LTC2846

3.3V Software-Selectable Multiprotocol Transceiver with Termination

features

- Software-Selectable Transceiver Supports:

RS232, RS449, EIA530, EIA530-A, V.35, V.36, X. 21

- Operates from Single 3.3V Supply
- TUV Rheinland of North America Inc. Certified NET1, NET2 and TBR2 Compliant, Report No.:
TBR2/050101/02, TBR2/051501/02
- 1.2MHz Boost Switching Regulator for 3.3 V to 5 V Conversion
- On-Chip Cable Termination
- Complete DTE or DCE Port with LTC2844 or LTC2845
- Small Footprint
- Available in 36-Lead SSOP (0.209 Wide) Package

APPLICATIONS

DESCRIPTIOn

The LTC ${ }^{\circledR} 2846$ is a 3 -driver/3-receiver multiprotocol transceiver with on-chip cable termination. When combined with the LTC2844 or LTC2845, this chip set forms a complete software-selectable DTE or DCE interface port that supports the RS232, RS449, EIA530, EIA530-A, V. 35 , V. 36 and X. 21 protocols. All necessary cable termination is provided inside the LTC2846. The LTC2846 has a boost regulator that takes in a 3.3 V input and switches at 1.2 MHz , allowing the use of tiny, low cost capacitors and inductors 2mm or less in height.
The 5 V output drives an internal charge pump that requires only five space-saving surface mounted capacitors. The LTC2846 is available in a 36 -lead SSOP surface mount package.
$\overline{\mathbf{\wedge}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

- Data Networking
- CSU and DSU
- Data Routers

TYPICAL APPLICATION

Complete DTE or DCE Multiprotocol Serial Interface with DB-25 Connector

ABSOLUTE MAXIMUM RATINGS

(Note 1)
$V_{\text {CC }}$ Voltage \qquad -0.3 V to 6.5 V
$V_{\text {IN }}$ Voltage ...
Input Voltage
Transmitters -0.3 V to $\left(\mathrm{V}_{C C}+0.3 \mathrm{~V}\right)$
Receivers \qquad -18 V to 18 V Logic Pins - 0.3 V to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)

Output Voltage

Transmitters \qquad $\left(\mathrm{V}_{\mathrm{EE}}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
Receivers -0.3 V to $\left(\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}\right)$
$V_{E E}$ \qquad -10 V to 0.3 V
VDD ... - 0.3 V to 10 V
Short-Circuit Duration

Transmitter Output

 IndefiniteReceiver Output... Indefinite
$V_{E E}$ 30 sec
SW Voltage .. -0.4 V to 36 V
FB Voltage -0.3 V to 2.5 V
Current into FB Pin ... $\pm 1 \mathrm{~mA}$
SHDN Voltage .. -0.3 V to 10 V
Operating Temperature Range
LTC2846C
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2846I $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{I N}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=\mathrm{V}_{I N}$, unless otherwise noted. (Notes 2, 3)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supplies | | | | | | | |
| ICC | VCC Supply Current (DCE Mode,
 All Digital Pins = GND or ViN) | RS530, RS530-A, X. 21 Modes, No Load RS530, RS530-A, X. 21 Modes, Full Load V. 35 Mode
 V. 28 Mode, No Load
 V. 28 Mode, Full Load
 No-Cable Mode | | | $\begin{gathered} 14 \\ 100 \\ 126 \\ 20 \\ 35 \\ 300 \end{gathered}$ | $\begin{aligned} & 130 \\ & 170 \\ & \\ & 75 \\ & 900 \end{aligned}$ | mA mA mA mA mA $\mu \mathrm{A}$ |
| P_{D} | Internal Power Dissipation (DCE Mode) | RS530, RS530-A, X. 21 Modes, Full Load V. 35 Mode, Full Load
 V. 28 Mode, Full Load | | | $\begin{aligned} & \hline 550 \\ & 775 \\ & 200 \\ & \hline \end{aligned}$ | | mW
 mW
 mW |
| V ${ }^{+}$ | Positive Charge Pump Output Voltage | V. 11 or V. 28 Mode, No Load
 V. 35 Mode
 V. 28 Mode, with Load
 V. 28 Mode, with Load, $I_{D D}=10 \mathrm{~mA}$ | $\stackrel{\bullet}{\bullet}$ | $\begin{aligned} & 8 \\ & 7 \\ & 8 \end{aligned}$ | $\begin{aligned} & 9.3 \\ & 8.0 \\ & 8.7 \\ & 6.5 \end{aligned}$ | | V V V V |

