LT1612

feftures

- Operates from Input Voltage As Low As 2 V
- Internal 0.7A Synchronous Switches
- Uses Ceramic Input and Output Capacitors
- 620mV Reference Voltage
- 800kHz Fixed Frequency Switching
- Programmable Burst Mode Operation
- Low Quiescent Current: 160uA
- 8-Lead MSOP or SO Package

APPLICATIONS

- Portable Devices
- Lithium-Ion Step-Down Converters
- 5V to 3.3V Conversion
- 2-Cell Alkaline Step-Down Converters

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1612$ is an 800 kHz , synchronous step-down DC/ DC converter that operates from an input voltage as low as 2 V . Internal 0.45Ω switches deliver output currents up to 500 mA , and the 800 kHz switching frequency allows the use of small, low value ceramic input and output capacitors. Input voltage ranges from 5.5 V down to 2 V and output voltage can be set as low as the 620 mV reference. The device features Burst Mode ${ }^{\text {TM }}$ operation, keeping efficiency high at light loads. Burst Mode operation can be defeated by pulling the MODE pin high, enabling constant switching throughout the load range for low noise.
No-load quiescent current is $160 \mu \mathrm{~A}$ and shutdown current is less than $1 \mu \mathrm{~A}$. The device is available in 8 -lead SO and MSOP packages.
$\overline{\mathbf{Q},}$, LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Figure 1. 2V to 1.2V Converter

Efficiency for LT1612 vs Linear Regulator

ABSOLUTG MAXIMUM RATINGS (Note 1)

Consult factory for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS
The © denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=\mathrm{V} \overline{\mathrm{SHDN}}=3 \mathrm{~V}$

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{Q}	Quiescent Current	$\begin{aligned} & \overline{\mathrm{MODE}}=5 \mathrm{~V} \\ & \overline{\mathrm{MODE}}=0 \mathrm{~V} \text {, Not Switching } \\ & \overline{\mathrm{SHDN}}=0 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} 1 \\ 160 \end{gathered}$	$\begin{gathered} 2 \\ 220 \\ 1 \\ \hline \end{gathered}$	mA $\mu \mathrm{A}$ $\mu \mathrm{A}$
$V_{\text {FB }}$	FB Voltage		\bullet	$\begin{gathered} 0.605 \\ 0.60 \end{gathered}$	$\begin{aligned} & 0.62 \\ & 0.62 \end{aligned}$	$\begin{aligned} & 0.635 \\ & 0.635 \end{aligned}$	$\begin{aligned} & \bar{V} \\ & V \end{aligned}$
	FB Line Regulation		\bullet		0.02	0.15	\%/V
	FB Pin Bias Current (Note 3)		\bullet		7	50	nA
g_{m}	Error Amplifier Transconductance				250		$\mu \mathrm{mhos}$
	Min Input Voltage Max Input Voltage			2		5.5	V
fosc	Oscillator Frequency		\bullet	$\begin{aligned} & 700 \\ & 550 \end{aligned}$		$\begin{gathered} 900 \\ 1100 \end{gathered}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
	$\mathrm{f}_{\text {OSc }}$ Line Regulation				1		\%/V
	Maximum Duty Cycle		\bullet	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	90		\%
	Shutdown Threshold	Minimum Voltage for Active Maximum Voltage for Shutdown	\bullet	2		0.2	V

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating

temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=\mathrm{V} \overline{\operatorname{SHDN}}=3 \mathrm{~V}$

SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
	$\overline{\text { SHDN }}$ Pin Current	$\overline{\text { SHDN }}=2 \mathrm{~V}$		-		10	15	$\mu \mathrm{A}$
		$\overline{\text { SHDN }}=5 \mathrm{~V}$		-		30	45	$\mu \mathrm{A}$
	B00ST Pin Current	BOOST $=\mathrm{V}_{\text {IN }}+2 \mathrm{~V}$				4		mA
	Switch Current Limit (Note 4)	Duty Cycle = 0\%	$\overline{\mathrm{MODE}}=0 \mathrm{~V}$		600	710	900	mA
			$\overline{\mathrm{MODE}}=5 \mathrm{~V}$		550	650	900	mA
	Burst Mode Operation Current Limit	$\overline{\mathrm{MODE}}=0 \mathrm{~V}$				180		mA
	Switch Voltage Drop	$\mathrm{I}_{\text {SW }}=500 \mathrm{~mA}$				200	280	mV
	Rectifier Voltage Drop	$\mathrm{I}_{\text {RECT }}=500 \mathrm{~mA}$				300	400	mV
	SW Pin Leakage	$V_{S W}=5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}$		\bullet			1	$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The LT1612E is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating
temperature range are assured by design, characterization and correlation with statistical process controls.
Note 3: Bias current flows out of the FB pin.
Note 4: Duty cycle affects current limit due to slope compensation.

