

RL78/L12

RENESAS MCU

R01DS0157EJ0210 Rev.2.10 Sep 30, 2016

Integrated LCD controller/driver, True Low Power Platform (as low as 62.5 μ A/MHz, and 0.64 μ A for RTC + LVD), 1.6 V to 5.5 V operation, 8 to 32 Kbyte Flash, 31 DMIPS at 24 MHz, for All LCD Based Applications

1. OUTLINE

1.1 Features

Ultra-Low Power Technology

- 1.6 V to 5.5 V operation from a single supply
- Stop (RAM retained): 0.23 μ A, (LVD enabled): 0.31 μ A
- Halt (RTC + LVD): 0.64 μA
- Supports snooze
- Operating: 62.5 μA/MHz
- LCD operating current (Capacitor split method): 0.12 μA
- LCD operating current (Internal voltage boost method):
 0.63 µA (VDD = 3.0 V)

16-bit RL78 CPU Core

- Delivers 31 DMIPS at maximum operating frequency of 24 MHz
- Instruction Execution: 86% of instructions can be executed in 1 to 2 clock cycles
- CISC Architecture (Harvard) with 3-stage pipeline
- Multiply Signed & Unsigned: 16 x 16 to 32-bit result in 1 clock cycle
- MAC: 16 x 16 to 32-bit result in 2 clock cycles
- 16-bit barrel shifter for shift & rotate in 1 clock cycle
- 1-wire on-chip debug function

Code Flash Memory

- Density: 8 KB to 32 KB
- Block size: 1 KB
- On-chip single voltage flash memory with protection from block erase/writing
- · Self-programming with flash shield window function

Data Flash Memory

- Data flash with background operation
- Data flash size: 2 KB size
- Erase cycles: 1 Million (typ.)
- Erase/programming voltage: 1.8 V to 5.5 V

RAM

- 1 KB and 1.5 KB size options
- Supports operands or instructions
- Back-up retention in all modes

High-speed On-chip Oscillator

- 24 MHz with +/- 1% accuracy over voltage (1.8 V to 5.5 V) and temperature (-20°C to 85°C)
- Pre-configured settings: 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz & 1 MHz

Reset and Supply Management

- Power-on reset (POR) monitor/generator
- Low voltage detection (LVD) with 14 setting options (Interrupt and/or reset function)

LCD Controller/Driver

- Up to 35 seg x 8 com or 39 seg x 4 com
- Supports capacitor split method, internal voltage boost method and resistance division method
- Supports waveform types A and B
- Supports LCD contrast adjustment (16 steps)
- Supports LCD blinking

Direct Memory Access (DMA) Controller

- Up to 2 fully programmable channels
- Transfer unit: 8- or 16-bit

Multiple Communication Interfaces

- Up to 1 × I²C multi-master
- \bullet Up to 2 \times CSI/SPI (7-, 8-bit)
- Up to 1 × UART (7-, 8-, 9-bit)
- Up to 1×LIN

Extended-Function Timers

- Multi-function 16-bit timers: Up to 8 channels
- Real-time clock (RTC): 1 channel (full calendar and alarm function with watch correction function)
- Interval Timer: 12-bit, 1 channel
- 15 kHz watchdog timer: 1 channel (window function)

Rich Analog

- \bullet ADC: Up to 10 channels, 10-bit resolution, 2.1 μ s conversion time
- Supports 1.6 V
- Internal reference voltage (1.45 V)
- On-chip temperature sensor

Safety Features (IEC or UL 60730 compliance)

- Flash memory CRC calculation
- RAM parity error check
- RAM write protectionSFR write protection
- Illegal memory access detection
- Clock frequency detection
- ADC self-test

General Purpose I/O

- 5V tolerant, high-current (up to 20 mA per pin)
- Open-Drain, Internal Pull-up support

Operating Ambient Temperature

- Ta: -40 °C to +85 °C (A: Consumer applications)
- \bullet Ta: –40 °C to +105 °C (G: Industrial applications)

Package Type and Pin Count

From 7mm x 7mm to 12mm x 12mm QFP: 32, 44, 48, 52, 64

O ROM, RAM capacities

Flash ROM	Data flash	RAM			RL78/L12						
			32 pins 44 pins 48 pins		52 pins	64 pins					
32 KB	2 KB	1.5 KB ^{Note}	R5F10RBC	R5F10RFC	R5F10RGC	R5F10RJC	R5F10RLC				
16 KB	2 KB	1 KB ^{Note}	R5F10RBA	R5F10RFA	R5F10RGA	R5F10RJA	R5F10RLA				
8KB	2 KB	1 KB ^{Note}	R5F10RB8	R5F10RF8	R5F10RG8	R5F10RJ8	_				

Note In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data flash function is used.

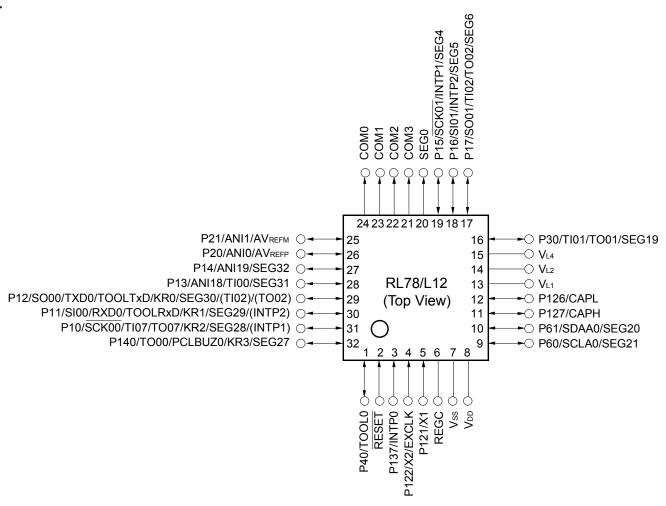
Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

1.2 List of Part Numbers

Figure 1-1 Part Number, Memory Size, and Package of RL78/L12

Pin count	Package	Fields of	Part Number
		Application Note	
32 pins	32-pin plastic LQFP (7 × 7)	А	R5F10RB8AFP, R5F10RBAAFP, R5F10RBCAFP
		G	R5F10RB8GFP, R5F10RBAGFP, R5F10RBCGFP
44 pins	44-pin plastic LQFP (10 × 10)	А	R5F10RF8AFP, R5F10RFAAFP, R5F10RFCAFP
		G	R5F10RF8GFP, R5F10RFAGFP, R5F10RFCGFP
48 pins	48-pin plastic LQFP (fine pitch)	А	R5F10RG8AFB, R5F10RGAAFB, R5F10RGCAFB
	(7 × 7)	G	R5F10RG8GFB, R5F10RGAGFB, R5F10RGCGFB
52 pins	52-pin plastic LQFP (10 × 10)	А	R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA
		G	R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA
64 pins	64-pin plastic WQFN (8 × 8)	А	R5F10RLAANB, R5F10RLCANB
		G	R5F10RLAGNB, R5F10RLCGNB
	64-pin plastic LQFP (fine pitch)	А	R5F10RLAAFB, R5F10RLCAFB
	(10 × 10)	G	R5F10RLAGFB, R5F10RLCGFB
	64-pin plastic LQFP (12 × 12)	А	R5F10RLAAFA, R5F10RLCAFA
		G	R5F10RLAGFA, R5F10RLCGFA

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/L12.


Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

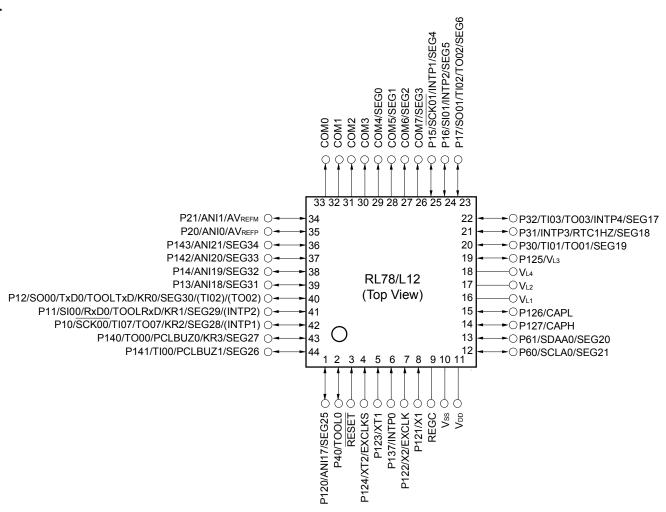
1.3 Pin Configuration (Top View)

1.3.1 32-pin products

• 32-pin plastic LQFP (7 × 7)

<R>

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

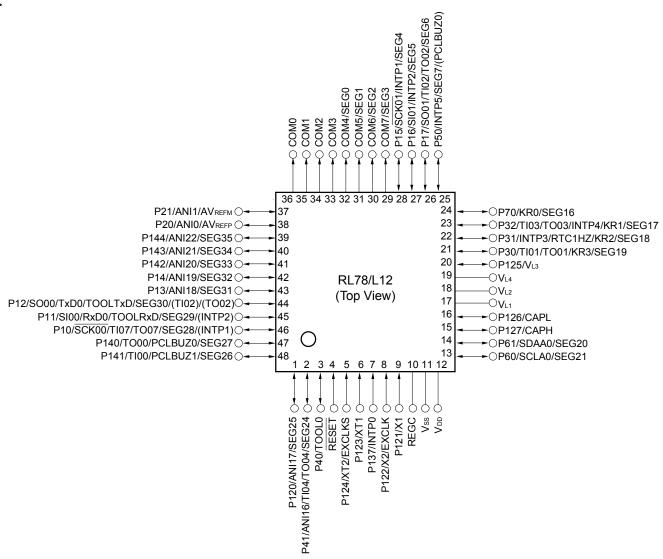
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.2 44-pin products

• 44-pin plastic LQFP (10 × 10)

<R>

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

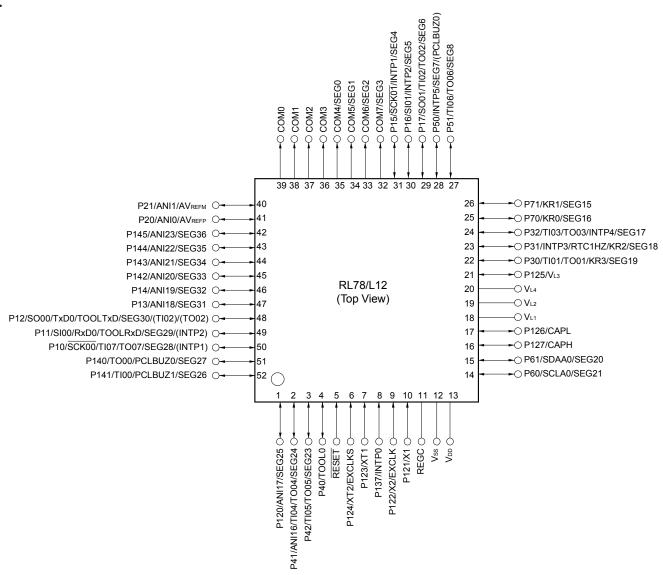
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.3 48-pin products

• 48-pin plastic LQFP (fine pitch) (7 × 7)

<R>

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

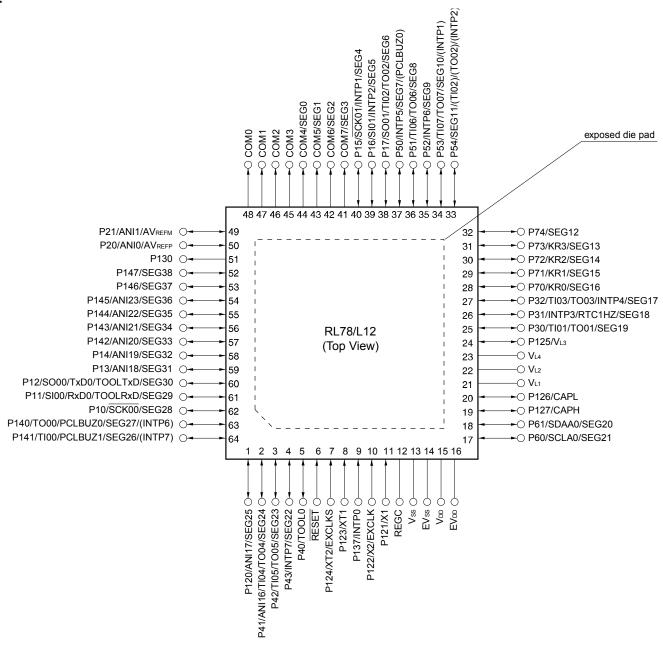
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.4 52-pin products

• 52-pin plastic LQFP (10 × 10)

<R>

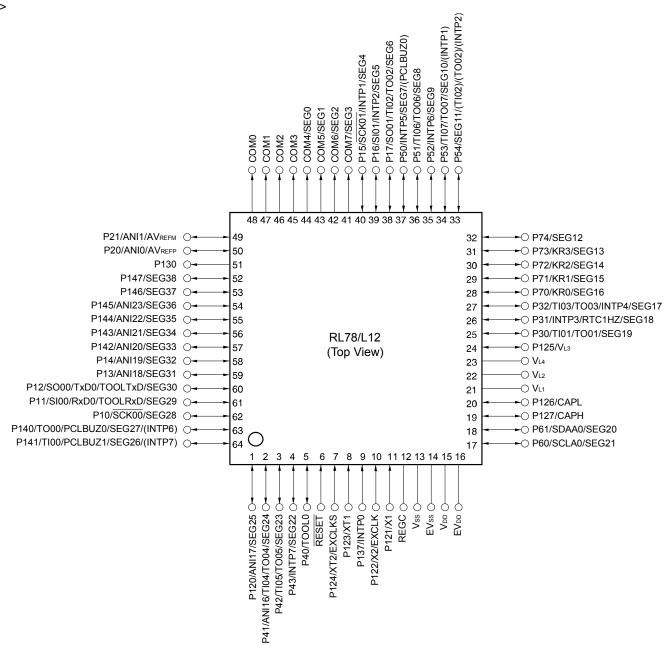
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.5 64-pin products

64-pin plastic WQFN (8 × 8)


<R>

- Cautions 1. Make EVss pin the same potential as Vss pin.
 - 2. Make VDD pin the same potential as EVDD pin.
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

- 64-pin plastic LQFP (fine pitch) (10 × 10)
- 64-pin plastic LQFP (12 × 12)

<R>

- Cautions 1. Make EVss pin the same potential as Vss pin.
 - 2. Make VDD pin the same potential as EVDD pin.
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Port 13

Transmit Data

Power Supply

1.4 Pin Identification

P30 to P32:

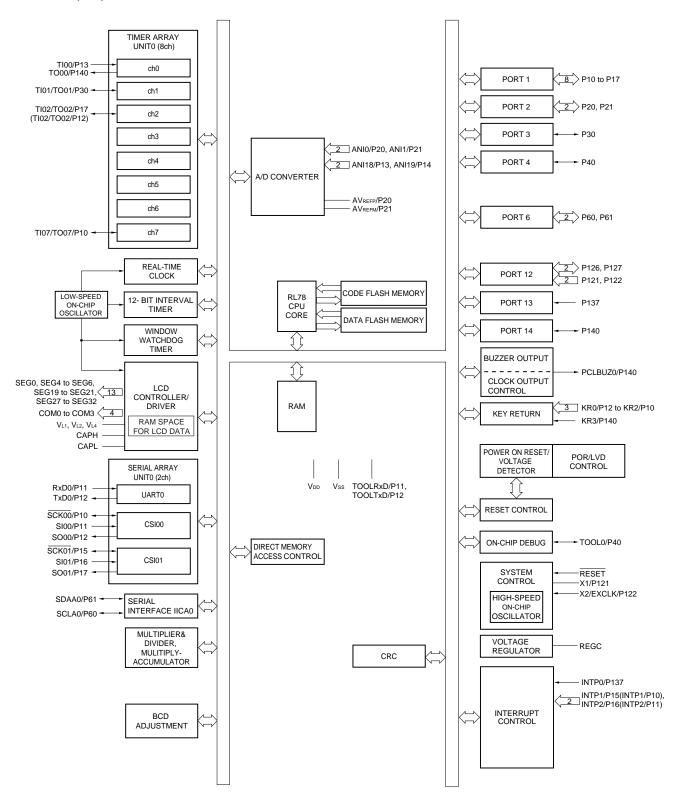
P40 to P43:

ANIO, ANI1, P130, P137: ANI16 to ANI23: P140 to P147: Port 14 **Analog Input** AVREFM: PCLBUZ0, PCLBUZ1: Programmable Clock Analog Reference Voltage Minus Output/Buzzer Output AVREFP: Analog Reference REGC: Regulator Capacitance RESET: Reset Voltage Plus CAPH, CAPL: RTC1HZ: Real-time Clock Correction Clock Capacitor for LCD COM0 to COM7, (1 Hz) Output EV_{DD}: Power Supply for Port RxD0: Receive Data EVss: Ground for Port SCK00, SCK01: Serial Clock Input/Output EXCLK: **External Clock Input** SCLA0: Serial Clock Input/Output (Main System Clock) SDAA0: Serial Data Input/Output **EXCLKS**: External Clock Input SEG0 to SEG38: LCD Segment Output (Subsystem Clock) SI00, SI01: Serial Data Input INTP0 to INTP7: Interrupt Request From SO00, SO01: Serial Data Output Peripheral TI00 to TI07: Timer Input KR0 to KR3: TO00 to TO07: Key Return **Timer Output** P10 to P17: Port 1 TOOL0: Data Input/Output for Tool P20, P21: Port 2 TOOLRxD, TOOLTxD: Data Input/Output for External Device

VL1 to VL4: P50 to P54: Port 5 LCD Power Supply P60, P61: Port 6 Vss: Ground

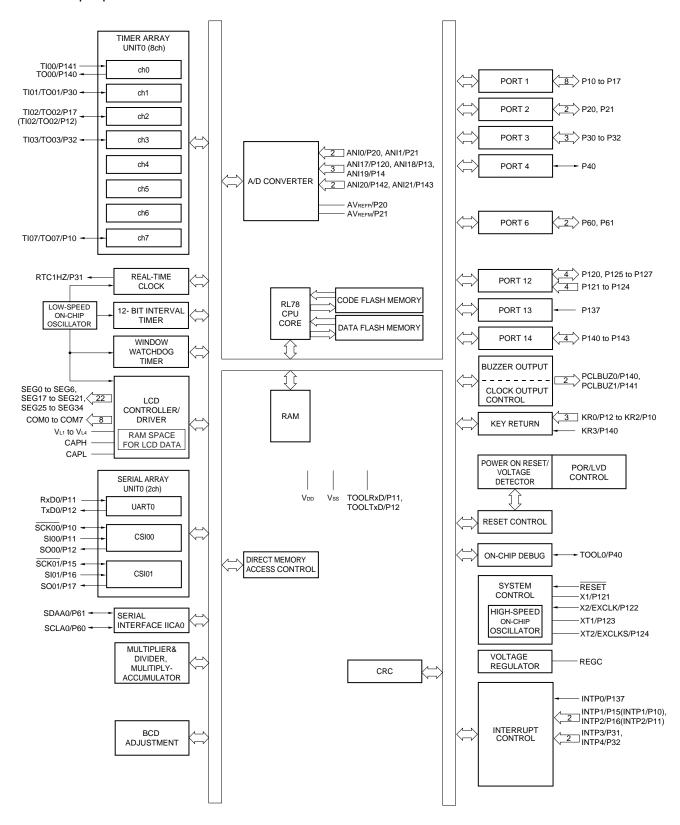
Port 3

Port 4

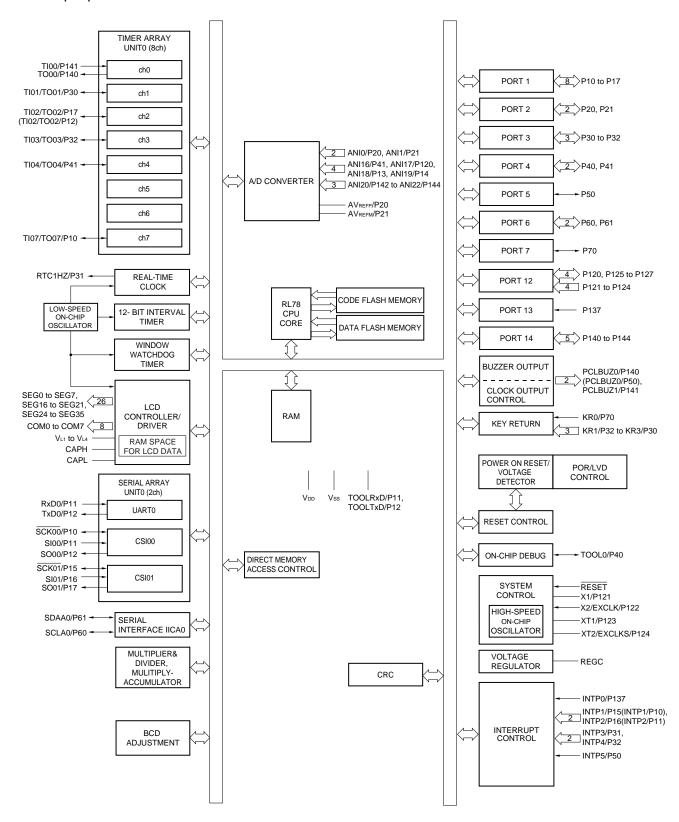

P70 to P74: Port 7 X1, X2: Crystal Oscillator (Main System Clock) P120 to P127: XT1, XT2: Port 12 Crystal Oscillator (Subsystem Clock)