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{I N}=3.3 \mathrm{~V}, \mathrm{~V}_{\overline{\text { SHDN }}}=\mathrm{V}_{I N}$, unless otherwise noted. (Notes 2, 3)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V^{-}	Negative Charge Pump Output Voltage	V.28 Mode, No Load	-9.6		V	
		V.28 Mode, Full Load	\bullet	-7.5	-8.5	V
		V.35 Mode	-5.5	-6.5	V	
		RS530, RS530-A, X.21 Modes, Full Load	\bullet	-4.5	-6.0	V
$\mathrm{f}_{\text {OSC }}$	Charge Pump Oscillator Frequency			500	kHz	
t_{r}	Charge Pump Rise Time	No-Cable Mode/Power-Off to Normal Operation		2	ms	

Logic Inputs and Outputs

$\mathrm{V}_{\text {IH }}$	Logic Input High Voltage	$\mathrm{D} 1, \mathrm{D} 2, \mathrm{D} 3, \mathrm{M} 0, \mathrm{M} 1, \mathrm{M} 2, \mathrm{DCE} / \overline{\mathrm{DTE}}$ $\overline{S H D N}$	\bullet	$\begin{aligned} & 2.0 \\ & 2.4 \end{aligned}$			V
VIL	Logic Input Low Voltage	D1, D2, D3, M0, M1, M2, DCE/DTE $\widehat{S H D N}$	-			$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
I_{IN}	Logic Input Current	$\begin{aligned} & \text { D1, D2, D3 } \\ & \text { M0, M1, M2, DCE/DTE }=\text { GND } \\ & \text { M0, M1, M2, DCE/DTE }=V_{I N} \\ & \overline{S H D N}=\text { GND } \\ & \overline{\text { SHDN }}=3 \mathrm{~V} \end{aligned}$	\bullet	-30	-75 16	$\begin{gathered} \pm 10 \\ -120 \\ \pm 10 \\ \pm 0.1 \\ 32 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
V_{OH}	Output High Voltage	$\mathrm{I}_{0}=-3 \mathrm{~mA}$	\bullet	2.7	3		V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{0}=1.6 \mathrm{~mA}$	\bullet		0.2	0.4	V
IoSR	Output Short-Circuit Current	$\mathrm{OV} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {IN }}$	\bullet			± 50	mA
$\mathrm{I}_{\text {OZR }}$	Three-State Output Current	$\begin{aligned} & M 0=M 1=M 2=V_{I N}, V_{0}=G N D \\ & M 0=M 1=M 2=V_{I N}, V_{0}=V_{I N} \end{aligned}$	\bullet	-30	-85	$\begin{gathered} -160 \\ \pm 10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

V. 11 Driver

$\mathrm{V}_{\text {ODO }}$	Open Circuit Differential Output Voltage	$\mathrm{R}_{\mathrm{L}}=1.95 \mathrm{k}$ (Figure 1)	\bullet			± 5	V
$\mathrm{V}_{\text {ODL }}$	Loaded Differential Output Voltage	$\begin{aligned} & R_{L}=50 \Omega \text { (Figure 1) } \\ & R_{L}=50 \Omega \text { (Figure 1) } \end{aligned}$	\bullet	$\begin{gathered} 0.5 \mathrm{~V}_{\mathrm{ODO}} \\ \pm 2 \end{gathered}$		$0.67 \mathrm{~V}_{\text {ODO }}$	V
$\Delta V_{0 D}$	Change in Magnitude of Differential Output Voltage	$R_{L}=50 \Omega$ (Figure 1)	\bullet			0.2	V
V_{0}	Common Mode Output Voltage	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ (Figure 1)	\bullet			3	V
$\Delta V_{0 C}$	Change in Magnitude of Common Mode Output Voltage	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ (Figure 1)	\bullet			0.2	V
$\mathrm{I}_{\text {SS }}$	Short-Circuit Current	$V_{\text {OUT }}=\mathrm{GND}$				± 150	mA
102	Output Leakage Current	$\left\|\mathrm{V}_{\mathrm{A}}\right\|$ and $\left\|\mathrm{V}_{\mathrm{B}}\right\| \leq 0.25 \mathrm{~V}$, Power Off or No-Cable Mode or Driver Disabled	\bullet		± 1	± 100	$\mu \mathrm{A}$
$\mathrm{tr}_{\underline{\text { r }}} \mathrm{t}_{\mathrm{f}}$	Rise or Fall Time	(Figures 2, 13)	\bullet	2	15	25	ns
tpLH	Input to Output Rising	(Figures 2, 13)	\bullet	15	40	65	ns
$\mathrm{t}_{\text {PHL }}$	Input to Output Falling	(Figures 2, 13)	\bullet	15	40	65	ns
$\Delta \mathrm{t}$	Input to Output Difference, $\mid t_{\text {PLH }}$ - PPHL \mid	(Figures 2, 13)	\bullet	0	3	12	ns
$\mathrm{t}_{\text {SKEW }}$	Output to Output Skew	(Figures 2, 13)			3		ns

