End of Line programmable 3-Wire Hall Effect Latch/SwitchDatasheet

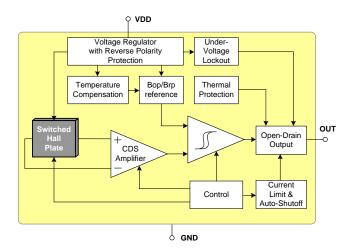
1 Features and Benefits

- Programmable parameters in application:
 - Wide magnetic Latch range: ±0.4mT to ±80mT
 - Wide magnetic Switch range: ±1.5mT to ±66mT
 - Programmable Hysteresis: 1mT to 36mT
 - Programmable Active Pole: North or South
 - Programmable Output Behaviour: Direct or Inverted
 - Built-in Negative TC coefficient: 0 to -2000 ppm/°C
 - Increased Traceability: 32 bits ID on chip
- Wide operating voltage range: from 2.7V to 24V
- Reverse Supply Voltage Protection
- Output Current Limit with Auto-Shutoff
- Under-Voltage Lockout Protection
- Thermal Protection
- Lateral Sensitivity and dual die option

2 Application Examples

- Automotive, Consumer and Industrial
- Solid-state switch
- 3-phase BLDC motor commutation
- Wiper motor
- Window lifter
- Sunroof/Tailgate opener
- Seat motor adjuster
- Electrical power steering
- Brake Light switch

3 Ordering Information


Product Code	Temperature Code	Package Code	Comment
MLX92232LSE-AAA-000-RE	L (-40°C to 150°C)	SE (TSOT-3L)	3-wire Switch/Latch, TC=0 ppm/°C
MLX92232LUA-AAA-000-BU	L (-40°C to 150°C)	UA (TO92-3L)	3-wire Switch/Latch, TC=0 ppm/°C
MLX92232LVA-AAA-000-BU	L (-40°C to 150°C)	VA (SIP 4L)	Dual Die 3-wire Switch/Latch, TC=0 ppm/°C
MLX92232LSE-AAA-001-RE	L (-40°C to 150°C)	SE (TSOT-3L)	3-wire Switch/Latch, TC=-400 ppm/°C
MLX92232LUA-AAA-001-BU	L (-40°C to 150°C)	UA (TO92-3L)	3-wire Switch/Latch, TC=-400 ppm/°C
MLX92232LSE-AAA-002-RE	L (-40°C to 150°C)	SE (TSOT-3L)	3-wire Switch/Latch, TC=-1100 ppm/°C
MLX92232LUA-AAA-002-BU	L (-40°C to 150°C)	UA (TO92-3L)	3-wire Switch/Latch, TC=-1100 ppm/°C
MLX92232LSE-AAA-003-RE	L (-40°C to 150°C)	SE (TSOT-3L)	3-wire Switch/Latch, TC=-2000 ppm/°C
MLX92232LUA-AAA-003-BU	L (-40°C to 150°C)	UA (TO92-3L)	3-wire Switch/Latch, TC=-2000 ppm/°C
MLX92232LSE-AAA-200-RE	L (-40°C to 150°C)	SE (TSOT-3L)	3-wire Switch/Latch IMC version, TC=0 ppm/°C
MLX92232LUA-AAA-200-BU	L (-40°C to 150°C)	UA (TO92-3L)	3-wire Switch/Latch IMC version, TC=0 ppm/°C

End of Line programmable 3-Wire Hall Effect Latch/Switch

5 General Description

The Melexis MLX92232 is the second generation programmable Hall-effect sensor designed in mixed signal CMOS technology. The device integrates a voltage regulator, Hall sensor with advanced offset cancellation system and an open-drain output driver, all in a single package.

With the built-in reverse voltage protection, a serial resistor or diode on the supply line is not required so that even remote sensors can be specified for low voltage operation down to 2.7V while being reverse voltage tolerant. In the event of a drop below the minimum supply voltage during operation, the under-voltage lock-out protection will automatically freeze the device, preventing the electrical perturbation to affect the magnetic measurement circuitry.

The open drain output is fully protected against short-circuit with a built-in current limit. An additional automatic output shut-off is activated in case of a prolonged short-circuit condition. A self-check is then periodically performed to switch back to normal operation if the short-circuit condition is released.