TxD0:

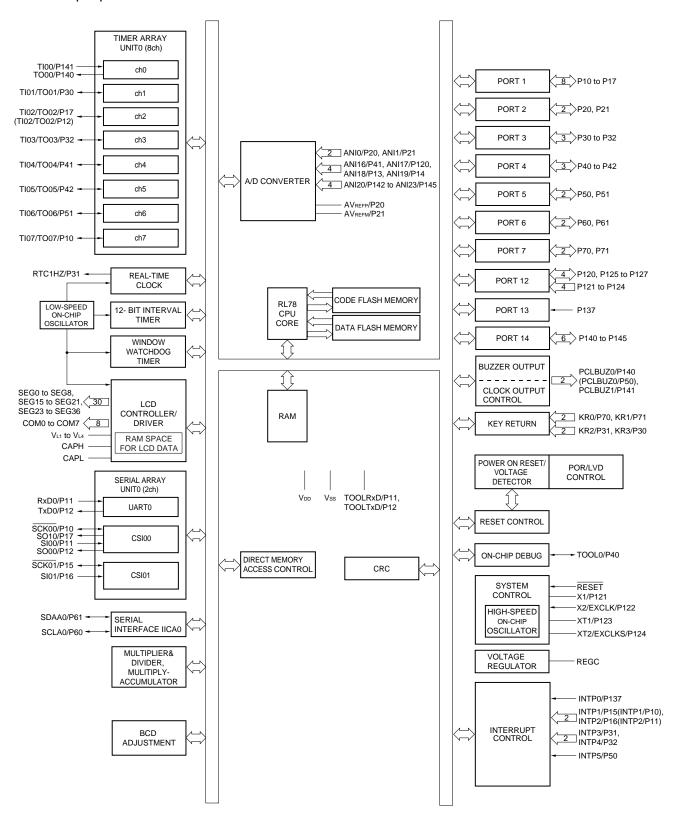
V_{DD}:


1.5 Block Diagram

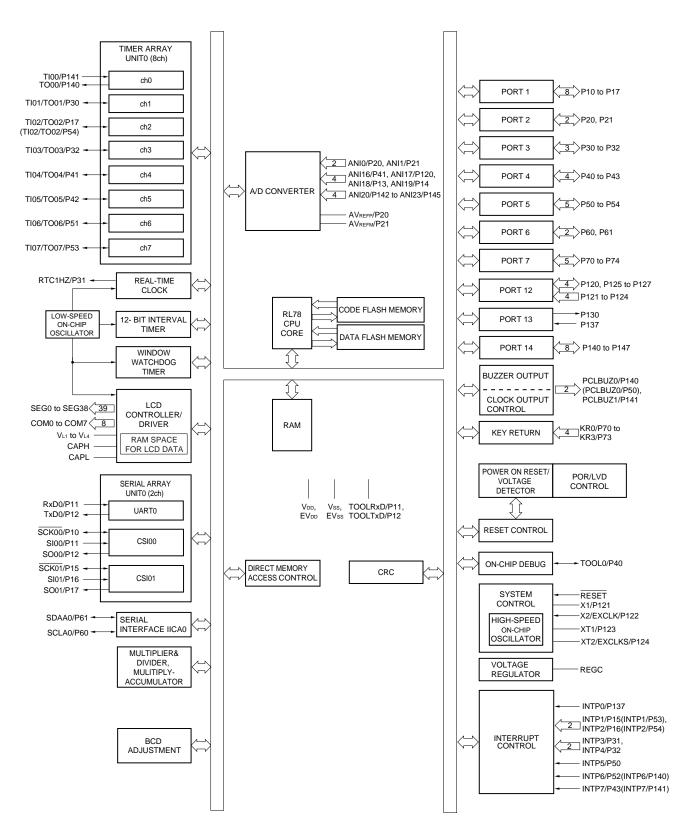
1.5.1 32-pin products


Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

1.5.2 44-pin products


Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection Remark register (PIOR)

1.5.3 48-pin products


Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

1.5.4 52-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

1.5.5 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

RL78/L12 OUTLINE

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H

(1/2)Item 32-pin 44-pin 48-pin 52-pin 64-pin R5F10RBx R5F10RFx R5F10RGx R5F10RJx R5F10RLx Code flash memory (KB) 8 to 32 8 to 32 8 to 32 8 to 32 16, 32 2 Data flash memory (KB) 2 2 2 2 1, 1.5 Note 1 1, 1.5 Note 1 1, 1.5 Note 1 1, 1.5^{Note 1} 1. 1.5 Note 1 RAM (KB) 1 MB Memory space X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) Main High-speed system clock system HS (high-speed main) operation: 1 to 20 MHz (V_{DD} = 2.7 to 5.5 V), clock HS (high-speed main) operation: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), LS (low-speed main) operation: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) operation: 1 to 4 MHz (V_{DD} = 1.6 to 5.5 V) High-speed on-chip HS (high-speed main) operation: 1 to 24 MHz (V_{DD} = 2.7 to 5.5 V), oscillator clock HS (high-speed main) operation: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), LS (low-speed main) operation: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) operation: 1 to 4 MHz (V_{DD} = 1.6 to 5.5 V) Subsystem clock XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz (TYP.): VDD = 1.6 to 5.5 V Low-speed on-chip oscillator clock Internal oscillation 15 kHz (TYP.): $V_{DD} = 1.6 \text{ to } 5.5 \text{ V}$ 8 bits × 32 registers (8 bits × 8 registers × 4 banks) General-purpose register Minimum instruction execution time 0.04167 μ s (High-speed on-chip oscillator clock: fih = 24 MHz operation) $0.05 \,\mu s$ (High-speed system clock: f_{MX} = 20 MHz operation) 30.5 μ s (Subsystem clock: f_{SUB} = 32.768 kHz operation) Instruction set • Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) • Multiplication (8 bits × 8 bits) • Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. Total number of I/O port pins and 40 44 58 28 48 pins dedicated to drive an LCD I/O Total 20 33 37 47 29 port CMOS I/O 15 22 26 30 39 CMOS input 3 5 5 5 5 CMOS output 1 N-ch open-drain I/O 2 2 2 2 2 (EV_{DD} tolerance) Pins dedicated to drive an LCD 8 11 11 LCD controller/driver Internal voltage boosting method, capacitor split method, and external resistance division method are switchable. 26 (22) Note 2 39 (35) Note 2 22 (18) Note 2 30 (26) Note 2 13 Segment signal output 4 (8) Note 2

Notes 1. In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data flash function is used.

2. The values in parentheses are the number of signal outputs when 8 com is used.

4

Common signal output

(2/2)

							(2/2		
	Ite	m	32-pin	44-pin	48-pin	52-pin	64-pin		
			R5F10RBx	R5F10RFx	R5F10RGx	R5F10RJx	R5F10RLx		
Timer	16-b	it timer	8 channels	8 channels 8 channels (with 1 channel remote control output function)					
	Wat	chdog timer			1 channel				
	Real	-time clock (RTC)			1 channel				
	12-b	it interval timer (IT)	1 channel						
	Time	er output	4 channels (PWM outputs: 3 Note 1)	5 channels (PWM outputs: 4 Note 1)	6 channels (PWM outputs: 5 Note 1)	8 channels (PWM outputs: 7 Notes:			
	RTC	output	_	1 • 1 Hz (subsys	tem clock: fsuB =	32.768 kHz or)			
Clock outpi	Clock output/buzzer output					2			
			(Main system • 256 Hz, 512 32.768 kHz	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 					
8/10-bit res	olution	A/D converter	4 channels	7 channels	9 channels	10 channels	10 channels		
Serial interf	face		CSI: 2 chann	el/UART (LIN-bu	s supported): 1 d	channel			
I ² C b	ous		1 channel	1 channel	1 channel	1 channel	1 channel		
Multiplier a		der/multiply-	 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 						
DMA contro	oller		2 channels						
Vectored in	terrupt	Internal	23	23	23	23	23		
sources		External	4	6	7	7	9		
Key interru	pt			I	4	ı			
Reset			Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note 2 Internal reset by RAM parity error Internal reset by illegal-memory access						
Power-on-r	eset cir	cuit	Power-on-rese Power-down-rese	et: 1.51 ±0.04 reset: 1.50 ±0.04					
Voltage det	tector		Rising edge: 1.67 V to 4.06 V (14 stages) Falling edge: 1.63 V to 3.98 V (14 stages)						
On-chip de	bug fur	nction	Provided						
Power supp	ply volta	age	V _{DD} = 1.6 to 5.5	V					
Operating a	ambien	t temperature	T _A = -40 to +85	5 °C					

Notes 1. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

2. The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)" and "G: Industrial applications (with $T_A = -40 \text{ to } +85^{\circ}\text{C}$)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD, or EVss pin, replace EVDD with VDD, or replace EVss with Vss.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (T_A = 25°C)

(1/3)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EV _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVss		-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} + 0.3 ^{Note 1}	V
Input voltage	V _{I1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	-0.3 to EV _{DD} +0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V
V ₁₂ P60, P61 (N-ch op V ₁₃ P20, P21, P121 to EXCLKS, RESET	P60, P61 (N-ch open-drain)	-0.3 to EV _{DD} +0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V	
	Vıз	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
Output voltage	Vo1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	-0.3 to EV _{DD} + $0.3and -0.3 to VDD + 0.3Note 2$	V
	V _{O2}	P20, P21	-0.3 to V _{DD} + 0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI23	-0.3 to EV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 Notes 2, 3	٧
	VAI2	ANIO, ANI1	-0.3 to V _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 Notes 2,3	٧

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF(+)} + 0.3 V$ in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AV_{REF(+)}: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C)

(2/3)

Parameter	Symbols		Conditions	Ratings	Unit		
LCD voltage	V _{L1}	V _{∟1} voltage ^{Note 1}		V∟₁ voltage ^{Note 1}		-0.3 to +2.8 and -0.3 to V _{L4} + 0.3	٧
	V _{L2}	V _{L2} voltage ^{Note 1}		-0.3 to V _{L4} + 0.3 Note 2	V		
	V _{L3}	V _{L3} voltage ^{Note 1}		-0.3 to V _{L4} + 0.3 Note 2	V		
	V _{L4}	V _{L4} voltage ^{Note 1}		-0.3 to +6.5	V		
	VLCAP	CAPL, CAPH vol	tage ^{Note 1}	-0.3 to $V_{L4} + 0.3^{Note 2}$	V		
	VLOUT	1	External resistance division method	-0.3 to V_{DD} + $0.3^{Note 2}$	V		
		SEG38,	Capacitor split method	-0.3 to V _{DD} + 0.3 ^{Note 2}			
		output voltage	Internal voltage boosting method	-0.3 to $V_{L4} + 0.3^{Note 2}$			

- Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F \pm 30%) and connect a capacitor (0.47 μ F \pm 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C)

(3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-7 0	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	І он2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	loL1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	lo _{L2}	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operation	on mode	-40 to +85	°C
temperature		In flash memory programming mode			
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/ crystal resonator	2.7 V ≤ V _{DD} ≤ 5.5 V	1.0		20.0	MHz
		2.4 V ≤ V _{DD} ≤ 2.7 V	1.0		16.0	MHz
		1.8 V ≤ V _{DD} < 2.7 V	1.0		8.0	MHz
		1.6 V ≤ V _{DD} <1.8 V	1.0		4.0	MHz
XT1 clock oscillation frequency (fxr) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to **2.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions		TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін		1			24	MHz
High-speed on-chip oscillator		−20 to +85°C	1.8 V ≤ VDD ≤ 5.5 V	-1		+1	%
clock frequency accuracy			1.6 V ≤ V _{DD} < 1.8 V	-5		+5	%
		–40 to −20°C	1.8 V ≤ V _{DD} ≤ 5.5 V	-1.5		+1.5	%
			1.6 V ≤ V _{DD} < 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

This indicates the oscillator characteristics only. Refer to 2.4 AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

(1/5)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	І он1	Per pin for P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147					-10.0 Note 2	mA
		Total of P10 to P14, P40 to P43, P120,		$4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$			-40.0	mA
		P130, P140 to P147 (When duty = 70% Note 3)	2.7 V ≤ EV _{DD} < 4.0 V			-8.0	mA	
			1.8 V ≤ EV _{DD} < 2.7 V			-4.0	mA	
				1.6 V ≤ EV _{DD} < 1.8 V			-2.0	mA
		Total of P15	to P17, P30 to P32,	$4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$			-60.0	mA
		,	P70 to P74, P125 to P127	$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V}$			-15.0	mA
		(When duty	= 70% *****)	1.8 V ≤ EV _{DD} < 2.7 V			-8.0	mA
				1.6 V ≤ EV _{DD} < 1.8 V			-4.0	mA
		Total of all pins (When duty = 70% Note 3)					-100.0	mA
	І он2	P20, P21	Per pin				-0.1	mA
			Total of all pins	1.6 V ≤ V _{DD} ≤ 5.5 V			-0.2	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoH × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoH = -40.0 mA

Total output current of pins = $(-40.0 \times 0.7)/(80 \times 0.01) \approx -35.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

(2/5)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lol1		P10 to P17, P30 to P32, P 4, P70 to P74, P120, P125 147	· ·			20.0 Note 2	mA
		Per pin for	P60, P61				15.0 Note 2	mA
		Total of P10 to P14, P40 to P43, P120, P130, P140 to P147 (When duty = 70% Note 3)		$4.0~V \leq EV_{DD} \leq 5.5~V$			70.0	mA
				$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V}$			15.0	mA
		(when dut	uty = 70%)	$1.8 \text{ V} \le \text{EV}_{DD} < 2.7 \text{ V}$			9.0	mA
				1.6 V ≤ EV _{DD} < 1.8 V			4.5	mA
		Total of P1	5 to P17, P30 to P32,	$4.0~V \leq EV_{DD} \leq 5.5~V$			80.0	mA
		P50 to P54	4, P60, P61, P70 to P74,	$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V}$			35.0	mA
			y = 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{DD} < 2.7 \text{ V}$			20.0	mA
			,	1.6 V ≤ EV _{DD} < 1.8 V			10.0	mA
		Total of all pins (When duty = 70% Note 3)					150.0	mA
	l _{OL2}	P20, P21	P20, P21 Per pin				0.4	mA
			Total of all pins	$1.6~V \le V_{DD} \le 5.5~V$			0.8	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoL = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \approx 61.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

(Ta = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

(3/5)

Items	Items Symbol Conditions		MIN.	TYP.	MAX.	Unit	
Input voltage, high	V _{IH1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EV _{DD}		EV _{DD}	٧
	V _{IH2}	P10, P11, P15, P16	TTL input buffer 4.0 V ≤ EV _{DD} ≤ 5.5 V	2.2		EV _{DD}	V
			TTL input buffer 3.3 V ≤ EV _{DD} < 4.0 V	2.0		EV _{DD}	V
			TTL input buffer 1.6 V ≤ EV _{DD} < 3.3 V	1.50		EV _{DD}	V
	V _{IH3}	P20, P21		0.7V _{DD}		V _{DD}	V
	V _{IH4}	P60, P61	0.7EV _{DD}		EV _{DD}	V	
	V _{IH5}	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0.8V _{DD}		V _{DD}	V
Input voltage, low	Ditage, VIL1 P10 to P17, P30 to P32, P40 to P43 P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147		Normal input buffer	0		0.2EV _{DD}	V
	V _{IL2}	P10, P11, P15, P16	TTL input buffer 4.0 V ≤ EV _{DD} ≤ 5.5 V	0		0.8	V
			TTL input buffer 3.3 V ≤ EV _{DD} < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ EV _{DD} < 3.3 V	0		0.32	V
	V _{IL3}	P20, P21		0		0.3V _{DD}	V
	V _{IL4}	P60, P61		0		0.3EV _{DD}	V
	V _{IL5} P121 to P124, P137, EXCLK, EXCLKS, RESET			0		0.2V _{DD}	٧

Caution The maximum value of VIH of P10, P12, P15, P17 is EVDD, even in the N-ch open-drain mode.

(Ta = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

(4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -10 \text{ mA}$	EV _{DD} -1.5			V
		P125 to P127, P130, P140 to P147	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	EV _{DD} -0.7			٧
			$2.7 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$	EV _{DD} -0.6			V
			1.8 V \leq EV _{DD} \leq 5.5 V, Іон1 = -1.5 mA	EV _{DD} -0.5			V
			1.6 V \leq EV _{DD} \leq 5.5 V, Іон1 = -1.0 mA	EV _{DD} -0.5			٧
	V _{OH2}	P20, P21	1.6 V \leq V _{DD} \leq 5.5 V, I _{OH2} = -100 μ A	V _{DD} -0.5			V
Output voltage, low	V _{OL1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 20 \text{ mA}$			1.3	V
			$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 8.5 \text{ mA}$			0.7	٧
			$2.7 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 3.0 \text{ mA}$			0.6	V
			$2.7 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 1.5 \text{ mA}$			0.4	٧
			$1.8 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 0.6 \text{ mA}$			0.4	٧
			1.6 V ≤ EV _{DD} < 5.5 V, I _{OL1} = 0.3 mA			0.4	V
	V _{OL2}	P20, P21	1.6 V \leq V _{DD} \leq 5.5 V, I _{OL2} = 400 μ A			0.4	V
	V _{OL3}	P60, P61	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OL3} = 15.0 \text{ mA}$			2.0	٧
			$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OL3} = 5.0 \text{ mA}$			0.4	V
			$2.7 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OL3} = 3.0 \text{ mA}$			0.4	V
			$1.8 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OL3} = 2.0 \text{ mA}$			0.4	V
		1.6 V ≤ EV _{DD} < 5.5 V, lo _{L3} = 1.0 mA			0.4	V	

Caution P10, P12, P15, P17 do not output high level in N-ch open-drain mode.