ELECTRICAL CHARACTERISTICS The odentes speefilicaions which hapylv ver the tull operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{I N}=3.3 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=\mathrm{V}_{\mathrm{IN}}$, unless otherwise noted. (Notes 2, 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V. 11 Receiver							
$\mathrm{V}_{\text {TH }}$	Input Threshold Voltage	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 7 \mathrm{~V}$	\bullet	-0.2		0.2	V
$\Delta \mathrm{V}_{\text {TH }}$	Input Hysteresis	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 7 \mathrm{~V}$	\bullet		15	40	mV
$\underline{\mathrm{R}_{\text {IN }}}$	Input Impedance	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 7 \mathrm{~V}$ (Figure 3)	\bullet	100	103		Ω
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise or Fall Time	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Figures 4, 14)			15		ns
tpLH	Input to Output Rising	$C_{L}=50 \mathrm{pF}$ (Figures 4, 14)	\bullet		50	90	ns
$\mathrm{t}_{\text {PHL }}$	Input to Output Falling	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Figures 4, 14)	\bullet		50	90	ns
$\Delta \mathrm{t}$	Input to Output Difference, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Figures 4, 14)	\bullet	0	4	25	ns

V. 35 Driver

$\mathrm{V}_{0 \mathrm{D}}$	Differential Output Voltage	Open Circuit, $\mathrm{R}_{\mathrm{L}}=1.95 \mathrm{k}$ (Figure 5) With Load, $-4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 4 \mathrm{~V}$ (Figure 6)	-	± 0.44	± 0.55	$\begin{aligned} & \pm 1.2 \\ & \pm 0.66 \end{aligned}$	V
$\mathrm{V}_{\text {OA }}, \mathrm{V}_{\text {OB }}$	Single-Ended Output Voltage	Open Circuit, $\mathrm{R}_{\mathrm{L}}=1.95 \mathrm{k}$ (Figure 5)	\bullet			± 1.2	V
V_{0}	Transmitter Output Offset	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ (Figure 5)	\bullet			± 0.6	V
$\mathrm{IOH}^{\text {O}}$	Transmitter Output High Current	$V_{A}, V_{B}=0 \mathrm{~V}$	\bullet	-9	-11	-13	mA
10 L	Transmitter Output Low Current	$V_{A}, V_{B}=0 \mathrm{~V}$	\bullet	9	11	13	mA
$\underline{102}$	Transmitter Output Leakage Current	$\left\|\mathrm{V}_{\mathrm{A}}\right\|$ and $\left\|\mathrm{V}_{\mathrm{B}}\right\| \leq 0.25 \mathrm{~V}$	\bullet		± 1	± 100	$\mu \mathrm{A}$
$\mathrm{R}_{0 \mathrm{D}}$	Transmitter Differential Mode Impedance		\bullet	50	100	150	Ω
$\mathrm{R}_{0 \mathrm{C}}$	Transmitter Common Mode Impedance	$-2 \mathrm{~V} \leq \mathrm{V}_{C M} \leq 2 \mathrm{~V}$ (Figure 7)		135	150	165	Ω
t_{r}, t_{f}	Rise or Fall Time	(Figures 8, 13)			5		ns
${ }_{\text {tPLH }}$	Input to Output	(Figures 8, 13)	\bullet	15	35	65	ns
$\mathrm{t}_{\text {PHL }}$	Input to Output	(Figures 8, 13)	\bullet	15	35	65	ns
$\Delta \mathrm{t}$	Input to Output Difference, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	(Figures 8, 13)	\bullet		0	16	ns
$\mathrm{t}_{\text {SKEW }}$	Output to Output Skew	(Figures 8, 13)			4		ns

V. 35 Receiver

$\mathrm{V}_{\text {TH }}$	Differential Receiver Input Threshold Voltage	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 2 \mathrm{~V}$ (Figure 9)	\bullet	-0.2		0.2	V
$\Delta \mathrm{V}_{\text {TH }}$	Receiver Input Hysteresis	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 2 \mathrm{~V}$ (Figure 9)	\bullet		15	40	mV
R	Receiver Differential Mode Impedance	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 2 \mathrm{~V}$	\bullet	90	103	110	Ω
$\mathrm{R}_{1 \mathrm{C}}$	Receiver Common Mode Impedance	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 2 \mathrm{~V}$ (Figure 10)		135	150	165	Ω
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise or Fall Time	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Figures 4, 14)			15		ns
tpLH	Input to Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Figures 4, 14)	\bullet		50	90	ns
$\mathrm{t}_{\text {PHL }}$	Input to Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Figures 4, 14)	\bullet		50	90	ns
$\Delta \mathrm{t}$	Input to Output Difference, $\mid \mathrm{t}_{\text {PLH }}-$ tpHL \mid	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Figures 4, 14)	\bullet	0	4	25	ns