The on-chip thermal protection also switches off the output if the junction temperature increases above an abnormally high threshold. It will automatically recover once the temperature decreases below a safe value.

Furthermore the MLX92232 features a full set of programmable parameters that can be adjusted in the application in order to achieve the highest possible system accuracy by compensating the mechanical tolerances.

An Integrated Magnetic Concentrator option (IMC) has been added to sense the lateral field component. This is adding more flexibility in the module design. A dual die option is also available for applications that need a secondary output; these can be programmed independently from each other.

End of Line programmable 3-Wire Hall Effect Latch/Switch

Datasheet

Table of Contents

1	Fe	eatures and Benefits	1
2	Αp	pplication Examples	1
3	Or	dering Information	1
4	Fu	ınctional Diagram	2
5	Ge	eneral Description	2
6	Gl	ossary of Terms	4
7	Ab	osolute Maximum Ratings	4
8	Ge	eneral Electrical Specifications	5
9	М	agnetic Specifications	6
10	М	agnetic Behaviour	8
10	0.1	Latch Sensor	8
10	0.2	Switch Sensor	9
11	Αp	oplication Information	10
1	1.1 11.1 11.1		10
1:	1.2 11 11		11
12	St	andard information regarding manufacturability of Melexis products with different soldering processes	12
13	ES	D Precautions	12
14	Pa	ckage Information	13
14	4.1	SE (TSOT-3L) Package Information	.13
14	1.2	UA (TO92-3L) Package Information	.14
14	4.3	VA (SIP 4L) Package Information	.15
15	Co	ontact	16
16	Di	sclaimer	16

End of Line programmable 3-Wire Hall Effect Latch/Switch

Datasheet

6 Glossary of Terms

Tesla Units for the magnetic flux density, 1 mT = 10 Gauss

TC Temperature Coefficient in ppm/°C IMC Integrated Magnetic Concentrator

POR Power on Reset

7 Absolute Maximum Ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

Parameter	Symbol	Value	Units
Supply Voltage (1, 2)	V_{DD}	+27	V
Supply Voltage (Load Dump) (1,4)	V_{DD}	+32	V
Supply Current (1, 2, 3)	I_{DD}	+20	mA
Supply Current (1, 3, 4)	I _{DD}	+50	mA
Reverse Supply Voltage (1, 2)	V_{DDREV}	-24	V
Reverse Supply Voltage (1, 4)	V_{DDREV}	-30	V
Reverse Supply Current (1, 2, 5)	I _{DDREV}	-20	mA
Reverse Supply Current (1, 4, 5)	I _{DDREV}	-50	mA
Output Voltage (1, 2)	V_{OUT}	+27	V
Output Current (1, 2, 5)	I _{OUT}	+20	mA
Output Current (1, 4, 6)	I _{OUT}	+75	mA
Reverse Output Voltage (1)	V_{OUTREV}	-0.5	V
Reverse Output Current (1, 2)	I _{OUTREV}	-100	mA
Maximum Junction Temperature (7)	TJ	+165	°C
Storage Temperature Range	Ts	-55 to +165	°C
ESD Sensitivity – HBM ⁽⁸⁾	-	4000	V
ESD Sensitivity – CDM ⁽⁹⁾	-	1000	V
Magnetic Flux Density	В	Unlimited	mT