(Ta = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

(5/5)

Items	Symbol	Condition	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	V _I = EV _{DD}				1	μΑ
	ILIH2	P20, P21, P137, RESET	$V_{I} = V_{DD}$				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	$V_{I} = V_{DD}$	In input port or external clock input			1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	ILIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	Vi = EVss				-1	μΑ
	ILIL2	P20, P21, P137, RESET	Vı = Vss				-1	μΑ
	Ішз	ILIL3 P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)		In input port or external clock input			-1	μА
				In resonator connection			-10	μΑ
On-chip pll-up	Ru ₁	V _I = EV _{SS}	SEGxx po	ort				
resistance				$2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}$		20	100	kΩ
			1.6 V ≤	EV _{DD} = V _{DD} < 2.4 V	10	30	100	kΩ
	Ru2		Ports other than above (Except for P60, P61, and P130)		10	20	100	kΩ

2.3.2 Supply current characteristics

(Ta = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

(1/3)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
current	I _{DD1}	Operating mode	HS (high- speed main) mode ^{Note 5}	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
					operation	V _{DD} = 3.0 V		1.5		mA
Note 1					Normal	V _{DD} = 5.0 V		3.3	5.0	mA
					operation	V _{DD} = 3.0 V		3.3	5.0	mA
					Normal	V _{DD} = 5.0 V		2.5	3.7	mA
					operation	V _{DD} = 3.0 V		2.5	3.7	mA
			LS (low-speed	f _{IH} = 8 MHz ^{Note 3}	Normal operation	V _{DD} = 3.0 V		1.2	1.8	mA
			main) mode ^{Note}			V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	f _{IH} = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.7	mA
			voltage main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.7	mA
			HS (high- speed main) mode ^{Note 5}	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal operation	Square wave input		2.8	4.4	mA
				V _{DD} = 5.0 V		Resonator connection		3.0	4.6	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	mA
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		3.0	4.6	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Normal operation	Square wave input		1.8	2.6	mA
				V _{DD} = 5.0 V		Resonator connection		1.8	2.6	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal operation	Square wave input		1.8	2.6	mA
				V _{DD} = 3.0 V		Resonator connection		1.8	2.6	mA
			LS (low-speed main) mode Note 5 Subsystem clock operation	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	Normal operation Normal operation Normal	Square wave input		1.1	1.7	mA
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.1	1.7	mA
				f _{MX} = 8 MHz ^{Note 2} ,		Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V		Resonator connection		1.1	1.7	mA
				f _{SUB} = 32.768 kHz ^{Note}		Square wave input		3.5	4.9	μΑ
				T _A = -40°C	operation	Resonator connection		3.6	5.0	μΑ
				f _{SUB} = 32.768 kHz ^{Note}	Normal	Square wave input		3.6	4.9	μΑ
				T _A = +25°C	operation	Resonator connection		3.7	5.0	μΑ
				Nete	Normal	Square wave input		3.7	5.5	μA
				4	operation	Resonator connection		3.8	5.6	μΑ
				T _A = +50°C	No.	0		0.0	0.0	
				f _{SUB} = 32.768 kHz ^{Note} Normal operation	Square wave input		3.8	6.3	μA	
				T _A = +70°C	эрогацогг	Resonator connection		3.9	6.4	μΑ
				fsub = 32.768 kHz ^{Note}	Normal	Square wave input		4.1	7.7	μΑ
				4 T _A = +85°C	operation	Resonator connection		4.2	7.8	μΑ

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1}$ MHz to 24 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz to 16 MHz}$

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz}$ to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

(2/3)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT mode	HS (high-	f _{IH} = 24 MHz Note 4	V _{DD} = 5.0 V		0.44	1.28	mA
Current Note 2	Note 2		speed main) mode Note 7		V _{DD} = 3.0 V		0.44	1.28	mA
				f _{IH} = 16 MHz Note 4	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low- speed main) mode Note 7	f _{IH} = 8 MHz Note 4	V _{DD} = 3.0 V		260	530	μΑ
					V _{DD} = 2.0 V		260	530	μΑ
			LV (low-	f _{IH} = 4 MHz Note 4	$V_{DD} = 3.0 \text{ V}$		420	640	μΑ
			voltage main) mode Note 7		V _{DD} = 2.0 V		420	640	μΑ
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA
			LS (low- speed main) mode Note 7	$f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$	Square wave input		95	330	μΑ
				V _{DD} = 3.0 V	Resonator connection		145	380	μΑ
				$f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$	Square wave input		95	330	μΑ
				V _{DD} = 2.0 V	Resonator connection		145	380	μΑ
			Subsystem clock operation	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.57	μΑ
				T _A = -40°C	Resonator connection		0.50	0.76	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.37	0.57	μΑ
				T _A = +25°C	Resonator connection		0.56	0.76	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.17	μΑ
				T _A = +50°C	Resonator connection		0.65	1.36	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.57	1.97	μΑ
				T _A = +70°C	Resonator connection		0.76	2.16	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.85	3.37	μΑ
				T _A = +85°C	Resonator connection		1.04	3.56	μΑ
	IDD3 Note 6	STOP mode Note 8	T _A = -40°C				0.17	0.50	μΑ
			T _A = +25°C	T _A = +25°C				0.50	μΑ
			T _A = +50°C				0.32	1.10	μΑ
			T _A = +70°C			0.43	1.90	μΑ	
			T _A = +85°C				0.71	3.30	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 24 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz}$ to 8 MHz

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 4 MHz

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(Ta = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

(3/3)

•								_ ` ′
Parameter	Symbol		MIN.	TYP.	MAX.	Unit		
Low-speed on- chip oscillator operating current	FIL Note 1				0.20		μΑ	
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped			0.08		μΑ	
12-bit interval timer current	 Notes 1, 2, 4				0.08		μΑ	
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fı∟ = 15 kHz				0.24		μΑ
A/D converter	IADC	When conversion		$AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current	Notes 1, 6	at maximum speed	Low voltage mo	de, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1					75.0		μΑ
Temperature sensor operating current	ITMPS Note 1				75.0		μΑ	
LVD operating current	ILVD Notes 1, 7				0.08		μΑ	
Self- programming operating current	FSP Notes 1, 9				2.50	12.20	mA	
BGO operating current	BGO Notes 1, 8					2.00	12.20	mA
LCD operating current	ILCD1 Notes 11, 12	External resistance division method		$V_{DD} = EV_{DD} = 5.0 \text{ V}$ $V_{L4} = 5.0 \text{ V}$		0.04	0.20	μΑ
	ILCD2 Note 11	Internal voltage boo	osting method	$V_{DD} = EV_{DD} = 5.0 \text{ V}$ $V_{L4} = 5.1 \text{ V (VLCD} = 12\text{H)}$		1.12	3.70	μΑ
				$V_{DD} = EV_{DD} = 3.0 \text{ V}$ $V_{L4} = 3.0 \text{ V} \text{ (VLCD} = 04\text{H)}$		0.63	2.20	μΑ
	ILCD3 Note 11	Capacitor split met	hod	$V_{DD} = EV_{DD} = 3.0 \text{ V}$ $V_{L4} = 3.0 \text{ V}$		0.12	0.50	μА
SNOOZE	ISNOZ Note 1	ADC operation	The mode is perfo	rmed Note 10		0.50	0.60	mA
operating current		The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V				1.20	1.44	mA
		CSI/UART operation	n			0.70	0.84	mA
		•	•		•			

(Notes and Remarks are listed on the next page.)

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- **4.** Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mod.
- 11. Current flowing only to the LCD controller/driver. The supply current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1 or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.

The TYP. value and MAX. value are following conditions.

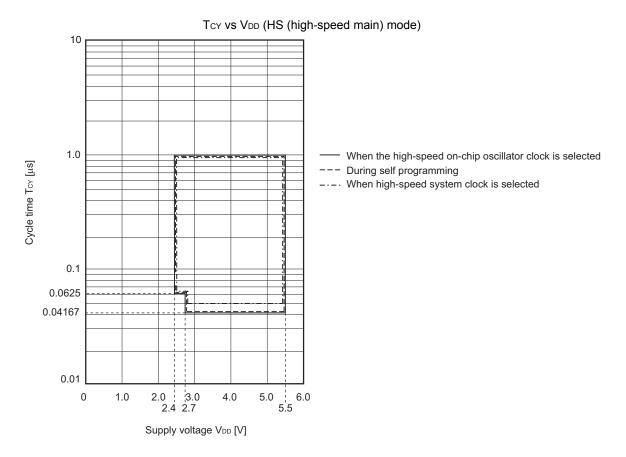
- When fsub is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)
- 4-Time-Slice, 1/3 Bias Method
- **12.** Not including the current that flows through the external divider resistor when the external resistance division method is used.

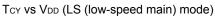
Remarks 1. fil: Low-speed on-chip oscillator clock frequency

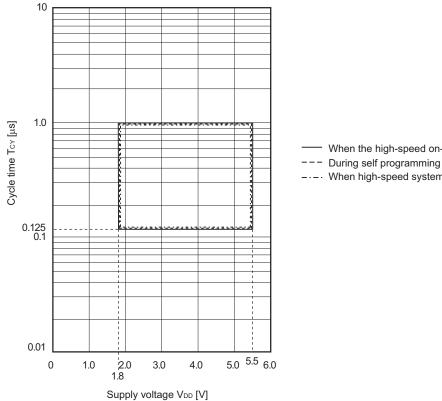
- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- **4.** Temperature condition of the TYP. value is T_A = 25°C

2.4 AC Characteristics

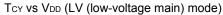
2.4.1 Basic operation

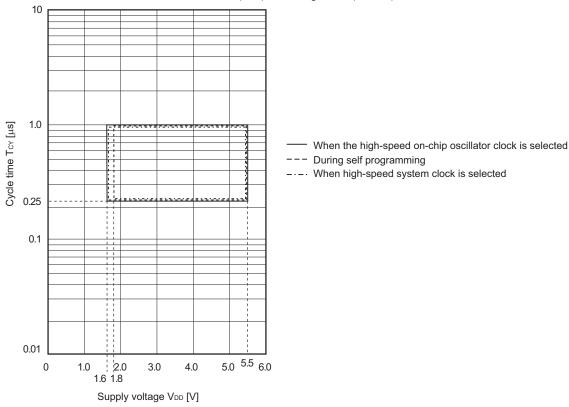

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

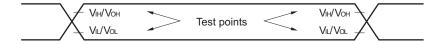

Items	Items Symbol Conditions					MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main	main) mode	eed	2.7 V≤V _{DD} ≤5.5 V	0.04167		1	μs
		system clock (f _{MAIN}) operation			2.4 V≤V _{DD} < 2.7 V			1	μs
			LV (low volt		1.6 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μs
			LS (low-spe main) mode		1.8 V ≤ V _{DD} ≤ 5.5 V	0.125		1	μs
		Subsystem clock (fsuB) 1.8 V≤V _{DD} : operation		1.8 V ≤ V _{DD} ≤ 5.5 V	28.5	30.5	31.3	μs	
		In the self		$2.7 V \le V_{DD} \le 5.5 V$	0.04167		1	μs	
		programmin g mode		;	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0.0625		1	μs
		3	LV (low volt main) mode		$1.8V \le V_{DD} \le 5.5V$	0.25		1	μs
			LS (low-spe main) mode		1.8 V ≤ V _{DD} ≤ 5.5 V	0.125		1	μs
External main system clock	fex	2.7 V ≤ V _{DD}	≤ 5.5 V			1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD}	< 2.7 V			1.0		16.0	MHz
		1.8 V ≤ V _{DD}	< 2.4 V			1.0		8.0	MHz
		1.6 V ≤ V _{DD} < 1.8 V				1.0		4.0	MHz
	fexs					32		35	kHz
External main system clock input	texh, texl	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			24			ns	
high-level width, low-level width		$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			30			ns	
		1.8 V ≤ V _{DD} < 2.4 V			60			ns	
		1.6 V ≤ V _{DD} < 1.8 V			120			ns	
	texhs, texhs					13.7			μs
TI00 to TI07 input high-level width, low-level width	tтін, tтіL					1/fмск+10			ns
TO00 to TO07 output frequency	fто	HS (high-sp) V ≤	EV _{DD} ≤ 5.5 V			16	MHz
		main) mode	2.7	2.7 V ≤ EV _{DD} < 4.0 V				8	MHz
			2.4	2.4 V ≤ EV _{DD} < 2.7 V				4	MHz
		LS (low-speed main) mode 1.8 V ≤ EV _{DD} ≤ 5.5		EV _{DD} ≤ 5.5 V			4	MHz	
		LV (low volt main) mode						2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-sp) V ≤	$EV_{DD} \le 5.5 \text{ V}$			16	MHz
frequency		main) mode	2.7	7 V ≤	EV _{DD} < 4.0 V			8	MHz
					EV _{DD} < 2.7 V			4	MHz
		main) mode	LS (low-speed main) mode $1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		EV _{DD} ≤ 5.5 V			4	MHz
		LV (low-volt			EV _{DD} ≤ 5.5 V			4	MHz
		main) mode		$1.6 \text{ V} \le \text{EV}_{DD} < 1.8 \text{ V}$				2	MHz
Interrupt input high-level width, low-level width	tinth,	INTP0	$1.6~V \le V_{DD} \le 5.5~V$			1			μs
	t intl	INTP1 to IN				1			μs
Key interrupt input low-level width	t kr				EV _{DD} ≤ 5.5 V	250			ns
DECET law lavel with	4	1.6 V ≤ EV _{DD} < 1.8 V			10			μs	
RESET low-level width	t RSL								μS


Remark fmck: Timer array unit operation clock frequency

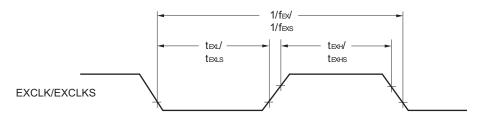
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

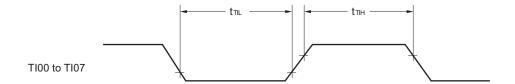

Minimum Instruction Execution Time during Main System Clock Operation

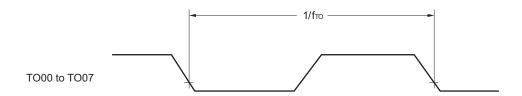




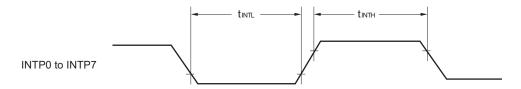
- When the high-speed on-chip oscillator clock is selected
- --- When high-speed system clock is selected



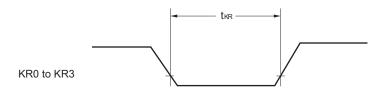

AC Timing Test Points

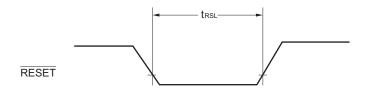


External System Clock Timing

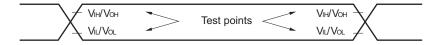


TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing



RESET Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

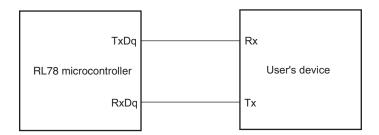
(1) During communication at same potential (UART mode)

(Ta = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

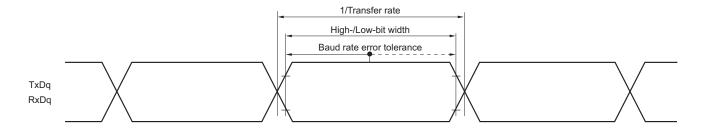
Parameter	Symbol		Conditions		h-speed Mode	d LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		2.4 \	4 V ≤ EVDD = VDD ≤ 5.5 V		fмск/6		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		4.0		1.3		0.6	Mbps
		1.8 \	/ ≤ EV _{DD} = V _{DD} ≤ 5.5 V				fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$				1.3		0.6	Mbps
		1.6 \	/ ≤ EV _{DD} = V _{DD} ≤ 5.5 V						fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$						0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)


LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	(Conditions	, ,	h-speed Mode	,	/-speed Mode	,	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	2.7 V ≤ EV	/ _{DD} ≤ 5.5 V	167 Note 1		500 Note 1		1000 Note 1		ns
		2.4 V ≤ EV	/ _{DD} ≤ 5.5 V	250 Note 1		500 Note 1		1000 Note 1		ns
		1.8 V ≤ EV	/ _{DD} ≤ 5.5 V			500 Note 1		1000 Note 1		ns
		1.6 V ≤ EV	/ _{DD} ≤ 5.5 V					1000 Note 1		ns
SCKp high-/low-level width	tкн1, tкL1	4.0 V ≤ EV	/ _{DD} ≤ 5.5 V	tксү1/2 - 12		tkcy1/2 - 50		tксү1/2 - 50		ns
		2.7 V ≤ EV	/ _{DD} ≤ 5.5 V	tксү1/2 - 18		tkcy1/2 - 50		tксү1/2 - 50		ns
		2.4 V ≤ E\	/ _{DD} ≤ 5.5 V	tkcy1/2 - 38		tксү1/2 - 50		tkcy1/2 - 50		ns
		1.8 V ≤ E\	/ _{DD} ≤ 5.5 V			tксү1/2 - 50		tксү1/2 - 50		ns
		1.6 V ≤ E\	/ _{DD} ≤ 5.5 V					tkcy1/2 - 100		ns
SIp setup time (to SCKp↑)	t sıĸı	2.7 V ≤ EV	/ _{DD} ≤ 5.5 V	44		110		110		ns
Note 2		2.4 V ≤ EV	/ _{DD} ≤ 5.5 V	75		110		110		ns
		1.8 V ≤ EV	/ _{DD} ≤ 5.5 V			110		110		ns
		1.6 V ≤ EV	/ _{DD} ≤ 5.5 V					220		ns
SIp hold time (from SCKp [↑])	t KSI1	2.4 V ≤ EV	/ _{DD} ≤ 5.5 V	19		19		19		ns
•		1.8 V ≤ E\	/ _{DD} ≤ 5.5 V			19		19		
		1.6 V ≤ EV	/ _{DD} ≤ 5.5 V					19		
Delay time from SCKp↓ to	t KSO1	C = 30 pF	2.4 V ≤ EV _{DD} ≤ 5.5 V		25		25		25	ns
SOp output Note 4		14016 3	1.8 V ≤ EV _{DD} ≤ 5.5 V				25		25	
			$1.6 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$						25	

Notes 1. For CSI00, set a cycle of 2/fmck or longer. For CSI01, set a cycle of 4/fmck or longer.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

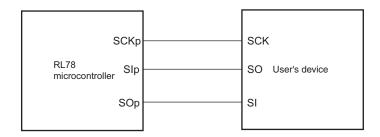
m: Unit number, n: Channel number (mn = 00, 01))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) (T_A = −40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

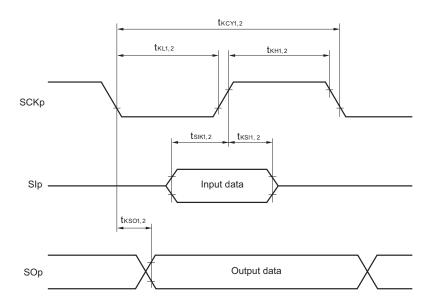
Parameter	Symbol	Cond	itions	HS (high		LS (low main)			-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note}	tkcy2	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$	20 MHz < fмск	8/ƒмск						ns
5			fмck ≤ 20 MHz	6/ƒмск		6/fмск		6/fмск		ns
		2.7 V ≤ EV _{DD} < 4.0 V	16 MHz < f _{MCK}	8/fмск						ns
			fмcк ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$		6/fмск and 500		6/ƒмск		6/ƒмск		ns
		1.8 V ≤ EV _{DD} < 2.4 V				6/fмск		6/ƒмск		ns
		1.6 V ≤ EV _{DD} < 1.8 V						6/ƒмск		ns
SCKp high-/low- level width	tkH2, tkL2	$4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		tксү2/2 - 7		tксү2/2 -7		tксү2/2 -7		ns
		2.7 V ≤ EV _{DD} < 4.0 V		tксү2/2 - 8		tkcy2/2 -8		tксү2/2 -8		ns
		2.4 V ≤ EV _{DD} < 2.7 V		tксү2/2 - 18		t _{KCY2} /2 - 18		t _{KCY2} /2 - 18		ns
		1.8 V ≤ EV _{DD} < 2.4 V				tkcy2/2 - 18		tксү2/2 - 18		ns
		1.6 V ≤ EV _{DD} < 1.8 V						tkcy2/2 -66		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	$2.7~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		2.4 V ≤ EV _{DD} < 2.7 V		1/fмск + 30		1/fмск + 30		1/fмск + 30		
		1.8 V ≤ EV _{DD} < 2.4 V				1/fмск + 30		1/fмск + 30		ns
		1.6 V ≤ EV _{DD} < 1.8 V						1/fмск + 40		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		1.8 V ≤ EV _{DD} < 2.4 V				1/fмск + 31		1/fмск + 31		ns
		1.6 V ≤ EV _{DD} < 1.8 V						1/fмск + 250		ns

(Notes, Caution, and Remarks are listed on the next page.)

