\text {SBYHO }}$	-	40	55	$\mu \mathrm{s}$	
		LOCO clock oscillator operating		$\mathrm{t}_{\text {SBYLO }}$	-	40	55	$\mu \mathrm{s}$	

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
Note 2. When the frequency of the crystal is 20 MHz .
When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.
Note 3. When the frequency of the external clock is 20 MHz .
When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.
Note 4. When the frequency of HOCO is 32 MHz .
When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.

Table 5.25 Timing of Recovery from Low Power Consumption Modes (2)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

		Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Recovery time from software standby mode*1	Middle-speed mode	Crystal connected to\quadMain clock oscillator operating*2	${ }^{\text {t }}$ SBYMC	-	2	3	ms	Figure 5.28
		$\begin{array}{l}\text { main clock } \\ \text { oscillator }\end{array}$ Main clock oscillator	${ }^{\text {t }}$ SBYPC	-	2	3	ms	
		External clock Main clock oscillator input to main operating*3	$\mathrm{t}_{\text {SBYEX }}$	-	3	4	$\mu \mathrm{s}$	
		clock oscillator ${ }^{\text {a }}$ Main clock oscillator	$\mathrm{t}_{\text {SBYPE }}$	-	65	85	$\mu \mathrm{s}$	
		Sub-clock oscillator operating	$\mathrm{t}_{\text {SBYSC }}$	-	600	750	$\mu \mathrm{s}$	
		HOCO clock oscillator operating*4	${ }^{\text {t }}$ SBYHO	-	40	50	$\mu \mathrm{s}$	
		LOCO clock oscillator operating	$\mathrm{t}_{\text {SBYLO }}$	-	4.8	7	$\mu \mathrm{S}$	

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
Note 2. When the frequency of the crystal is 12 MHz .
When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.
Note 3. When the frequency of the external clock is 12 MHz .
When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.
Note 4. When the frequency of HOCO is 8 MHz .
When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.

Table 5.26 Timing of Recovery from Low Power Consumption Modes (3)
Conditions: VCC = AVCCO = 1.8 to 3.6 V , VSS = AVSSO $=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

	Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	
Recovery time from software standby mode* \times	Low-speed mode	Sub-clock oscillator operating	$\mathrm{t}_{\text {SBYsc }}$	-	600	750	$\mu \mathrm{~s}$	Figure 5.28

Note 1. The sub-clock continues oscillating in software standby mode during low-speed mode.

Figure 5.28 Software Standby Mode Cancellation Timing

Table 5.27 Timing of Recovery from Low Power Consumption Modes (4)
Conditions: VCC $=\mathrm{AVCCO}=1.8$ to 3.6 V , VSS $=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Recovery time from deep sleep mode*1	High-speed mode*2	$\mathrm{t}_{\text {DSLP }}$	-	2	3.5	$\mu \mathrm{s}$	
	Middle-speed mode*3	$\mathrm{t}_{\text {DSLP }}$	-	3	4	$\mu \mathrm{s}$	
	Low-speed mode*4	$t_{\text {DSLP }}$	-	400	500	$\mu \mathrm{s}$	

Note 1. Oscillators continue oscillating in deep sleep mode.
Note 2. When the frequency of the system clock is 32 MHz .
Note 3. When the frequency of the system clock is 12 MHz .
Note 4. When the frequency of the system clock is 32.768 kHz .

Figure 5.29 Deep Sleep Mode Cancellation Timing

Table 5.28 Timing of Recovery from Low Power Consumption Modes (5) Operating Mode Transition Time
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Mode before Transition	Mode after Transition	ICLK Frequency	Transition Time			Unit
			Min.	Typ.	Max.	
High-speed operating mode	Middle-speed operating mode	8 MHz	-	10	-	$\mu \mathrm{s}$
Middle-speed operating mode	High-speed operating mode	8 MHz	-	37.5	-	$\mu \mathrm{s}$
Low-speed operating mode	Middle-speed operating mode, high-speed operating mode	32.768 kHz	-	213.62	-	$\mu \mathrm{s}$
Middle-speed operating mode, high-speed operating mode	Low-speed operating mode	32.768 kHz	-	183.11	-	$\mu \mathrm{s}$

Note: • When PCLKB, PCLKD, and FCLK are set to the same frequency division ratio as ICLK.

5.3.4 Control Signal Timing

Table 5.29 Control Signal Timing
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	
NMI pulse width	$\mathrm{t}_{\text {NMIW }}$	200	-	-	ns	NMI digital filter disabled (NMIFLTE.NFLTEN = 0)	$\mathrm{t}_{\text {Pcyc }} \times 2 \leq 200 \mathrm{~ns}$
		$\mathrm{t}_{\text {Pcyc }} \times 2^{\star 1}$	-	-			$\mathrm{t}_{\text {Pcyc }} \times 2>200 \mathrm{~ns}$
		200	-	-		NMI digital filter enabled (NMIFLTE.NFLTEN = 1)	$\mathrm{t}_{\text {NMICK }} \times 3 \leq 200 \mathrm{~ns}$
		$\mathrm{t}_{\text {NMICK }} \times 3.5 * 2$	-	-			$\mathrm{t}_{\text {NMICK }} \times 3>200 \mathrm{~ns}$
IRQ pulse width	$\mathrm{t}_{\text {IRQW }}$	200	-	-	ns	IRQ digital filter disabled (IRQFLTE0.FLTENi = 0)	$\mathrm{t}_{\text {pcyc }} \times 2 \leq 200 \mathrm{~ns}$
		$\mathrm{t}_{\text {Pcyc }} \times 2^{* 1}$	-	-			$\mathrm{t}_{\text {Pcyc }} \times 2>200 \mathrm{~ns}$
		200	-	-		IRQ digital filter enabled (IRQFLTE0.FLTENi = 1)	$\mathrm{t}_{\text {IRQCK }} \times 3 \leq 200 \mathrm{~ns}$
		$\mathrm{t}_{\text {IRQCK }} \times 3.5 * 3$	-	-			$\mathrm{t}_{\text {IRQCK }} \times 3>200 \mathrm{~ns}$