Table 1: Absolute maximum ratings

¹ The maximum junction temperature should not be exceeded

² For maximum 1 hour

³ Including current through protection device

⁴ For maximum 500ms

⁵ Through protection device

⁶ For V_{OUT}≤27V

⁷ For 1000 hours

⁸ Human Model according AEC-Q100-002 standard

⁹ Charged Device Model according AEC-Q100-011 standard

End of Line programmable 3-Wire Hall Effect Latch/Switch

8 General Electrical Specifications

DC Operating Parameters V_{DD} = 2.7V to 24V, T_A = -40°C to 150°C (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ ⁽¹⁾	Max	Units
Supply Voltage	V_{DD}	Operating	2.7	-	24	V
Supply Current (2)	I_{DD}		1.5	3.0	4.5	mA
Supply Current (3)	I_{DD}		3.0	6.0	9.0	mA
Reverse supply current	I _{DDREV}	V _{DD} = -16V	-1	-	-	mA
Output Saturation Voltage	V_{DSON}	V_{DD} = 3.5 to 24V, I_{OUT} = 20mA	-	0.3	0.5	V
Output Leakage	I _{OFF}	$V_{OUT} = 12V$, $V_{DD} = 12V$	-	-	10	μΑ
Output Rise Time ^(4, 8) (R _{PU} dependent)	t_R	$R_{PU} = 1k\Omega$, $V_{DD} = 12V$, $V_{PU} = 5V$ $C_{LOAD} = 50pF$ to GND	0.1	0.3	1	μs
Output Fall Time (4,8) (On-chip controlled)	t _F	$R_{PU} = 1k\Omega$, $V_{DD} = 12V$, $V_{PU} = 5V$ $C_{LOAD} = 50pF$ to GND	0.1	0.3	1	μs
Power-On Time (5,6,9)	t_{ON}	$V_{DD} = 5V$, $dV_{DD}/dt > 2V/us$	-	40	70	μs
Power-On Output State	-	t < t _{ON}		High (V _{PU})		-
Output Current Limit	I_{CL}	V_{DD} =3.5 to 24V, V_{OUT} = 12V	25	40	70	mA
Output ON Time under Current Limit conditions (10)	t _{CLON}	$V_{PU} = 12V, R_{PU} = 100\Omega$	150	240		μs
Output OFF Time under Current Limit conditions ⁽¹⁰⁾	t _{CLOFF}	$V_{PU} = 12V, R_{PU} = 100\Omega$	-	3.5	-	ms
Chopping Frequency	f_{CHOP}		-	340	-	kHz
Refresh Period	t_{PER}		-	6	-	μs
Output Jitter (p-p) (4)	t _{JITTER}	Over 1000 successive switching events @10kHz triangle wave magnetic field, B > ±(B _{OPMAX} +20mT)	-	±3.2	-	μs
Maximum Switching Frequency (4,7)	f_{SW}	$B > \pm 3(B_{OPMAX} + 1mT)$, triangle wave magnetic field	30	65	-	kHz
Under-voltage Lockout Threshold	V_{UVL}		-	-	2.7	V
Under-voltage Lockout Reaction time ⁽⁴⁾	t_{UVL}		-	1	-	μs
Thermal Protection Threshold	T_{PROT}	Junction temperature	-	190 ⁽¹¹⁾	-	°C
Thermal Protection Release	T_REL	Junction temperature	-	180 ⁽¹¹⁾	-	°C
SE Package Thermal Resistance	R_{THJA}	Single layer PCB, JEDEC standard test boards		300		°C/W
UA package Thermal Resistance	R_{THJA}	Single layer PCB, JEDEC standard test boards		200		°C/W
VA package Thermal Resistance	R_{THJA}	Single layer PCB, JEDEC standard test boards		105		°C/W

Table 2: General Electrical parameters

¹ Typical values are defined at $T_A = +25$ °C and $V_{DD} = 12V$

² Valid for 92232LSE-AAA-xxx and 92232LUA-AAA-xxx versions

³ Valid for 92232LVA-AAA-xxx version

⁴ Guaranteed by design and verified by characterization, not production tested

⁵ The Power-On Time represents the time from reaching V_{DD} = 2.7V to the first refresh of the output

⁶ Power-On Slew Rate is not critical for the proper device start-up.

⁷ Maximum switching frequency corresponds to the maximum frequency of the applied magnetic field which is detected without loss of pulses

⁸ R_{PU} and V_{PU} are respectively the external pull-up resistor and pull-up power supply

⁹ Activated output with 1 mT overdrive

¹⁰ If the Output is in Current Limitation longer than t_{CLON} the Output is switched off in high-impedance state. The Output returns back in active state at next reaching of B_{OP} or after t_{CLOFF} time interval