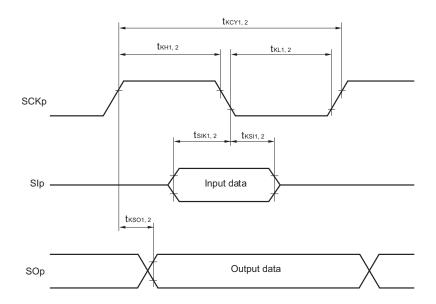
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$


Parameter	Symbol	Cc	onditions	HS (high- speed main) Mode	LS (low- speed main) Mode	LV (low- voltage main) Mode	Unit	Para meter	Symbol	Conditions
Delay time from SCKp↓ to SOp	tkso2	C = 30 pF Note 4	$4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
output Note 3			$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
			2.4 V ≤ EV _{DD} < 2.7 V		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			1.8 V ≤ EV _{DD} < 2.4 V				2/fмск + 110		2/fмск + 110	ns
			1.6 V ≤ EV _{DD} < 1.8 V						2/fмск + 220	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)
 - 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01)

2. m: Unit number, n: Channel number (mn = 00, 01)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) ($T_A = -40$ to +85°C, 1.8 V \leq EV_{DD} = $V_{DD} \leq$ 5.5 V, $V_{SS} = EV_{SS} = 0$ V)

(1/2)

Parameter	Symbol		Cond	litions	HS (high main) I	•	LS (low main)	•	,	-voltage Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception	4.0 V ≤ EV 2.7 V ≤ V _b	,		fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		4.0		1.3		0.6	Mbps
			2.7 V ≤ EV 2.3 V ≤ V _b	,		fMCK/6 Note 1		fmck/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		4.0		1.3		0.6	Mbps
			2.4 V ≤ EV 1.6 V ≤ V _b	•		fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		4.0		1.3		0.6	Mbps
			1.8 V ≤ EV 1.6 V ≤ V _b	*				fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3				1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. Use it with EVDD ≥ Vb.

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpd tolerance (32-pin to 52-pin products)/EVpd tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For Vih and Vil, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- **2.** q: UART number (q = 0), g: PIM and POM number (g = 1)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = V_{DD} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(2/2)

Parameter	Symbol		Con	ditions	, ,	h-speed Mode		v-speed Mode	,	/-voltage Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmissio n		EV _{DD} ≤ 5.5 V, V _b ≤ 4.0 V		Note 1		Note 1		Note 1	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.8 ^{Note 2}		2.8 ^{Note 2}		2.8 ^{Note 2}	Mbps
				EV _{DD} < 4.0 V, / _b ≤ 2.7 V		Note 3		Note 3		Note 3	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ $V_b = 2.3 \text{ V}$		1.2 ^{Note 4}		1.2 ^{Note 4}		1.2 ^{Note 4}	Mbps
				EV _{DD} < 3.3 V, / _b ≤ 2.0 V		Note 6		Note 6		Note 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω V_b = 1.6 V		0.43 ^{Note 7}		0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps
				EV _{DD} < 3.3 V, /b ≤ 2.0 V				Notes 5, 6		Notes 5, 6	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V				0.43 ^{Note 7}		0.43 ^{Note 7}	Mbps

Notes 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

$$\label{eq:maximum transfer rate} \begin{aligned} & \frac{1}{\{-C_b \times R_b \times ln\ (1-\frac{2.2}{V_b})\} \times 3} \ [bps] \end{aligned}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

3. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

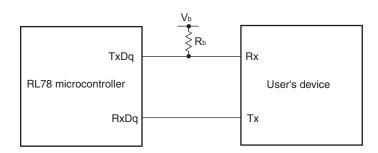
Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

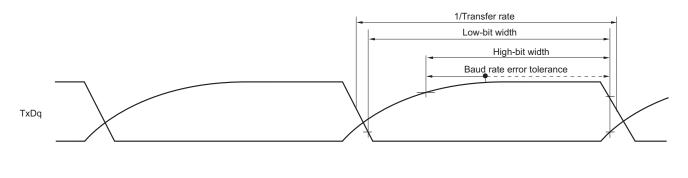
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

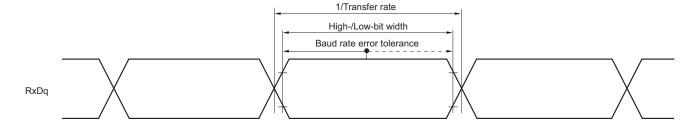
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $EV_{DD} \ge V_b$.
- **6.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpd tolerance (32-pin to 52-pin products)/EVpd tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For Vih and Vil, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** $R_b[\Omega]$:Communication line (TxDq) pull-up resistance, $C_b[F]$: Communication line (TxDq) load capacitance, $V_b[V]$: Communication line voltage
 - 2. q: UART number (q = 0, 1), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

(Ta = -40 to +85°C, 2.7 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conditions	speed	high- main) ode		/-speed Mode	voltage	low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 2/fclk	$\begin{aligned} 4.0 \ V &\leq EV_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 20 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned}$	200 Note 1		1150 Note 1		1150 Note 1		ns
			$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	300 Note 1		1150 Note 1		1150 Note 1		ns
SCKp high-level width	t _{KH1}	4.0 V ≤ EV _{DD} C _b = 20 pF, R	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V},$ $R_b = 1.4 \text{ k}\Omega$	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
			< 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V,	tkcy1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width	t _{KL1}	4.0 V ≤ EV _{DD}	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	tксү1/2		tксу1/2 - 50		tксү1/2 - 50		ns
		$C_b = 20 \text{ pF, R}$ $2.7 \text{ V} \leq \text{EV}_{DD}$ $C_b = 20 \text{ pF, R}$	< 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V,	tkcy1/2 - 10		tксүл/2 - 50		tkcy1/2 - 50		ns
SIp setup time (to SCKp↑) Note 2	tsiĸ1	4.0 V ≤ EV _{DD} C _b = 20 pF, R	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	58		479		479		ns
		2.7 V ≤ EV _{DD} C _b = 20 pF, R	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $R_b = 2.7 \text{ k}Ω$	121		479		479		ns
SIp hold time (from SCKp↑) Note 2	t KSI1	4.0 V ≤ EV _{DD} C _b = 20 pF, R	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	10		10		10		ns
		2.7 V ≤ EV _{DD} C _b = 20 pF, R	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $2 = 2.7 \text{ k}Ω$	10		10		10		ns
Delay time from SCKp↓ to SOp output Note 2	tkso1	4.0 V ≤ EV _{DD} C _b = 20 pF, R	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V},$ $R_b = 1.4 \text{ k}\Omega$		60		60		60	ns
		2.7 V ≤ EV _{DD} C _b = 20 pF, R	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $R_b = 2.7 \text{ k}Ω$		130		130		130	ns
SIp setup time (to SCKp↓) Note 3	tsiĸ1	4.0 V ≤ EV _{DD} C _b = 20 pF, R	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	23		110		110		ns
		2.7 V ≤ EV _{DD} C _b = 20 pF, R	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $R_b = 2.7 \text{ k}Ω$	33		110		110		ns
SIp hold time (from SCKp↓) Note 3	tksi1	4.0 V ≤ EV _{DD} C _b = 20 pF, R	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V},$ $R_b = 1.4 \text{ k}\Omega$	10		10		10		ns
		2.7 V ≤ EV _{DD} C _b = 20 pF, R	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $R_b = 2.7 \text{ k}Ω$	10		10		10		ns
Delay time from SCKp↑ to SOp output Note 3	tkso1	4.0 V ≤ EV _{DD} C _b = 20 pF, R	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,		10		10		10	ns
		2.7 V ≤ EV _{DD} C _b = 20 pF, R	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $R_b = 2.7 \text{ k}Ω$		10		10		10	ns

(Notes, Caution and Remarks are listed on the next page.)

- Notes 1. For CSI00, set a cycle of 2/fмcκ or longer. For CSI01, set a cycle of 4/fмcκ or longer.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 3. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- Remarks 1. R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) (T_A = −40 to +85°C, 1.8 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol		Conditions	speed	high- main) ode	`	/-speed Mode	voltage	low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$\begin{aligned} 4.0 \ V &\leq EV_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned}$	300		1150		1150		ns
			$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	500		1150		1150		ns
			$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	1150		1150		1150		ns
			$\begin{split} 1.8 \ V &\leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$			1150		1150		ns
SCKp high-level width	t кн1	4.0 V ≤ EV _{DD} ≤ { C _b = 30 pF, R _b =	5.5 V, 2.7 V ≤ V _b ≤ 4.0 V, = 1.4 kΩ	tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns
		2.7 V ≤ EV _{DD} < 4 C _b = 30 pF, R _b =	4.0 V, 2.3 V ≤ V _b ≤ 2.7 V, = 2.7 kΩ	tксү1/2 - 170		tkcy1/2 - 170		tксү1/2 - 170		ns
		2.4 V ≤ EV _{DD} < 3 C _b = 30 pF, R _b =	3.3 V, 1.6 V \leq V _b \leq 2.0 V, = 5.5 kΩ	tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
		1.8 V ≤ EV _{DD} < 3 C _b = 30 pF, R _b =	$3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}},$ = $5.5 \text{ k}\Omega$			tkcy1/2 - 458		tkcy1/2 - 458		ns
SCKp low-level width	t _{KL1}	$4.0 \text{ V} \le \text{EV}_{DD} \le 30 \text{ pF}, R_b = 30 \text{ pF}$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{DD} < 4$ $C_b = 30 \text{ pF}, R_b = 4$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	tксү1/2 - 18		tkcy1/2 - 50		tксү1/2 - 50		ns
		$2.4 \text{ V} \le \text{EV}_{DD} < 3$ $C_b = 30 \text{ pF}, R_b = 3$	3.3 V, 1.6 V \leq V _b \leq 2.0 V, = 5.5 kΩ	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		1.8 V ≤ EV _{DD} < 3 C _b = 30 pF, R _b =	$3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}^{\text{Note}},$ = $5.5 \text{ k}\Omega$			tксү1/2 - 50		tксү1/2 - 50		ns

Note Use it with $EV_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3) (T_A = −40 to +85°C, 1.8 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

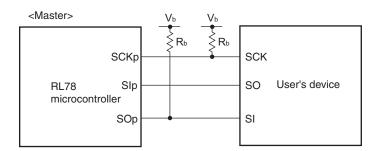
Parameter	Symbol	Conditions	speed	high- main)	speed	(low- I main) ode	voltage	(low- e main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsıĸ1	$ \begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array} $	81		479		479		ns
		$ \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array} $	177		479		479		ns
		$ 2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega $	479		479		479		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			479		479		ns
SIp hold time (from SCKp↑) Note 1	t _{KSI1}	$ \begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array} $	19		19		19		ns
		$ \begin{array}{ c c c c c } \hline 2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{array} $	19		19		19		ns
		$ \begin{array}{c} 2.4 \; V \leq EV_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array} $	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			19		19		ns
Delay time from SCKp↓ to SOp output Note 1	tkso1	$ \begin{aligned} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		100		100		100	ns
		$ \begin{array}{c} 2.7 \; V \leq EV_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array} $		195		195		195	ns
		$ \begin{array}{c} 2.4 \; V \leq EV_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array} $		483		483		483	ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$				483		483	ns
SIp setup time (to SCKp↓) Note 2	tsıĸ1	$ \begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array} $	44		110		110		ns
		$ \begin{array}{c} 2.7 \; V \leq EV_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array} $	44		110		110		ns
		$ \begin{array}{c} 2.4 \; V \leq EV_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array} $	110		110		110		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			110		110		ns

Notes

- 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. Use it with $EV_{DD} \ge V_b$.

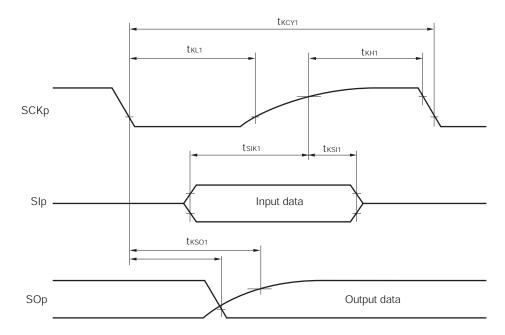
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) (T_A = −40 to +85°C, 1.8 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

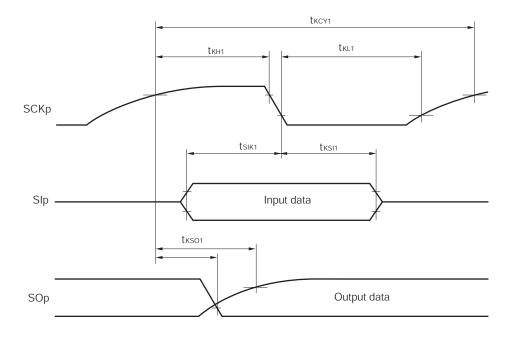

Parameter	Symbol	Conditions		high- I main)		(low- main)		(low- e main)	Unit
			Mo	ode	Mo	ode	Mo	ode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp hold time (from SCKp↓) Note 2	t ksi1	$ \begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array} $	19		19		19		ns
		$ \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array} $	19		19		19		ns
		$ \begin{array}{l} 2.4 \; V \leq EV_{DD} < 3.3 \; V, 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array} $	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			19		19		ns
Delay time from SCKp↑ to SOp output Note 2	tkso1	$ \begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array} $		25		25		25	ns
		$ \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array} $		25		25		25	ns
		$ \begin{array}{l} 2.4 \; V \leq EV_{DD} < 3.3 \; V, 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array} $		25		25		25	ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$				25		25	ns

Notes

- 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. Use it with $EV_{DD} \ge V_b$.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

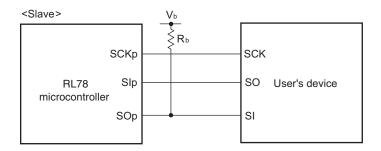
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}. 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (1/2)

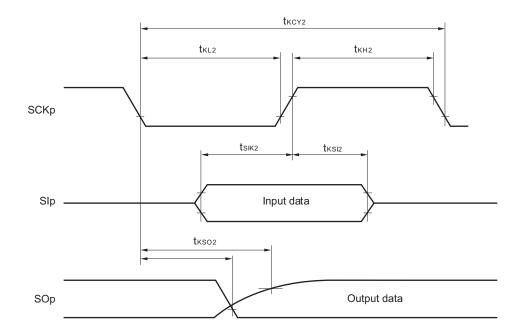
(1A = -40 to +65	°C, 1.8 V	/ ≤ EVDD = VDD ≤ 5.	5 V, Vss = EVss = 0	<u>v)</u>						(1/2)
Parameter	Symbol	Con	ditions	speed	high- main) ode	'	/-speed mode	mo	e main) ode	Unit
			_	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$	20 MHz < fмck ≤ 24 MHz	12/f мск						ns
		$2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$	8 MHz < fмck ≤ 20 MHz	10/f мск						ns
			4 MHz < fMCK ≤ 8 MHz	8/fмск		16/f мск				ns
			fмck ≤ 4 MHz	6/fмск		10/fмск		10/f мск		ns
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	16/f мск						ns
		$2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}$	16 MHz < fмck ≤ 20 MHz	14/f мск						ns
			8 MHz < f _{MCK} ≤ 16 MHz	12/f мск						ns
			4 MHz < f _{MCK} ≤ 8 MHz	8/fмск		16/fмск				ns
			fмck ≤4 MHz	6/fмск		10/fмск		10/fмск		ns
		2.4 V ≤ EV _{DD} < 3.3 V,	20 MHz < f _{MCK} ≤ 24 MHz	36/fмск						ns
		8 4 fm	16 MHz < fмck ≤ 20 MHz	32/fмск						ns
			8 MHz < fмcк ≤ 16 MHz	26/fмск						ns
			4 MHz < fMCK ≤ 8 MHz	16/f мск		16/fмск				ns
			fмck≤4 MHz	10/fмск		10/fмск		10/fмск		ns
		1.8 V ≤ EV _{DD} < 3.3 V,	4 MHz < f _{MCK} ≤ 8 MHz			16/f мск				ns
		$1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}^{\text{Note 2}}$	fмcк≤4 MHz			10/fмск		10/f мск		ns
SCKp high-/low-level width	tĸH2,	4.0 V ≤ EV _{DD} ≤ 5.5 V	$V_{\rm t}, 2.7 \ {\rm V} \le {\rm V_b} \le 4.0 \ {\rm V}$	tkcy2/2 - 12		txcy2/2 - 50		tkcy2/2 - 50		ns
		2.7 V ≤ EV _{DD} < 4.0 V	$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	tkcy2/2 - 18		txcy2/2 - 50		tkcy2/2 - 50		ns
		2.4 V ≤ EV _{DD} < 3.3 V	$V_{1}, 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}$	tkcy2/2 - 50		txcy2/2 - 50		tkcy2/2 - 50		ns
		$1.8 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Not}}$				tkcy2/2 - 50		tkcy2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsik2	4.0 V ≤ EV _{DD} < 5.5 V	$V_{b} \leq V_{b} \leq 4.0 \text{ V}$	1/f _{MCK} + 20		1/f _{MCK} + 30		1/fmck + 30		ns
		2.7 V ≤ EV _{DD} < 4.0 V	$V_{c}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	1/f _{MCK} + 20		1/fmck + 30		1/fmck + 30		ns
		2.4 V ≤ EV _{DD} < 3.3 V	V_{b} , 1.6 $V \le V_{b} \le 2.0 V$	1/f _{MCK} + 30		1/fmck + 30		1/fmck + 30		ns
		$1.8 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Not}}$				1/fmck + 30		1/fmck + 30		ns
SIp hold time (from SCKp↑) Note 4	tksi2	4.0 V ≤ EV _{DD} < 5.5 V	$V_{1}, 2.7 \text{ V} \le V_{b} \le 4.0 \text{ V}$	1/f _{MCK} + 31		1/fmck+ 31		1/f _{MCK} + 31		ns
		2.7 V ≤ EV _{DD} < 4.0 V	$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	1/f _{MCK} + 31		1/f _{MCK} + 31		1/f _{MCK} + 31		ns
		2.4 V ≤ EV _{DD} < 3.3 V	$V_{1}, 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}$	1/f _{MCK} + 31		1/fmck+ 31		1/f _{MCK} + 31		ns
		$1.8 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Not}}$				1/f _{MCK} + 31		1/f _{MCK} + 31		ns

(Notes, Caution and Remarks are listed on the next page.)