Note: • 200 ns minimum in software standby mode.
Note 1. $\mathrm{t}_{\text {Pcyc }}$ indicates the cycle of PCLKB.
Note 2. $\mathrm{t}_{\text {NMICK }}$ indicates the cycle of the NMI digital filter sampling clock.
Note 3. $\mathrm{t}_{\mathrm{IRQCK}}$ indicates the cycle of the IRQi digital filter sampling clock ($\mathrm{i}=0$ to 7).

NMI

Figure 5.30 NMI Interrupt Input Timing

Figure 5.31 IRQ Interrupt Input Timing

5.3.5 Timing of On-Chip Peripheral Modules

Table 5.30 Timing of On-Chip Peripheral Modules (1)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Note 1. $\mathrm{t}_{\text {Pcyc }}$: PCLK cycle
Note 2. $\mathrm{t}_{\mathrm{cac}}$: CAC count clock source cycle
Note 3. When the LOCO is selected as the clock output source (CKOCR.CKOSEL[2:0] bits $=000 \mathrm{~b}$), set the clock output division ratio selection to divided by 2 (CKOCR.CKODIV[2:0] bits $=001 b$).
Note 4. When the EXTAL external clock input or an oscillator is used with divided by 1 (CKOCR.CKOSEL[2:0] bits $=010 \mathrm{~b}$ and CKOCR.CKODIV[2:0] bits $=000 \mathrm{~b}$) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

Table 5.31 Timing of On-Chip Peripheral Modules (2)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to 3.6 V , VSS $=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{C}=30 \mathrm{pF}$

Item				Symbol	Min.	Max.	Unit	Test Conditions
RSPI	RSPCK clock cycle	Master		${ }^{\text {tspcyc }}$	2	4096	$\underset{\star 1}{t_{\text {Pcyc }}}$	Figure 5.39
		Slave			8	4096		
	RSPCK clock high pulse width	Master		$\mathrm{t}_{\text {SPCKW }}$	$\begin{gathered} \left(\mathrm{t}_{\mathrm{SPcyc}}-\mathrm{t}_{\mathrm{SPCKr}}-\right. \\ \left.\mathrm{t}_{\mathrm{SPPKF}}\right) / 2-3 \end{gathered}$	-	ns	
		Slave			$\begin{gathered} \left(\mathrm{t}_{\mathrm{SPcyc}}-\mathrm{t}_{\mathrm{SPCKr}}-\right. \\ \left.\mathrm{t}_{\mathrm{SPCKt}}\right) / 2 \end{gathered}$	-		
	RSPCK clock low pulse width	Master		${ }_{\text {t SPCKWL }}$	$\begin{gathered} \left(\mathrm{t}_{\mathrm{SPcyc}}-\mathrm{t}_{\mathrm{SPCKr}}-\right. \\ \mathrm{t}_{\mathrm{SPCKG}} / 2-3 \end{gathered}$	-	ns	
		Slave			$\begin{gathered} \left(\mathrm{t}_{\mathrm{SPcyc}}-\mathrm{t}_{\mathrm{SPCKr}}-\right. \\ \left.\mathrm{t}_{\mathrm{SPCKf}}\right) / 2 \end{gathered}$	-	-	
	RSPCK clock rise/fall time	Output	2.7 V or above	${ }^{\mathrm{t}} \mathrm{SPCKr}$, $t_{\text {SPCKf }}$	-	10	ns	
			1.8 V or above		-	15		
		Input			-	1	$\mu \mathrm{s}$	
	Data input setup time	Master	2.7 V or above	t_{SU}	10	-	ns	Figure 5.40 to
			1.8 V or above		30	- -		Figure 5.43
		Slave			$25-t_{\text {Pcyc }}$	-		
	Data input hold time	Master	RSPCK set to a division ratio other than PCLKB divided by 2	t_{H}	$t_{\text {Pcyc }}$		ns	
			RSPCK set to PCLKB divided by 2	t_{HF}	0	-		
		Slave		t_{H}	$20+2 \times \mathrm{t}_{\text {Pcyc }}$	-		
	SSL setup time	Master		$\mathrm{t}_{\text {LEAD }}$	$-30+{ }^{* 2} \times \mathrm{t}_{\text {SPcyc }}$	-	ns	
		Slave			2	-	$\mathrm{t}_{\text {Pcyc }}$	
	SSL hold time	Master		$\mathrm{t}_{\text {LAG }}$	$-30+{ }^{*} 3 \times \mathrm{t}_{\text {SPcyc }}$	-	ns	
		Slave			2	-	$\mathrm{t}_{\text {Pcyc }}$	
	Data output delay time	Master Slave	2.7 V or above	t_{OD}	- -	14	ns	
			1.8 V or above		-	30		
			2.7 V or above		-	$3 \times \mathrm{t}_{\text {Pcyc }}+65$		
			1.8 V or above		-	$3 \times \mathrm{t}_{\text {Pcyc }}+105$		
	Data output hold time	Master	2.7 V or above	t_{OH}	0	-	ns	
			1.8 V or above		-20	-		
		Slave			0	-		
	Successive transmission delay time	Master		${ }_{\text {t }}$	$\mathrm{t}_{\text {SPcyc }}+2 \times \mathrm{t}_{\text {Pcyc }}$	$8 \times \mathrm{t}_{\text {SPcyc }}+2 \times \mathrm{t}_{\text {Pcyc }}$	ns	
		Slave			$4 \times \mathrm{t}_{\text {Pcyc }}$	-		
	MOSI and MISO rise/fall time	Output	2.7 V or above	$\mathrm{t}_{\mathrm{Dr},} \mathrm{t}_{\mathrm{Df}}$	-	10	ns	
			1.8 V or above		-	20		
		Input			-	1	$\mu \mathrm{s}$	
	SSL rise/fall time	Output		${ }^{\text {tsSLr, }}$ tsslf	-	20	ns	
		Input			-	1	$\mu \mathrm{s}$	
	Slave access time		2.7 V or above	$\mathrm{t}_{\text {SA }}$	-	6	$t_{\text {Pcyc }}$	Figure 5.42,
			1.8 V or above		-	7		Figure 5.43
	Slave output release time		2.7 V or above	$\mathrm{t}_{\text {REL }}$	-	5	$\mathrm{t}_{\text {Pcyc }}$	
			1.8 V or above		-	6		