V. 28 Driver

V_{0}	Output Voltage	Open Circuit $R_{L}=3 k$ (Figure 11)	\bullet	± 5	± 8.5	± 10	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\overline{\text { ISS }}$	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=$ GND	\bullet			± 150	mA
R_{02}	Power-Off Resistance	$-2 \mathrm{~V}<\mathrm{V}_{0}<2 \mathrm{~V}$, Power Off or No-Cable Mode	\bullet	300			Ω
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}}=7 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=0$ (Figures 11, 15)	\bullet	4		30	V/ $/ \mathrm{s}$
$t_{\text {PLH }}$	Input to Output	$R_{L}=3 k, C_{L}=2500 \mathrm{pF}$ (Figures 11, 15)	\bullet		1.5	2.5	$\mu \mathrm{S}$
$\mathrm{t}_{\text {PHL }}$	Input to Output	$R_{L}=3 k, C_{L}=2500 p F$ (Figures 11, 15)	\bullet		1.5	2.5	$\mu \mathrm{S}$

ELECTRIGL CHARACTERISTIS The \bullet denotes specifications which apply over the full operating

temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\overline{\text { SHDN }}}=\mathrm{V}_{\mathrm{IN}}$, unless otherwise noted. (Notes 2, 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V. 28 Receiver							
$\mathrm{V}_{\text {THL }}$	Input Low Threshold Voltage	(Figure 12)	\bullet			0.8	V
$\mathrm{V}_{\text {TLH }}$	Input High Threshold Voltage	(Figure 12)	\bullet	2			V
$\Delta \mathrm{V}_{\text {TH }}$	Receiver Input Hysteresis	(Figure 12)	\bullet	0	0.05	0.3	V
$\mathrm{R}_{\text {IN }}$	Receiver Input Impedance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq 15 \mathrm{~V}$	\bullet	3	5	7	k Ω
$\mathrm{tr}_{\text {r }}, \mathrm{t}_{\mathrm{f}}$	Rise or Fall Time	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Figures 12, 16)			15		ns
tPLH	Input to Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Figures 12, 16)	\bullet		60	300	ns
$\mathrm{t}_{\text {PHL }}$	Input to Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Figures 12, 16)	\bullet		160	300	ns
Boost Switching Regulator (Note 4)							
VIN	Operating Voltage			3	3.3	3.6	V
$\mathrm{V}_{\text {FB }}$	Feedback Voltage		\bullet	1.230	1.255	1.280	V
IFB	FB Pin Bias Current	$V_{\text {FB }}=1.255 \mathrm{~V}$	\bullet		120	360	nA
I_{0}	Quiescent Current Quiescent Current in Shutdown	$\begin{aligned} & \mathrm{V} \overline{\mathrm{SHDN}}=2.4 \mathrm{~V}, \text { Not Switching } \\ & \mathrm{V} \overline{\text { SHDN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V} \end{aligned}$			$\begin{gathered} 4.2 \\ 0.01 \end{gathered}$	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	mA
$\overline{\Delta V_{\text {FB }(L R)}}$	Reference Line Regulation	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3.6 \mathrm{~V}$			0.01	0.05	\%/V
\dagger	Switching Frequency		\bullet	0.85	1.2	1.6	MHz
$\overline{D C}_{\text {MAX }}$	Maximum Duty Cycle		\bullet	82	90		\%
LIM	Switch Current Limit	(Note 5)		1	1.2	2	A
$\mathrm{V}_{\text {SAT }}$	Switch V CESAT	$\mathrm{I}_{\text {SW }}=900 \mathrm{~mA}$			350		mV
LEAK	Switch Leakage Current	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$			0.01	1	$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.
Note 2: All currents into device pins are positive; all currents out of device are negative. All voltages are referenced to device ground unless otherwise specified.

Note 3: All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{VCC}}=\mathrm{C}_{\mathrm{VIN}}=10 \mu \mathrm{~F}$, $C_{V D D}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {VEE }}=3.3 \mu \mathrm{~F}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: The Boost Regulator is specified for $\mathrm{V}_{\mathbb{I N}}=3 \mathrm{~V}$ unless otherwise noted.
Note 5: Current limit guaranteed by design and/or correlation to static test.