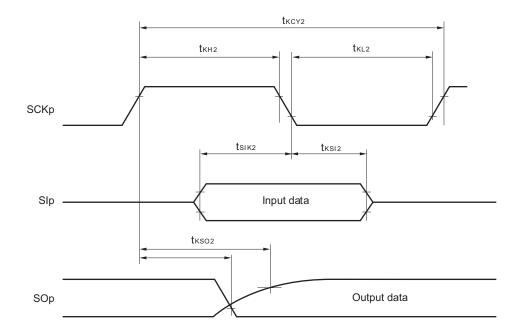

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (2/2)

(1A +0 to +00 t	J, 1.0 V _	_ T D _ T D _ T O T , T 33 - L T 33 - T	•,						\
Parameter	Symbol	Conditions	speed	high- main) ode	`	/-speed mode	voltage	low- e main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Delay time from SCKp↓ to SOp output Note 5	tkso2	$4.0~V \leq EV_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, \ R_{\text{b}} = 2.7 \text{ k}\Omega $		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$ 2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega $		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns
		$\begin{split} 1.8 \ V &\leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 30 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split}$				2/fмск + 573		2/fмск + 573	ns

- Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - 2. Use it with $EV_{DD} \ge V_b$.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (32-pin to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** $R_b[\Omega]$:Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

2.5.2 Serial interface IICA

(1) I²C standard mode

(Ta = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol			speed	(high- I main) ode	,	/-speed Mode	voltage	low- e main) ode	Unit
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscL	Standard	2.7 V ≤ EV _{DD} ≤ 5.5 V	0	100	0	100	0	100	kHz
		mode:	2.4 V ≤ EV _{DD} ≤ 5.5 V	0	100	0	100	0	100	
		fc∟k≥ 1 MHz	1.8 V ≤ EV _{DD} ≤ 5.5 V			0	100	0	100	
			1.6 V ≤ EV _{DD} ≤ 5.5 V					0	100	
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD} s	≤ 5.5 V	4.7		4.7		4.7		μs
		2.4 V ≤ EV _{DD} s	≤ 5.5 V	4.7		4.7		4.7		
		1.8 V ≤ EV _{DD} s	≤ 5.5 V			4.7		4.7		
		1.6 V ≤ EV _{DD} s	≤ 5.5 V					4.7		
Hold time Note 1	thd:sta	2.7 V ≤ EV _{DD} s	≤ 5.5 V	4.0		4.0		4.0		μs
		2.4 V ≤ EV _{DD} s	≤ 5.5 V	4.0		4.0		4.0		
		1.8 V ≤ EV _{DD} :	≤ 5.5 V			4.0		4.0		
		1.6 V ≤ EV _{DD} :	≤ 5.5 V					4.0		
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ EV _{DD} :	≤ 5.5 V	4.7		4.7		4.7		μs
		2.4 V ≤ EV _{DD} :	≤ 5.5 V	4.7		4.7		4.7		
		1.8 V ≤ EV _{DD} :	≤ 5.5 V			4.7		4.7		
		1.6 V ≤ EV _{DD} ≤ 5.5 V						4.7		
Hold time when SCLA0 = "H"	tніgн	2.7 V ≤ EV _{DD} s	≤ 5.5 V	4.0		4.0		4.0		μs
		2.4 V ≤ EV _{DD} :	≤ 5.5 V	4.0		4.0		4.0		
		1.8 V ≤ EV _{DD} :	≤ 5.5 V			4.0		4.0		
		1.6 V ≤ EV _{DD} :	≤ 5.5 V					4.0		
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD} :	≤ 5.5 V	250		250		250		ns
		2.4 V ≤ EV _{DD} s	≤ 5.5 V	250		250		250		
		1.8 V ≤ EV _{DD} s	≤ 5.5 V			250		250		
		1.6 V ≤ EV _{DD} s	≤ 5.5 V					250		
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD} s	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		2.4 V ≤ EV _{DD} s	≤ 5.5 V	0	3.45	0	3.45	0	3.45	
		1.8 V ≤ EV _{DD} s	≤ 5.5 V			0	3.45	0	3.45	
		1.6 V ≤ EV _{DD} s	≤ 5.5 V					0	3.45	
Setup time of stop condition	tsu:sto	2.7 V ≤ EV _{DD} s	≤ 5.5 V	4.0		4.0		4.0		μs
		2.4 V ≤ EV _{DD} s	≤ 5.5 V	4.0		4.0		4.0		
		1.8 V ≤ EV _{DD} ≤ 5.5 V				4.0		4.0		
		1.6 V ≤ EV _{DD} ≤ 5.5 V						4.0		
Bus-free time	t BUF	2.7 V ≤ EV _{DD} s	≤ 5.5 V	4.7		4.7		4.7		μs
		2.4 V ≤ EV _{DD} ≤ 5.5 V		4.7		4.7		4.7		
		1.8 V ≤ EV _{DD} ≤ 5.5 V				4.7		4.7		
		1.6 V ≤ EV _{DD} s	≤ 5.5 V					4.7		

(Notes and Remark are listed on the next page.)

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of $t_{HD:DAT}$ is during normal transfer and a wait state is inserted in the \overline{ACK} (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

(2) I²C fast mode

(Ta = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions		speed	high- main) ode	LS (low-speed main) Mode		LV (low- voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fscL	Fast mode:	Fast mode: 2.7 V ≤ EV _{DD} ≤ 5.5 V		400	0	400	0	400	kHz
		fcLk ≥ 3.5	2.4 V ≤ EV _{DD} ≤ 5.5 V	0	400	0	400	0	400	
		MHz	1.8 V ≤ EV _{DD} ≤ 5.5 V			0	400	0	400	
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			0.6		0.6		
Hold time Note 1	thd:sta	2.7 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			0.6		0.6		
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ EV _{DD}	≤ 5.5 V	1.3		1.3		1.3		μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	1.3		1.3		1.3		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			1.3		1.3		
Hold time when SCLA0 = "H"	t HIGH	2.7 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			0.6		0.6		
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD}	≤ 5.5 V	100		100		100		ns
		2.4 V ≤ EV _{DD}	≤ 5.5 V	100		100		100		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			100		100		
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD}	≤ 5.5 V	0	0.9	0	0.9	0	0.9	μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	0	0.9	0	0.9	0	0.9	
		1.8 V ≤ EV _{DD}	≤ 5.5 V			0	0.9	0	0.9	
Setup time of stop condition	tsu:sto	2.7 V ≤ EV _{DD}	2.7 V ≤ EV _{DD} ≤ 5.5 V			0.6		0.6		μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	0.6		0.6		0.6		
		1.8 V ≤ EV _{DD} ≤ 5.5 V				0.6		0.6		
Bus-free time	t BUF	2.7 V ≤ EV _{DD}	≤ 5.5 V	1.3		1.3		1.3		μs
		2.4 V ≤ EV _{DD}	≤ 5.5 V	1.3		1.3		1.3		
		1.8 V ≤ EV _{DD}	≤ 5.5 V			1.3		1.3		

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

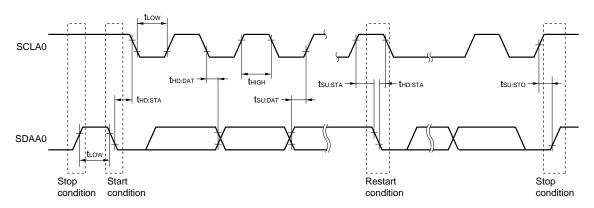
Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

(3) I²C fast mode plus

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions		h-speed Mode	LS (low-speed main) Mode		`	LV (low-voltage main) Mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: $f_{CLK} \ge 10 \text{ MHz}$ $2.7 \text{ V} \le EV_{DD} \le 5.5 \text{ V}$	0	1000	_	-	_	_	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD} ≤ 5.5 V	0.26		_	_	_	_	μs
Hold time ^{Note 1}	thd:STA	2.7 V ≤ EV _{DD} ≤ 5.5 V	0.26		_	-	_	-	μs
Hold time when SCLA0 = "L"	t _{LOW}	2.7 V ≤ EV _{DD} ≤ 5.5 V	0.5			-		-	μs
Hold time when SCLA0 = "H"	t HIGH	$2.7 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$	0.26		_	-	_	-	μs
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD} ≤ 5.5 V	50		_	-	_	_	μs
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD} ≤ 5.5 V	0	0.45	_	-	_	_	μs
Setup time of stop condition	t su:sто	2.7 V ≤ EV _{DD} ≤ 5.5 V	0.26		_	-	_	_	μs
Bus-free time	t BUF	2.7 V ≤ EV _{DD} ≤ 5.5 V	0.5			-	_	_	μS


- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

	Reference Voltage							
Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM					
ANIO, ANI1	_	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).					
ANI16 to ANI23	Refer to 2.6.1 (2).							
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		-					

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±3.5	LSB
		AV _{REFP} = V _{DD} Note 3	$1.6~V \leq V_{DD} \leq 5.5~V^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS	2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	E _{zs}	(high-speed main) mode) 10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.25	%FSR
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 5.5 V Note 4			±0.50	%FSR
Full-scale error Notes 1, 2	E _{FS}	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.25	%FSR
		$AV_{REFP} = V_{DD}^{\text{Note 3}}$	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±0.50	%FSR
Integral linearity	ILE	10-bit resolution	$1.8~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			±2.5	LSB
error ^{Note 1}		AV _{REFP} = V _{DD} Note 3	$1.6~V \leq V_{DD} \leq 5.5~V^{\text{Note 4}}$			±5.0	LSB
Differential linearity	DLE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±1.5	LSB
error ^{Note 1}		AV _{REFP} = V _{DD} Note 3	$1.6~V \leq V_{DD} \leq 5.5~V^{\text{Note 4}}$			±2.0	LSB
Analog input voltage	VAIN	Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-	speed main) mode)		V _{BGR} Note 5		V
	VBGR	Temperature sensor output vo $(2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, HS (high-$	o .		V _{TMPS25} Note 5		V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AVREFP < VDD. the MAX, values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

- **4.** Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI23

(TA = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, 1.6 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V		1.2	±5.0	LSB
		$AV_{REFP} = EV_{DD} = V_{DD}$ Note 3	$1.6~V \le AV_{REFP} \le 5.5~V$ Note 4		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	2.125		39	μs
		AV _{REFP} = EV _{DD} = V _{DD}	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	3.1875		39	μs
		Note 3	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	17		39	μs
			$1.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	57		95	μs
Zero-scale error ^{Notes 1, 2}	E _{ZS}	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
		,	$1.6~V \le AV_{REFP} \le 5.5~V$ Note 4			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	E _{FS}	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
		$AV_{REFP} = EV_{DD} = V_{DD}^{Note}$	$1.6~\text{V} \leq \text{AV}_{\text{REFP}} \leq 5.5~\text{V}$ Note 4			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±3.5	LSB
		AV _{REFP} = EV _{DD} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 5.5 V Note 4			±6.0	LSB
Differential linearity error	DLE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±2.0	LSB
Note 1		AV _{REFP} = EV _{DD} = V _{DD} Note 3	$1.6~V \le AV_{REFP} \le 5.5~V$ Note 4			±2.5	LSB
Analog input voltage	Vain			0		AVREFP	V
						and EV _{DD}	

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When $AV_{REFP} < EV_{DD} = V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/Differential linearity error: Add ± 2.0 LSB to the MAX. value when AV_{REFP} = V_{DD} .

4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin : ANI0, ANI1, ANI16 to ANI23, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{DD}, \text{ Reference voltage (-)} = \text{V}_{SS})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V		1.2	±7.0	LSB
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	2.125		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			1.8 V ≤ VDD ≤ 5.5 V	17		39	μs
			1.6 V ≤ V _{DD} ≤ 5.5 V	57		95	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: Internal	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±4.0	LSB
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±2.0	LSB
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±2.5	LSB
Analog input voltage	VAIN	ANIO, ANI1		0		V _{DD}	V
		ANI16 to ANI23		0		EV _{DD}	V
	-	Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (hiç	gh-speed main) mode)		V _{BGR} Note 4		V
		Temperature sensor output (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (hiç			V _{TMPS25} Note 4		V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

(TA = -40 to +85°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EV_{SS} = 0 V, Reference voltage (+) = V_{BGR} Note 3, Reference voltage (-) = AV_{REFM} Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			±0.60	%FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	٧

- **Notes 1.** Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
 - **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

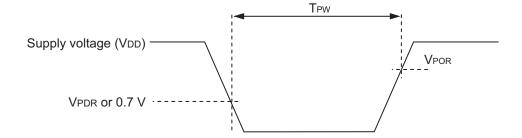
Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AVREFM.

Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.

Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

2.6.2 Temperature sensor/internal reference voltage characteristics

(TA = -40 to +85°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V) (HS (high-speed main) mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POR}	Power supply rise time	1.47	1.51	1.55	V
	V _{PDR}	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.4 LVD circuit characteristics

(Ta = -40 to +85°C, V_{PDR} \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		V _{LVD1}	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		V _{LVD2}	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		V _{LVD3}	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		V _{LVD4}	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		V _{LVD5}	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		V _{LVD6}	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		V _{LVD7}	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		V _{LVD8}	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		V _{LVD9}	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		V _{LVD10}	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		V _{LVD11}	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		V _{LVD12}	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		V _{LVD13}	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	ulse width	t∟w		300			μs
Detection d	elay time	t LD				300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(Ta = -40 to +85°C, $V_{PDR} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}$, $V_{SS} = EV_{SS} = 0 \text{ V}$)

Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDA0}	VPOC2,	VPOC1, VPOC0 = 0, 0, 0	falling reset voltage	1.60	1.63	1.66	V
mode	V _{LVDA1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	V _{LVDA2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	V _{LVDA3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDB1}	V _{POC2} ,	VPOC1, VPOC0 = 0, 0, 1	falling reset voltage	1.80	1.84	1.87	V
	V _{LVDB2}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	V _{LVDB3}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB4		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	V _{POC2} ,	VPOC1, VPOC0 = 0, 1, 0	falling reset voltage	2.40	2.45	2.50	V
	V _{LVDC1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	V _{LVDC2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	V _{LVDC3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVDD0}	VPOC2,	VPOC1, VPOC0 = 0, 1, 1	falling reset voltage	2.70	2.75	2.81	V
	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V	
	V _{LVDD3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Supply voltage rise time

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.

2.7 LCD Characteristics

2.7.1 Resistance division method

(1) Static display mode

(TA = -40 to +85°C, V_{L4} (MIN.) $\leq V_{DD} \leq 5.5$ V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.0		V _{DD}	٧

(2) 1/2 bias method, 1/4 bias method

(TA = -40 to +85°C, V_{L4} (MIN.) $\leq V_{DD} \leq 5.5$ V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.7		V _{DD}	V

(3) 1/3 bias method

(Ta = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.5		V _{DD}	V

2.7.2 Internal voltage boosting method

(1) 1/3 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μF	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C4 ^{Note 1} =	0.47 μF	2 V _{L1} - 0.1	2 V _{L1}	2 VL1	V
Tripler output voltage	V _{L4}	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	3 V _{L1} - 0.15	3 V _{L1}	3 VL1	٧
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} = 0.47 μ F		500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between V_{L4} and GND
- $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1} Note 4	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= $0.47 \mu F$	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C5 ^{Note 1} =	0.47 μF	2 V _{L1} – 0.08	2 V _{L1}	2 V _{L1}	V
Tripler output voltage	V _{L3}	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	3 V _{L1} – 0.12	3 V _{L1}	3 V _{L1}	V
Quadruply output voltage	V _{L4} Note 4	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	4 V _{L1} – 0.16	4 V _{L1}	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between VL3 and GND
- C5: A capacitor connected between V_{L4} and GND
- $C1 = C2 = C3 = C4 = C5 = 0.47 \mu F \pm 30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
- 4. VL4 must be 5.5 V or lower.

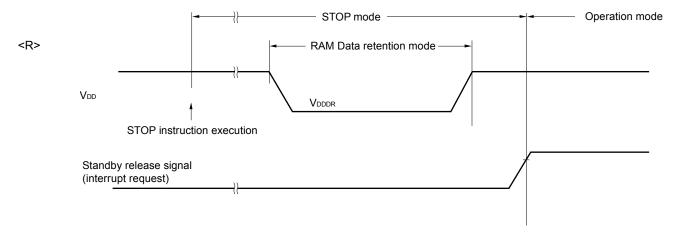
2.7.3 Capacitor split method

1/3 bias method

(T_A = -40 to +85°C, 2.2 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{L4} voltage	V _{L4}	C1 to C4 = 0.47 μ F ^{Note 2}		V _{DD}		V
V _{L2} voltage	V _{L2}	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	٧
V _{L1} voltage	V _{L1}	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V _{L4} - 0.1	1/3 V _{L4}	1/3 V _{L4} + 0.1	٧
Capacitor split wait time ^{Note 1}	tvwait		100			ms

- Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
 - 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between V_{L1} and GND
 - C3: A capacitor connected between V_{L2} and GND
 - C4: A capacitor connected between V_{L4} and GND
 - $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$


<R>

2.8 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.9 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

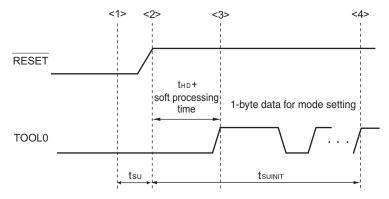
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclk	1.8 V ≤ VDD ≤ 5.5 V	1		24	MHz
<r></r>	Number of code flash rewrites	Cerwr	Retained for 20 years T _A = 85°C	1,000			Times
<r></r>	Number of data flash rewrites		Retained for 1 year T _A = 25°C		1,000,000		
<r></r>			Retained for 5 years T _A = 85°C	100,000			
<r></r>			Retained for 20 years T _A = 85°C	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite.

 The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Dedicated Flash Memory Programmer Communication (UART)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	I Conditions		TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps

2.11 Timing Specifications for Switching Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after a reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: T_A = -40 to +105°C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to +105°C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss
 - 3. For derating with $T_A = +85$ to +105°C, contact our Sales Division or the vender's sales division. Derating means the specified reduction in an operating parameter to improve reliability.

There are following differences between the products "G: Industrial applications (T_A = -40 to +105°C)" and the products "A: Consumer applications, and G: Industrial applications (T_A = -40 to +85°C)".

