LT1076-5 5V Step-Down Switching Regulator

features

- Fixed 5V Output
- 2A On-Board Switch
- 100kHz Switching Frequency
- 2\% Output Voltage Tolerance Over Temperature
- Greatly Improved Dynamic Behavior
- Available in Low Cost 5- and 7-Lead Packages
- Only 9.5 mA Quiescent Current
- Operates Up to 60V Input

APPLICATIONS

- 5V Output Buck Converter
- Tapped Inductor Buck Converter with 4A Output at 5 V
- Positive-to-Negative Converter

DESCRIPTIOn

The $\mathrm{LT}{ }^{\oplus} 1076-5$ is a 2 A fixed 5 V output monolithic bipolar switching regulator which requires only a few external parts for normal operation. The power switch, all oscillator and control circuitry, all current limit components, and an output monitor are included on the chip. The topology is a classic positive "buck" configuration but several design innovations allow this device to be used as a positive-to-negative converter, a negative boost converter, and as a flyback converter. The switch output is specified to swing 40V below ground, allowing the LT1076-5 to drive a tapped inductor in the buck mode with output currents up to 4A.

The LT1076-5 uses a true analog multiplier in the feedback loop. This makes the device respond nearly instantaneously to input voltage fluctuations and makes loop gain independent of input voltage. As a result, dynamic behavior of the regulator is significantly improved over previous designs.

On-chip pulse by pulse current limiting makes the LT10765 nearly bust-proof for output overloads or shorts. The input voltage range as a buck converter is 8 V to 60 V , but a self-boot feature allows input voltages as low as 5 V in the inverting and boost configurations.
The LT1076-5 is available in a low cost 5- and 7-lead T0220 packages with frequency pre-set at 100 kHzand current limit at 2.6A. See Application Note 44 for design details.
$\overline{\mathbf{Q T}}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

Basic Positive Buck Converter

LT1076-5

ABSOLUTE MAXIMUM RATINGS (Note 1)

Input VoltageLT1076-545VLT1076HV-5 64 V
Switch Voltage with Respect to Input Voltage LT1076-5 64V
LT1076HV-5 75 V
Switch Voltage with Respect to Ground Pin(VSW Negative)
LT1076-5 (Note 6) 35 V
LT1076HV-5 (Note 6) 45 VSense Pin Voltage
\qquad $-2 \mathrm{~V}, 10 \mathrm{~V}$
Maximum Operating Ambient Temperature RangeLT1076C-5, LT1076HVC-5$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1076I-5, LT1076HVI-5 $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Maximum Operating Junction Temperature Range
LT1076C-5, LT1076HVC-5

\qquad $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1076I-5, LT1076HVI-5 $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Maximum Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$, unless otherwise noted.

SYMBOL	CONDITIONS	MIN	TYP	MAX
UNITS				
Switch "On" Voltage (Note 2)	$I_{S W}=0.5 A$	\bullet	1.2	V
	$I_{S W}=2 \mathrm{~A}$	\bullet	1.7	V
Switch "Off" Leakage	$V_{I N}=25 \mathrm{~V}, \mathrm{VSW}=0$		150	$\mu \mathrm{~A}$
	$\mathrm{~V}_{\text {IN }}=25 \mathrm{~V}, \mathrm{VSW}=0$		250	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply ver the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\text {IN }}=25 \mathrm{~V}$, unless otherwise noted.

SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & 40 \mathrm{~V}<\mathrm{V}_{\text {IN }}<60 \mathrm{~V} \\ & \mathrm{~V}_{\text {SHDN }}=0.1 \mathrm{~V} \text { (Device Shutdown) (Note } 9 \text {) } \end{aligned}$	\bullet		$\begin{aligned} & 8.5 \\ & 9.0 \\ & 140 \end{aligned}$	$\begin{aligned} & 11 \\ & 12 \\ & 300 \end{aligned}$	mA mA $\mu \mathrm{A}$
Minimum Supply Voltage	Normal Mode Start-Up Mode (Note 4)	\bullet		$\begin{aligned} & 7.3 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.8 \end{aligned}$	V
Switch Current Limit (Note 5)	$\begin{aligned} & \text { LLIM }=\text { Open } \\ & \text { RLIM }^{2}=10 \mathrm{k}(\text { Note 10 }) \\ & \text { RLIM }^{2} 7 \mathrm{k}(\text { Note 10 }) \end{aligned}$	\bullet	2	$\begin{aligned} & 2.6 \\ & 1.8 \\ & 1.2 \end{aligned}$	3.2	A
Maximum Duty Cycle		-	85	90		\%
Switching Frequency	$\begin{aligned} & \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {SENSE }}=0 \mathrm{~V} \text { (Note 5) } \end{aligned}$	\bullet	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	$\begin{aligned} & 110 \\ & 120 \end{aligned}$	kHz kHz kHz
Switching Frequency Line Regulation	$8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$ (Note 8)	\bullet		0.03	0.1	\%/V
Error Amplifier Voltage Gain (Note 8)	$1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{C}} \leq 4 \mathrm{~V}$			2000		V/V
Error Amplifier Transconductance (Note 8)			3700	5000	8000	$\mu \mathrm{mho}$
Error Amplifier Source and Sink Current	$\begin{aligned} & \text { Source }\left(V_{\text {SENSE }}=4.5 \mathrm{~V}\right) \\ & \text { Sink }\left(V_{\text {SENSE }}=5.5 \mathrm{~V}\right) \end{aligned}$		$\begin{aligned} & 100 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 140 \\ & 1.0 \end{aligned}$	$\begin{gathered} 225 \\ 1.6 \end{gathered}$	$\mu \mathrm{A}$ mA
Sense Pin Divider Resistance			3	5	8	$\mathrm{k} \Omega$
Sense Voltage	$\mathrm{V}_{\mathrm{C}}=2 \mathrm{~V}$	\bullet	4.85	5	5.15	V
Output Voltage Tolerance	$V_{\text {OUT }}$ (Nominal) $=5 \mathrm{~V}$ All Conditions of Input Voltage, Output Voltage, Temperature and Load Current	\bullet		$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 3 \end{aligned}$	\%
Output Voltage Line Regulation	$8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$ (Note 7)	\bullet		0.005	0.02	\%/V
VC Voltage at 0\% Duty Cycle	Over Temperature	\bullet		$\begin{gathered} 1.5 \\ -4.0 \end{gathered}$		$\begin{array}{r} \mathrm{V} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{array}$
Multiplier Reference Voltage				24		V
Shutdown Pin Current	$\begin{aligned} & \mathrm{V}_{\text {SHDN }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {SHDN }} \leq \mathrm{V}_{\text {THRESHOLD }}(\cong 2.5 \mathrm{~V}) \end{aligned}$		5	10	$\begin{aligned} & 20 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Shutdown Thresholds	Switch Duty Cycle $=0$ Fully Shut Down		$\begin{aligned} & 2.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 0.5 \end{aligned}$	V
Thermal Resistance Junction to Case					4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: To calculate maximum switch "on" voltage at currents between low and high conditions, a linear interpolation may be used.
Note 3: A sense pin voltage ($V_{\text {SENSE }}$) of 5.5 V forces the VC pin to its low clamp level and the switch duty cycle to zero. This approximates the zero load condition where duty cycle approaches zero.
Note 4: Total voltage from $V_{I N}$ pin to ground pin must be $\geq 8 \mathrm{~V}$ after startup for proper regulation. For $T_{A}<25^{\circ} \mathrm{C}$, limit $=5 \mathrm{~V}$.
Note 5: Switch frequency is internally scaled down when the sense pin voltage is less than 2.6 V to avoid extremely short switch on times. During
current limit testing, $\mathrm{V}_{\text {SENSE }}$ is adjusted to give a minimum switch on time of 1 ms .
Note 6: Switch to input voltage limitation must also be observed.
Note 7: $\mathrm{V}_{\mathrm{MAX}}=40 \mathrm{~V}$ for the LT1076-5 and 60V for the LT1076HV-5.
Note 8: Error amplifier voltage gain and transconductance are specified relative to the internal feedback node. To calculate gain and transconductance from the Sense pin (Output) to the V_{C} pin, multiply by 0.44.