¹¹ T_{PROT} and T_{REL} are the corresponding junction temperature values

End of Line programmable 3-Wire Hall Effect Latch/Switch

9 Magnetic Specifications

DC Operating Parameters V_{DD} = 2.7V to 24V, T_A = -40°C to 150°C (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ ⁽¹⁾	Max	Units
Latch Threshold Programming Range ^(2, 3)	B _{LTH}	V _{DD} =12V, T _A =25°C	±0.4		±80	mT
Switch Operating Point Programming Range (3, 4)	B _{OP}	V _{DD} =12V, T _A =25°C	±1.5		±66	mT
Proportional Hysteresis Ratio Programming (5, 6)	HYS_{RATIO}	V_{DD} =12V, T_A =25°C	0.1		0.55	-
Fixed Hysteresis Value 0 ^(7, 8)	B_{FHYS0}		-	0	-	mT
Fixed Hysteresis Value 1 ^(7, 8)	B_{FHYS1}		-	1	-	mT
Fixed Hysteresis Value 2 ^(7, 8)	B _{FHYS2}		-	1.2	-	mT
Fixed Hysteresis Value 3 ^(7, 8)	B_{FHYS3}		-	1.4	-	mT
Fixed Hysteresis Value 4 ^(7, 8)	B_{FHYS4}		-	1.8	-	mT
Fixed Hysteresis Value 5 ^(7, 8)	B_{FHYS5}		-	2.2	-	mT
Latch Sensor Magnetic Offset ⁽⁹⁾	D	T _A =25°C	-0.5		0.5	mT
Later Sensor Magnetic Offset	B _{OFFSET}	T _A =-40°C to 150°C	-0.9		0.9	mT
Temperature Coefficient ⁽¹⁰⁾	TC	Flat SmCo NdFeB Hard Ferrite		0 -400 -1100 -2000		ppm/°C
Factory Programmed B _{OP} , Switch ⁽¹¹⁾	B _{OP}	V_{DD} =12V, T_A =25°C, target 28mT	26	28	30	mT
Factory Programmed B _{RP} , Switch ⁽¹¹⁾	B_RP	V_{DD} =12V, T_A =25°C, target 28mT, HYS_{RATIO} =0.25	19	21	23	mT
Factory Programmed B _{OP} , Latch ⁽¹²⁾	B _{OP}	V_{DD} =12V, T_A =25°C, target 12mT	10	12	14	mT
Factory Programmed B _{RP} , Latch ⁽¹²⁾	B_RP	V_{DD} =12V, T_A =25°C, target -12mT	-14	-12	-10	mT

Table 3: Magnetic Specifications

The hysteresis is programmable for each B_{OP} with a fixed value or proportional (ratiometric) value to B_{OP}:

- 1) Ratio metric hysteresis example: $B_{OP} = 10mT \Rightarrow 4.5mT \le B_{RP} \le 9mT$
- 2) Fixed hysteresis example: $B_{OP} = 10mT \rightarrow 7.8mT \le B_{RP} \le 9mT$

10 The temperature Coefficient is calculated using following formula:

$$TC = \frac{(B_{\text{OPT2}} - B_{\text{RPT2}}) - (B_{\text{OPT1}} - B_{\text{RPT1}})}{(B_{\text{OPT1}} - B_{\text{RPT1}})^* (T_2 - T_1)} * 10^6, ppm^6C; T_1 = -40^{\circ}C; T_2 = 150^{\circ}C$$

11 Valid for 92232LSE-AAA-0xx, 92232LUA-AAA-0xx, 92232LVA-AAA-0xx versions

12 Valid for 92232LUA-AAA-2xx

¹ The typical values are defined at T_A = 25°C and V_{DD} = 12V.

 $^{2 \ \}text{For Latch sensor } B_{\text{LTH}} = (B_{\text{OP}} - B_{\text{RP}})/2. \ \text{The Latch programming step is typically between } 0.7\% \ \text{and } 1.5\% \ \text{of the programmed } B_{\text{LTH}} \neq 1.2\text{mT} \ \text{and } 0.018\text{mT for } |B_{\text{LTH}}| \leq 1.2\text{mT}.$

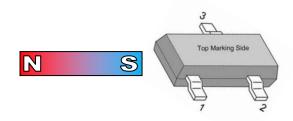
³ Guaranteed by design and verified by characterization. The programming ranges for BLTH and BOP include some margin for process deviations.