Note 1. $\mathrm{t}_{\text {Pcyc }}$: PCLK cycle
Note 2. N : An integer from 1 to 8 that can be set by the RSPI clock delay register (SPCKD)
Note 3. N: An integer from 1 to 8 that can be set by the RSPI slave select negation delay register (SSLND)

Table 5.32 Timing of On-Chip Peripheral Modules (3)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item			Symbol	Min.	Max.	Unit*1	Test Conditions
Simple	SCK clock cycle output (master)		$t_{\text {SPcyc }}$	4	65536	$t_{\text {Pcyc }}$	Figure 5.39
SPI	SCK clock cycle input (slave)			6	65536		
	SCK input clock high pulse width		$\mathrm{t}_{\text {SPCKWH }}$	0.4	0.6	$\mathrm{t}_{\text {SPcyc }}$	
	SCK input clock low pulse width		$\mathrm{t}_{\text {SPCKWL }}$	0.4	0.6	$\mathrm{t}_{\text {SPcyc }}$	
	SCK clock rise/fall time		$\mathrm{t}_{\text {SPCKr, }} \mathrm{t}_{\text {SPCKf }}$	-	20	ns	
	Data input setup time (master)	2.7 V or above	t_{SU}	65	-	ns	Figure 5.40, Figure 5.41
		1.8 V or above		95	-		
	Data input setup time (slave)			40	-		
	Data input hold time		t_{H}	40	-	n	
	SSL input setup time		$\mathrm{t}_{\text {LEAD }}$	3	-	$\mathrm{t}_{\text {Pcyc }}$	
	SSL input hold time		$\mathrm{t}_{\text {LAG }}$	3	-	$\mathrm{t}_{\text {Pcyc }}$	
	Data output delay time (master)		${ }^{\text {tod }}$	-	40	ns	
	Data output delay time (slave)	2.7 V or above		-	65		
		1.8 V or above		-	85		
	Data output hold time (master)	2.7 V or above	t_{OH}	-10		ns	
		1.8 V or above		-20	-		
	Data output hold time (slave)			-10	-		
	Data rise/fall time		$t_{\text {Dr, }} \mathrm{t}_{\mathrm{Df}}$	-	20	ns	
	SSL input rise/fall time		$\mathrm{t}_{\text {SSLr, }}$ t ${ }_{\text {SSLf }}$	-	20	ns	
	Slave access time		$\mathrm{t}_{\text {SA }}$	-	6	$t_{\text {Pcyc }}$	Figure 5.42, Figure 5.43
	Slave output release time		$\mathrm{t}_{\text {REL }}$	-	6	${ }_{\text {tpcyc }}$	