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

Maximum Duty Cycle vs Temperature

PIn functions

V_{C} (Pin 1): Compensation Pin. This is the current sink/ source output of the error amplifier. By connecting an RC network from this pin to ground, frequency response can be tuned for a wide range of circuit configurations. The voltage at this pin also sets the current limit, and if grounded, the switch will remain in the OFF state.
FB (Pin 2): Feedback Pin. This pin is the negative input to the error amplifier. Connect the resistor divider tap to this point which sets $\mathrm{V}_{\text {OUt }}$ according to:

$$
V_{\text {OUT }}=0.62 \mathrm{~V}(1+\mathrm{R} 1 / \mathrm{R} 2)
$$

$\mathrm{V}_{\mathbf{I N}}$ (Pin 3): Supply Pin. Bypass capacitor C1 must be right next to this pin.

GND (Pin 4): Ground Pin. Connect directly to local ground plane.

SW (Pin 5): Switch Pin. Connect inductor and boost capacitor here. Minimize trace area at this pin to keep EMI down.

BOOST (Pin 6): This is the supply pin for the switch driver and must be above $\mathrm{V}_{\text {IN }}$ by 1.5 V for proper switch operation. Connect the boost capacitor to this pin.
$\overline{\text { MODE }}$ (Pin 7): Burst Mode Operation Disable Pin. For continuous switching operation (low noise), pull this pin above 2V. For Burst Mode operation which gives better light load efficiency, tie to ground. Output ripple voltage in Burst Mode operation is typically 30 mV p.p. See applications section for more information about this function.

SHDN (Pin 8): Shutdown Pin. Pull this pin low for shutdown mode. Tie to a voltage between 2 V and 5.5 V for normal operation.

BLOCK DIAGRAM

operation

The LT1612 employs fixed frequency, current mode control. This type of control uses two feedback loops. The main control loop sets output voltage and operates as follows: A load step causes Vout and the FB voltage to be perturbed slightly. The error amplifier responds to this change in $F B$ by driving the V_{C} pin either higher or lower. Because switch current is proportional to the V_{C} pin voltage, this change causes the switch current to be adjusted until $\mathrm{V}_{\text {OUT }}$ is once again satisfied. Loop compensation is taken care of by an RC network from the V_{C} pin to ground.

Inside this main loop is another that sets current limit on a cycle-by-cycle basis. This loop utilizes current comparator A2 to control peak current. The oscillator runs at 800 kHz and issues a set pulse to the flip-flop at the beginning of each cycle, turning the switch on. With the switch now in the ON state the SW pin is effectively connected to $\mathrm{V}_{\text {IN }}$. Current ramps up in the inductor linearly at a rate of $\left(V_{\text {IN }}-V_{\text {OUT }}\right) / L$. Switch current is set by the V_{C} pin voltage and when the voltage across $\mathrm{R}_{\text {SENSE }}$ trips the current comparator, a reset pulse will be generated and the switch will be turned off. Since the inductor is now loaded up with current, the SW pin will fly low and trigger the rectifier to turn on. Current will flow through the rectifier decreasing at a rate of $\mathrm{V}_{\text {OUT }} / \mathrm{L}$ until the oscillator issues a new set pulse, causing the cycle to repeat.
If the load is light and V_{C} decreases below A3's trip point, the device will enter the Burst Mode operation region (the MODE pin must be at ground or floating). In this state the oscillator and all other circuitry except the reference and comparator A3 are switched on and off at low frequency. This mode of operation increases efficiency at light loads but introduces low frequency voltage ripple at the output. For continuous switching and no low frequency output voltage ripple, pull the MODE pin high. This will disable comparator A3 which forces the oscillator to run continuously.

Layout Hints

The LT1612 switches current at high speed, mandating careful attention to layout for proper performance. You will not get advertised performance with careless layout. Figure 2 shows recommended component placement for a buck (step-down) converter. Follow this closely in your PC layout. Note the direct path of the switching loops. Input capacitor $\mathrm{C1}$ must be placed close ($<5 \mathrm{~mm}$) to the IC package. As little as 10 mm of wire or PC trace from $\mathrm{C}_{\text {IN }}$ to $V_{\text {IN }}$ will cause problems such as inability to regulate or oscillation.

The ground terminal of input capacitor C1 should tie close to Pin 4 of the LT1612. Doing this reduces dl/dt in the ground copper which keeps high frequency spikes to a minimum. The DC/DC converter ground should tie to the PC board ground plane at one place only, to avoid introducing $\mathrm{dl} / \mathrm{dt}$ in the ground plane.

