CW

Wirewound Resistors, Commercial Power, Silicone Coated, Axial Lead

Notes

(1) Vishay Dale CW models have two power ratings, depending on operating temperature and stability requirements
(2) 3% tolerance available
(3) Higher values available on request

TECHNICAL SPECIFICATIONS

PARAMETER	UNIT	CW RESISTOR CHARACTERISTICS
Temperature Coefficient	ppm/ ${ }^{\circ} \mathrm{C}$	± 30 for 10Ω and above, ± 50 for 1.0Ω to $9.9 \Omega, \pm 90$ for 0.5Ω to 0.99Ω
Dielectric Withstanding Voltage	V_{AC}	1000
Short Time Overload	-	$5 \times$ rated power for 5 s for 3.75 W size and smaller, $10 \times$ rated power for 5 s for 4 W size and greater
Terminal Strength	lb	10 minimum
Maximum Working Voltage	V	$(P \times R)^{1 / 2}$
Operating Temperature Range	${ }^{\circ} \mathrm{C}$	Characteristic $\mathrm{U}=-65$ to +250 , characteristic $\mathrm{V}=-65$ to +350
Power Rating	-	Characteristic $\mathrm{U}=+250^{\circ} \mathrm{C}$ max. hot spot temperature, $\pm 0.5 \%$ max. $\Delta \mathrm{R}$ in 2000 h load life Characteristic $V=+350^{\circ} \mathrm{C}$ max. hot spot temperature, $\pm 3.0 \%$ max. $\Delta \mathrm{R}$ in 2000 h load life

GLOBAL PART NUMBER INFORMATION

Global Part Numbering example: CW02C10K00JB1214

DIMENSIONS in inches (millimeters)

MODEL	DIMENSIONS in inches [millimeters]			
	\mathbf{A}	$\mathbf{B}[\mathbf{M A X I M U M}]$	$\mathbf{C})$	\mathbf{C}
CW1/2	$0.250 \pm 0.031[6.35 \pm 0.787]$	$0.281[7.14]$	$0.085 \pm 0.020[2.16 \pm 0.508]$	$0.020 \pm 0.002[0.508 \pm 0.051]$
CW001	$0.406 \pm 0.031[10.31 \pm 0.787]$	$0.437[11.10]$	$0.094 \pm 0.031[2.39 \pm 0.787]$	$0.020 \pm 0.002[0.508 \pm 0.051]$
CW01M	$0.270 \pm 0.031[6.86 \pm 0.787]$	$0.311[7.90]$	$0.110 \pm 0.015[2.79 \pm 0.381]$	$0.020 \pm 0.002[0.508 \pm 0.051]$
CW002	$0.625 \pm 0.062[15.87 \pm 1.57]$	$0.765[19.43]$	$0.250 \pm 0.032[6.35 \pm 0.813]$	$0.040 \pm 0.002[1.02 \pm 0.051]$
CW02M	$0.500 \pm 0.062[12.70 \pm 1.57]$	$0.562[14.27]$	$0.185 \pm 0.032[4.70 \pm 0.813]$	$0.032 \pm 0.002[0.813 \pm 0.051]$
CW02B	$0.562 \pm 0.062[14.27 \pm 1.57]$	$0.622[15.80]$	$0.188 \pm 0.032[4.78 \pm 0.813]$	$0.032 \pm 0.002[0.813 \pm 0.051]$
CW02B...13	$0.500 \pm 0.062[12.70 \pm 1.57]$	$0.563[14.30]$	$0.188 \pm 0.032[4.78 \pm 0.813]$	$0.032 \pm 0.002[0.813 \pm 0.051]$
CW02C	$0.500 \pm 0.062[12.70 \pm .57]$	$0.593[15.06]$	$0.218 \pm 0.032[5.54 \pm 0.813]$	$0.040 \pm 0.002[1.02 \pm 0.051]$
CW02C...14	$0.500 \pm 0.062[12.70 \pm 1.57]$	$0.593[15.06]$	$0.218 \pm 0.032[5.54 \pm 0.813]$	$0.032 \pm 0.002[0.813 \pm 0.051]$
CW005	$0.875 \pm 0.062[22.22 \pm 1.57]$	$1.0[25.40]$	$0.312 \pm 0.032[7.92 \pm 0.813]$	$0.040 \pm 0.002[1.02 \pm 0.051]$
CW005...2	$0.875 \pm 0.062[22.22 \pm 1.57]$	$1.0[25.40]$	$0.250 \pm 0.032[6.35 \pm 0.813]$	$0.032 \pm 0.002[0.813 \pm 0.051]$
CW005...3	$0.875 \pm 0.062[22.22 \pm 1.57]$	$1.0[25.40]$	$0.312 \pm 0.032[7.92 \pm 0.813]$	$0.032 \pm 0.002[0.813 \pm 0.051]$
CW007	$1.218 \pm 0.062[30.94 \pm 1.57]$	$1.281[32.54]$	$0.312 \pm 0.032[7.92 \pm 0.813]$	$0.040 \pm 0.002[1.02 \pm 0.051]$
CW010	$1.781 \pm 0.062[45.24 \pm 1.57]$	$1.875[47.62]$	$0.375 \pm 0.032[9.52 \pm 0.813]$	$0.040 \pm 0.002[1.02 \pm 0.051]$
CW010...3	$1.781 \pm 0.062[45.24 \pm 1.57]$	$1.875[47.62]$	$0.375 \pm 0.032[9.52 \pm 0.813]$	$0.032 \pm 0.002[0.813 \pm 0.051]$