Note 1. $\mathrm{t}_{\text {Pcyc }}$: PCLK cycle

Table 5.33 Timing of On-Chip Peripheral Modules (4)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=2.7$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{fPCLKB} \leq 32 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min. ${ }^{1, * 2}$	Max.	Unit	Test Conditions
RIIC (Standard mode, SMBus)	SCLO cycle time	$\mathrm{t}_{\mathrm{SCL}}$	$6(12) \times t_{l I C c y c}+1300$	-	ns	Figure 5.44
	SCLO high pulse width	$\mathrm{t}_{\text {SCLH }}$	$3(6) \times \mathrm{t}_{11 \mathrm{ccyc}}+300$	-	ns	
	SCL0 low pulse width	$\mathrm{t}_{\text {SCLL }}$	$3(6) \times \mathrm{t}_{\text {IICcyc }}+300$	-	ns	
	SCLO, SDAO rise time	t_{Sr}	-	1000	ns	
	SCLO, SDAO fall time	$\mathrm{t}_{\text {Sf }}$	-	300	ns	
	SCL0, SDA0 spike pulse removal time	$t_{\text {SP }}$	0	$1(4) \times t_{\text {IICcyc }}$	ns	
	SDAO bus free time	$\mathrm{t}_{\text {BUF }}$	$3(6) \times \mathrm{t}_{11 \mathrm{ccyc}}+300$	-	ns	
	START condition hold time	$\mathrm{t}_{\text {Stah }}$	$\mathrm{t}_{\text {IICcyc }}+300$	-	ns	
	Repeated START condition setup time	$\mathrm{t}_{\text {Stas }}$	1000	-	ns	
	STOP condition setup time	$\mathrm{t}_{\text {Stos }}$	1000	-	ns	
	Data setup time	${ }^{\text {t }}$ SDAS	$\mathrm{t}_{\text {IICcyc }}+50$	-	ns	
	Data hold time	$\mathrm{t}_{\text {SDAH }}$	0	-	ns	
	SCLO, SDA0 capacitive load	C_{b}	-	400	pF	
RIIC (Fast mode)	SCLO cycle time	$\mathrm{t}_{\text {SCL }}$	$6(12) \times \mathrm{t}_{\text {ICcyc }}+600$	-	ns	Figure 5.44
	SCLO high pulse width	${ }^{\text {tsCLH }}$	$3(6) \times t_{1 I C c y c}+300$	-	ns	
	SCLO low pulse width	$\mathrm{t}_{\text {SCLL }}$	$3(6) \times t_{\text {IICcyc }}+300$	-	ns	
	SCLO, SDAO rise time	$\mathrm{t}_{\text {Sr }}$	*3	300	ns	
	SCLO, SDAO fall time	$\mathrm{t}_{\text {ff }}$	-*3	300	ns	
	SCLO, SDAO spike pulse removal time	t_{SP}	0	$1(4) \times t_{\text {IICcyc }}$	ns	
	SDA0 bus free time	$\mathrm{t}_{\text {BUF }}$	$3(6) \times t_{1 I C c y c}+300$	-	ns	
	START condition hold time	$\mathrm{t}_{\text {Sta }}$	$\mathrm{t}_{\text {IICcyc }}+300$	-	ns	
	Repeated START condition setup time	$\mathrm{t}_{\text {STAS }}$	300	-	ns	
	STOP condition setup time	$\mathrm{t}_{\text {Stos }}$	300	-	ns	
	Data setup time	$t_{\text {SDAS }}$	$\mathrm{t}_{\text {IICcyc }}+50$	-	ns	
	Data hold time	$t_{\text {SDAH }}$	0	-	ns	
	SCL0, SDA0 capacitive load	C_{b}	-	400	pF	

Note: • $\mathrm{t}_{\text {IICcyc }}$: RIIC internal reference count clock (IIC φ) cycle
Note 1. The value in parentheses is used when the ICMR3.NF[1:0] bits are set to 11 b while a digital filter is enabled with the ICFER.NFE bit $=1$.
Note 2. C_{b} indicates the total capacity of the bus line.
Note 3. The minimum tsr and tsf specifications for fast mode are not set.

Table 5.34 Timing of On-Chip Peripheral Modules (5)
Conditions: VCC = AVCCO = 2.7 to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{fPCLKB} \leq 32 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.*1	Max.	Unit	Test Conditions Figure 5.44
Simple IIC (Standard mode)	SDA0 rise time	t_{Sr}	-	1000	ns	
	SDAO fall time	t_{Sf}	-	300	ns	Figure 5.44
	SDA0 spike pulse removal time	$t_{\text {SP }}$	0	$4 \times \mathrm{t}_{\text {pcyc }}{ }^{* 2}$	ns	
	Data setup time	$\mathrm{t}_{\text {SDAS }}$	250	-	ns	
	Data hold time	$t_{\text {SDAH }}$	0	-	ns	
	SCL0, SDA0 capacitive load	C_{b}	-	400	pF	
Simple IIC (Fast mode)	SCLO, SDAO rise time	t_{Sr}	-	300	ns	Figure 5.44
	SCLO, SDAO fall time	$\mathrm{t}_{\text {Sf }}$	-	300	ns	
	SCLO, SDA0 spike pulse removal time	$\mathrm{t}_{\text {SP }}$	0	$4 \times \mathrm{t}_{\text {pcyc }}{ }^{* 2}$	ns	
	Data setup time	$\mathrm{t}_{\text {SDAS }}$	100	-	ns	
	Data hold time	$\mathrm{t}_{\text {SDAH }}$	0	-	ns	
	SCLO, SDA0 capacitive load	C_{b}	-	400	pF	

Note: • $\mathrm{t}_{\text {Pcyc }}$: PCLK cycle
Note 1. C_{b} indicates the total capacity of the bus line.
Note 2. This applies when the SMR.CKS[1:0] bits $=00 \mathrm{~b}$ and the SNFR.NFCS[2:0] bits $=010 \mathrm{~b}$ while the SNFR.NFE bit $=1$ and the digital filter is enabled.