Parameter	Appl	lication
	A: Consumer applications, G: Industrial applications (with T _A = -40 to +85°C)	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	2.7 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 32 MHz	2.7 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 32 MHz
	2.4 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 16 MHz	2.4 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 8 MHz	
	LV (low-voltage main) mode:	
	1.6 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 4 MHz	
High-speed on-chip oscillator clock	1.8 V ≤ V _{DD} ≤ 5.5 V:	2.4 V ≤ V _{DD} ≤ 5.5 V:
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	1.6 V ≤ V _{DD} < 1.8 V:	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -20 to +85°C	
	±5.5%@ T _A = -40 to -20°C	
Serial array unit	UART	UART
	CSI00: fclk/2 (supporting 16 Mbps), fclk/4	CSI00: fcLk/4
	CSI01	CSI01
	Simplified I ² C communication	Simplified I ² C communication
IICA	Normal mode	Normal mode
	Fast mode	Fast mode
	Fast mode plus	
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(14 levels)	(8 levels)
	Fall detection voltage: 1.63 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(14 levels)	(8 levels)

Remark The electrical characteristics of the products G: Industrial applications (TA = -40 to +105°C) are different from those of the products "A: Consumer applications, and G: Industrial applications (only with TA = -40 to +85°C)". For details, refer to 3.1 to 3.10.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

(1/3)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EV _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVss		-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	$-0.3 \text{ to } +2.8$ and $-0.3 \text{ to } V_{DD} + 0.3^{\text{Note 1}}$	٧
Input voltage	V _{I1}	P10 to P17, P30 to P32, P40 to P43,	-0.3 to EV _{DD} + 0.3	٧
		P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	and –0.3 to V _{DD} + 0.3 ^{Note 2}	
	V _{I2}	P60, P61 (N-ch open-drain)	-0.3 to EV _{DD} + 0.3	٧
			and -0.3 to $V_{DD} + 0.3^{Note 2}$	
	V _{I3}	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
Output voltage	V ₀₁	P10 to P17, P30 to P32, P40 to P43, P50 to P54,	-0.3 to EV _{DD} + 0.3	V
		P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	and -0.3 to V _{DD} + 0.3 ^{Note 2}	
	V _{O2}	P20, P21	-0.3 to V _{DD} + 0.3 Note 2	٧
Analog input voltage	Vai1	ANI16 to ANI23	-0.3 to EV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V
	V _{Al2}	ANIO, ANI1	-0.3 to V _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 ^{Notes 2, 3}	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C)

(2/3)

Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V _{L1} voltage ^{Note 1}		-0.3 to +2.8 and -0.3 to V _{L4} + 0.3	V
	V _{L2}	V _{L2} voltage ^{Note 1}		-0.3 to V _{L4} + 0.3 Note 2	V
	V _{L3}	VL3 voltage ^{Note 1}		-0.3 to V _{L4} + 0.3 Note 2	V
	V _{L4}	V _{L4} voltage ^{Note 1}		-0.3 to +6.5	V
	V _{LCAP}	CAPL, CAPH vol	tage ^{Note 1}	-0.3 to $V_{L4} + 0.3^{Note 2}$	V
	VLOUT	SEG0 to m SEG38, C	External resistance division method	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
			Capacitor split method	-0.3 to V _{DD} + 0.3 Note 2	
		output voltage	Internal voltage boosting method	-0.3 to V _{L4} + 0.3 Note 2	

- Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F \pm 30%) and connect a capacitor (0.47 μ F \pm 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C)

(3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	lон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	lo _{L1} Per pin		P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	lo _{L2}	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operation	on mode	-40 to +105	°C
temperature		In flash memory p	programming mode		
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1.0		20.0	MHz
	crystal resonator	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	MHz
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to **3.4 AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

3.2.2 On-chip oscillator characteristics

(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Oscillators	Parameters	Conditions			TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator clock frequency accuracy		−20 to +85°C	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	-1		+1	%
		−40 to −20°C	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	-1.5		+1.5	%
		+85 to +105°C	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fiL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.
 - This indicates the oscillator characteristics only. Refer to 3.4 AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

(1/5)

Items	Symbol		Conditions				MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P10 to P17 P70 to P74, P120, P1	•				-3.0 Note 2	mA
		Total of P10 to P14, P40 to P43, P120, P130, P140 to P147 (When duty = 70% Note 3)		$4.0 \text{ V} \leq \text{EV}_{DD} \leq 5.5 \text{ V}$			-30.0	mA
	(When do			$2.7 \text{ V} \leq \text{EV}_{DD} \leq 4.0 \text{ V}$			-8.0	mA
				$2.4 \text{ V} \leq \text{EV}_{DD} \leq 2.7 \text{ V}$			-4.0	mA
		Total of P15 to P17, F	Total of P15 to P17, P30 to P32,				-30.0	mA
		P50 to P54, P70 to P74, P125 to P127 (When duty = 70% Note 3)		$2.7 \text{ V} \leq \text{EV}_{DD} \leq 4.0 \text{ V}$			-15.0	mA
				$2.4 \text{ V} \leq \text{EV}_{DD} \leq 2.7 \text{ V}$			-8.0	mA
		Total of all pins (When duty = 70% Note 3)					-60.0	mA
	І он2	OH2 P20, P21	Per pin				-0.1	mA
			Total of all pins	$2.4~V \leq V_{DD} \leq 5.5~V$			-0.2	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IOH = -30.0 mA

Total output current of pins = $(-30.0 \times 0.7)/(80 \times 0.01) \approx -26.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

(2/5)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lo _{L1}		10 to P17, P30 to P32, P40 P120, P125 to P127, P130				8.5 Note 2	mA
		Per pin for P60, P61					15.0 Note 2	mA
		Total of P10 t	to P14, P40 to P43, P120,	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$			40.0	mA
		P130, P140 to		2.7 V ≤ EV _{DD} < 4.0 V			15.0	mA
	(V	(When duty = 70% Note 3)		2.4 V ≤ EV _{DD} < 2.7 V			9.0	mA
		to P54, P60, P61, P70 to P74, P125 to P127	$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$			40.0	mA	
	-		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}$			35.0	mA	
			2,4 V ≤ EV _{DD} < 2.7 V			20.0	mA	
			Total of all pins (When duty = 70% Note 3)				80.0	mA
	lol2	I _{OL2} P20, P21	Per pin	Per pin			0.4	mA
			Total of all pins	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			0.8	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - 3. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoL × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoL = 40.0 mA

Total output current of pins = $(40.0 \times 0.7)/(80 \times 0.01) \approx 35.0 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

(3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EV _{DD}		EV _{DD}	>
	V _{IH2}	P10, P11, P15, P16	TTL input buffer 4.0 V ≤ EV _{DD} ≤ 5.5 V	2.2		EV _{DD}	V
			TTL input buffer 3.3 V ≤ EV _{DD} < 4.0 V	2.0		EV _{DD}	V
			TTL input buffer 2.4 V ≤ EV _{DD} < 3.3 V	1.50		EV _{DD}	V
	VIH3	P20, P21		0.7V _{DD}		V _{DD}	V
	V _{IH4} P60, P61			0.7EV _{DD}		EV _{DD}	V
	V _{IH5}	P121 to P124, P137, EXCLK, EXCLKS	, P137, EXCLK, EXCLKS, RESET			V_{DD}	V
Input voltage, low	V _{IL1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EV _{DD}	V
	V _{IL2}	P10, P11, P15, P16	TTL input buffer 4.0 V ≤ EV _{DD} ≤ 5.5 V	0		0.8	V
			TTL input buffer 3.3 V ≤ EV _{DD} < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V ≤ EV _{DD} < 3.3 V	0		0.32	V
	V _{IL3}	P20, P21		0		0.3V _{DD}	V
	VIL4	P60, P61		0		0.3EV _{DD}	V
	V _{IL5}	P121 to P124, P137, EXCLK, EXCLKS	s, RESET	0		0.2V _{DD}	V

Caution The maximum value of VIH of pins P10, P12, P15, and P17 is EVDD, even in the N-ch open-drain mode.

(Ta = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	EV _{DD} – 0.7			V
		P125 to P127, P130, P140 to P147	$2.7 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$	EV _{DD} – 0.6			V
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OH1}} = -1.5 \text{ mA}$	EV _{DD} – 0.5			V
	V _{OH2}	P20, P21	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH2} = -100 \ \mu \text{ A}$	V _{DD} - 0.5			V
Output voltage, low	V _{OL1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 8.5 \text{ mA}$			0.7	V
	P125 to P127, P130, P140 to P147	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V},$ $\text{I}_{\text{OL1}} = 3.0 \text{ mA}$			0.6	V	
			$2.7 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 1.5 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 0.6 \text{ mA}$			0.4	V
	V _{OL2}	P20, P21	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $I_{OL2} = 400 \ \mu \text{ A}$			0.4	V
	Vol3	P60, P61	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $I_{OL3} = 15.0 \text{ mA}$			2.0	V
		$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL3}} = 5.0 \text{ mA}$			0.4	V	
			$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL3}} = 3.0 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL3}} = 2.0 \text{ mA}$			0.4	V

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

(5/5)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EVDD	$V_{i} = EV_{DD}$			1	μΑ
	I _{LIH2}	P20, P21, P137, RESET	$V_I = V_{DD}$				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	V _I = V _{DD}	In input port or external clock input			1	μА
				In resonator connection			10	μΑ
Input leakage current, low	ILIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	Vi = EVss				-1	μΑ
	ILIL2	P20, P21, P137, RESET	VI = VSS				-1	μA
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up	Ru ₁	VI = EVSS	SEGxx po	rt				
resistance			2.4 V ≤ E	$EV_{DD} = V_{DD} \le 5.5 \text{ V}$	10	20	100	kΩ
	Ru2			than above P60, P61, and	10	20	100	kΩ

3.3.2 Supply current characteristics

(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

(1/3)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit					
Supply	I _{DD1}	Operating	HS (high-	f _{IH} = 24 MHz Note 3	Basic	V _{DD} = 5.0 V		1.5		mA					
current Note 1		mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		1.5		mA					
Note i			mode		Nomal	V _{DD} = 5.0 V		3.3	5.3	mA					
					operation	V _{DD} = 3.0 V		3.3	5.3	mA					
				f _{IH} = 16 MHz Note 3	Nomal	V _{DD} = 5.0 V		2.5	3.9	mA					
					operation	V _{DD} = 3.0 V		2.5	3.9	mA					
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		2.8	4.7	mA					
			speed main) mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.0	4.8	mA					
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Nomal	Square wave input		2.8	4.7	mA					
				V _{DD} = 3.0 V	operation	Resonator connection		3.0	4.8	mA					
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		1.8	2.8	mA					
				V _{DD} = 5.0 V	operation	Resonator connection		1.8	2.8	mA					
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		1.8	2.8	mA					
			Subsystem	V _{DD} = 3.0 V	operation	Resonator connection		1.8	2.8	mA					
				f _{SUB} = 32.768 kHz		Square wave input		3.5	4.9	μΑ					
					clock operation		clock		Note 4 T _A = −40°C	operation	Resonator connection		3.6	5.0	μΑ
				f _{SUB} = 32.768 kHz	Nomal	Square wave input		3.6	4.9	μΑ					
				Note 4 T _A = +25°C	operation	Resonator connection		3.7	5.0	μΑ					
				f _{SUB} = 32.768 kHz	Nomal	Square wave input		3.7	5.5	μΑ					
				Note 4 TA = +50°C	operation	Resonator connection		3.8	5.6	μΑ					
				f _{SUB} = 32.768 kHz	Nomal	Square wave input		3.8	6.3	μΑ					
				Note 4 T _A = +70°C	operation	Resonator connection		3.9	6.4	μΑ					
				f _{SUB} = 32.768 kHz	Nomal	Square wave input		4.1	7.7	μΑ					
				Note 4	operation	Resonator connection		4.2	7.8	μΑ					
				T _A = +85°C				_							
				f _{SUB} = 32.768 kHz	Nomal	Square wave input		6.4	19.7	μΑ					
				T _A = +105°C	operation	Resonator connection		6.5	19.8	μΑ					

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{Q}1 \text{ MHz}$ to 24 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{Q}1 \text{ MHz}$ to 16 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C

(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

(2/3)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high-	f _{IH} = 24 MHz Note 4	V _{DD} = 5.0 V		0.44	2.3	mA
current Note 1	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.44	2.3	mA
				f _{IH} = 16 MHz Note 4	V _{DD} = 5.0 V		0.40	1.7	mA
					V _{DD} = 3.0 V		0.40	1.7	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.9	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.45	2.0	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.9	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	2.0	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.02	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	1.10	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	mA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.57	μΑ
			clock	T _A = -40°C	Resonator connection		0.50	0.76	μΑ
			operation	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.37	0.57	μΑ
				T _A = +25°C	Resonator connection		0.56	0.76	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.17	μΑ
				T _A = +50°C	Resonator connection		0.65	1.36	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.57	1.97	μΑ
				T _A = +70°C	Resonator connection		0.76	2.16	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.85	3.37	μΑ
				T _A = +85°C	Resonator connection		1.04	3.56	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		3.04	15.37	μΑ
				T _A = +105°C	Resonator connection		3.23	15.56	μΑ
	I _{DD3} Note 6	STOP	T _A = -40°C				0.17	0.50	μΑ
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μΑ
			T _A = +50°C				0.32	1.10	μΑ
			T _A = +70°C				0.43	1.90	μΑ
			T _A = +85°C				0.71	3.30	μΑ
			T _A = +105°C				2.90	15.30	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz}$ to 24 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz to 16 MHz}$

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

(3/3)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	I _{FIL} Note 1					0.20		μΑ
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped	topped			0.08		μΑ
12-bit interval timer current	 IT Notes 1, 2, 4					0.08		μΑ
Watchdog timer operating current	Notes 1, 2, 5	fı∟ = 15 kHz				0.24		μΑ
A/D converter	IADC	When conversion		$AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current	Notes 1, 6	at maximum speed	Low voltage mo	de, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		0.5	0.7	mA
A/D converter reference voltage current	ladref Note 1					75.0		μΑ
Temperature sensor operating current	ITMPS Note 1					75.0		μΑ
LVD operating current	I _{LVD}					0.08		μΑ
Self- programming operating current	FSP Notes 1, 9					2.50	12.20	mA
BGO operating current	I _{BGO}					2.50	12.20	mA
LCD operating current	ILCD1 Notes 11, 12	External resistance	division method	V _{DD} = EV _{DD} = 5.0 V V _{L4} = 5.0 V		0.04	0.20	μΑ
	ILCD2	Internal voltage boo	osting method	V _{DD} = EV _{DD} = 5.0 V V _{L4} = 5.1 V (VLCD = 12H)		1.12	3.70	μΑ
				$V_{DD} = EV_{DD} = 3.0 \text{ V}$		0.63	2.20	μΑ
				V _{L4} = 3.0 V (VLCD = 04H)				
	ILCD3 Note 11	Capacitor split met	hod	$V_{DD} = EV_{DD} = 3.0 \text{ V}$ $V_{L4} = 3.0 \text{ V}$		0.12	0.50	μΑ
SNOOZE	I _{SNOZ} Note 1	ADC operation	The mode is perfo			0.50	1.10	mA
operating	.0102		The A/D conversion			1.20	2.04	mA
current				oltage mode, AVREFP = VDD		1.20	2.04	IIIA
		CSI/UART operation	on			0.70	1.54	mA

(Notes and Remarks are listed on the next page.)

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- **4.** Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode.
- 11. Current flowing only to the LCD controller/driver. The supply current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1 or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.

The TYP. value and MAX. value are following conditions.

- When fsuB is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)
- 4-Time-Slice, 1/3 Bias Method
- **12.** Not including the current that flows through the external divider resistor when the external resistance division method is used.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

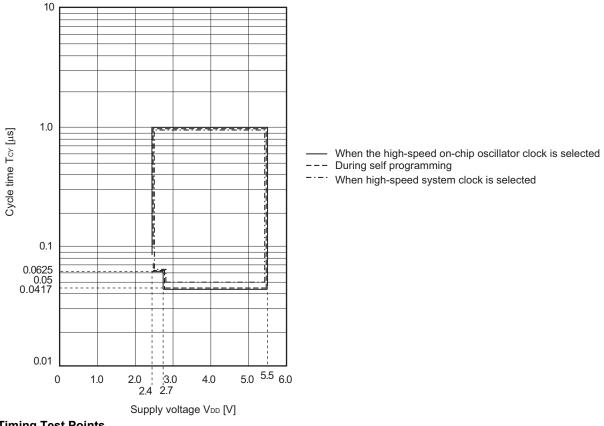
- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is TA = 25°C

3.4 AC Characteristics

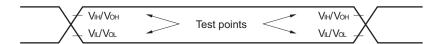
3.4.1 Basic operation

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

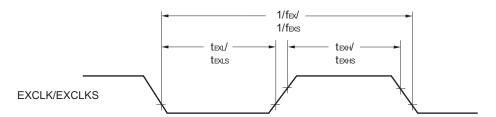
Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main	HS (high-speed	$2.7 V \le V_{DD} \le 5.5 V$	0.04167		1	μS
instruction execution time)		system clock (f _{MAIN}) operation	main) mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
		Subsystem of operation	lock (fsuв)	2.4 V ≤ V _{DD} ≤ 5.5 V	28.5	30.5	31.3	μs
		In the self	HS (high-speed	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.04167		1	μS
		programming mode	main) mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μS
External system clock frequency	fex	2.7 V ≤ V _{DD} ≤	5.5 V		1.0		20.0	MHz
		2.4 V ≤ V _{DD} <	2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input high-	texh, texl	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		24			ns
level width, low-level width		2.4 V ≤ V _{DD} <	2.7 V		30			ns
	texhs, texhs				13.7			μs
TI00 to TI07 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns
TO00 to TO07 output frequency	fто	HS (high-spe	ed 4.0 V	≤ EV _{DD} ≤ 5.5 V			16	MHz
		main) mode	2.7 V	≤ EV _{DD} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	ed 4.0 V	≤ EV _{DD} ≤ 5.5 V			16	MHz
frequency		main) mode	2.7 V	≤ EV _{DD} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V	≤ V _{DD} ≤ 5.5 V	1			μs
low-level width	t intl	INTP1 to INT	P7 2.4 V :	≤ EV _{DD} ≤ 5.5 V	1			μs
Key interrupt input low-level width	t kr	KR0 to KR3	2.4 V	≤ EV _{DD} ≤ 5.5 V	250			ns
RESET low-level width	trsL		•		10			μS

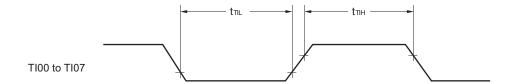

Remark fmck: Timer array unit operation clock frequency

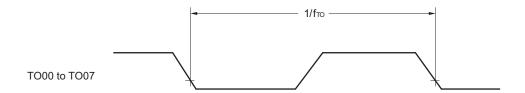
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n).


n: Channel number (n = 0 to 7))

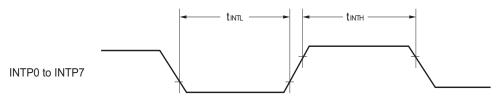
Minimum Instruction Execution Time during Main System Clock Operation


Tcy vs VDD (HS (high-speed main) mode)

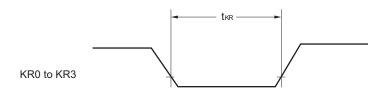

AC Timing Test Points

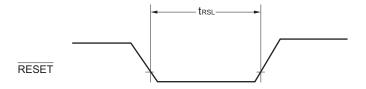


External System Clock Timing

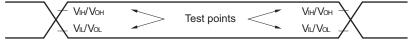


TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing



RESET Input Timing

3.5 Peripheral Functions Characteristics

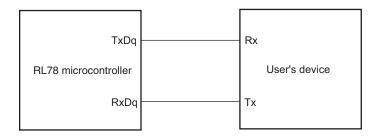
AC Timing Test Points

3.5.1 Serial array unit

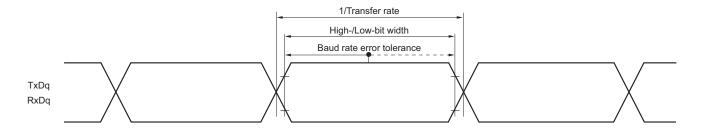
(1) During communication at same potential (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spee	d main) Mode	Unit
			MIN.	MAX.	
Transfer rate Note 1				fмск/12	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps


- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cond	Conditions		ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		334 Note 1		ns
		2.4 V ≤ EV _{DD} ≤ 5.5 V		500 Note 1		ns
SCKp high-/low-level width	t кн1,	4.0 V ≤ EV _{DD} ≤ 5.5 V		tkcy1/2 - 24		ns
	t KL1	$2.7~V \leq EV_{DD} \leq 5.5~V$		tkcy1/2 - 36		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		tkcy1/2 - 76		ns
SIp setup time (to SCKp↑) Note 2	tsik1	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		66		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		113		ns
SIp hold time (from SCKp↑) Note 3	t _{KSI1}	$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		38		ns
Delay time from SCKp↓ to SOp output Note 4	tkso1	C = 30 pF Note 5	$2.4~V \le EV_{DD} \le 5.5~V$		50	ns

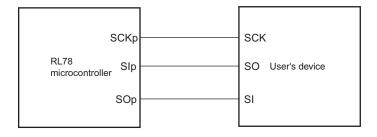
Notes 1. Set a cycle of 4/fmck or longer.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

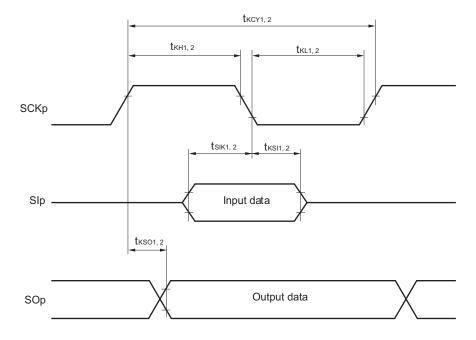
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$


