VOIDLESS HERMETICALLY SEALED FAST RECOVERY GLASS RECTIFIERS

Qualified per MIL-PRF-19500/411

DESCRIPTION

This "fast recovery" rectifier diode series is military qualified and is ideal for high-reliability applications where a failure cannot be tolerated. These industry-recognized 3.0 amp rated rectifiers for working peak reverse voltages from 50 to 600 volts are hermetically sealed with voidless-glass construction using an internal "Category 1" metallurgical bond. These devices are also available in surface mount MELF package configurations. Microsemi also offers numerous other rectifier products to meet higher and lower current ratings with various recovery time speed requirements including fast and ultrafast device types in both through-hole and surface mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Popular JEDEC registered 1N5415 thru 1N5420 series.
- Voidless hermetically sealed glass package.
- Quadruple-layer passivation.
- Internal "Category 1" metallurgical bonds.
- Working Peak Reverse Voltage 50 to 600 volts.
- JAN, JANTX, JANTXV and JANS qualifications available per MIL-PRF-19500/411.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Fast recovery 3 amp 50 to 600 volt rectifiers.
- Military and other high-reliability applications.
- General rectifier applications including bridges, half-bridges, catch diodes, etc.
- High forward surge current capability.
- Extremely robust construction.
- Low thermal resistance.
- Controlled avalanche with peak reverse power capability.
- Inherently radiation hard as described in Microsemi "MicroNote 050".

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_{J} and $\mathrm{T}_{\text {STG }}$	-65 to +175	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction-to-Lead ${ }^{(1)}$	$\mathrm{R}_{\text {өJL }}$	22	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Forward Surge Current @ 8.3 ms half-sine	$\mathrm{I}_{\text {FSM }}$	80	A
Average Rectified Forward Current ${ }^{(4)}$ @ $\mathrm{T}_{\mathrm{A}}=+55^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{A}}=+100$ ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}^{(2,3)} \\ & \mathrm{I}_{\mathrm{O}}^{(3)} \end{aligned}$	3 2	A
Working Peak Reverse Voltage 1N5415	$\mathrm{V}_{\text {RWM }}$	50	V
1N5416		100	
1N5417		200	
1N5418		400	
1N5419		500	
1N5420		600	
Maximum Reverse Recovery Time ${ }^{(5)}$ 1N5415	$\mathrm{trr}_{\text {r }}$	150	ns
1N5416		150	
1N5417		150	
1N5418		150	
1N5419		250	
1N5420		400	
Solder Temperature @ 10 s	$\mathrm{T}_{\text {SP }}$	260	${ }^{\circ} \mathrm{C}$

Qualified Levels:

JAN, JANTX, JANTXV and JANS

"B" Package

Also available in:
"B" SQ-MELF
(D-5B) Package
(surface mount)
1N5415US - 1N5420US

MSC - Lawrence
6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600

Fax: (978) 689-0803
MSC - Ireland
Gort Road Business Park, Ennis, Co. Clare, Ireland
Tel: +353 (0) 656840044
Fax: +353 (0) 656822298
Website:
www.microsemi.com

See notes on next page.

MAXIMUM RATINGS

Notes: 1. At $3 / 8$ inch (10 mm) lead length from body.
2. Derate linearly at $22 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ for $55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 100^{\circ} \mathrm{C}$.
3. Above $T_{A}=100^{\circ} \mathrm{C}$, derate linearly at $26.7 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ to zero at $\mathrm{T}_{\mathrm{A}}=175{ }^{\circ} \mathrm{C}$.
4. These ambient ratings are for PC boards where thermal resistance from mounting point to ambient is sufficiently controlled where $T_{J(m a x)}$ does not exceed $175{ }^{\circ} \mathrm{C}$.
5. $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{RM}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{R}(\mathrm{REC})}=0.250 \mathrm{~A}$.

MECHANICAL and PACKAGING

- CASE: Hermetically sealed voidless hard glass with tungsten slugs.
- TERMINALS: Axial-leads are tin/lead (Sn/Pb) over copper. RoHS compliant matte-tin is available for commercial grade only.
- MARKING: Body paint and part number.
- POLARITY: Cathode band.
- TAPE \& REEL option: Standard per EIA-296. Contact factory for quantities.
- WEIGHT: 750 milligrams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS \& DEFINITIONS

Symbol	Definition
$V_{\text {BR }}$	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current.
VRWM	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range excluding all transient voltages (ref JESD282-B).
10	Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.
V_{F}	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.
IR	Maximum Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.
$\mathrm{t}_{\text {r }}$	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.