Figure 5.32 I/O Port Input Timing

Figure 5.33 MTU2 Input/Output Timing

Figure 5.34 MTU2 Clock Input Timing

Figure 5.35 SCK Clock Input Timing

Figure 5.36 SCI Input/Output Timing: Clock Synchronous Mode

Figure 5.37 A/D Converter External Trigger Input Timing

Test conditions: $\mathrm{V}_{\mathrm{OH}}=\mathrm{VCC} \times 0.7, \mathrm{~V}_{\mathrm{OL}}=\mathrm{VCC} \times 0.3, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}, \mathrm{C}=30 \mathrm{pF}$

Figure 5.38 CLKOUT Output Timing

Figure 5.39 RSPI Clock Timing and Simple SPI Clock Timing

Figure 5.40 RSPI Timing (Master, CPHA = 0) and Simple SPI Timing (Master, CKPH = 1)

Figure 5.41 RSPI Timing (Master, CPHA = 1) and Simple SPI Timing (Master, CKPH = 0)

Figure 5.42 RSPI Timing (Slave, CPHA = 0) and Simple SPI Timing (Slave, CKPH = 1)

Figure 5.43 RSPI Timing (Slave, CPHA = 1) and Simple SPI Timing (Slave, CKPH = 0)

Note 1. S, P, and Sr indicate the following conditions, respectively.
S: START condition
P: STOP condition
Sr: Repeated START condition

Figure 5.44 RIIC Bus Interface Input/Output Timing and Simple IIC Bus Interface Input/Output Timing

5.4 A/D Conversion Characteristics

Table 5.35 A/D Conversion Characteristics (1)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=\mathrm{VREFHO}=2.7$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{PCLKD}=4$ to 32 MHz ,
$T_{a}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Min.	Typ.	Max.	Unit	Test Conditions	
Resolution		-	-	12	Bit		
Conversion time*1 (Operation at PCLKD = 32 MHz)	Permissible signal source impedance (Max.) $=0.3 \mathrm{k} \Omega$	$\begin{gathered} 1.031 \\ (0.313)^{\star 2} \end{gathered}$	-	-	$\mu \mathrm{s}$	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits $=09 \mathrm{~h}$	
		$\begin{gathered} 1.375 \\ (0.641)^{\star 2} \end{gathered}$	-	-		Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits $=14 \mathrm{~h}$	
Offset error		-	± 0.5	± 4.5	LSB	High-precision channel PJ6PFS.ASEL bit = 1 PJ7PFS.ASEL bit = 1	
		± 6.0		LSB	Other than above		
Full-scale error			-	± 0.75	± 4.5	LSB	High-precision channel PJ6PFS.ASEL bit = 1 PJ7PFS.ASEL bit = 1
		± 6.0			LSB	Other than above	
Quantization error		-	± 0.5	-	LSB		
Absolute accuracy		-	± 1.25	± 5.0	LSB	High-precision channel PJ6PFS.ASEL bit = 1 PJ7PFS.ASEL bit = 1	
		± 8.0		LSB	Other than above		
DNL differential nonlinearity error			-	± 1.0	-	LSB	
INL integral nonlinearity error		-	± 1.0	± 3.0	LSB		

Note: • The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.
Note 2. The value in parentheses indicates the sampling time.

Figure 5.45 AVCC to AVREFH Voltage Range

Table 5.36 A/D Conversion Characteristics (2)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=\mathrm{VREFHO}=2.4$ to $2.7 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{PCLKD}=4$ to 16 MHz ,
$T_{a}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Min.	Typ.	Max.	Unit	Test Conditions
Resolution		-	-	12	Bit	
Conversion time*1 (Operation at fPCLKD $=16 \mathrm{MHz}$)	Permissible signal source impedance (Max.) $=1.0 \mathrm{k} \Omega$	$\begin{gathered} 2.062 \\ (0.625)^{\star 2} \end{gathered}$	-	-	$\mu \mathrm{s}$	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits $=09 \mathrm{~h}$
		$\begin{gathered} 2.750 \\ (1.313) \star 2 \end{gathered}$	-	-	$\mu \mathrm{s}$	Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits $=14 \mathrm{~h}$
Offset error		-	± 0.5	± 6.0	LSB	
Full-scale error		-	± 1.25	± 6.0	LSB	
Quantization error		-	± 0.5	-	LSB	
Absolute accuracy		-	± 3.0	± 8.0	LSB	
DNL differential nonlinearity error		-	± 1.0	-	LSB	
INL integral nonlinearity error		-	± 1.5	± 3.0	LSB	

Note: • The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.
Note 2. The value in parentheses indicates the sampling time.

