

Fast Settling, JFET Input Operational Amplifier

FEATURES

■ 100% Tested Settling Time	100% Tested Settling Time					
to 1mV at Sum Node, 10V S	Step	540ns Max				
Tested with Fixed Feedback	Capacitor					
Slew Rate	-	60V/µs Min				
Gain-Bandwidth Product		14MHz				
Power Bandwidth (20V _{P-P})	Power Bandwidth (20V_{P-P})					
Unity-Gain Stable; Phase Ma	argin	60°				
Input Offset Voltage		600µV Max				
Input Bias Current	25°C	75pA Max				
	70°C	600pA Max				
Input Offset Current	25°C	40pA Max				
	70°C	150pA Max				

Low Distortion

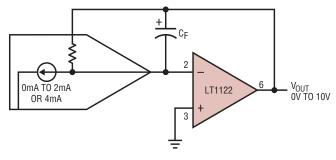
APPLICATIONS

- Fast 12-Bit D/A Output Amplifiers
- High Speed Buffers
- Fast Sample-and-Hold Amplifiers
- High Speed Integrators
- Voltage to Frequency Converters
- Active Filters
- Log Amplifiers
- Peak Detectors

DESCRIPTION

The LT®1122 JFET input operational amplifier combines high speed and precision performance.

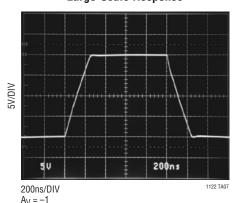
A unique poly-gate JFET process minimizes gate series resistance and gate-to-drain capacitance, facilitating wide bandwidth performance, without degrading JFET transistor matching.


It slews at 80V/µs and settles in 340ns. The LT1122 is internally compensated to be unity-gain stable, yet it has a bandwidth of 14MHz at a supply current of only 7mA. Its speed makes the LT1122 an ideal choice for fast settling 12-bit data conversion and acquisition systems.

The LT1122 offset voltage of $120\mu V$, and voltage gain of 500,000 also support the 12-bit accurate applications.

The input bias current of 10pA and offset current of 4pA combined with its speed allow the LT1122 to be used in such applications as high speed sample and hold amplifiers, peak detectors, and integrators.

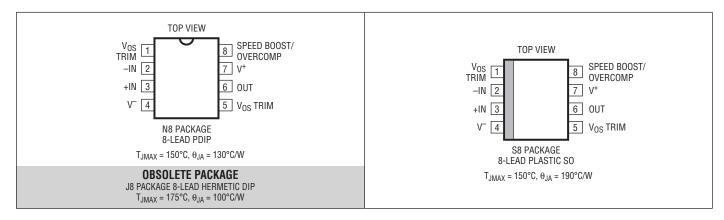
TYPICAL APPLICATION


12-Bit Voltage Output D/A Converter

12-BIT CURRENT OUTPUT D/A CONVERTER C_F = 5pF TO 17pF (DEPENDING ON D/A CONVERTER USED)

LT1122•TA01

Large-Scale Response


LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and C-Load is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	±20V
Differential Input Voltage	±40V
Input Voltage	±20V
Output Short Circuit Duration	Indefinite
Lead Temperature (Soldering, 10 sec.)	300°C

Operating Temperature Range
LT1122AM/BM/CM/DM (OBSOLETE).. -55°C to 125°C
LT1122AC/BC/CC/DC/CS/DS.....-40°C to 85°C
Storage Temperature Range
All Devices......-65°C to 150°C