TYPICAL PERFORMANCE CHARACTERISTICS

V. 11 Mode Icc vs Data Rate
 2846004

 V. 35 Mode Icc vs Data Rate

 V. 28 Mode Icc vs Data Rate

TYPICAL PGRFORMANCE CHARACTERISTICS

2846 G07

Boost Switching Regulator SHDN

Pin Current vs Voltage

2846 G08

Boost Switching Regulator Current Limit vs Duty Cycle

V. 28 Mode Icc vs Temperature

3846 G09

Boost Switching Regulator Oscillator Frequency vs Temperature

Efficiency vs Load Current

PIn functions

NC (Pin 1): No Connect.
PGND (Pin 2): Boost Switching Regulator Power Ground. Tie PGND to SGND.
V_{IN} (Pin 3): Input Supply Pin. Input supply to boost switching regulator. $3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 3.6 \mathrm{~V}$. Bypass with a $10 \mu \mathrm{~F}$ capacitor to ground.
$\overline{\text { SHDN }}$ (Pin 4): Boost Switching Regulator Shutdown Pin. Tie to 2.4 V or more to enable regulator. Ground to shut down.

C1- (Pin 5): Capacitor C1 Negative Terminal. Connect a $1 \mu \mathrm{~F}$ capacitor between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$.
C1+ (Pin 6): Capacitor C1 Positive Terminal. Connect a $1 \mu \mathrm{~F}$ capacitor between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$.
$V_{D D}$ (Pin 7): Generated Positive Supply Voltage for V.28. Connect a $1 \mu \mathrm{~F}$ capacitor to ground.
$V_{\text {CC }}$ (Pin 8): Input Supply Pin. Input supply to transceiver. $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$. Connect to output of switching regulator.
D1 (Pin 9): TTL Level Driver 1 Input.
D2 (Pin 10): TTL Level Driver 2 Input.
D3 (Pin 11): TTL Level Driver 3 Input.
R1 (Pin 12): CMOS Level Receiver 1 Output with Pull-Up to $\mathrm{V}_{\text {IN }}$ when Three-Stated.
R2 (Pin 13): CMOS Level Receiver 2 Output with Pull-Up to $\mathrm{V}_{\text {IN }}$ when Three-Stated.
R3 (Pin 14): CMOS Level Receiver 3 Output with Pull-Up to $\mathrm{V}_{\text {IN }}$ when Three-Stated.

MO (Pin 15): TTL Level Mode Select Input 0 with Pull-Up to $\mathrm{V}_{\text {IN }}$. See Table 1.
M1 (Pin 16): TTL Level Mode Select Input 1 with Pull-Up to $\mathrm{V}_{\text {IN }}$. See Table 1.
$V_{\text {IN }}$ (Pin 17): Input Supply Pin. Input supply to transceiver. $3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 3.6 \mathrm{~V}$. Connect to Pin 3 .

M2 (Pin 18): TTL Level Mode Select Input 2 with Pull-Up to V_{IN}. See Table 1.
DCE/DTE (Pin 19): TTL Level Mode Select Input with Pull-Up to $\mathrm{V}_{\text {IN }}$. See Table 1.
R3 B (Pin 20): Receiver 3 Noninverting Input.
R3 A (Pin 21): Receiver 3 Inverting Input.
R2 B (Pin 22): Receiver 2 Noninverting Input.
R2 A (Pin 23): Receiver 2 Inverting Input.
D3/R1 B (Pin 24): Receiver 1 Noninverting Input and Driver 3 Noninverting Output.
D3/R1 A (Pin 25): Receiver 1 Inverting Input and Driver 3 Inverting Output.
D2 B (Pin 26): Driver 2 Noninverting Output.
D2 A (Pin 27): Driver 2 Inverting Output.
D1 B (Pin 28): Driver 1 Noninverting Output.
D1 A (Pin 29): Driver 1 Inverting Output.
GND (Pin 30): Transceiver Ground.
$\mathbf{V E E}$ (Pin 31): Generated Negative Supply Voltage. Connect a $3.3 \mu \mathrm{~F}$ capacitor to GND.
C2 ${ }^{-}$(Pin 32): Capacitor C2 Negative Terminal. Connect a $1 \mu \mathrm{~F}$ capacitor between C^{+}and C^{-}.
C2 ${ }^{+}$(Pin 33): Capacitor C2 Positive Terminal. Connect a $1 \mu \mathrm{~F}$ capacitor between C^{+}and C^{-}.

SGND (Pin 34): Boost Switching Regulator Signal Ground. Tie PGND to SGND.

FB (Pin 35): Boost Switching Regulator Feedback Pin. Reference voltage is 1.255 V . Connect resistive divider tap here. Minimize trace area at FB.
SW (Pin 36): Boost Switching Regulator Switch Pin. Connect inductor/diode here. Minimize trace area at this pin to reduce EMI.