Parameter	Symbol	Cond	ditions	HS (high-spee	d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$	20 MHz < f _{MCK}	16/fмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ EV _{DD} < 4.0 V	16 MHz < fмск	16/fмск		ns
			fмcк ≤ 16 MHz	12/fмск		ns
		$2.4~V \le EV_{DD} \le 5.5~V$		12/fмск and 1000		ns
SCKp high-/low-level	t _{KH2} ,	4.0 V ≤ EV _{DD} ≤ 5.5 V		tксү2/2 – 14		ns
width	t _{KL2}	2.7 V ≤ EV _{DD} < 4.0 V		tксү2/2 – 16		ns
		2.4 V ≤ EV _{DD} < 2.7 V		tkcy2/2 – 36		ns
SIp setup time	tsik2	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		1/f _{MCK} + 40		ns
(to SCKp↑) Note 1		2.4 V ≤ EV _{DD} < 2.7 V		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 2	tksi2	2.4 V ≤ EV _{DD} ≤ 5.5 V		1/fмск + 62		ns
Delay time from SCKp↓	tkso2	C = 30 pF Note 4	4.0 V ≤ EV _{DD} ≤ 5.5 V		2/f _{MCK} + 66	ns
to SOp output Note 3			$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}$		2/f _{MCK} + 66	ns
			$2.4 \text{ V} \le \text{EV}_{DD} \le 2.7 \text{ V}$		2/fмск+ 113	Ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01)

2. m: Unit number, n: Channel number (mn = 00, 01)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{EV}_{DD} = V_{DD} \leq 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditio	ns	HS (high-spee	ed main) Mode	Unit
					MIN.	MAX.	
Transfer rate		Reception	$4.0 \text{ V} \leq \text{EV}_{DD} \leq 5.5 \text{ V},$			fmck/12 Note 1	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 2		2.0	Mbps
			2.7 V ≤ EV _{DD} < 4.0 V,			fmck/12 Note 1	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate fmck = fclk Note 2		2.0	Mbps
			$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$			fMCK/12 Note 1	bps
				Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 2		2.0	Mbps

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32- to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

- Remarks 1. V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

(2/2)

Transmission			MIN.		1
Transmission				MAX.	
	$4.0 \text{ V} \leq \text{EV}_{DD} \leq 5.5 \text{ V},$			Note 1	bps
	$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 2	Mbps
	2.7 V ≤ EV _{DD} < 4.0 V,			Note 3	bps
	$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate		1.2 Note 4	Mbps
	2.4 V ≤ EV _{DD} < 3.3 V,	00 – 30 μι , 100 – 2.7 Ks2, Vb – 2.3 V		Note 5	bps
	$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate		0.43 Note 6	Mbps
		2.4 V ≤ EV _{DD} < 3.3 V,	$maximum \ transfer \ rate$ $C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega, \ V_b = 2.3 \ V$ $2.4 \ V \le EV_{DD} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$ Theoretical value of the maximum transfer rate	$maximum \ transfer \ rate$ $C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega, \ V_b = 2.3 \ V$ $2.4 \ V \le EV_{DD} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$ Theoretical value of the	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Notes 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

$$\label{eq:maximum transfer rate} \begin{aligned} & \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{2.2}{V_b})\} \times 3} \text{ [bps]} \end{aligned}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

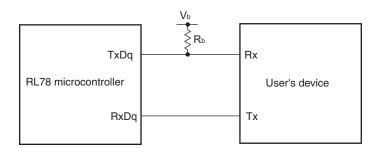
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \text{ln } (1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

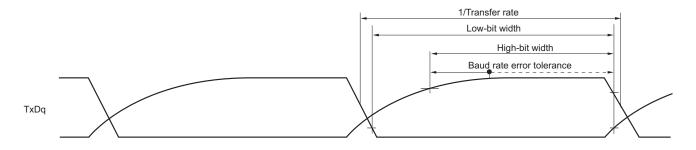
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

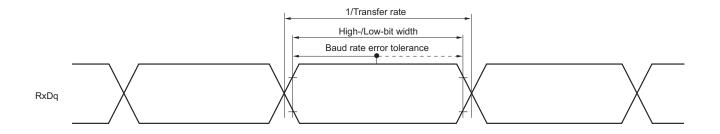
5. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpb tolerance (32- to 52-pin products)/EVpb tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For Vih and Vil., see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** $R_b[\Omega]$:Communication line (TxDq) pull-up resistance, $C_b[F]$: Communication line (TxDq) load capacitance, $V_b[V]$: Communication line voltage
 - **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2)

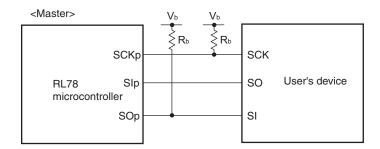
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcY1	tkcy1 ≥ 4/fclk	$4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	600		ns
			$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
			$2.7 \; \text{V} \leq \text{EV}_{\text{DD}} < 4.0 \; \text{V}, \; 2.3 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \; \text{V},$	600		ns
			$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
			$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$	2300		ns
			$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
SCKp high-level width	tкн1	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$		tkcy1/2 - 150		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		tkcy1/2 - 340		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$		tkcy1/2 - 916		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SCKp low-level width	tkL1	$4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$		tkcy1/2 – 24		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		tkcy1/2 - 36		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$		tkcy1/2 - 100		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

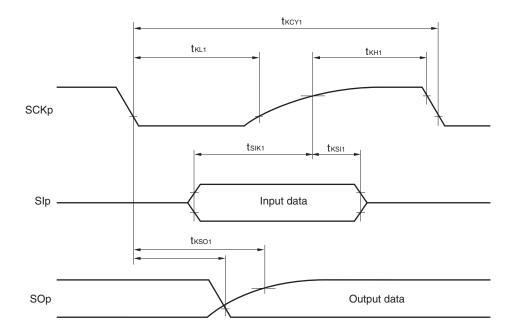
(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2)

(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

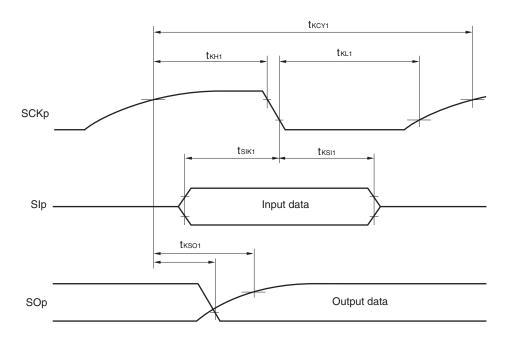

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SIp setup time	tsik1	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	162		ns
(to SCKp↑) Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	354		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$	958		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
SIp hold time	t KSI1	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	38		ns
(from SCKp↑) Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Delay time from SCKp↓ to	tkso1	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$		200	ns
SOp output Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		390	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{DD} \le 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$		966	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
SIp setup time	tsıĸ1	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$	88		ns
(to SCKp↓) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	88		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$	220		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
SIp hold time	tksıı	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$	38		ns
(from SCKp↓) Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Delay time from SCKp↑ to SOp output Note 2	tkso1	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$		50	ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		50	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$		50	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			

(Notes, Caution and Remarks are listed on the page after the next page.)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



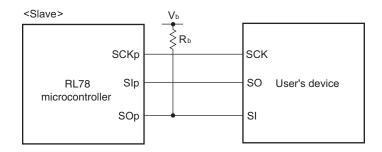
- **Remarks 1.** $R_b[\Omega]$:Communication line (SCKp, SOp) pull-up resistance,
 - $C_b[F]: Communication \ line \ (SCKp, SOp) \ load \ capacitance, \ V_b[V]: Communication \ line \ voltage$
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

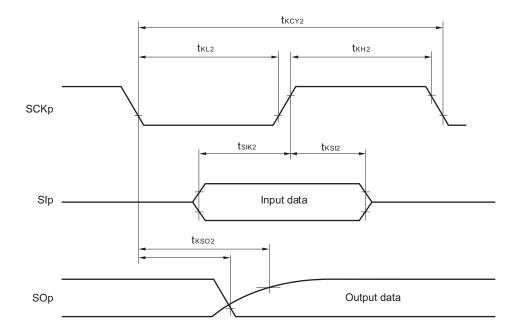
Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

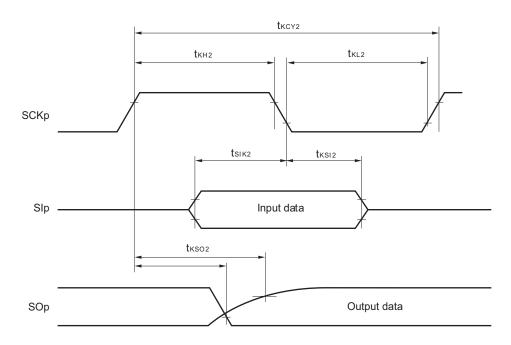

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	24/fмск		ns
		$2.7 \text{ V} \le V_b \le 4.0 \text{ V}$	8 MHz < fмck ≤ 20 MHz	20/fмск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/f мск		ns
			fмck ≤ 4 MHz	12/f мск		ns
		$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	32/fмск		ns
		$2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$	16 MHz < f _{MCK} ≤ 20 MHz	28/fмск		ns
			8 MHz < f _{MCK} ≤ 16 MHz	24/fмск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/f мск		ns
			fmck ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	72/fмск		ns
		$1.6~V \le V_b \le 2.0~V$	16 MHz < f _{MCK} ≤ 20 MHz	64/ f мск		ns
			8 MHz < f _{MCK} ≤ 16 MHz	52/f мск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	32/fмск		ns
			fмck ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	t _{KH2} ,	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$		tkcy2/2 - 24		ns
		$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) Note2	tsık2	$4.0 \text{ V} \le \text{EV}_{DD} < 5.5 \text{ V}$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$	V,	1/fмск + 40		ns
		2.7 V ≤ EV _{DD} < 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V		1/fмск + 40		ns
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2	$4.0 \text{ V} \le \text{EV}_{DD} < 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$		1/fмск + 62		ns
		2.7 V ≤ EV _{DD} < 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V		1/fмск + 62		ns
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$		1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 4	tkso2	$ 4.0 \text{ V} \leq \text{EV}_{DD} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, $ $ C_b = 30 \text{ pF}, \ R_b = 1.4 \text{ k} \Omega $			2/fмск + 240	ns
		$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			2/fmck + 428	ns
		$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the page after the next page.)

- Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** $R_b[\Omega]$:Communication line (SOp) pull-up resistance,
 - C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),
 - g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0),

n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

3.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Co	nditions	HS (high-spe	ed main) Mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscL	Standard mode:	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$	0	100	kHz
		fclk ≥ 1 MHz	2.4 V ≤ EV _{DD} ≤ 5.5 V	0	100	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD} ≤ 5.	5 V	4.7		μS
		2.4 V ≤ EV _{DD} ≤ 5.	5 V	4.7		μS
Hold time ^{Note 1}	thd:sta	2.7 V ≤ EV _{DD} ≤ 5.	5 V	4.0		μS
		2.4 V ≤ EV _{DD} ≤ 5.5 V		4.0		μS
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ EV _{DD} ≤ 5.5 V		4.7		μS
		2.4 V ≤ EV _{DD} ≤ 5.	5 V	4.7		μS
Hold time when SCLA0 = "H"	thigh	2.7 V ≤ EV _{DD} ≤ 5.5 V		4.0		μs
		2.4 V ≤ EV _{DD} ≤ 5.	5 V	4.0		μS
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD} ≤ 5.5 V		250		ns
		2.4 V ≤ EV _{DD} ≤ 5.5 V		250		ns
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD} ≤ 5.	5 V	0	3.45	μS
		2.4 V ≤ EV _{DD} ≤ 5.	5 V	0	3.45	μS
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq \text{EV}_{DD} \leq 5.$	5 V	4.0		μs
		2.4 V ≤ EV _{DD} ≤ 5.	5 V	4.0		μs
Bus-free time	t BUF	2.7 V ≤ EV _{DD} ≤ 5.	5 V	4.7		μs
		2.4 V ≤ EV _{DD} ≤ 5.	5 V	4.7		μS

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

(2) I²C fast mode

(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Co	onditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	2.7 V ≤ EV _{DD} ≤ 5.5 V	0	400	kHz
		fc∟k≥ 3.5 MHz	2.4 V ≤ EV _{DD} ≤ 5.5 V	0	400	
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD} ≤ 5.5	5 V	0.6		μs
		2.4 V ≤ EV _{DD} ≤ 5.5	5 V	0.6]
Hold time Note 1	thd:sta	2.7 V ≤ EV _{DD} ≤ 5.5	5 V	0.6		μs
		2.4 V ≤ EV _{DD} ≤ 5.5	5 V	0.6		
Hold time when SCLA0 = "L"	tLOW	$2.7 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V}$		1.3		μs
		2.4 V ≤ EV _{DD} ≤ 5.5	2.4 V ≤ EV _{DD} ≤ 5.5 V			
Hold time when SCLA0 = "H"	t HIGH	2.7 V ≤ EV _{DD} ≤ 5.5 V		0.6		μs
		2.4 V ≤ EV _{DD} ≤ 5.5	5 V	0.6		
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD} ≤ 5.5	5 V	100		ns
		2.4 V ≤ EV _{DD} ≤ 5.5 V		100		
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD} ≤ 5.5	5 V	0	0.9	μs
		2.4 V ≤ EV _{DD} ≤ 5.5	2.4 V ≤ EV _{DD} ≤ 5.5 V		0.9	
Setup time of stop condition	tsu:sto	2.7 V ≤ EV _{DD} ≤ 5.5	5 V	0.6		μs
		2.4 V ≤ EV _{DD} ≤ 5.5 V		0.6		1
Bus-free time	t BUF	2.7 V ≤ EV _{DD} ≤ 5.5	5 V	1.3		μs
		2.4 V ≤ EV _{DD} ≤ 5.5	5 V	1.3		

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of $t_{HD:DAT}$ is during normal transfer and a wait state is inserted in the \overline{ACK} (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Stassification of Arb converter characteristics											
		Reference Voltage									
	Reference voltage (+) = AV _{REFP}	Reference voltage (+) = V _{DD}	Reference voltage (+) = V _{BGR}								
Input channel	Reference voltage (–) = AVREFM	Reference voltage (-) = Vss	Reference voltage (–) = AV _{REFM}								
ANI0, ANI1	-	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).								
ANI16 to ANI23	Refer to 3.6.1 (2).										
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1) .		-								

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ AV _{REFP} ≤ 5.5 V		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} Note 3	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±1.5	LSB
Analog input voltage	Vain	Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4			V
		Temperature sensor output voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)			V _{TMPS25} Note 4		

- **Notes 1.** Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When AVREFP < VDD, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.

4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI23

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{EV}_{DD} = \text{V}_{DD} \leq 5.5 \text{ V}, 2.4 \text{ V} \leq \text{AV}_{REFP} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} Note 3	2.4 V ≤ AV _{REFP} ≤ 5.5 V		1.2	±5.0	LSB
Conversion time tconv	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		$AV_{REFP} = EV_{DD} = V_{DD}^{\text{Note 3}}$	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} Note 3	2.4 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} Note 3	2.4 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±3.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = EV _{DD} = V _{DD} Note 3	2.4 V ≤ AV _{REFP} ≤ 5.5 V			±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI23		0		AVREFP and EVDD	V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When $AV_{REFP} < EV_{DD} = V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin : ANI0, ANI1, ANI16 to ANI23, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{DD}, \text{ Reference voltage (-)} = \text{V}_{SS})$

Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error	DLE	10-bit resolution	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			±2.0	LSB
Analog input voltage	Vain	ANIO, ANI1		0		V _{DD}	V
		ANI16 to ANI23		0		EV _{DD}	V
		Internal reference voltage output (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-s)	V _{BGR} Note 3			V	
		Temperature sensor output volt (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-s	V _{TMPS25} Note 3			V	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

(T_A = -40 to +105°C, 2.4 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V, Reference voltage (+) = V_{BGR} Note 3, Reference voltage (-) = AVREFM Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
 - **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

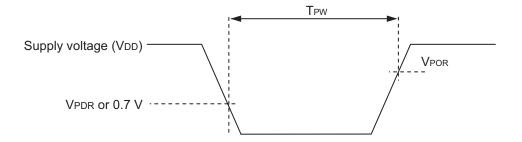
Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.

Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.

Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor/internal reference voltage characteristics

(TA = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V, HS (high-speed main) mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, Ta = +25°C		1.05		٧
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	٧
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POR}	Power supply rise time		1.51	1.57	V
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width	T _{PW}		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.4 LVD circuit characteristics

(Ta = -40 to +105°C, $V_{PDR} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}$, $V_{SS} = EV_{SS} = 0 \text{ V}$)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	٧
		V _{LVD1}	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		V _{LVD2}	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		V _{LVD3}	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		V _{LVD4}	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		V _{LVD5}	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		V _{LVD6}	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		V _{LVD7}	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pu	lse width	tLW		300			μs
Detection de	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(Ta = -40 to +105°C, $V_{PDR} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}$, $V_{SS} = EV_{SS} = 0 \text{ V}$)

Parameter	Symbol		Conditions				MAX.	Unit
Interrupt and reset	V _{LVDD0}	VPOC2, VPOC1, VPOC	oc2, VPoc1, VPoc0 = 0, 1, 1, falling reset voltage			2.75	2.86	٧
mode V _{LVDD1}	LVIS1, LV	IS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V	
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS1, LV	ISO = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	٧
	V _{LVDD3}	LVIS1, LV	ISO = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	٧

3.6.5 Power supply voltage rising slope characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 31.4 AC Characteristics.

3.7 LCD Characteristics

3.7.1 Resistance division method

(1) Static display mode

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD}^{Note} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.0		V _{DD}	V

Note Must be 2.4 V or higher.

(2) 1/2 bias method, 1/4 bias method

(T_A = -40 to +105°C, V_{L4} (MIN.) \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.7		V _{DD}	V

(3) 1/3 bias method

(TA = -40 to +105°C, V_{L4} (MIN.) \leq $V_{DD} \leq$ 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.5		V _{DD}	V

3.7.2 Internal voltage boosting method

(1) 1/3 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μF	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} -0.1	2 VL1	2 V _{L1}	٧
Tripler output voltage	VL4	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	3 V _{L1} -0.15	3 V _{L1}	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between V_{L4} and GND
- $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1} Note 4	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μF	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} – 0.08	2 V _{L1}	2 V _{L1}	V
Tripler output voltage	V _{L3}	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	3 V _{L1} – 0.12	3 V _{L1}	3 V _{L1}	V
Quadruply output voltage	V _{L4} Note 4	C1 to C5 ^{Note 1} =	0.47 μF	4 V _{L1} – 0.16	4 V _{L1}	4 V _{L1}	V
Reference voltage setup time Note 2	tvwait1		·	5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

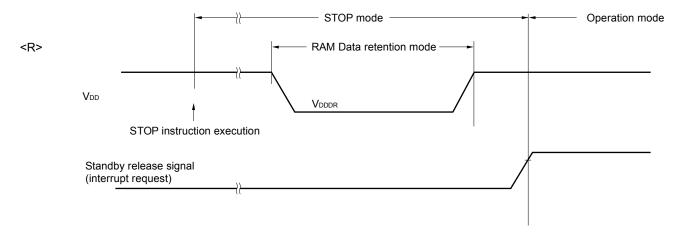
- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between $V_{{\mbox{\tiny L3}}}$ and GND
- C5: A capacitor connected between V_{L4} and GND
- $C1 = C2 = C3 = C4 = C5 = 0.47 \mu F \pm 30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
- 4. VL4 must be 5.5 V or lower.

3.7.3 Capacitor split method

1/3 bias method

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{L4} voltage	V _{L4}	C1 to C4 = 0.47 μ F ^{Note 2}		V _{DD}		V
V _{L2} voltage	V _{L2}	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 V _{L4}	2/3 V _{L4} + 0.1	V
V _{L1} voltage	V _{L1}	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V _{L4} - 0.1	1/3 V _{L4}	1/3 V _{L4} + 0.1	V
Capacitor split wait time ^{Note 1}	tvwait		100			ms


- Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
 - 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between V_{L1} and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between V_{L4} and GND
 - $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$

<R> 3.8 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.9 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclk	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1		24	MHz
<r></r>	Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{\text{Note 4}}$	1,000			Times
<r></r>	Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year $T_A = 25^{\circ}C^{\text{Note 4}}$		1,000,000		
<r></r>			Retained for 5 years T _A = 85°C ^{Note 4}	100,000			
<r></r>			Retained for 20 years T _A = 85°C ^{Note 4}	10,000			

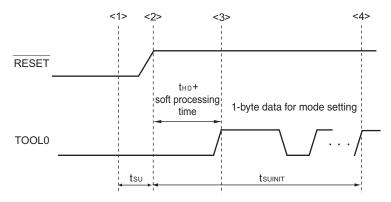
Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.
- **4.** This temperature is the average value at which data are retained.