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1122ACN8#PBF	LT1122ACN8#TRPBF	LT1122ACN8	8-Lead Plastic DIP	-40°C to 85°C
LT1122BCN8#PBF	LT1122BCN8#TRPBF	LT1122BCN8	8-Lead Plastic DIP	-40°C to 85°C
LT1122CCN8#PBF	LT1122CCN8#TRPBF	LT1122CCN8	8-Lead Plastic DIP	-40°C to 85°C
LT1122DCN8#PBF	LT1122DCN8#TRPBF	LT1122DCN8	8-Lead Plastic DIP	-40°C to 85°C
LT1122CS8#PBF	LT1122CS8#TRPBF	1122C	8-Lead Plastic SO	-40°C to 85°C
LT1122DS8#PBF	LT1122DS8#TRPBF	1122D	8-Lead Plastic SO	-40°C to 85°C
		OBSOLETE F	PACKAGE	
LT1122AMJ8#PBF	LT1122AMJ8#TRPBF	LT1122AMJ8	8-Lead Hermetic DIP	−55°C to 125°C
LT1122BMJ8#PBF	LT1122BMJ8#TRPBF	LT1122BMJ8	8-Lead Hermetic DIP	−55°C to 125°C
LT1122CMJ8#PBF	LT1122CMJ8#TRPBF	LT1122CMJ8	8-Lead Hermetic DIP	−55°C to 125°C
LT1122DMJ8#PBF	LT1122DMJ8#TRPBF	LT1122DMJ8	8-Lead Hermetic DIP	−55°C to 125°C
LT1122ACJ8#PBF	LT1122ACJ8#TRPBF	LT1122ACJ8	8-Lead Hermetic DIP	-40°C to 85°C
LT1122BCJ8#PBF	LT1122BCJ8#TRPBF	LT1122BCJ8	8-Lead Hermetic DIP	-40°C to 85°C
LT1122CCJ8#PBF	LT1122CCJ8#TRPBF	LT1122CCJ8	8-Lead Hermetic DIP	-40°C to 85°C
LT1122DCJ8#PBF	LT1122DCJ8#TRPBF	LT1122DCJ8	8-Lead Hermetic DIP	-40°C to 85°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on nonstandard lead based finish parts.

For more information on lead free part markings, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$ unless otherwise noted. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		122AM, 1122AC, TYP		LT ⁻	122CM/ 1122CC/ 1122CS/ TYP	/DC	UNITS
V _{OS}	Input Offset Voltage	ONDITIONS		120	600	"""	130	900	μV
I _{0S}	Input Offset Current			4	40		5	50	pA
I _B	Input Bias Current			10	75		12	100	pA
<u> </u>	Input Resistance Differential Common Mode	V _{CM} = -10V to 8V V _{CM} = 8V to 11V		10 ¹² 10 ¹² 10 ¹¹			10 ¹² 10 ¹² 10 ¹¹		Ω Ω Ω
	Input Capacitance			4			4		pF
SR	Slew Rate	$A_V = -1$	60	80		50	75		V/µs
	Settling Time (Note 2)	10V to 0V, -10V to 0V 100% Tested: A- and C-Grades to 1mV at Sum Node B- and D-Grades to 1mV at Sum Node All Grades to 0.5mV at Sum Node		340 350 450	540		350 360 470	590	ns ns ns
GBW	Gain-Bandwidth Product Power Bandwidth	V _{OUT} = 20V _{P-P}		14 1.2			13 1.1		MHz MHz
A _{VOL}	Large-Signal Voltage Gain	$\begin{aligned} V_{OUT} &= \pm 10 \text{V}, R_L = 2 \text{k} \Omega \\ V_{OUT} &= \pm 10 \text{V}, R_L = 600 \Omega \end{aligned}$	180 130	500 250		150 110	450 220		V/mV V/mV
CMRR	Common-Mode Rejection Ratio	V _{CM} = ±10V	83	99		80	98		dB
	Input Voltage Range	(Note 4)	±10.5	±11		±10.5	±11		V
PSRR	Power Supply Rejection Ratio	$V_S = \pm 10V \text{ to } \pm 18V$	86	103		82	101		dB
	Input Noise Voltage	0.1Hz to 10Hz		3.0			3.3		μV _{P-P}
	Input Noise Voltage Density	$f_0 = 100$ Hz $f_0 = 10$ kHz		25 14			27 15		nV/√Hz nV/√Hz
	Input Noise Current Density	$f_0 = 100$ Hz, $f_0 = 10$ kHz		2			2		fA/√Hz
V _{OUT}	Output Voltage Swing	$R_L = 2k\Omega$ $R_L = 600\Omega$	±12 ±11.5	±12.5 ±12		±12 ±11.5	±12.5 ±12		V
Is	Supply Current			7.5	10		7.8	11	mA
	Minimum Supply Voltage	(Note 5)	±5			±5			V
	Offset Adjustment Range	R _{POT} ≥ 10k, Wiper to V ⁺	±4	±10		±4	±10		mV

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at 0°C \leq T_A \leq 70°C. V_S = \pm 15V, V_{CM} = 0V. (Note 2)