BLOCK DIAGRAm

TEST CIRCUITS

Figure 1. V. 11 Driver DC Test Circuit

Figure 3. Input Impedance Test Circuit

Figure 2. V. 11 Driver AC Test Circuit

Figure 4. V.11, V. 35 Receiver AC Test Circuit

Figure 5. V. 35 Driver Open-Circuit Test

Figure 6. V. 35 Driver Test Circuit

Figure 7. V. 35 Driver Common Mode Impedance Test Circuit

Figure 10. Receiver Common Mode Impedance Test Circuit

Figure 11. V. 28 Driver Test Circuit

Figure 12. V. 28 Receiver Test Circuit

mODE SELECTION

Table 1

Mode Name	M2	M1	M0			$\begin{aligned} & \text { D3 } \\ & \stackrel{\rightharpoonup}{I} \\ & \text { ö } \\ & \stackrel{y}{\mid c} \end{aligned}$	D1		D2		D3		$\begin{gathered} \text { R1 } \\ \text { (Note 2) } \end{gathered}$		$\begin{gathered} \text { R2 } \\ \text { (Note 2) } \\ \hline \end{gathered}$		$\begin{gathered} \text { R3 } \\ \text { (Note 2) } \end{gathered}$		$\begin{gathered} \text { R1 } \\ \text { (Note 3) } \end{gathered}$	$\begin{aligned} & \hline \text { R2,R3 } \\ & \text { (Note 3) } \end{aligned}$	$\begin{gathered} V_{D D} \\ \text { (Note 4) } \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}} \\ (\text { Note 5) } \end{gathered}$
						A	B	A	B	A	B	A	B	A	B	A	B					
Not Used (Default V.11)	0	0	0	0	TTL		X	V. 11	V. 11	V. 11	V. 11	Z	Z	V. 11	CMOS	CMOS	9.3 V	V				
RS530A	0	0	1	0	TTL	X	V. 11	V. 11	V. 11	V. 11	Z	Z	V. 11	CMOS	CMOS	9.3 V	-6V					
RS530	0	1	0	0	TTL	X	V. 11	V. 11	V. 11	V. 11	Z	Z	V. 11	CMOS	CMOS	9.3 V	-6V					
X. 21	0	1	1	0	TTL	X	V. 11	V. 11	V. 11	V. 11	Z	Z	V. 11	CMOS	CMOS	9.3 V	-6V					
V. 35	1	0	0	0	TTL	X	V. 35	V. 35	V. 35	V. 35	Z	Z	V. 35	CMOS	CMOS	8 V	-6.5V					
RS449/V. 36	1	0	1	0	TTL	X	V. 11	V. 11	V. 11	V. 11	Z	Z	V. 11	CMOS	CMOS	9.3 V	-6V					
V.28/RS232	1	1	0	0	TTL	X	V. 28	Z	V. 28	Z	Z	Z	V. 28	30k	V. 28	30k	V. 28	30k	CMOS	CMOS	8.7 V	-8.5V
No Cable	1	1	1	0	X	X	Z	Z	Z	Z	Z	Z	30k	30k	30k	30k	30k	30k	Z	Z	4.7 V	0.3 V
Not Used (Default V.11)	0	0	0	1	TTL	TTL	V. 11	30k	30k	V. 11	V. 11	V. 11	V. 11	Z	CMOS	9.3 V	-6V					
RS530A	0	0	1	1	TTL	TTL	V. 11	30k	30k	V. 11	V. 11	V. 11	V. 11	Z	CMOS	9.3 V	-6V					
RS530	0	1	0	1	TTL	TTL	V. 11	30k	30k	V. 11	V. 11	V. 11	V. 11	Z	CMOS	9.3 V	-6V					
X. 21	0	1	1	1	TTL	TTL	V. 11	30k	30k	V. 11	V. 11	V. 11	V. 11	Z	CMOS	9.3 V	-6V					
V. 35	1	0	0	1	TTL	TTL	V. 35	30k	30k	V. 35	V. 35	V. 35	V. 35	Z	CMOS	8 V	-6.5V					
RS449/V. 36	1	0	1	1	TTL	TTL	V. 11	30k	30k	V. 11	V. 11	V. 11	V. 11	Z	CMOS	9.3 V	-6V					
V.28/RS232	1	1	0	1	TTL	TTL	V. 28	Z	V. 28	Z	V. 28	Z	30k	30k	V. 28	30k	V. 28	30k	Z	CMOS	8.7 V	-8.5V
No Cable	1	1	1	1	X	X	Z	Z	Z	Z	Z	Z	30k	30k	30k	30k	30k	30k	Z	Z	4.7 V	0.3 V

Note 1: Driver inputs are TTL level compatible.
Note 2: Unused receiver inputs are terminated with 30k to ground. In addition, R2 and R3 are always terminated by a 103Ω differential impedence (see Block Diagram on page 8).
Note 3: Receiver Outputs are CMOS level compatible and have a weak pull up to $\mathrm{V}_{\text {IN }}$ when Z.

Note 4: $\mathrm{V}_{D D}$ values shown are typical values for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{I N}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with LTC2846 under full load for each mode.
Note 5: $\mathrm{V}_{\text {EE }}$ values shown are typical values for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with LTC2846 under full load for each mode.

