

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FPF2281

Over-Voltage Protection Load Switch

Features

- Surge Protection
- IEC 61000-4-5: > 100 V
- Over-Voltage Protection (OVP)
- Over-Temperature Protection (OTP)
- ESD Protection
- Human Body Model (HBM): > 3.5 kV
- Charged Device Model (CDM): > 2 kV
- IEC 61000-4-2 Air Discharge: > 15 kV
- IEC 61000-4-2 Contact Discharge: > 8 kV

Applications

- Mobile Handsets and Tablets
- Portable Media Players
- MP3 Players

Description

The FPF2281 features a low-Ron internal FET and an operating range of $2.5 \mathrm{~V}_{\mathrm{DC}}$ to $25 \mathrm{~V}_{\mathrm{DC}}$ (absolute maximum of $29 \mathrm{~V} D$). An internal clamp is capable of shunting surge voltages $>100 \mathrm{~V}$, protecting downstream components and enhancing system robustness. The FPF2281 features over-voltage protection that powers down the internal FET if the input voltage exceeds the OVP threshold. The OVP threshold is adjustable with optional external resistors. Over-temperature protection also powers down the device at $130^{\circ} \mathrm{C}$ (typical). Exceptionally low off-state current ($<1 \mu \mathrm{~A}$ maximum) facilitates compliance with standby power requirements.
The FPF2281 is available in a fully "green" compliant $1.3 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ Wafer-Level Chip-Scale Package (WLCSP) with backside laminate.

Related Resources

- http://www.onsemi.com/

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FPF2281BUCX_F130	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$	HE	$12-$ Ball, 0.4 mm Pitch WLCSP	Tape \& Reel

Figure 1. Functional Block Diagram

Pin Configuration

Figure 2. Pin Configuration (Top View)

Figure 3. Pin Configuration (Bottom View)

Pin Definitions

Name	Bump	Type	Description		
IN	B3, C2, C3	Input/Supply	Switch Input and Device Supply		
OUT	A2, A3, B2	Output	Switch Output to Load	1	$V_{\mathbb{I N}}<V_{\mathbb{N} _ \text {min }}$ or $V_{\mathbb{I N}} \geq V_{\text {ovLo }}$
\#ACOK	B1	Output	Power Good	0	V_{0} oltage Stable
\#EN	A1	Input	Device Enable (Active LOW)		
OVLO	C1	Input	Over-Voltage Lockout Adjustment Pin		
GND	A4, B4, C4	Supply	Device Ground		

Over-Voltage Lockout (OVLO) Calculation

OVLO can be set externally and override default OVP. By connecting an external resistor-driver to the OVLO pin. Equation (1) can produce the desired trip voltage and resistor values.

$$
\begin{equation*}
V_{\text {IN_OLVO }}=V_{\text {OVLO_TH }} \times[1+R 1 / R 2] \tag{1}
\end{equation*}
$$

Recommended minimum R1 $=1 \mathrm{M} \Omega$.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
VIN	V_IN to GND \& V_IN to V_OUT = GND or Float		-0.3	29.0	V
Vout	V_OUT to GND		-0.3	$\mathrm{VIN}+0.3$	V
Vovlo	OVLO to GND		-0.3	25.0	V
V\#En_ACOK	Maximum DC Voltage Allowed on \#EN or ACOK Pin			6	V
IN	Switch I/O Current (Continuous)			4.5	A
IN	Peak Switch I/O Current (10 ms)			9	A
tPd	Total Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.48	W
Tsta	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
TJ	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature (Soldering, 10 Seconds)			+260	${ }^{\circ} \mathrm{C}$
$\Theta_{J A}$	Thermal Resistance, Junction-to-Ambient ${ }^{(1)}$ (1-in. ${ }^{2}$ Pad of 2-oz. Copper)			84.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	IEC 61000-4-2 System ESD	Air Gap	15.0		kV
		Contact	8.0		
	Human Body Model, ANSI / ESDA / JEDEC JS-001-2012	All Pins	3.5		
	Charged Device Model, JEDEC JESD22-C101	All Pins	2.0		
Surge	IEC 61000-4-5, Surge Protection	Vin	100		V

Note:

1. Measured using 2S2P JEDEC std. PCB.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{IN}	Supply Voltage	2.5	25.0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ unless otherwise indicated. Typical values are $\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}} \leq 3 \mathrm{~A}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Vin_Clamp	Input Clamping Voltage	$\mathrm{l}_{\mathrm{N}}=10 \mathrm{~mA}$		35		V
lQ	Input Quiescent Current	V IN $=5 \mathrm{~V}, \# \mathrm{EN}=0 \mathrm{~V}$		58	100	$\mu \mathrm{A}$
lin_Q	OVLO Supply Current	$\begin{aligned} & \mathrm{V}_{\text {OVLO }}=3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$		52	100	$\mu \mathrm{A}$
Vin_ovLo	Internal Over-Voltage Trip Level	Vin Rising	13.6	14.0	14.4	V
		VIN Falling	13.0			V
Vovio_th	OVLO Set Threshold	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to $\mathrm{V}_{\text {ovio }}$	1.12	1.20	1.24	
Vovlo_Rng	Adjustable OVLO Threshold Range	V IN $=2.5 \mathrm{~V}$ to $\mathrm{V}_{\text {OVlo }}$	4		25	V
Vovlo_select	External OVLO Select Threshold			0.30	0.28	V
Vuvio	Under-Voltage Trip Level	VIN Rising, $\mathrm{T}_{A}=-40$ to $85^{\circ} \mathrm{C}$		2.25	2.4	V
		VIN Falling, $T_{A}=-40$ to $85^{\circ} \mathrm{C}$		1.95	2.1	V
Ron	Resistance from Vin to Vout	$\mathrm{VIN}_{\text {I }}=5 \mathrm{~V}$, lout $=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	39	$\mathrm{m} \Omega$
Cout	OUT Load Capacitance(2)	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$			1000	$\mu \mathrm{F}$
lolvo	OVLO Input Leakage Current	VoVLo $=$ VoVLo_TH	-100		100	nA
Tsdn	Thermal Shutdown(2)			130		${ }^{\circ} \mathrm{C}$
TsDN_hYs	Thermal Shutdown Hysteresis(2)			20		${ }^{\circ} \mathrm{C}$
Digital Signals						
Vol	\#ACOK Output Low Voltage	$\operatorname{ISINK}=1 \mathrm{~mA}$			0.4	V
VIH_\#EN	Enable HIGH Voltage	VIN $=2.5 \mathrm{~V}$ to Vovlo	1.2			V
VIL_\#EN	Enable LOW Voltage	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to V V Lo			0.5	V
IACOK_LEAK	\#ACOK Leakage Current	$\mathrm{V}_{\text {Acok }}=3 \mathrm{~V}$, \#ACOK Deasserted	-0.5		0.5	$\mu \mathrm{A}$
\#EN_Leak	\#EN Leakage Current	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=$ Float	-1.0		1.0	$\mu \mathrm{A}$

Timing Characteristics

tdeb	Debounce Time	Time from 2.5 $\mathrm{V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {IN_OLLO }}$ to $\mathrm{V}_{\text {OUT }}=0.1 \times \mathrm{V}_{\text {IN }}$	15	ms
tstart	Soft-Start Time	Time from $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IN} \text { min }}$ to $0.2 \times$ \#ACOK, $\mathrm{V}_{\mathrm{IO}}=1.8 \mathrm{~V}$ with $10 \mathrm{k} \Omega$ Pull-up Resistor	30	ms
ton	Switch Turn-On Time	$R_{L}=100 \Omega, C_{L}=22 \mu \mathrm{~F}$, Vout from $0.1 \times \mathrm{V}_{\text {IN }}$ to $0.9 \times \mathrm{V}_{\mathrm{IN}}$,	2	ms
toff	Switch Turn-Off Time ${ }^{(2)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mu \mathrm{~F}, \\ & \mathrm{~V}_{\mathrm{IN}}>\mathrm{V}_{\text {ovLo }} \text { to Vout }=0.8 \times \mathrm{V}_{\mathrm{IN}} \end{aligned}$	125	ns

Note:

2. Guaranteed by characterization and design.

Timing Diagrams

Figure 4. Timing for Power Up and Normal Operation

Product-Specific Dimensions

The table below provides information regarding the WLCSP package on the following page.

\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}
$1288 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$1828 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$314 \mu \mathrm{~m} \pm 18 \mu \mathrm{~m}$	$244 \mu \mathrm{~m} \pm 18 \mu \mathrm{~m}$

BOTTOM VIEW

SIDE VIEWS

NOTES:

A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. Package nominal height is 586 microns ± 39 MICRONS ($547-625$ MICRONS).
F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILENAME: MKT-UC012ZCrev2.
H. FAIRCHILD SEMICONDUCTOR RECOMMENDS THAT LANDS IN THE LANDPATTERN ARE AT LEAST .215MM dIAMETER AS MEASURED AT THE BOTTOM OF THE LAND, NOT THE TOP EDGE.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P FPF1018 DS1222
TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR
MAX4999ETJ+T MC22XS4200BEK MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL L9352B-TR-LF BTS50060-1EGA
MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513LGJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR BTS500251TADATMA2
NCV451AMNWTBG MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073 MP6231DH-LF-Z

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