 $^{4 \}text{ For Switch sensor the } B_{\text{OP}} \text{ programming step is typically between } 0.7\% \text{ and } 1.5\% \text{ of the programmed } B_{\text{OP}} \text{ value for } |B_{\text{OP}}| \geq 4.8\text{mT} \text{ and } 0.072\text{mT for } |B_{\text{OP}}| \leq 4.8\text{mT}.$

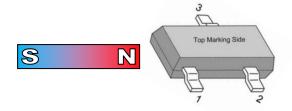
⁵ For Switch sensor with proportional hysteresis HYS_{RATIO}=B_{HYS}/B_{OP}. The HYS_{RATIO} programming step is 0.05.

⁶ The given min/max limits are typical values.

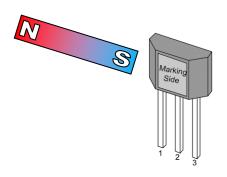
⁷ For Switch sensor with fixed hysteresis value

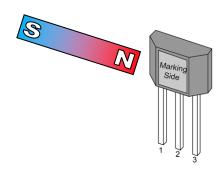

⁸ Guaranteed by design and verified by characterization.

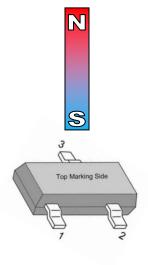
⁹ For Latch sensor offset is defined as $B_{OFFSET} = (B_{OP} + B_{RP})/2$.

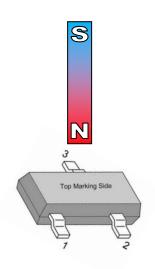

End of Line programmable 3-Wire Hall Effect Latch/Switch

Datasheet




X-axis Sensitive South Active Pole


X-axis Sensitive North Active Pole


X-axis Sensitive
South Active Pole

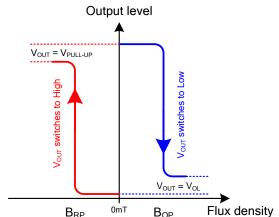
X-axis Sensitive North Active Pole

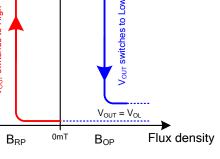
*Z-axis Sensitive*South Active Pole

Z-axis Sensitive North Active Pole


End of Line programmable 3-Wire Hall Effect Latch/Switch

Datasheet


Z-axis Sensitive South Active Pole



Z-axis Sensitive North Active Pole

10 Magnetic Behaviour

10.1 Latch Sensor

Output level $V_{OUT} = V_{PULL-UP}$ Vour switches to Low Vout switches to High $V_{OUT} = V_{OL}$ Flux density Вор 0mT B_RP

Fig.1 – South Active Pole

Fig.2 – North Active Pole

End of Line programmable 3-Wire Hall Effect Latch/SwitchDatasheet

10.2 Switch Sensor

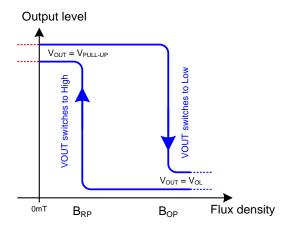


Fig.3 – Direct South Active Pole

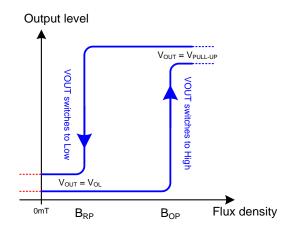


Fig.4 – Inverted South Active Pole

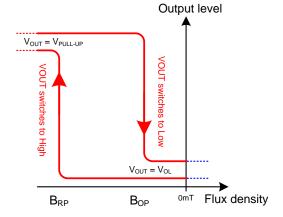


Fig.5 – Direct North Active Pole

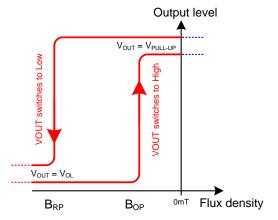
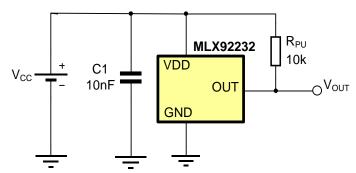
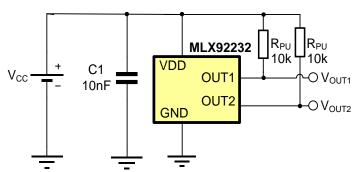