ELECTRICAL CHARACTERISTICS

TYPE	MINIMUM BREAKDOWN VOLTAGE$\mathrm{V}_{\mathrm{BR}} @ 50 \mu \mathrm{~A}$	FORWARD VOLTAGE$\mathrm{V}_{\mathrm{F}} @ 9 \mathrm{~A}$		MAXIMUM REVERSE CURRENT $\mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{Rwm}}$		CAPACITANCE C $\mathrm{V}_{\mathrm{R}} @ 4 \mathrm{~V}$ pF
		MIN. Volts	MAX. Volts	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} 100^{\circ} \mathrm{C} \\ \mu \mathrm{~A} \end{gathered}$	
1N5415	55	0.6	1.5	1.0	20	550
1N5416	110	0.6	1.5	1.0	20	430
1N5417	220	0.6	1.5	1.0	20	250
1N5418	440	0.6	1.5	1.0	20	165
1N5419	550	0.6	1.5	1.0	20	140
1N5420	660	0.6	1.5	1.0	20	120

NOTE 1: $I_{F}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{RM}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{R}(\mathrm{REC})}=0.250 \mathrm{~A}$.

FIGURE 1
Typical Reverse Current vs. PIV

FIGURE 2
Maximum Thermal Impedance

FIGURE 3
Typical Forward Current vs. Forward Voltage

PACKAGE DIMENSIONS

Symbol	Dimensions				Notes
	Inch		Millimeters		
	Min	Max	Min	Max	
BD	0.110	0.180	2.79	4.57	3
LD	0.036	0.042	0.91	1.07	4
BL	0.130	0.260	3.30	6.60	4
LL	0.90	1.30	22.9	33.0	

NOTES:

1. Dimensions are in inches.
2. Millimeter equivalents are given for general information only.
3. Dimension BD shall be measured at the largest diameter.
4. The BL dimension shall include the entire body including slugs and sections of the lead over which the diameter is uncontrolled. This uncontrolled area is defined as the zone between the edge of the diode body and extending .050 inch (1.27 mm) onto the leads.
5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Diodes - General Purpose, Power, Switching category:
Click to view products by Microsemi manufacturer:
Other Similar products are found below :
053684A $057245 \mathrm{E} 10 \mathrm{~A} 06-\mathrm{TP} 10 \mathrm{~A} 1010 \mathrm{~A} 1010 \mathrm{~A} 1010 \mathrm{~A} 10 \mathrm{G} 10 \mathrm{~A} 210 \mathrm{~A} 4150 \mathrm{~K} 20 \mathrm{~A} 150 \mathrm{~K} 60 \mathrm{~A} \underline{150 \mathrm{~K} 80 \mathrm{~A}} 150 \mathrm{KR} 80 \mathrm{~A} \underline{1 \mathrm{~A} 1} \underline{1 \mathrm{~A} 2} \underline{1 \mathrm{~A} 3} \underline{1 \mathrm{~A} 4}$ $\underline{1 \mathrm{~A} 4} \underline{1 \mathrm{~A} 5} \underline{1 \mathrm{~A} 6} \underline{1 \mathrm{~A} 7} \underline{1 \mathrm{~A} 7} \underline{1 \mathrm{~A} 7} \underline{1 \mathrm{~A} 7} \underline{1 \mathrm{~A} 7 \mathrm{~A}} 1 \mathrm{G} 71 \mathrm{~N} 3064 \mathrm{TR} \underline{1 N 3070} \underline{1 N 3070 \mathrm{TR}} 1 \mathrm{~N} 3295 \mathrm{~A} \underline{1 N 3295 A R} \underline{1 N 3296 \mathrm{~A}}$ 1N3493R-SGS 1N3595 1N3595TR 1N3595US 1N3600 1N3600 TR 1N4001 1N4001 1N4001 1N4001 1N4001 1N4001 1N4001 1N4001A 1N4001G $1 N 4001 \mathrm{G}$

1N4001-T 1N4001W