Note 9: Does not include switch leakage.
Note 10: ${ }^{\text {LIM }} \approx \frac{R_{\text {LIM }}-1 k}{5 k}$

LT1076-5

PACKAGE DESCRIPTION
Q Package
5-Lead Plastic DD Pak
(Reference LTC DWG \# 05-08-1461)

BOTTOM VIEW OF DD PAK HATCHED AREA IS SOLDER PLATED COPPER HEAT SINK

RECOMMENDED SOLDER PAD LAYOUT
NOTE:

1. DIMENSIONS IN INCH/(MILLIMETER)
2. DRAWING NOT TO SCALE

RECOMMENDED SOLDER PAD LAYOUT FOR THICKER SOLDER PASTE APPLICATIONS

R Package

7-Lead Plastic DD Pak
(Reference LTC DWG \# 05-08-1462)

BOTTOM VIEW OF DD PAK
HATCHED AREA IS SOLDER PLATED COPPER HEAT SINK

RECOMMENDED SOLDER PAD LAYOUT NOTE:

1. DIMENSIONS IN INCH/(MILLIMETER)
2. DRAWING NOT TO SCALE

RECOMMENDED SOLDER PAD LAYOUT FOR THICKER SOLDER PASTE APPLICATIONS

LT1076-5

PACKAGE DESCRIPTION

T Package
5-Lead Plastic TO-220 (Standard)
(Reference LTC DWG \# 05-08-1421)

PACKAGE DESCRIPTION

T7 Package

7-Lead Plastic TO-220 (Standard)
(Reference LTC DWG \# 05-08-1422)

LT1076-5

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1074/HV	4.4A (I OUT), 100 kHz High Efficiency Step-Down DC/DC Converter	$\mathrm{V}_{\text {In: }} 7.3 \mathrm{~V}$ to $45 \mathrm{~V} / 64 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}: 2.21 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 8.5 \mathrm{~mA}$, $\mathrm{I}_{\text {SHDN: }}: 10 \mu \mathrm{~A}, \mathrm{DD5} / 7, \mathrm{TO}-2205 / 7$
LT3430	60V, 2.75A (Iout), 200kHz High Efficiency Step-Down DC/DC Converter	$\mathrm{V}_{\text {IN }}: 5.5 \mathrm{~V}$ to $60 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}: 1.20 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 2.5 \mathrm{~mA}$, $\mathrm{I}_{\text {SHDN: }}: 25 \mu \mathrm{~A}, \mathrm{TSSOP} 16 \mathrm{E}$
LT1956	60V, 1.2A (I Out), 500kHz High Efficiency Step-Down DC/DC Converter	$\mathrm{V}_{\text {IN: }}: 5.5 \mathrm{~V}$ to $60 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}: 1.20 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 2.5 \mathrm{~mA}, \mathrm{I}_{\text {SHDN }}: 25 \mu \mathrm{~A}, \mathrm{TSSOP} 16 \mathrm{E}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
TLF30682QVS01XUMA1 TPSM84209RKHR FAN53526UC106X FAN53526UC128X MP1587EN-LF FAN48610BUC33X FAN48617UC50X FAN53526UC89X MIC45116-1YMP-T1 NCV891234MW50R2G EN2342QI AST1S31PUR 16017 A6986FTR NCP81103MNTXG NCP81203PMNTXG MAX17242ETPA+ MAX16935RATEB/V+ MP2313GJ-Z NCP81208MNTXG MP8759GD-Z FAN53526UC100X FAN53526UC84X PCA9412AUKZ MP2314SGJ-Z AS1340A-BTDM-10 MP3421GG-P NCP81109GMNTXG MP6003DN-LF-Z MAX16935BAUES/V+ LT8315IFE\#PBF SCY1751FCCT1G NCP81109JMNTXG MAX16956AUBA/V+ AP3409ADNTR-G1 FAN48623UC36FX MPQ2454GH MPQ2454GH-AEC1 MP21148GQD-P AS3701B-BWLM-68 MPQ2143DJ-P MP9942AGJ-P MP8759GD-P MP5610GQG-P MP28200GG-P MP2451DJ-LF-Z MP2326GD-P MP2314SGJ-P MP2158AGQH-P MP2148GQD-18-P