				LT	1122AC/	ВС		1122CC/ 1122CS/	-	
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		•		350	1400		400	2000	μV
	Average Temperature Coefficient of Input Offset Voltage		•		5	18		6	25	μV/°C
I _{OS}	Input Offset Current		•		12	150		15	200	pA
IB	Input Bias Current		•		80	600		90	800	pA
A _{VOL}	Large-Signal Voltage Gain	$V_{OUT} = \pm 10V, R_L \ge 2k\Omega$	•	120	380		100	340		V/mV
CMRR	Common-Mode Rejection Ratio	V _{CM} = ±10V	•	82	98		78	96		dB
PSRR	Power Supply Rejection Ratio	V _S = ±10V to ±17V	•	84	101		80	99		dB
	Input Voltage Range		•	±10	±10.8		±10	±10.8		V
V _{OUT}	Output Voltage Swing	$R_L = 2k\Omega$	•	±11.5	±12.4		±11.5	±12.4		V
SR	Slew Rate	A _V = -1	•	50	70		40	65		V/µs

The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at -55°C \leq T_A \leq 125°C. V_S = ±15V, V_{CM} = 0V. (Note 2)

				LT.	1122AM/	'BM	LT	1122CS/	DS	
${\bf SYMBOL}$	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
$\overline{V_{0S}}$	Input Offset Voltage		•		650	2400		800	3400	μV
	Average Temperature Coefficient of Input Offset Voltage		•		6	18		7	25	μV/°C
I _{OS}	Input Offset Current		•		0.5	6		0.6	9	nA
I _B	Input Bias Current		•		6	25		7	35	nA
A _{VOL}	Large-Signal Voltage Gain	$V_{OUT} = \pm 10V, R_L \ge 2k\Omega$	•	70	230		60	200		V/mV
CMRR	Common-Mode Rejection Ratio	V _{CM} = ±10V	•	80	97		76	94		dB
PSRR	Power Supply Rejection Ratio	V _S = ±10V to ±17V	•	83	100		78	98		dB
	Input Voltage Range		•	±10	±10.5		±10	±10.5		V
$\overline{V_{OUT}}$	Output Voltage Swing	$R_L = 2k\Omega$	•	±11.3	±12.1		±11.3	±12.1		٧
SR	Slew Rate	A _V = -1	•	45	60		35	55		V/µs

The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $-40^{\circ}C \leq T_A \leq 85^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$. (Note 6)

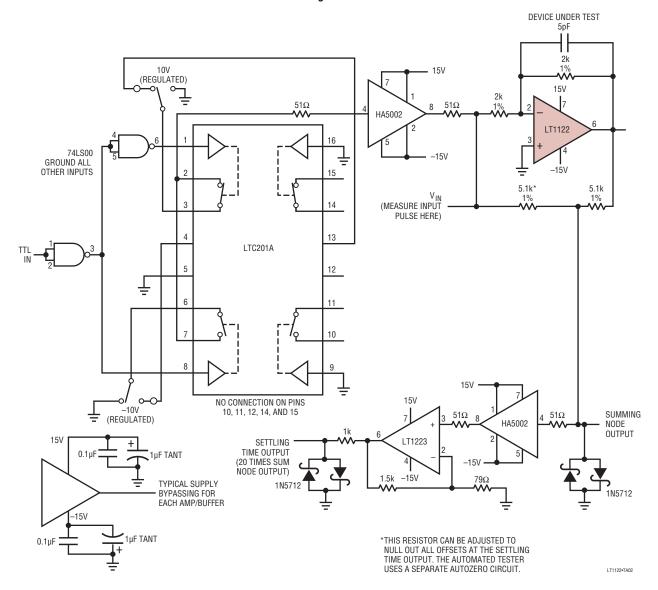
				LT1	1122AM/	ВМ	LT			
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		•		450	1900		500	2700	μV
	Average Temperature Coefficient of Input Offset Voltage		•		6	20		7	28	μV/°C
I _{OS}	Input Offset Current		•		30	600		40	900	рA
I _B	Input Bias Current		•		230	2000		260	2700	pA
A _{VOL}	Large-Signal Voltage Gain	$V_{OUT} = \pm 10V, R_L \ge 2k\Omega$	•	95	340		80	300		V/mV
CMRR	Common-Mode Rejection Ratio	V _{CM} = ±10V	•	80	98		76	96		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 10V \text{ to } \pm 17V$	•	83	100		78	98		dB
	Input Voltage Range		•	±10	±10.6		±10	±10.6		V
V _{OUT}	Output Voltage Swing	$R_L = 2k\Omega$	•	±11.3	±12.2		±11.3	±12.2		V
SR	Slew Rate	A _V = -1	•	45	60		35	60		V/µs

1122fb

ELECTRICAL CHARACTERISTICS

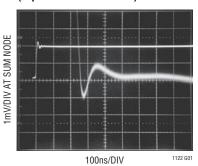
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The LT1122 is measured in an automated tester in less than one second after application of power. Depending on the package used, power dissipation, heat sinking, and air flow conditions, the fully warmed up chip temperature can be 10°C to 50°C higher than the ambient temperature.