3.10 Dedicated Flash Memory Programmer Communication (UART)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps

<R>

3.11 Timing Specifications for Switching Flash Memory Programming Modes

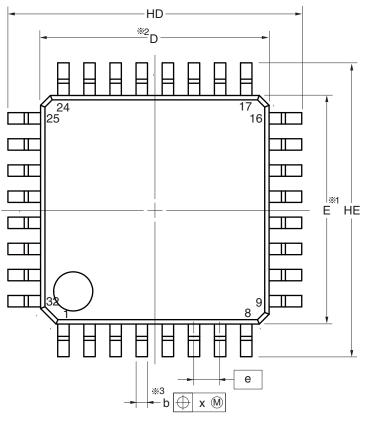
(Ta = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

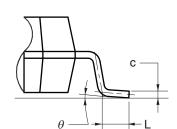
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	t HD	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

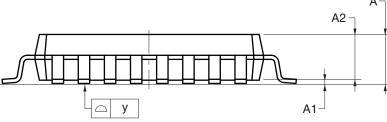
Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level


thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)


4. PACKAGE DRAWINGS

4.1 32-pin Products

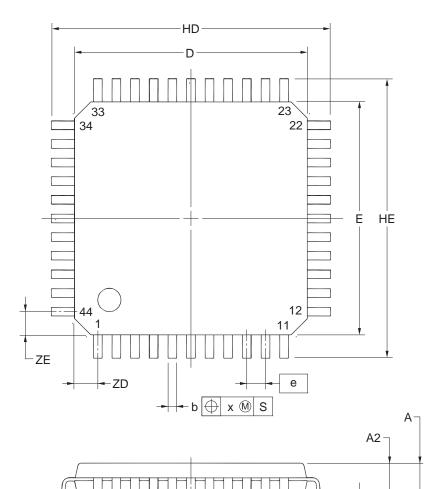

R5F10RB8AFP, R5F10RBAAFP, R5F10RBCAFP R5F10RB8GFP, R5F10RBAGFP, R5F10RBCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

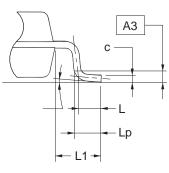
detail of lead end

(UNIT:mm

	(UNII:mm
ITEM	DIMENSIONS
D	7.00±0.10
Е	7.00±0.10
HD	9.00±0.20
HE	9.00±0.20
Α	1.70 MAX.
A1	0.10±0.10
A2	1.40
b	$0.37{\pm}0.05$
С	0.145±0.055
L	0.50±0.20
θ	0° to 8°
е	0.80
х	0.20
у	0.10


NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.


4.2 44-pin Products

R5F10RF8AFP, R5F10RFAAFP, R5F10RFCAFP R5F10RF8GFP, R5F10RFAGFP, R5F10RFCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

detail of lead end

ITEM

D

Е

HD

HE 12.00±0.20
A 1.60 MAX.
A1 0.10±0.05
A2 1.40±0.05
A3 0.25
b 0.37 +0.08 0.07

(UNIT:mm)

DIMENSIONS

10.00±0.20

10.00±0.20

12.00±0.20

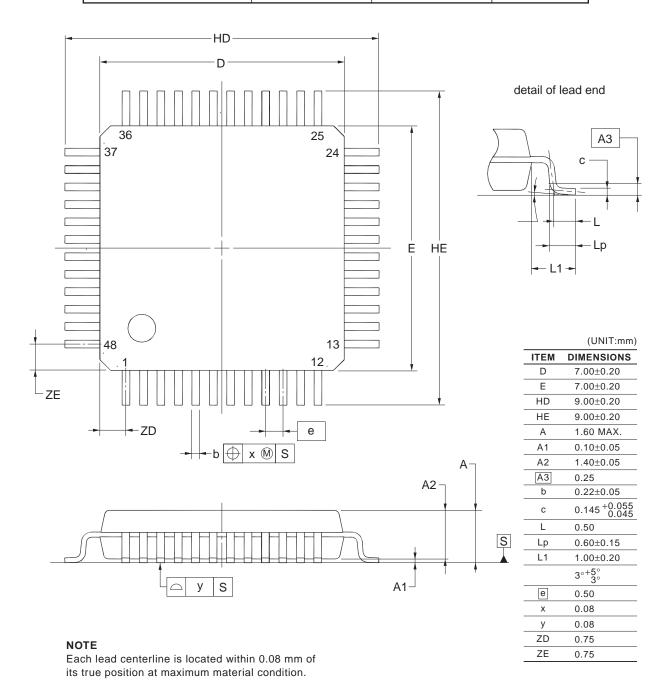
© 0.80 x 0.20 y 0.10 ZD 1.00 ZE 1.00

NOTE Each lead centerline

Each lead centerline is located within 0.20 mm of its true position at maximum material condition.

y s

©2012 Renesas Electronics Corporation. All rights reserved.

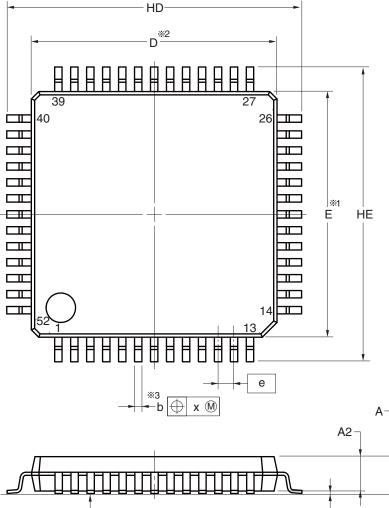

S

Α1

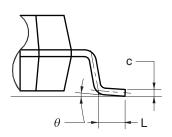
4.3 48-pin Products

R5F10RG8AFB, R5F10RGAAFB, R5F10RGCAFB R5F10RG8GFB, R5F10RGAGFB, R5F10RGCGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16



©2012 Renesas Electronics Corporation. All rights reserved.


4.4 52-pin Products

R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA

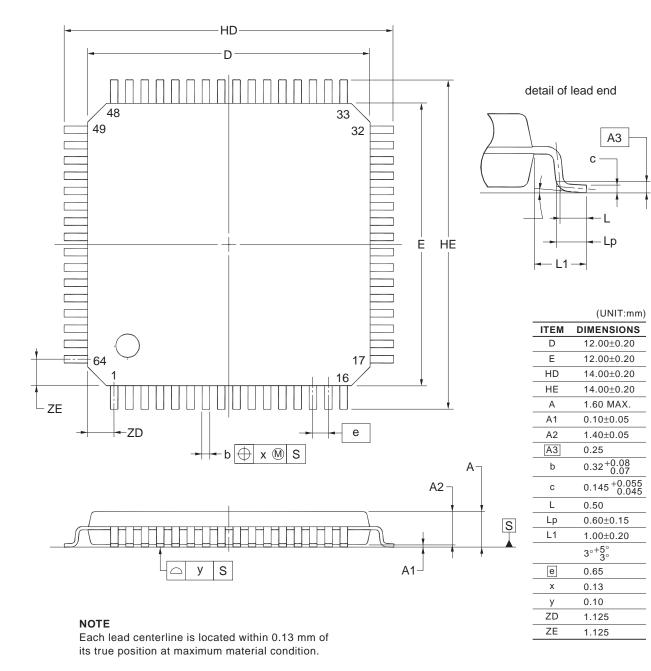
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

detail of lead end

У A1

	(UNIT:mm)
ITEM	DIMENSIONS
D	10.00±0.10
Е	10.00±0.10
HD	12.00±0.20
HE	12.00±0.20
Α	1.70 MAX.
A1	0.10±0.05
A2	1.40
b	0.32±0.05
С	0.145±0.055
L	0.50±0.15
θ	0° to 8°
е	0.65
х	0.13
у	0.10

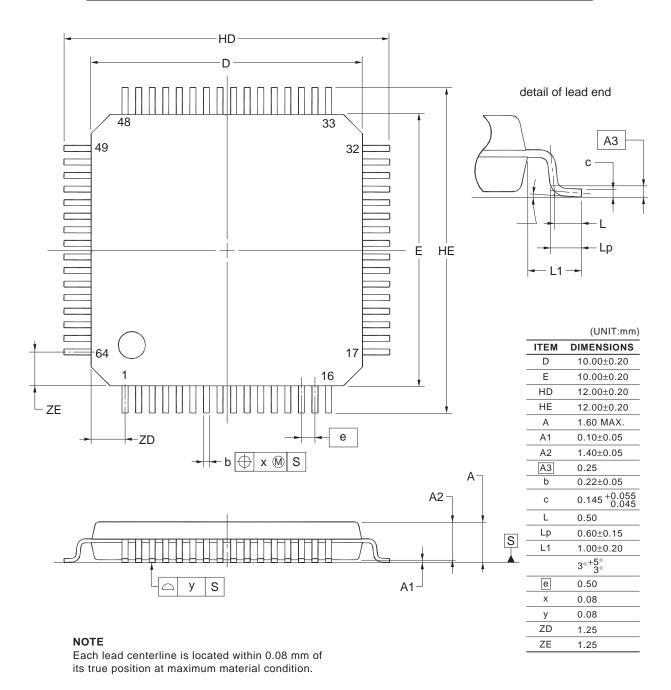
NOTE1. Dimensions "%1" and "%2" do not include mold flash.


2.Dimension "%3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.

4.5 64-pin Products

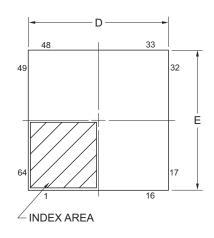
R5F10RLAAFA, R5F10RLCAFA R5F10RLAGFA, R5F10RLCGFA


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-12x12-0.65	PLQP0064JA-A	P64GK-65-UET-2	0.51

©2012 Renesas Electronics Corporation. All rights reserved.

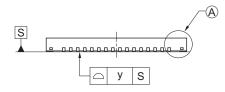
R5F10RLAAFB, R5F10RLCAFB R5F10RLAGFB, R5F10RLCGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35


 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.

R5F10RLAANB, R5F10RLCANB R5F10RLAGNB, R5F10RLCGNB

<R>


JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-HWQFN64-8x8-0.40	PWQN0064LA-A	P64K8-40-9B5-4	0.16

Unit: mm

Reference	Dimensions in millimete		llimeters
Symbol	Min	Nom	Max
D	7.95	8.00	8.05
E	7.95	8.00	8.05
Α	_	_	0.80
A ₁	0.00	_	_
b	0.17	0.20	0.23
е	_	0.40	_
Lp	0.30	0.40	0.50
х	_	_	0.05
у	_	_	0.05
Z _D	_	1.00	_
ZE	_	1.00	_
c ₂	0.15	0.20	0.25
D ₂	_	6.50	_
E ₂	_	6.50	_

© 2015 Renesas Electronics Corporation. All rights reserved.

RL78/L12 Datasheet

			Description		
Rev.	Date	Page	Summary		
0.01	Feb 20, 2012	-	First Edition issued		
0.02	Sep 26, 2012	7, 8	Modification of caution 2 in 1.3.5 64-pin products		
		15	Modification of I/O port in 1.6 Outline of Functions		
		-	Modification of 2. ELECTRICAL SPECIFICATIONS (TARGET)		
		-	Update of package drawings in 3. PACKAGE DRAWINGS		
1.00	Jan 31, 2013	11 to 15	Modification of 1.5 Block Diagram		
		16	Modification of Note 2 in 1.6 Outline of Functions		
		17	Modification of 1.6 Outline of Functions		
		-	Deletion of target in 2. ELECTRICAL SPECIFICATIONS		
		18	Addition of caution 2 to 2. ELECTRICAL SPECIFICATIONS		
		19	Addition of description, note 3, and remark 2 to 2.1 Absolute Maximum Ratings		
		20	Modification of description and addition of note to 2.1 Absolute Maximum Ratings		
		22, 23	Modification of 2.2 Oscillator Characteristics		
		30	Modification of notes 1 to 4 in 2.3.2 Supply current characteristics		
		32	Modification of notes 1, 3 to 6, 8 in 2.3.2 Supply current characteristics		
		34	Modification of notes 7, 9, 11, and addition of notes 8, 12 to 2.3.2 Supply current		
			characteristics		
		36	Addition of description to 2.4 AC Characteristics		
		38, 40 to	Modification of 2.5.1 Serial array unit		
		42, 44 to			
		46, 48 to			
		52, 54, 55			
		57, 58	Modification of 2.5.2 Serial interface IICA		
		62	Modification of 2.6.2 Temperature sensor/internal reference voltage		
		64	characteristics		
		64	Addition of note and caution in 2.6.5 Supply voltage rise time		
		69	Modification of 2.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics		
		69	Modification of conditions in 2.9 Timing Specs for Switching Flash Memory Programming Modes		
		70	Modification of 2.10 Timing Specifications for Switching Flash Memory		
			Programming Modes		
2.00	Jan 10, 2014	1	Modification of 1.1 Features		
		3	Modification of Figure 1-1		
		4	Modification of part number, note, and caution		
		5 to 10	Deletion of COMEXP pin in 1.3.1 to 1.3.5.		
		11	Modification of description in 1.4 Pin Identification		
		12 to 16	Deletion of COMEXP pin in 1.5.1 to 1.5.5		
		17	Modification of table and note 2 in 1.6 Outline of Functions		
		20 21	Modification of description in Absolute Maximum Ratings (T _A = 25°C) (1/3) Modification of description and note 2 in Absolute Maximum Ratings (T _A = 25°C) (2/3)		
		23	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics		
		23	Modification of table in 2.2.2 On-chip oscillator characteristics		
		24	Modification of table in 2.2.2 On-crip oscillator characteristics Modification of table, notes 2 and 3 in 2.3.1 Pin characteristics (1/5)		
		25	Modification of notes 1 and 3 in 2.3.1 Pin characteristics (2/5)		
		30	Modification of notes 1 and 4 in 2.3.2 Supply current characteristics (1/3)		
		31, 32	Modification of table, notes 1, 5, and 6 in 2.3.2 Supply current characteristics (2/3)		
		33, 34	Modification of table, notes 1, 3, 4, and 5 to 10 in 2.3.2 Supply current characteristics (3/3)		

		Description		
Rev.	Date	Page	Summary	
2.00	Jan 10, 2014	35	Modification of table in 2.4 AC Characteristics	
		36	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		37	Modification of AC Timing Test Points and External System Clock Timing	
		39	Modification of AC Timing Test Points	
		39	Modification of description, notes 1 and 2 in (1) During communication at same potential (UART mode)	
		41, 42	Modification of description, remark 2 in (2) During communication at same potential (CSI mode)	
		42, 43	Modification of description in (3) During communication at same potential (CSI mode)	
		45	Modification of description, notes 1 and 3, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
		46, 48	Modification of description, and remark 3 in (4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		49, 50	Modification of table, and note 1, caution, and remark 3 in (5) Communication at different potential (2.5 V, 3 V) (CSI mode)	
		51	Modification of table and note in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (1/3)	
		52	Modification of table and notes 1 to 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (2/3)	
		53, 54	Modification of table, note 3, and remark 3 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (3/3)	
		56	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)	
		57	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)	
		59, 60	Addition of (1) I ² C standard mode	
		61	Addition of (2) I ² C fast mode	
		62	Addition of (3) I ² C fast mode plus	
		63	Addition of table in 2.6.1 A/D converter characteristics	
		63, 64	Modification of description and notes 3 to 5 in 2.6.1 (1)	
		65	Modification of description, notes 3 and 4 in 2.6.1 (2)	
		66	Modification of description, notes 3 and 4 in 2.6.1 (3)	
		67	Modification of description, notes 3 and 4 in 2.6.1 (4)	
		67	Modification of the table in 2.6.2 Temperature sensor/internal reference voltage characteristics	
		68	Modification of the table and note in 2.6.3 POR circuit characteristics	
		70	Modification of the table of LVD Detection Voltage of Interrupt & Reset Mode	
		70	Modification from VDD rise slope to Power supply voltage rising slope in 2.6.5 Supply voltage rise time	
		75	Modification of description in 2.10 Dedicated Flash Memory Programmer Communication (UART)	
		76	Modification of the figure in 2.11 Timing Specifications for Switching Flash Memory Programming Modes	
		77 to 126	Addition of products for industrial applications (G: T _A = -40 to +105°C)	
2.10	Sep 30, 2016	127 to 133 5	Addition of product names for industrial applications (G: T _A = -40 to +105°C) Modification of pin configuration in 1.3.1 32-pin products	
2.10	3ch 30, 2010	5 6	Modification of pin configuration in 1.3.1 32-pin products Modification of pin configuration in 1.3.2 44-pin products	
		7	Modification of pin configuration in 1.3.2 44-pin products Modification of pin configuration in 1.3.3 48-pin products	
		8	Modification of pin configuration in 1.3.4 52-pin products Modification of pin configuration in 1.3.4 52-pin products	
		9, 10	Modification of pin configuration in 1.3.5 64-pin products	
		17	Modification of description of main system clock in 1.6 Outline of Functions	
		74	Modification of title of 2.8 RAM Data Retention Characteristics, Note, and figure	
		74	Modification of table of 2.9 Flash Memory Programming Characteristics	
		123	Modification of title of 3.8 RAM Data Retention Characteristics, Note, and figure	
		123	Modification of table of 3.9 Flash Memory Programming Characteristics and addition of Note 4	
		131	Modification of 4.5 64-pin Products	
		101	mounioudon or 1.0 or pin i roddoto	

The mark " <r>" shows major revised points. The revised points can be easily searched by copying an "<r>" in the PDF file and specifying it in the "Find what:" field.</r></r>
All trademarks and registered trademarks are the property of their respective owners.
SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.
Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza. No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited Treineads Electronius from Konig Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207. Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +60-3-7955-9301, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 16-bit Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MB90F346APMC-GSE1 MB90F342CASPMC-GSE1 MB90F345CESPMC-GE1 MB90F349CAPFR-GSE1 MB90F428GCPFR-GSE1 MB90F462APMC-GS-NE1 MB90F462APMC-G-SNE1 MB90F497GPF-GE1 MB90F546GSPFR-GE1 MB90F947APFR-GS-SPE1 MB96F346RSBPMC-GS-N2E2 MB96F683RBPMC-GSAE1 R5F11BGEAFB#30 DF3026XBL25V S912ZVFP64F1VLL R4F24268NVRFQV R5F107DEGSP#X0 R5F11B7EANA#U0 R5F21172DSP#U0 M30622F8PGP#U3C MB90092PF-G-BNDE1 MB90F335APMC1-G-SPE1 MB90F342CASPFR-GS-N2E1 MB90F345CAPFR-GSE1 MB90F543GPF-GE1 MB90F546GSPF-GE1 MB90F568PMCR-GE1 MB90F594APFR-GE1 MB90F882ASPMC-GE1 MB96F346RSAPQCR-GS-N2E2 MB96F387RSBPMC-GSE2 MB96F387RSBPMC-GSE2 MB96F387RSBPMC-GSE1 MB96F646RBPMC-GSE1 XE167F96F66LACFXUMA1 MB96F696RBPMC-GSAE1 MB96F018RBPMC-GSE1 MB90F962SPMCR-GE1 MB90F867ASPFR-GE1 MB90F543GPF-G-FLE1 MB90F345CESPF-GE1 M30290FCHP#U3A DF2239FA20IV HD64F3672FPV R5F104AEASP#V0 R5F100BCANA#U0 R5F100BFANA#U0 S9S12H256J2VFVER R5F100ACASP#V0