Table 5.37 A/D Conversion Characteristics (3)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=\mathrm{VREFHO}=1.8$ to $2.4 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{PCLKD}=1$ to 8 MHz , $\mathrm{T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

	Item	Min.	Typ.	Max.	Unit	Test Conditions
Resolution		-	-	12	Bit	
Conversion time*1 (Operation at PCLKD = 8 MHz)	Permissible impedance	$\begin{gathered} 4.875 \\ (1.250)^{\star 2} \end{gathered}$	-	-	$\mu \mathrm{s}$	High-precision channel ADCSR.ADHSC bit = 0 ADSSTRn.SST[7:0] bits $=09 \mathrm{~h}$
		$\begin{gathered} 6.250 \\ (2.625)^{* 2} \end{gathered}$	-	-		Normal-precision channel ADCSR.ADHSC bit = 0 ADSSTRn.SST[7:0] bits $=14 \mathrm{~h}$
Offset error		-	± 0.5	± 24.0	LSB	
Full-scale error		-	± 1.25	± 24.0	LSB	
Quantization error		-	± 0.5	-	LSB	
Absolute accuracy		-	± 2.75	± 32.0	LSB	
DNL differential nonlinearity error		-	± 1.0	-	LSB	
INL integral nonlinearity error		-	± 1.25	± 12.0	LSB	

Note: - The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.
Note 2. The value in parentheses indicates the sampling time.

Table 5.38 A/D Converter Channel Classification

Classification	Channel	Conditions	Remarks
High-precision channel	ANOOO to AN004, ANOO6	AVCC0 $=1.8$ to 3.6 V	Pins ANO00 to AN004 and ANO066 cannot be used as digital outputs when the A/D converter is in use.
Normal-precision channel	AN008 to AN015	AVCC0 $=2.0$ to 3.6 V	
Internal reference voltage input channel	Internal reference voltage	AVCC0 $=2.0$ to 3.6 V	
Temperature sensor input channel	Temperature sensor output		

Table 5.39 AID Internal Reference Voltage Characteristics
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=2.0$ to $3.6 \mathrm{~V} * 1, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Min.	Typ.	Max.	Unit	Test Conditions
Internal reference voltage input channel*2	1.36	1.43	1.50	V	

Note 1. The internal reference voltage cannot be selected for input channels when AVCCO < 2.0 V .
Note 2. The A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the A/D converter.

Figure 5.46 Illustration of A/D Converter Characteristic Terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A / D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 $=3.072 \mathrm{~V}$), then 1-LSB width becomes 0.75 mV , and $0 \mathrm{mV}, 0.75 \mathrm{mV}, 1.5 \mathrm{mV}, \ldots$ are used as analog input voltages.

If analog input voltage is 6 mV , absolute accuracy $= \pm 5 \mathrm{LSB}$ means that the actual A / D conversion result is in the range of 003h to 00Dh though an output code, 008 h , can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actually output code.

Offset error

Offset error is the difference between a transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between a transition point of the ideal last output code and the actual last output code.

5.5 Temperature Sensor Characteristics

Table 5.40 Temperature Sensor Characteristics
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=2.0$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Relative accuracy		-	± 1.5	-	${ }^{\circ} \mathrm{C}$	2.4 V or above
		-	± 2.0	-		Below 2.4 V
Temperature slope	-	-	-3.65	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Output voltage (at $25^{\circ} \mathrm{C}$)	-	-	1.05	-	V	$\mathrm{VCC}=3.3 \mathrm{~V}$
Temperature sensor start time	$\mathrm{t}_{\text {START }}$	-	-	5	$\mu \mathrm{s}$	
Sampling time	-	5	-	-	$\mu \mathrm{s}$	

5.6 Power-On Reset Circuit and Voltage Detection Circuit Characteristics

Table 5.41 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (1)
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Voltage detection level	Power-on reset (POR)	$\mathrm{V}_{\text {POR }}$	1.35	1.50	1.65	V	Figure 5.47, Figure 5.48
	Voltage detection circuit (LVD1)*1	$V_{\text {det1_4 }}$	3.00	3.10	3.20	V	Figure 5.49 At falling edge VCC
		$V_{\text {det1_5 }}$	2.91	3.00	3.09		
		$\mathrm{V}_{\text {det1_6 }}$	2.81	2.90	2.99		
		$V_{\text {det1_7 }}$	2.70	2.79	2.88		
		$\mathrm{V}_{\text {det1_8 }}$	2.60	2.68	2.76		
		$V_{\text {det1_9 }}$	2.50	2.58	2.66		
		$V_{\text {det1_A }}$	2.40	2.48	2.56		
		$V_{\text {det1_B }}$	1.99	2.06	2.13		
		$\mathrm{V}_{\text {det1_C }}$	1.90	1.96	2.02		
		$\mathrm{V}_{\text {det1_D }}$	1.80	1.86	1.92		

Note: • These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD2), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.
Note 1. \# in the symbol Vdet1_\# denotes the value of the LVDLVLR.LVD1LVL[3:0] bits.