Figure 2. Recommended Component Placement. Traces Carrying High Current are Direct. Trace Area at FB Pin and V_{C} Pin Is Kept Low. Lead Length to Battery Should Be Kept Short

operation

Burst Mode Operation Defeat

To maintain high efficiency at light loads, the LT1612 will automatically shift into Burst Mode operation (MODE = OV or floating). In this mode of operation the oscillator and switch drive circuitry is alternately turned on and off, reducing quiescent current to $160 \mu \mathrm{~A}$. This reduces power
consumption butalso adds low frequency voltage ripple to the output. Figure 3 shows switching waveforms for a 5 V to 3.3V converter running in Burst Mode operation. Output voltage ripple is approximately 20 mV P-p. If the MODE pin is pulled high, Burst Mode operation will be inhibited and the oscillator runs continuously with no low frequency ripple at the output. See Figures 4 and 5.

Figure 3. Output Voltage Ripple is 20 mV p-p for the Circuit of Figure 1

Figure 4. Transient Response for the Circuit of Figure 1 with the MODE Pin Tied to Ground or Floating

Figure 5. With the MODE Pin Tied High, Low Frequency Output Voltage Ripple Is No Longer Present

TYPICAL APPLICATIONS

TYPICAL APPLICATIONS

5V to 2.5V Converter

2V to 0.9V Converter

5V to 2.5V Converter Efficiency

1612 TA08

Efficiency for LT1612 vs Linear Regulator.
$V_{\text {OUT }}=0.9 \mathrm{~V}$.

1612 TA10

PACKAGE DESCRIPTION Dimension in incheses (milimeners) unless othemisise noled.

PACKAGE DESCRIPTION Dimension in inches (millimeters) unless otherwise noted.

S8 Package

8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254 mm) PER SIDE

TYPICAL APPLICATION

5V to 3.3V Converter

Efficiency

beLATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
$\underline{\text { LTC }{ }^{\text {® }} 1474}$	Low I_{Q} Step-Down Switching Regulator	$10 \mu \mathrm{~A} \mathrm{I}_{\mathrm{Q}}, \mathrm{V}_{\text {IN }}$ from 3 V to 18 V , MSOP Package up to 300 mA
LT1616	600mA, 1.4MHz Step-Down Regulator in SOT-23	$\mathrm{V}_{\text {IN }}$ from 3.6V to 25V, SOT-23 Package
LTC1701	SOT-23 Step-Down Switching Regulator	500 mA in SOT-23 Package, 1MHz Switching Frequency
LTC1707	Monolithic Synchronous Step-Down Switching Regulator	$500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}$ from 2.65 V to 8.5 V
LTC1772	Constant Frequency Step-Down Controller in SOT-23	High Current, High Efficiency: Up to 94\%
LTC1877/LTC1878	High Efficiency, Monolithic Synchronous Step-Down Regulator	$10 \mu \mathrm{~A} \mathrm{I}_{\mathrm{Q}}, 2.65 \leq \mathrm{V}_{\text {IN }} \leq 10 \mathrm{~V}$, MSOP Package up to 600 mA
LTC3404	1.4MHz High Efficiency Monolithic Synchronous Step-Down Reg	$10 \mu \mathrm{~A} \mathrm{I}_{\mathrm{Q}}$, High Efficiency: up to 95\%, MSOP Package

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
TLF30682QVS01XUMA1 TPSM84209RKHR FAN53526UC106X FAN53526UC128X MP1587EN-LF FAN48610BUC33X FAN48617UC50X FAN53526UC89X MIC45116-1YMP-T1 NCV891234MW50R2G EN2342QI AST1S31PUR 16017 A6986FTR NCP81103MNTXG NCP81203PMNTXG MAX17242ETPA+ MAX16935RATEB/V+ MP2313GJ-Z NCP81208MNTXG MP8759GD-Z FAN53526UC100X FAN53526UC84X PCA9412AUKZ MP2314SGJ-Z AS1340A-BTDM-10 MP3421GG-P NCP81109GMNTXG MP6003DN-LF-Z MAX16935BAUES/V+ LT8315IFE\#PBF SCY1751FCCT1G NCP81109JMNTXG MAX16956AUBA/V+ AP3409ADNTR-G1 FAN48623UC36FX MPQ2454GH MPQ2454GH-AEC1 MP21148GQD-P AS3701B-BWLM-68 MPQ2143DJ-P MP9942AGJ-P MP8759GD-P MP5610GQG-P MP28200GG-P MP2451DJ-LF-Z MP2326GD-P MP2314SGJ-P MP2158AGQH-P MP2148GQD-18-P