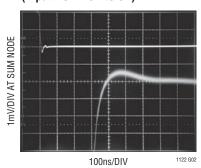

Note 3: Settling time is 100% tested for A- and C-grades using the settling time test circuit shown. This test is not included in quality assurance sample testing.

Note 4: Input voltage range functionality is assured by testing offset voltage at the input voltage range limits to a maximum of 4mV (A, B grades), to 5.7mV (C, D grades).

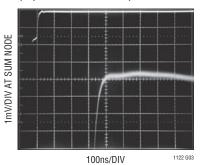
Note 5: Minimum supply voltage is tested by measuring offset voltage to 7mV maximum at ±5V supplies.

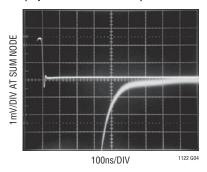

Note 6: The LT1122 is not tested and not quality-assurance-sampled at -40°C and at 85°C. These specifications are guaranteed by design, correlation and/or inference from -55°C, 0°C, 25°C, 70°C and/or 125°C tests.

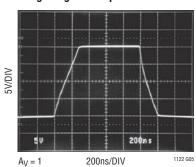
Settling Time Test Fixture

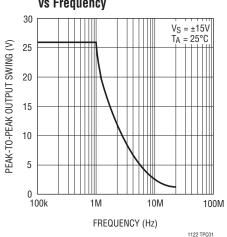


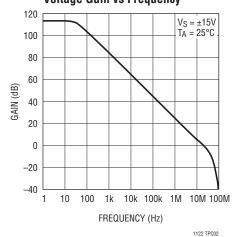
TYPICAL PERFORMANCE CHARACTERISTICS

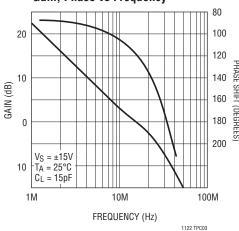

Settling Time (Input from –10V to OV)

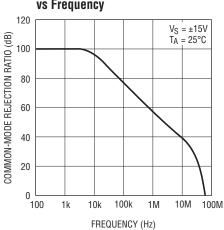

Settling Time (Input from 10V to 0V)


Settling Time (Input from OV to 10V)

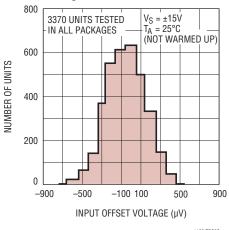

Settling Time (Input from OV to -10V)


Large-Signal Response


Undistorted Output Swing vs Frequency

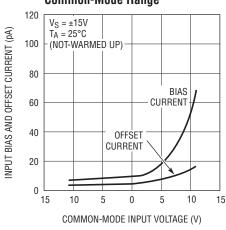

Voltage Gain vs Frequency

Gain, Phase vs Frequency

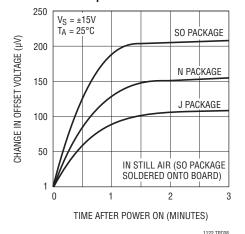

Common-Mode Rejection vs Frequency

LINEAR

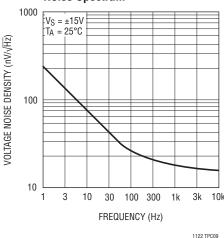
TYPICAL PERFORMANCE CHARACTERISTICS


Distribution of Input Offset Voltage

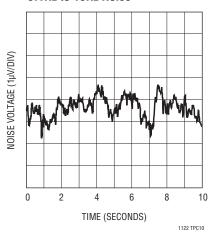
Input Bias and Offset Currents Over Temperature

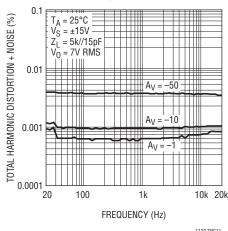


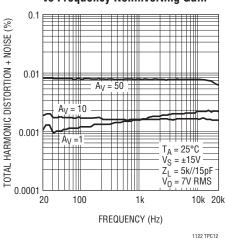
Bias and Offset Currents Over the Common-Mode Range