SWITCHInG TIm€ WAVЄFORmS

Figure 13. V.11, V. 35 Driver Propagation Delays

Figure 14. V.11, V. 35 Receiver Propagation Delays

SWITCHInG TIm€ WAVЄfORms

Figure 15. V. 28 Driver Propagation Delays

Figure 16. V. 28 Receiver Propagation Delays

APPLICATIONS InFORMATION

Overview

The LTC2846 consists of a boost switching regulator, a charge pump and a 3-driver/3-receiver transceiver. The boost switching regulator generates a $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ from the 3.3V input at $\mathrm{V}_{\text {IN }}$ to power the charge pump and transceiver. The charge pump generates the V_{DD} and V_{EE} supplies. The LTC2846's $V_{C C}$, $V_{D D}$ and $V_{E E}$ supplies can be used to power a companion chip like the LTC2844 or LTC2845. The receiver outputs are driven between OV and $V_{\text {IN }}$ to interface with 3.3 V logic.

The LTC2846 and LTC2844 form a complete softwareselectable DTE or DCE interface port that supports the RS232, RS449, EIA530, EIA530-A, V.35, V. 36 and X. 21 protocols. Cable termination is provided on-chip, eliminating the need for discrete termination designs.
A complete DCE-to-DTE interface operating in EIA530 mode is shown in Figure 17. The LTC2846 half of each port is used to generate and appropriately terminate the clock and data signals. The LTC2844 is used to generate the control signals along with LL (Local Loopback).

Mode Selection

The interface protocol is selected using the mode select pins M0, M1 and M2 (see Table 1).
For example, if the port is configured as a V. 35 interface, the mode selection pins should be $\mathrm{M} 2=1, \mathrm{M1}=0, \mathrm{M} 0=0$. For the control signals, the drivers and receivers will operate in V. 28 (RS232) electrical mode. For the clock and data signals, the drivers and receivers will operate in V. 35 electrical mode. The DCE/DTE pin will configure the port for DCE mode when high, and DTE when low.

The interface protocol may be selected simply by plugging the appropriate interface cable into the connector. The mode pins are routed to the connector and are left unconnected (1) or wired to ground (0) in the cable as shown in Figure 18. The internal pull-up current sources will ensure a binary 1 when a pin is left unconnected.
The mode selection may also be accomplished by using jumpers to connect the mode pins to ground or $\mathrm{V}_{\text {IN }}$.

APPLICATIONS INFORMATION

Figure 17. Complete Multiprotocol Interface in EIA530 Mode

When the cable is removed, leaving all mode pins unconnected, the LTC2846/LTC2844 will enter no-cable mode. In this mode the LTC2846/LTC2844 supply current drops to less than $900 \mu \mathrm{~A}$ and the LTC2846/LTC2844 driver outputs are forced into a high impedance state. At the same time, the R2 and R3 receivers of the LTC2846 are differentially terminated with 103Ω and the other receivers on
the LTC2846 and LTC2844 are terminated with $30 \mathrm{k} \Omega$ to ground.

Cable Termination

Traditional implementations used expensive relays to switch resistors or required the user to change termination modules every time a new interface standard was

APPLICATIONS INFORMATION

Figure 18. Single Port DCE V. 35 Mode Selection in the Cable
selected. Switching the terminations with FETs is difficult because the FETs must remain off when the signal voltage is beyond the supply voltage. Alternatively, custom cables may contain termination in the cable head or route signals to various terminations on the board.
The LTC2846/LTC2844 chip set solves the cable termination switching problem by automatically providing the appropriate termination and switching on-chip for the V. 10 (RS423), V. 11 (RS422), V. 28 (RS232) and V. 35 electrical protocols.

V. 10 (RS423) Interface

All V. 10 drivers and receivers necessary for the RS449, EIA530, EIA530-A, V. 36 and X. 21 protocols are implemented on the LTC2844 or LTC2845.
A typical V. 10 unbalanced interface is shown in Figure 19. A V. 10 single-ended generator with output A and ground C is connected to a differential receiver with input A^{\prime} connected to A, and ground C^{\prime} connected via the signal return to ground C. Usually, no cable termination is required for V. 10 interfaces, but the receiver inputs must be compliant with the impedance curve shown in Figure 20.

The V. 10 receiver configuration in the LTC2844 and LTC2845 is shown in Figure 21. In V. 10 mode, switch S3 inside the LTC2844 and LTC2845 is turned off. The noninverting input is disconnected inside the LTC2844

Figure 19. Typical V. 10 Interface

Figure 20. V. 10 Receiver Input Impedance

APPLICATIONS INFORMATION

Figure 21. V. 10 Receiver Configuration

Figure 22. Typical V. 11 Interface
and LTC2845 receivers and connected to ground. The cable termination is then the 30 k input impedance to ground of the LTC2844 and LTC2845 V .10 receiver.

