

Is Now Part of



# **ON Semiconductor**®

# To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="mailto:www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to <a href="mailto:Fairchild\_questions@onsemi.com">Fairchild\_questions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

ON Semiconductor®

# FPF2281 Over-Voltage Protection Load Switch

#### Features

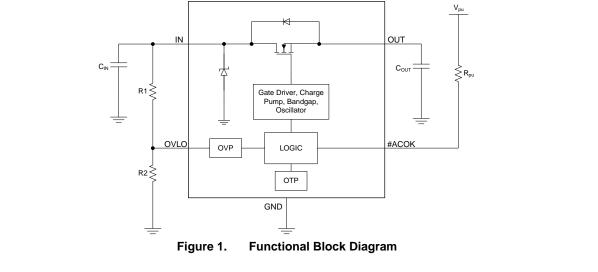
- Surge Protection
- IEC 61000-4-5: > 100 V
- Over-Voltage Protection (OVP)
- Over-Temperature Protection (OTP)
- ESD Protection
  - Human Body Model (HBM): > 3.5 kV
  - Charged Device Model (CDM): > 2 kV
  - IEC 61000-4-2 Air Discharge: > 15 kV
  - IEC 61000-4-2 Contact Discharge: > 8 kV

## Applications

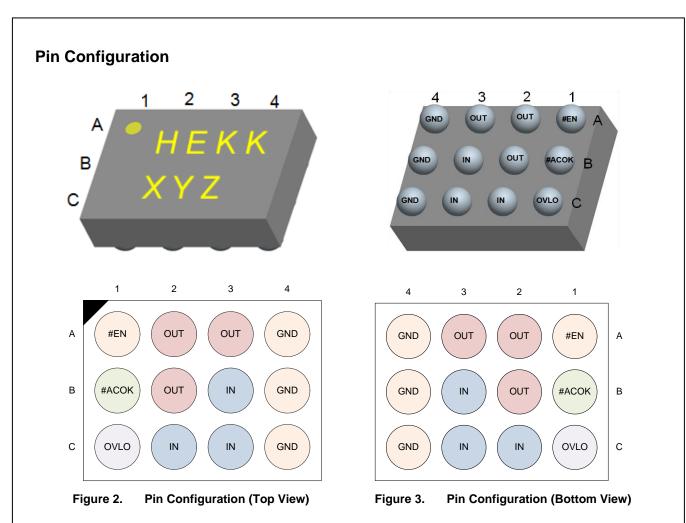
- Mobile Handsets and Tablets
- Portable Media Players
- MP3 Players

## Description

The FPF2281 features a low-R<sub>ON</sub> internal FET and an operating range of 2.5 V<sub>DC</sub> to 25 V<sub>DC</sub> (absolute maximum of 29 V<sub>DC</sub>). An internal clamp is capable of shunting surge voltages >100 V, protecting downstream components and enhancing system robustness. The FPF2281 features over-voltage protection that powers down the internal FET if the input voltage exceeds the OVP threshold. The OVP threshold is adjustable with optional external resistors. Over-temperature protection also powers down the device at 130°C (typical). Exceptionally low off-state current (<1  $\mu$ A maximum) facilitates compliance with standby power requirements.


The FPF2281 is available in a fully "green" compliant 1.3 mm  $\times$  1.8 mm Wafer-Level Chip-Scale Package (WLCSP) with backside laminate.

### **Related Resources**


<u>http://www.onsemi.com/</u>

#### **Ordering Information**

| Part Number Operating<br>Temperature Range |              | Top Mark | op Mark Package             |             |
|--------------------------------------------|--------------|----------|-----------------------------|-------------|
| FPF2281BUCX_F130                           | -40°C – 85°C | HE       | 12-Ball, 0.4 mm Pitch WLCSP | Tape & Reel |
|                                            |              |          | ·                           |             |



March 2017



#### **Pin Definitions**

| Name     | Bump       | Туре         | Description                         |                |                                                        |  |  |
|----------|------------|--------------|-------------------------------------|----------------|--------------------------------------------------------|--|--|
| IN       | B3, C2, C3 | Input/Supply | Switch Input and Device Supply      |                |                                                        |  |  |
| OUT      | A2, A3, B2 | Output       | Switch Output to Load               |                |                                                        |  |  |
| #ACOK    |            | Quitout      | Power Good                          | 1              | $V_{IN} < V_{IN\_min} \text{ or } V_{IN} \ge V_{OVLO}$ |  |  |
| #ACOK B1 | Output     | Fower Good   | 0                                   | Voltage Stable |                                                        |  |  |
| #EN      | A1         | Input        | Device Enable (Active LOW)          |                |                                                        |  |  |
| OVLO     | C1         | Input        | Over-Voltage Lockout Adjustment Pin |                |                                                        |  |  |
| GND      | A4, B4, C4 | Supply       | Device Ground                       |                |                                                        |  |  |

### **Over-Voltage Lockout (OVLO) Calculation**

OVLO can be set externally and override default OVP. By connecting an external resistor-driver to the OVLO pin. Equation (1) can produce the desired trip voltage and resistor values.