Fig.6 – Inverted North Active Pole


End of Line programmable 3-Wire Hall Effect Latch/SwitchDatasheet

11 Application Information

11.1 Typical Three-Wire Application Circuit


11.1.1 92232LSE-AAA-xxx, 92232LUA-AAA-xxx

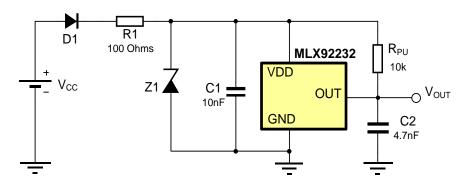
Notes:

- 1. For proper operation, a 10nF to 100nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin.
- 2. The pull-up resistor R_{PU} value should be chosen in to limit the current through the output pin below the maximum allowed continuous current for the device.
- 3. A capacitor connected to the output is not needed, because the output slope is generated internally.

11.1.2 92232LVA-AAA-xxx

Notes:

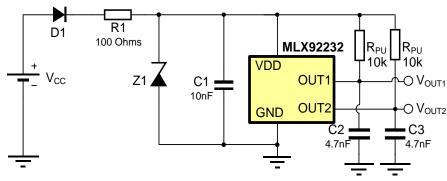
- 1. For proper operation, a 10nF to 100nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin.
- V_{OUT1} 2. The pull-up resistors R_{PU} values should be chosen in to limit the current through the output pin below the maximum allowed
 V_{OUT2} continuous current for the device.
 - 3. A capacitors connected to the outputs are not needed, because the output slope is generated internally.


End of Line programmable 3-Wire Hall Effect Latch/Switch

Datasheet

11.2 Automotive and Harsh, Noisy Environments Three-Wire Circuit

11.2.1 92232LSE-AAA-xxx, 92232LUA-AAA-xxx


Notes:

- 1. For proper operation, a 10nF to 100nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin.
- 2. The device could tolerate negative voltage down to -24V, so if negative transients over supply line V_{PEAK} < -30V are expected, usage of the diode D1 is recommended. Otherwise only R1 is sufficient.

When selecting the resistor R1, three points are important:

- the resistor has to limit $I_{\text{DD}}/I_{\text{DDREV}}$ to 50mA maximum
- the resistor has to withstand the power dissipated in both over voltage conditions (V_{R1}²/R1)
- the resulting device supply voltage V_{DD} has to be higher than V_{DD} min ($V_{DD} = V_{CC} R1.I_{DD}$)
- 3. The device could tolerate positive supply voltage up to +27V (until the maximum power dissipation is not exceeded), so if positive transients over supply line with $V_{PEAK} > 32V$ are expected, usage a zener diode Z1 is recommended. The R1-Z1 network should be sized to limit the voltage over the device below the maximum allowed.

11.2.2 92232LVA-AAA-xxx

Notes:

- 1. For proper operation, a 10nF to 100nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin.
- 2. The device could tolerate negative voltage down to -24V, so if negative transients over supply line V_{PEAK} < -30V are expected, usage of the diode D1 is recommended. Otherwise only R1 is sufficient.

When selecting the resistor R1, three points are important:

- the resistor has to limit I_{DD}/I_{DDREV} to 50mA maximum
- the resistor has to withstand the power dissipated in both over voltage conditions (V_{R1}²/R1)
- the resulting device supply voltage V_{DD} has to be higher than V_{DD} min ($V_{DD} = V_{CC} R1.I_{DD}$)
- 3. The device could tolerate positive supply voltage up to +27V (until the maximum power dissipation is not exceeded), so if positive transients over supply line with $V_{PEAK} > 32V$ are expected, usage a zener diode Z1 is recommended. The R1-Z1 network should be sized to limit the voltage over the device below the maximum allowed.