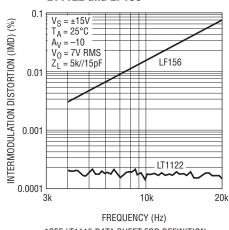


1122 TPC07


Warm-Up Drift


Noise Spectrum


0.1Hz to 10Hz Noise


Total Harmonic Distortion + Noise vs Frequency Inverting Gain

Total Harmonic Distortion + Noise vs Frequency Noninverting Gain

Intermodulation Distortion (CCIF Method) vs Frequency LT1122 and LF156*

*SEE LT1115 DATA SHEET FOR DEFINITION
OF CCIF TESTING

1122 TPC13 1122fb

APPLICATIONS INFORMATION

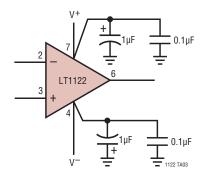
Settling Time Measurements

Settling time test circuits shown on some competitive devices' data sheets require:

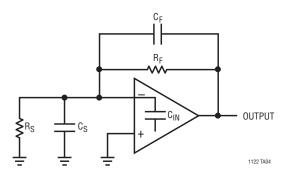
- 1. A "flat top" pulse generator. Unfortunately, flat top pulse generators are not commercially available.
- A variable feedback capacitor around the device under test. This capacitor varies over a four-to-one range. Presumably, as each op amp is measured for settling time, the capacitor is fine tuned to optimize settling time for that particular device.
- 3. A small inductor load to optimize settling.

The LT1122's settling time is 100% tested in the test circuit shown. No "flat top" pulse generator is required. The test circuit can be readily constructed, using commercially available ICs. Of course, standard high frequency board construction techniques should be followed. All LT1122s are measured with a constant feedback capacitor. No fine tuning is required.

Speed Boost/Overcompensation Terminal

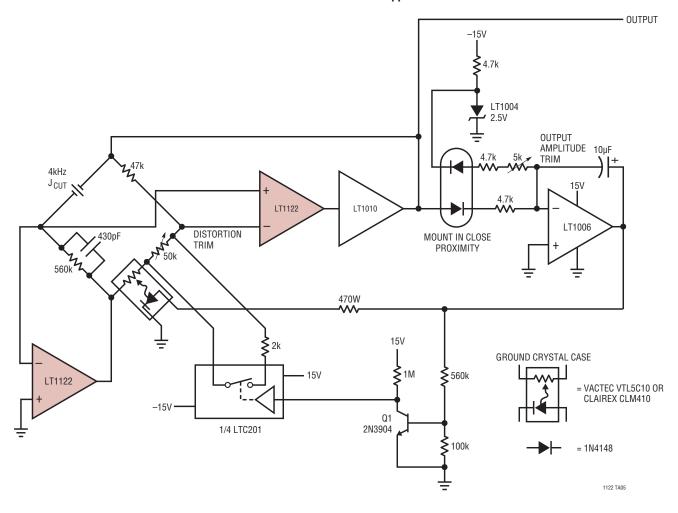

Pin 8 of the LT1122 can be used to change the input stage operating current of the device. Shorting Pin 8 to the positive supply (Pin 7) increases slew rate and bandwidth by about 25%, but at the expense of a reduction in phase margin by approximately 18 degrees. Unity-gain capacitive load handling decreases from typically 500pF to 100pF.

Conversely, connecting a 15k resistor from Pin 8 to ground pulls 1mA out of Pin 8 (with V^+ = 15V). This reduces slew rate and bandwidth by 25%. Phase margin and capacitive load handling improve; the latter typically increasing to 800pF.


High Speed Operation

As with most high speed amplifiers, care should be taken with supply decoupling, lead dress and component placement.

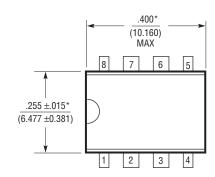
The power supply connections to the LT1122 must maintain a low impedance to ground over a bandwidth of 20MHz. This is especially important when driving a significant resistive or capacitive load, since all current delivered to the load comes from the power supplies. Multiple high quality bypass capacitors are recommended for each power supply line in any critical application. A $0.1\mu F$ ceramic and a $1\mu F$ electrolytic capacitor, as shown, placed as close as possible to the amplifier (with short lead lengths to power supply common) will assure adequate high frequency bypassing, in most applications.