 $V_{IN\_OLVO} = V_{OVLO\_TH} \times [1 + R1/R2]$ (1) Recommended minimum R1 = 1 MΩ.

www.fairchildsemi.com www.onsemi.com

#### **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol                | Parameter                                                                                       |          |      | Max.                  | Unit |  |
|-----------------------|-------------------------------------------------------------------------------------------------|----------|------|-----------------------|------|--|
| Vin                   | V_IN to GND & V_IN to V_OUT = GND or Float                                                      |          |      | 29.0                  | V    |  |
| V <sub>OUT</sub>      | V_OUT to GND                                                                                    |          |      | V <sub>IN</sub> + 0.3 | V    |  |
| Vovlo                 | OVLO to GND                                                                                     |          |      | 25.0                  | V    |  |
| V <sub>#EN_ACOK</sub> | Maximum DC Voltage Allowed on #EN or ACOK Pin                                                   |          |      | 6                     | V    |  |
|                       | Switch I/O Current (Continuous)                                                                 |          |      | 4.5                   | А    |  |
| lin                   | Peak Switch I/O Current (10 ms)                                                                 |          |      | 9                     | А    |  |
| tPD                   | Total Power Dissipation at $T_A = 25^{\circ}C$                                                  |          |      | 1.48                  | W    |  |
| T <sub>STG</sub>      | Storage Temperature Range                                                                       |          |      | +150                  | °C   |  |
| TJ                    | Maximum Junction Temperature                                                                    |          |      | +150                  | °C   |  |
| TL                    | Lead Temperature (Soldering, 10 Seconds)                                                        |          |      | +260                  | °C   |  |
| Θja                   | Thermal Resistance, Junction-to-Ambient <sup>(1)</sup> (1-in. <sup>2</sup> Pad of 2-oz. Copper) |          |      | 84.1                  | °C/W |  |
|                       |                                                                                                 | Air Gap  | 15.0 |                       | ∙ kV |  |
| FOD                   | IEC 61000-4-2 System ESD                                                                        | Contact  | 8.0  |                       |      |  |
| ESD                   | Human Body Model, ANSI / ESDA / JEDEC JS-001-2012                                               | All Pins | 3.5  |                       |      |  |
|                       | Charged Device Model, JEDEC JESD22-C101                                                         | All Pins | 2.0  |                       |      |  |
| Surge                 | IEC 61000-4-5, Surge Protection                                                                 | VIN      | 100  |                       | V    |  |

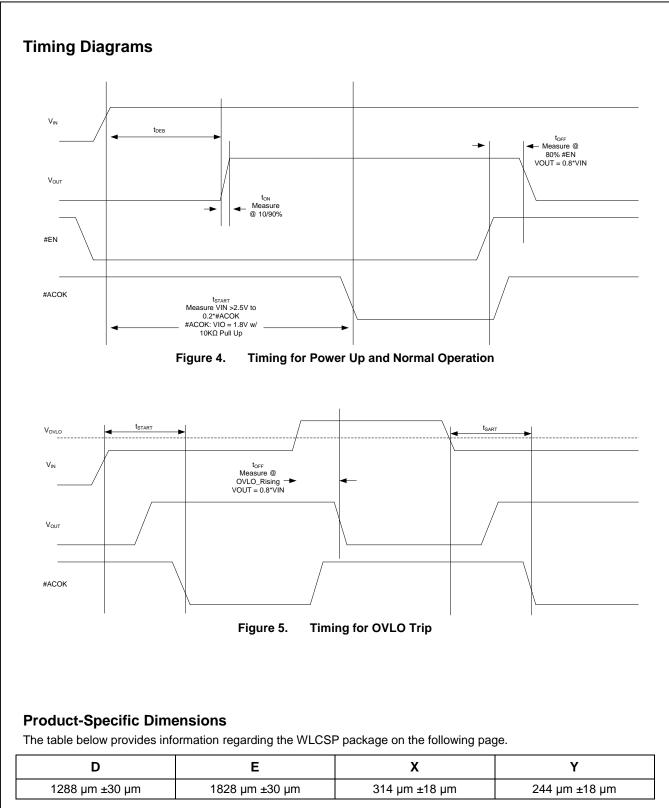
#### Note:

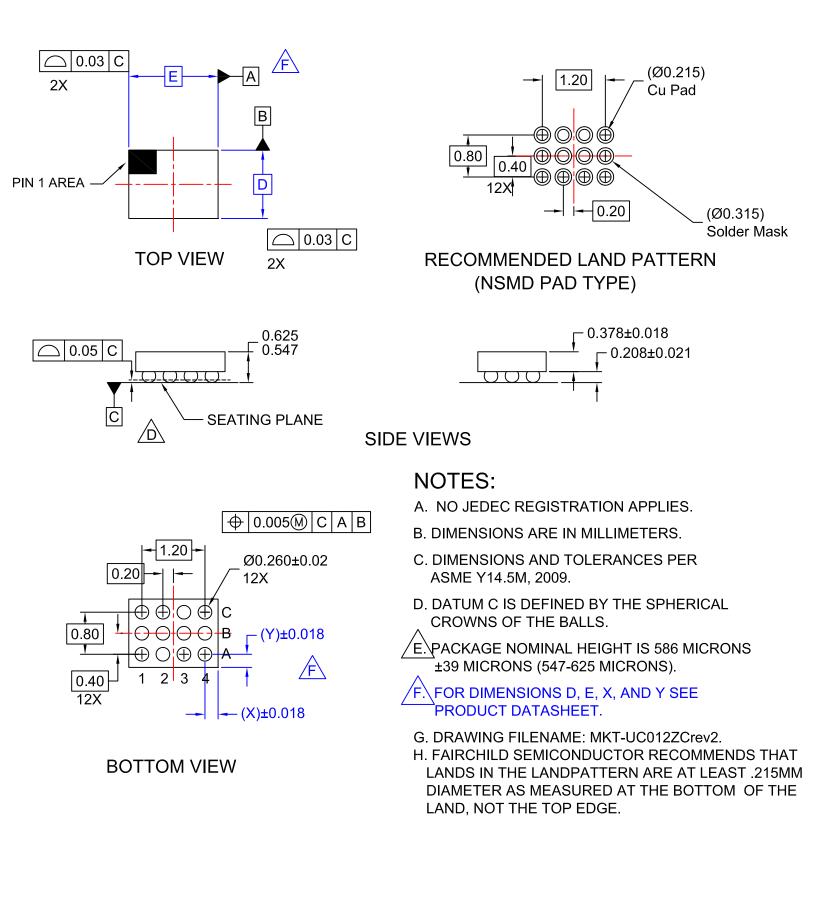
1. Measured using 2S2P JEDEC std. PCB.

#### **Recommended Operating Conditions**

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

| Symbol | Parameter             | Min. | Max. | Unit |
|--------|-----------------------|------|------|------|
| VIN    | Supply Voltage        | 2.5  | 25.0 | V    |
| TA     | Operating Temperature | -40  | +85  | °C   |


## **Electrical Characteristics**


| $T_A = -40^{\circ}$ C to 85°C unless otherwise indicated. Typical values are $V_{IN} = 5.0$ V, $I_{IN} \le 3$ A, $C_{IN} = 0.1$ $\mu$ F and T | A = 25⁰C. |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|