Table 5.42 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (2)
Conditions: VCC $=\mathrm{AVCCO}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Voltage detection level	Voltage detection circuit (LVD2)*1	$V_{\text {det2_0 }}$	2.71	2.90	3.09	V	Figure 5.50 At falling edge VCC
		$V_{\text {det2_1 }}$	2.43	2.60	2.77		
		$V_{\text {det2_2 }}$	1.87	2.00	2.13		
		$\mathrm{V}_{\text {det2_3*2 }}$	1.69	1.80	1.91		
Wait time after power-on reset cancellation	At normal startup*3	$\mathrm{t}_{\mathrm{POR}}$	-	9.1	-	ms	Figure 5.48
	During fast startup time*4	$\mathrm{t}_{\mathrm{POR}}$	-	1.6	-		
Wait time after voltage monitoring 1 reset cancellation	Power-on voltage monitoring 1 reset disabled*3	$\mathrm{t}_{\text {LVD1 }}$	-	568	-	$\mu \mathrm{s}$	Figure 5.49
	Power-on voltage monitoring 1 reset enabled*4		-	100	-		
Wait time after voltage monitoring 2 reset cancellation		$\mathrm{t}_{\text {LVD2 }}$	-	100	-	$\mu \mathrm{s}$	Figure 5.50
Response delay time		$\mathrm{t}_{\text {det }}$	-	-	350	$\mu \mathrm{s}$	Figure 5.47
Minimum VCC down time*5		$\mathrm{t}_{\text {VOFF }}$	350	-	-	$\mu \mathrm{s}$	Figure 5.47, VCC $=1.0 \mathrm{~V}$ or above
Power-on reset enable time		${ }^{\text {W }}$ (POR)	1	-	-	ms	Figure 5.48, VCC = below 1.0 V
LVD operation stabilization time (after LVD is enabled)		$\mathrm{Td}_{(\mathrm{E}-\mathrm{A})}$	-	-	300	$\mu \mathrm{s}$	Figure 5.49, Figure 5.50
Hysteresis width (LVD1 and LVD2)		$\mathrm{V}_{\text {LVH }}$	-	70	-	mV	Vdet1_4 selected
		-	60	-	Vdet1_5 to 9, LVD2 selected		
		-	50	-	When selection is from among Vdet1_A to B.		
		-	40	-	When selection is from among Vdet1_C to D.		

Note: - These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.
Note 1. \# in the symbol Vdet2_\# denotes the value of the LVDLVLR.LVD2LVL[3:0] bits.
Note 2. Vdet2_3 selection can be used only when the CMPA2 pin input voltage is selected and cannot be used when the power supply voltage (VCC) is selected.
Note 3. When OFS1.(STUPLVD1REN, FASTSTUP) $=11 \mathrm{~b}$.
Note 4. When OFS1. (STUPLVD1REN, FASTSTUP) $\neq 11 \mathrm{~b}$.
Note 5. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels $\mathrm{V}_{\mathrm{POR}}, \mathrm{V}_{\text {deto }}$, $V_{\mathrm{det} 1}$, and $\mathrm{V}_{\mathrm{det} 2}$ for the POR/LVD.

Figure 5.47 Voltage Detection Reset Timing

Figure 5.48 Power-On Reset Timing

Figure 5.49 Voltage Detection Circuit Timing ($\mathrm{V}_{\text {det1 }}$)

Figure $5.50 \quad$ Voltage Detection Circuit Timing ($\mathrm{V}_{\text {det2 }}$)

5.7 Oscillation Stop Detection Timing

Table 5.43 Oscillation Stop Detection Circuit Characteristics
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Detection time	t_{dr}	-	-	1	ms	Figure 5.51

Figure 5.51 Oscillation Stop Detection Timing

5.8 ROM (Flash Memory for Code Storage) Characteristics

Table 5.44 ROM (Flash Memory for Code Storage) Characteristics (1)

Item		Symbol	Min.	Typ.	Max.	Unit	Conditions
Reprogramming/erasure cycle							
Data hold time	After 1000 times of $\mathrm{N}_{\text {PEC }}$	$\mathrm{N}_{\text {PEC }}$	1000	-	-	Times	

Note 1. Definition of reprogram/erase cycle: The reprogram/erase cycle is the number of erasing for each block. When the reprogram/ erase cycle is n times $(n=1000)$, erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different addresses in 1-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).
Note 2. Characteristic when using the flash memory programmer and the self-programming library provided from Renesas Electronics.
Note 3. This result is obtained from reliability testing.

Table 5.45 ROM (Flash Memory for Code Storage) Characteristics (2) : high-speed operating mode, middle-speed operating mode
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=2.7$ to $3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}$
Temperature range for the programming/erasure operation: $T_{a}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	FCLK $=1 \mathrm{MHz}$				32 M		Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.			
Programming time	4-byte		$\mathrm{t}_{\text {P4 }}$	-	1650	4910		100	761	$\mu \mathrm{s}$
Erasure time	1-Kbyte	$\mathrm{t}_{\text {E1K }}$	-	9.77	329	-	5.53	258	ms	
Blank check time	4-byte	$\mathrm{t}_{\mathrm{BC}} 4$	-	-	5000	-	-	316	$\mu \mathrm{s}$	
	1-Kbyte	$\mathrm{t}_{\mathrm{BC} 1 \mathrm{~K}}$	-	-	1280	-	-	80.7	ms	

Note: • Does not include the time until each operation of the flash memory is started after instructions are executed by software.
Note: • The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz , the frequency can be set to $1 \mathrm{MHz}, 2 \mathrm{MHz}$, or 3 MHz . A non-integer frequency such as 1.5 MHz cannot be set.
Note: - The frequency accuracy of FCLK should be $\pm 3.5 \%$. Confirm the frequency accuracy of the clock source.