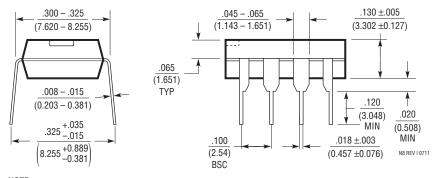

When the feedback around the op amp is resistive (R_F), a pole will be created with R_F , the source resistance and capacitance (R_S , C_S), and the amplifier input capacitance ($C_{IN} \approx 4pF$). In low closed-loop gain configurations and with R_S and R_F in the kilohm range, this pole can create excess phase shift and even oscillation. A small capacitor (C_F) in parallel with R_F eliminates this problem. With R_S ($C_S + C_{IN}$) = $R_F C_F$, the effect of the feedback pole is completely removed.

LINEAR

TYPICAL APPLICATIONS

Quartz Stabilized Oscillator With 9ppm Distortion

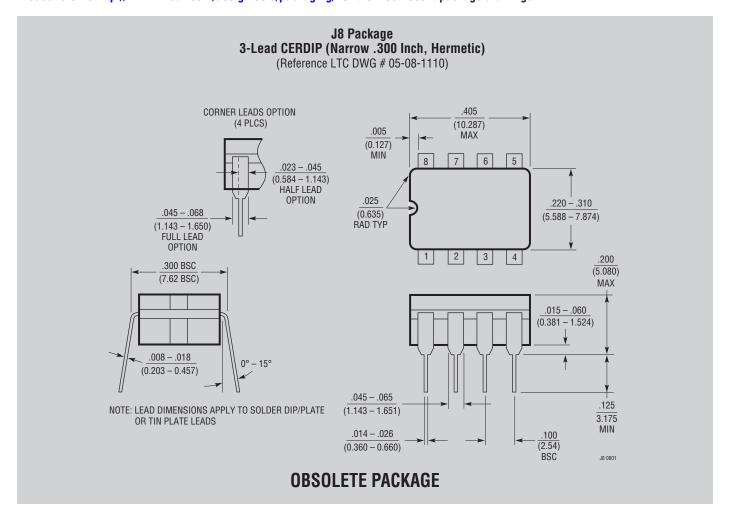



PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

N Package 8-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510 Rev I)

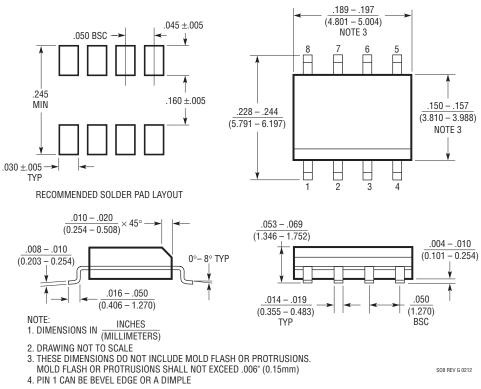


NOTE:
1. DIMENSIONS ARE INCHES MILLIMETERS

^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

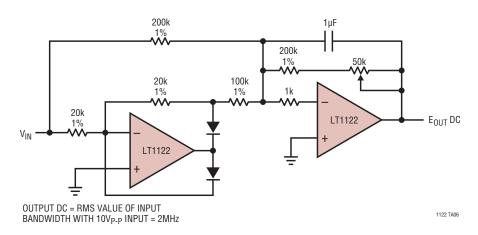


PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610 Rev G)


REVISION HISTORY (Revision history begins at Rev B)

REV	DATE	DESCRIPTION	PAGE NUMBER
В	02/14	Updated data sheet to current standards. New Order Information Table, Package Descriptions	2, 10-12

TYPICAL APPLICATION

Wide-Band, Filtered, Full Wave Rectifier

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1022	High Speed Precision JFET Op Amp	23V/μs Min Slew Rate, 250μV V _{OS}
LT1055/LT1056	Precision High Speed JFET Op Amps	16V/μs Slew Rate, 150μV V _{OS}
LT1464	1MHz C-Load™ Stable JFET Op Amp	Capacitive Loads Up to 10nF
LTC [®] 6244	50MHz Low Noise CMOS Op Amp	1pA I _B , 100μV Max V _{OS} , 1.5μV _{P-P} , 0.1Hz to 10Hz Noise

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB 430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC2902DG 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E NJM4558CG-TE2 AZV358MMTR-G1 SCY33178DR2G NCS4325DR2G