| Symbol                        | Parameter                                  | Conditions                                                                                                                                                                               | Min. | Тур. | Max. | Unit |
|-------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| $V_{\text{IN}\_\text{CLAMP}}$ | Input Clamping Voltage                     | I <sub>IN</sub> = 10 mA                                                                                                                                                                  |      | 35   |      | V    |
| la                            | Input Quiescent Current                    | V <sub>IN</sub> = 5 V, #EN = 0 V                                                                                                                                                         |      | 58   | 100  | μΑ   |
| l <sub>in_q</sub>             | OVLO Supply Current                        |                                                                                                                                                                                          |      | 52   | 100  | μA   |
| Vin_ovlo                      | Internal Over-Voltage Trip Level           | V <sub>IN</sub> Rising                                                                                                                                                                   | 13.6 | 14.0 | 14.4 | V    |
|                               |                                            | V <sub>IN</sub> Falling                                                                                                                                                                  | 13.0 |      |      | V    |
| $V_{\text{OVLO}_{\text{TH}}}$ | OVLO Set Threshold                         | $V_{IN} = 2.5 \text{ V to } V_{OVLO}$                                                                                                                                                    | 1.12 | 1.20 | 1.24 |      |
| Vovlo_rng                     | Adjustable OVLO Threshold Range            | $V_{IN} = 2.5 \text{ V to } V_{OVLO}$                                                                                                                                                    | 4    |      | 25   | V    |
| Vovlo_select                  | External OVLO Select Threshold             |                                                                                                                                                                                          |      | 0.30 | 0.28 | V    |
| Manag                         | Under-Voltage Trip Level                   | VIN Rising, T <sub>A</sub> = -40 to 85°C                                                                                                                                                 |      | 2.25 | 2.4  | V    |
| Vuvlo                         |                                            | VIN Falling, T <sub>A</sub> = -40 to 85°C                                                                                                                                                |      | 1.95 | 2.1  | V    |
| Ron                           | Resistance from VIN to VOUT                | V <sub>IN</sub> = 5 V, I <sub>OUT</sub> = 1 A, T <sub>A</sub> = 25°C                                                                                                                     |      | 30   | 39   | mΩ   |
| Соит                          | OUT Load Capacitance <sup>(2)</sup>        | V <sub>IN</sub> = 5 V                                                                                                                                                                    |      |      | 1000 | μF   |
| Ιοινο                         | OVLO Input Leakage Current                 | Vovlo = Vovlo_th                                                                                                                                                                         | -100 |      | 100  | nA   |
| T <sub>SDN</sub>              | Thermal Shutdown <sup>(2)</sup>            |                                                                                                                                                                                          |      | 130  |      | °C   |
| T <sub>SDN_HYS</sub>          | Thermal Shutdown Hysteresis <sup>(2)</sup> |                                                                                                                                                                                          |      | 20   |      | °C   |
| Digital Signa                 | lls                                        |                                                                                                                                                                                          |      |      |      |      |
| Vol                           | #ACOK Output Low Voltage                   | Isink = 1 mA                                                                                                                                                                             |      |      | 0.4  | V    |
| VIH_#EN                       | Enable HIGH Voltage                        | $V_{IN} = 2.5 V \text{ to } V_{OVLO}$                                                                                                                                                    | 1.2  |      |      | V    |
| VIL_#EN                       | Enable LOW Voltage                         | $V_{IN} = 2.5 V \text{ to } V_{OVLO}$                                                                                                                                                    |      |      | 0.5  | V    |
| IACOK_LEAK                    | #ACOK Leakage Current                      | V <sub>ACOK</sub> = 3 V, #ACOK Deasserted                                                                                                                                                | -0.5 |      | 0.5  | μA   |
| #EN_Leak                      | #EN Leakage Current                        | $V_{IN} = 5.0 \text{ V}, V_{OUT} = Float$                                                                                                                                                | -1.0 |      | 1.0  | μA   |
| Timing Char                   | acteristics                                |                                                                                                                                                                                          |      |      |      |      |
| tdeb                          | Debounce Time                              | Time from 2.5 V < $V_{IN}$ < $V_{IN_OVLO}$<br>to $V_{OUT}$ = 0.1 × $V_{IN}$                                                                                                              |      | 15   |      | ms   |
| <b>İ</b> START                | Soft-Start Time                            | Time from $V_{IN} = V_{IN\_min}$ to 0.2 ×<br>#ACOK, $V_{IO} = 1.8$ V with 10 kΩ<br>Pull-up Resistor                                                                                      |      | 30   |      | ms   |
| ton                           | Switch Turn-On Time                        | $ \begin{array}{l} R_L = 100 \; \Omega, \; C_L = 22 \; \mu F, \; V_{OUT} \\ from \; 0.1 \; \times \; V_{IN} \; to \; 0.9 \; \times \; V_{IN}, \end{array} $                              |      | 2    |      | ms   |
| toff                          | Switch Turn-Off Time <sup>(2)</sup>        | $ \begin{array}{l} R_L = 100 \; \Omega, \; C_L = 0 \; \mu \text{F}, \\ V_{\text{IN}} > V_{\text{OVLO}} \; \text{to} \; V_{\text{OUT}} = 0.8 \; \textbf{x} \; V_{\text{IN}} \end{array} $ |      | 125  |      | ns   |

#### Note:

2. Guaranteed by characterization and design.





ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR MAX4999ETJ+T MC22XS4200BEK MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL L9352B-TR-LF BTS50060-1EGA MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513LGJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR BTS500251TADATMA2 NCV451AMNWTBG MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073 MP6231DH-LF-Z