End of Line programmable 3-Wire Hall Effect Latch/Switch

Datasheet

12 Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020
 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113
 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20
 - Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat
- EIA/JEDEC JESD22-B106 and EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (Through Hole Devices)

EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

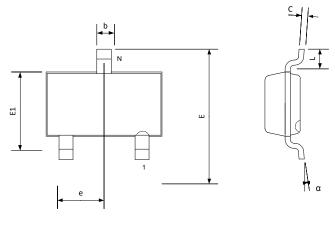
Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

 EIA/JEDEC JESD22-B102 and EN60749-21 Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis is contributing to global environmental conservation by promoting **lead free** solutions. For more information on qualifications of **RoHS** compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

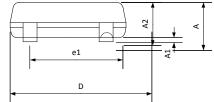

13 ESD Precautions

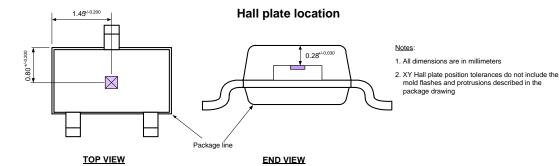
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

14 Package Information

14.1 SE (TSOT-3L) Package Information

Notes:


- 1. All dimensions are in millimeters
- Outermost plastic extreme width does not include mold flash or protrusions. Mold flash and protrusions shall not exceed 0.15mm per side.
- Outermost plastic extreme length does not include mold flash or protrusions. Mold flash and protrusions shall not exceed 0.25mm per side.
- 4. The lead width dimension does not include dambar protrusion Allowable dambar protrusion shall be 0.07mm total in excess of the lead width dimension at maximum material condition.
- 5. Dimension is the length of terminal for soldering to a substrate.
- 6. Formed lead shall be planar with respect to one another with 0.076mm at seating plane.


Marking:

Top mark: 31ww ==> ww; assembly week

IMC version: 33ww ==> ww; assembly week

Bottom mark: YLLL ==> Y; last digit of year LLL= last 3 digits of lotnr

This table in mm

N		A	A1	A2	D	E	E1	L	b	С	е	e1	α
2	min	_	0.025	0.85	2.80	2.60	1.50	0.30	0.30	0.10	0.95	1.90	0°
3	max	1.00	0.10	0.90	3.00	3.00	1.70	0.50	0.45	0.20	BSC	BSC	8°

Notes:

- Dimension "D" and "E1" do not include mold flash or protrusions. Mold flash or protrusion shall not exceed 0.15mm on "D" and 0.25mm on "E" per side.
- Dimension "b" does not include dambar protrusion.

SE Pin №	Name	Туре	Function
1	VDD	Supply	Supply Voltage pin
2	OUT	Output	Open Drain output
3	GND	Ground	Ground pin

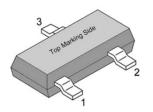
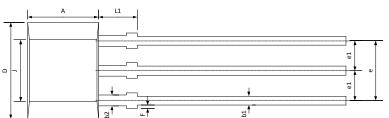
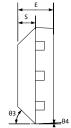


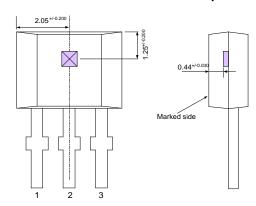
Table 4: SE Package pinout


End of Line programmable 3-Wire Hall Effect Latch/Switch

14.2 UA (TO92-3L) Package Information



Notes:


- 1. All dimensions are in millimeters
- 2. Package dimension exclusive molding flash.
- 3. The end flash shall not exceed 0.127 mm on the top

Marking:

 1^{st} Line : 31WW \rightarrow WW - calendar week 2^{nd} Line : YLLL: \rightarrow Y - last digit of year LLL- Lot nr (3 digits)

Hall plate location

Notes:

1. All dimensions are in millimeters

This table in mm

	A	D	E	F	J	L	L1	S	b1	b2	С	е	e1
min	2.80	3.90	1.40	0.00	2.51	14.0	0.90	0.63	0.35	0.43	0.35	2.51	1.24
max	3.20	4.30	1.60	0.20	2.72	15.0	1.10	0.84	0.44	0.52	0.44	2.57	1.30
	θ1	θ2	θ3	θ4									
min	7° REF	7° DEE	45°	7° REF									
	/ KEF	7° REF	DEE	/ KEF									


Notes:

max

- Mold flashes and protrusion are not included.
- Gate burrs shall not exceed 0.127um on the top side.