Table 5.46 ROM (Flash Memory for Code Storage) Characteristics (3) : middle-speed operating mode
Conditions: $\mathrm{VCC}=\mathrm{AVCCO}=1.8$ to 3.6 V , $\mathrm{VSS}=\mathrm{AVSSO}=\mathrm{VREFLO}=0 \mathrm{~V}$
Temperature range for the programming/erasure operation: $\mathrm{T}_{\mathrm{a}}=-40$ to $+105^{\circ} \mathrm{C}$

Item		Symbol	FCLK = 1 MHz			FCLK $=8 \mathrm{MHz}$			Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.			
Programming time	4-byte		$\mathrm{t}_{\mathrm{P} 4}$	-	1690	5380	-	290	1680	$\mu \mathrm{s}$
Erasure time	1-Kbyte	$\mathrm{t}_{\text {E1K }}$	-	9.84	331	-	6.04	275	ms	
Blank check time	4-byte	$\mathrm{t}_{\mathrm{BC} 4}$	-	-	4980	-	-	973	$\mu \mathrm{s}$	
	1-Kbyte	$\mathrm{t}_{\mathrm{BC} 1 \mathrm{~K}}$	-	-	1270	-	-	250	ms	

Note: - Does not include the time until each operation of the flash memory is started after instructions are executed by software.
Note: - The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz , the frequency can be set to $1 \mathrm{MHz}, 2 \mathrm{MHz}$, or 3 MHz . A non-integer frequency such as 1.5 MHz cannot be set.
Note: - The frequency accuracy of FCLK should be $\pm 3.5 \%$. Confirm the frequency accuracy of the clock source.

Appendix 1. Package Dimensions

Information on the latest version of the package dimensions or mountings has been displayed in "Packages" on Renesas Electronics Corporation website.

Figure A 64-Pin LQFP (PLQP0064KB-A)

Figure B 64-Pin LQFP (PLQP0064GA-A)

Figure C 64-Pin WFLGA (PWLG0064KA-A)

Figure D 48-Pin LQFP (PLQP0048KB-A)

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	$48 P J N-A$ P48K8-50-5B4-5	0.13

DETAIL OF © PART

EXPOSED DIE PAD

Referance Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	6.95	7.00	7.05
E	6.95	7.00	7.05
A	0.70	0.75	0.80
b	0.18	0.25	0.30
e	-	0.50	-
Lp	0.30	0.40	0.50
x	-	-	0.05
y	-	-	0.05

© 2012 Renesas Electronics Corporation. All rights reserved.

Figure E 48-Pin HWQFN (PWQN0048KB-A)

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-4	0.09

 DETAIL OF (A) PART

EXPOSED DIE PAD

Referance Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	5.95	6.00	6.05
E	5.95	6.00	6.05
A	0.70	0.75	0.80
b	0.18	0.25	0.30
e	-	0.50	-
Lp	0.30	0.40	0.50
x	-	-	0.05
y	-	-	0.05

© 2012 Renesas Electronics Corporation. All rights reserved.

Figure F $\quad 40-$-Pin HWQFN (PWQN0040KC-A)

Figure G 36-Pin WFLGA (PWLG0036KA-A)

REVISION HISTORY	RX110 Group Datasheet

Rev.	Date	Description		
		Page	Summary	
0.51	Jul 03, 2013	-	First edition, issued	

All trademarks and registered trademarks are the property of their respective owners.

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
(6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

- The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

SALES OFFICES Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.
California Eastern Laboratories, Inc.
4590 Patrick Henry Drive, Santa Clara, California 95054, U.S.A
Tel: +1-408-919-2500, Fax: +1-408-988-0279
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: $+44-1628-651-700$, Fax: $+44-1628-651-804$

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ŽhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: $+86-10-8235-1155$, Fax: $+86-10-8235-7679$
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Luiiazu
Uel: +86-21-5877-1818, Fax: +86-21-6887-7858/-7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Tr
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720 -2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
+82-2-558-3737, Fax: +82-2-558-5141

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Microprocessors - MPU category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MC68302EH20C MC7457RX1000LC MC7457RX1267LC MC7457VG1267LC A2C00010998 A A2C52004004 R5F117BCGNA\#20 R5F52106BDLA\#U0 R5S72690W266BG\#U0 ADJ3400IAA5DOE MPC8245TVV266D MPC8245TZU300D MPC8260ACVVMHBB MPC8323ECVRAFDCA MPC8323VRADDCA MPC8536ECVJAVLA BOXNUC5PGYH0AJ 20-668-0024 P1010NSN5DFB P2010NSN2MHC P2020NXE2HHC P5020NSE7QMB P5020NSE7TNB P5020NSE7VNB LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB A2C00010729 A A2C00039344 T1022NSE7MQB T1022NXN7PQB T1023NSE7MQA T1024NXE7PQA T1042NSE7MQB T1042NSN7MQB T1042NXN7WQB T2080NSE8TTB T2080NSN8PTB T2080NXE8TTB T2081NXN8TTB R5F101AFASP\#V0 MC68302CEH20C TS68040MF33A MPC8260ACVVMIBB MPC8280CZUUPEA MPC8313ECVRAFFC MPC8313ECVRAGDC MPC8313EVRADDC MPC8313EVRAFFC MPC8313VRADDC

[^0]: Note: • Do not exceed the permissible total supply current.

[^1]: Figure 5.15 VOH/VOL and IOH/IOL Temperature Characteristics of Port 4 and Port J at VCC = 1.8 V (Reference Data)

[^2]: Note 1. Programming and erasing the flash memory is impossible.