Notes

${ }^{(1)}$ On some standard reel pack methods, the leads may be trimmed to a shorter length than shown
(2) B (maximum) dimension is clean lead to clean lead

MATERIAL SPECIFICATIONS

Element: copper-nickel alloy or nickel-chrome alloy, depending on resistance value
Core: ceramic: steatite or alumina, depending on physical size
Coating: special high temperature silicone
Standard Terminals: tinned Copperweld ${ }^{\circledR}$
(CW02B... 13 is tinned copper)
End Caps: stainless steel
Part Marking: DALE, model, wattage ${ }^{(1)}$, value, tolerance, date code

Note

${ }^{(1)}$ Wattage marked on resistor will be "V" characteristic, CW1/2 will not be marked with wattage.

DERATING

PERFORMANCE		
TEST	CONDITIONS OF TEST	TEST LIMITS ${ }^{(1)}$ (CHARACTERISTIC V)
Thermal Shock	Rated power applied until thermally stable, then a minimum of 15 min at $-55^{\circ} \mathrm{C}$	$\pm(2.0$ \% + 0.05Ω) ΔR
Short Time Overload	5 x rated power (3.75 W and smaller), $10 \times$ rated power (4 W and larger) for 5 s	$\pm(2.0 \%+0.05 \Omega) \Delta R$
Dielectric Withstanding Voltage	$1000 \mathrm{~V}_{\mathrm{rms}}$, 1 min	$\pm(0.1 \%+0.05 \Omega) \Delta R$
Low Temperature Storage	$-65^{\circ} \mathrm{C}$ for 24 h	$\pm(2.0 \%+0.05 \Omega) \Delta R$
High Temperature Exposure	250 h at $+350^{\circ} \mathrm{C}$	$\pm(4.0 \%+0.05 \Omega) \Delta R$
Moisture Resistance	MIL-STD-202 Method 106, 7b not applicable	$\pm(2.0 \%+0.05 \Omega) \Delta R$
Shock, Specified Pulse	MIL-STD-202 Method 213, 100 g 's for 6 ms , 10 shocks	$\pm(0.2 \%+0.05 \Omega) \Delta R$
Vibration, High Frequency	Frequency varied 10 Hz to $2000 \mathrm{~Hz}, 20 \mathrm{~g}$ peak, 2 directions 6 h each	$\pm(0.2 \%+0.05 \Omega) \Delta R$
Load Life	2000 h at rated power, $+25^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$ "ON", 0.5 h "OFF"	$\pm(3.0 \%+0.05 \Omega) \Delta R$
Terminal Strength	5 s to 10 s 10 pound pull test; torsion test - 3 alternating directions, 360° each	$\pm(1.0 \%+0.05 \Omega) \Delta R$

Note

(1) All ΔR figures shown are maximum, based upon testing requirements per MIL-PRF-26 at a maximum operating temperature of $+350{ }^{\circ} \mathrm{C}$. ΔR maximum figures are considerably lower when tested at a maximum operating temperature of $+250^{\circ} \mathrm{C}$

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Wirewound Resistors - Through Hole category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
75822-2K4 90J56R AC03000001208JAC00 EP3WS47RJ C1010KJL C1015RJL C3A10KJT 27J1K0 ES3W47RJ AC040000001500JAC00 AC10000002208JAB00 AC10000004708JAB00 SQMW5R39J SQPW5R22J SQPW5R33J 1879927-3 FCB2100RJ T505 FSQ5WR47J FW10A33R0JA CPCC0510R00JE32 CPCC051R000JB31 CPCP10500R0JE32 CPW05700R0JE143 CPW152K500JE313 C1010RJL C10220RJL C10R47JL C141K0JL C144R7JL ES05W100RJ SQMW1047RJ SQMW210RJ CPCC03R2000JB31 CPCC0515R00JE01 CPW055R000JB143 CPW103K300JE143 CPW202R000JB14 ULW5-39R0JT075 W31-R47JA1 ULW5-68RJT075 SQBW401K0JFASTON SPH1001JLF 65888-3R3 CPCC10R5100JE66 SQP500JB-400R SQBW403R3JFASTON 280-PRM7-4.7-RC CW02B9R100JE73 CPCP05R1000JE32