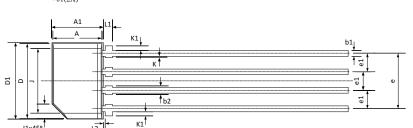
UA Pin №	Name	Туре	Function
1	VDD	Supply	Supply Voltage pin
2	GND	Ground	Ground pin
3	OUT	Output	Open Drain output

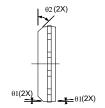
Table 5: UA Package pinout

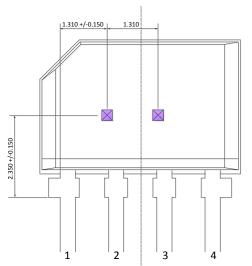
End of Line programmable 3-Wire Hall Effect Latch/Switch

14.3 VA (SIP 4L) Package Information

Notes:


- 1. All dimensions are in millimeters
- 2. Package dimension exclusive molding flash.


Marking:


 1^{st} Line : $30_30 o Mark$ as is 2^{nd} Line : LLLLLLL: $o 1^{st}$ die lot number 3^{rd} Line : TTTTTTTT: $o 2^{nd}$ die lot number

 4^{th} Line : YYWW: \rightarrow YY= year ;

WW= calendar week number

0.34 +/-0.030

Notes:

All dimensions are in millimeters

Туре		Α	A1	D	D1	E	J	J1	K	K1	L	L1	S	Т
VA	min	3.30	3.63	5.08	5.33	1.10	4.10	1.00 REF	0.00	0.25	17.5	_	0.24	0.61
VA	max	3.46	3.79	5.24	5.43	1.20	4.50	1.00 KEF	0.15	0.35	18.5	1.00	0.29	0.66

		b1	b2	С	е	e1	θ1	θ2	
\/A	min	0.35	0.40	0.18	3.76	1.22	70 DEF	4E 0 DEE	
VA	max	0.48	0.60	0.34	3.86	1.32	7° REF	45° REF	

Notes:

- 1. Dimension "A" and "D" do not include mold flash protrusions & gate burrs
- 2. Dimension "A1" does not include gate burrs, but includes mold flash and interlead flash.
- 3. Dimension "D1" includes mold flash at both ends.
- 4. Gate burrs shall not exceed 0.15mm measured from end of mold flash (flange).

VA Pin №	Name	Туре	Function
1	OUT1	Output 1 st die	Open Drain output
2	VDD	Supply	Supply Voltage pin
3	GND	Ground	Ground pin
4	OUT2	Output 2 nd die	Open Drain output

Table 6: VA (SIP 4L) single in line package pinout

End of Line programmable 3-Wire Hall Effect Latch/Switch

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +32 13 67 04 95
	Email: sales_europe@melexis.com
Americas	Telephone: +1 603 223 2362
	Email : sales_usa@melexis.com
Asia	Email: sales_asia@melexis.com

16 Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.

The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current

Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular

The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities.

The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment are specifically not recommended by Melexis.

The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar

The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and-

This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document.

Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)

ISO/TS 16949 and ISO14001 Certified

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:

Click to view products by Melexis manufacturer:

Other Similar products are found below:

ACHS-7194-500E ACHS-7193-500E ACHS-7193-000E ACHS-7194-000E G-MRCO-017 A1104LUA-T A1212LUA-T HGPRDT005A

AH1808-P-A AH277AZ4-AG1 AH373-WG-7 AV-10379 AV-10448 A1211LUA-T SS41C AH1803-WG-7 AH1806-P-B AH1894-Z-7

MA700GQ-P ATS601LSGTN-HT-WU4-T ATS601LSGTN-LT-WU4-T TLE4917 TLE4946-1L 50017859-003 TY-13101 TLE4976L

AH1751-WG-7-A SS85CA BU52002GUL-E2 MAX13366GTE/V+ A1128LUA-T AH173-WG-7-B MA702GQ-P BU52003GUL-E2

AH277AZ4-BG1 TLE49614MXTSA1 AH3376-P-B TLE4941 AH3382-P-B AH3372-W-7 AH9250-W-7 AH211Z4-AG1 AH9251-W-7

TLE4905L AH3373-W-7 AH3377-W-7 AH3360-FT4-7 AH3376-W-7 TLE4961-3M AS5601-ASOT