V. 11 (RS422) Interface

A typical V. 11 balanced interface is shown in Figure 22. A V. 11 differential generator with outputs A and B and ground C is connected to a differential receiver with input A^{\prime} connected to A, input B^{\prime} connected to B, and ground C^{\prime} connected via the signal return to ground C. The V. 11 interface has a differential termination at the receiver end that has a minimum value of 100Ω. The termination resistor is optional in the V. 11 specification, but for the high speed clock and data lines, the termination is essential to prevent reflections from corrupting the data. The receiver inputs must also be compliant with the impedance curve shown in Figure 20.
In V. 11 mode, all switches are off except S1 of the LTC2846's receivers which connects a 103Ω differential

[^0]

Figure 23. V. 11 Receiver Configuration
termination impedance to the cable as shown in Figure 231. The LTC2844 and LTC2845 only handle control signals, so no termination other than their V. 11 receivers' 30 k input impedance is necessary.

V. 28 (RS232) Interface

A typical V. 28 unbalanced interface is shown in Figure 24. A V. 28 single-ended generator with output A and ground C is connected to a single-ended receiver with input A' connected to A and ground C^{\prime} connected via the signal return to ground C .

Figure 24. Typical V. 28 Interface

Figure 25. V. 28 Receiver Configuration

APPLICATIONS INFORMATION

In V. 28 mode, S3 is closed inside the LTC2846/LTC2844 which connects a 6 k (R 8) impedance to ground in parallel with 20k (R5) plus 10k (R6) for a combined impedance of 5 k as shown in Figure 25. Proper termination is only provided when the B input of the receivers is floating, since S1 of the LTC2846's R2 and R3 receivers remains on in V. 28 mode ${ }^{1}$. The noninverting input is disconnected inside the LTC2846/LTC2844 receiver and connected to a TTL level reference voltage to give a 1.4 V receiver trip point.

V. 35 Interface

A typical V. 35 balanced interface is shown in Figure 26. A $V .35$ differential generator with outputs A and B and ground C is connected to a differential receiver with input A^{\prime} connected to A, input B^{\prime} connected to B, and ground C^{\prime} connected via the signal return to ground C. The V. 35 interface requires a T or delta network termination at the receiver end and the generator end. The receiver differential impedance measured at the connector must be

Figure 26. Typical V. 35 Interface

Figure 27. V. 35 Receiver Configuration
$100 \Omega \pm 10 \Omega$, and the impedance between shorted terminals (A^{\prime} and B^{\prime}) and ground (C^{\prime}) must be $150 \Omega \pm 15 \Omega$.
In V. 35 mode, both switches S1 and S2 inside the LTC2846 are on, connecting a T network impedance as shown in Figure 27. The 30k input impedance of the receiver is placed in parallel with the T network termination, but does not affect the overall input impedance significantly.
The generator differential impedance must be 50Ω to 150Ω and the impedance between shorted terminals (A and B) and ground (C) must be $150 \Omega \pm 15 \Omega$.

No-Cable Mode

The no-cable mode ($\mathrm{M} 0=\mathrm{M} 1=\mathrm{M} 2=1$) is intended for the case when the cable is disconnected from the connector. The charge pump, bias circuitry, drivers and receivers are turned off, the driver outputs are forced into a high impedance state, and the V_{Cc} supply current to the transceiver drops to less than $300 \mu \mathrm{~A}$ while its V_{IN} supply current drops to less than $10 \mu A$. Note that the LTC2846's $R 2$ and $R 3$ receivers continue to be terminated by a 103Ω differential impedance.

Charge Pump

The LTC2846 uses an internal capacitive charge pump to generate V_{DD} and $\mathrm{V}_{\text {EE }}$ as shown in Figure 28. A voltage doubler generates about 8 V on $\mathrm{V}_{D D}$ and a voltage inverter generates about -7.5 V on V_{EE}. Three $1 \mu \mathrm{~F}$ surface mounted tantalum or ceramic capacitors are required for $\mathrm{C} 1, \mathrm{C} 2$ and C 3 . The $\mathrm{V}_{\text {EE }}$ capacitor $\mathrm{C4}$ should be a minimum of $3.3 \mu \mathrm{~F}$. All capacitors are 16 V and should be placed as close as possible to the LTC2846 to reduce EMI.

Figure 28. Charge Pump

APPLICATIONS InFORMATION

Switching Regulator

The circuit as shown in Figure 29 can provide up to 480 mA at 5 V to drive the LTC2846's transceiver as well as its companion chip in the DTE-DCE interface. In its shut down mode with the SHDN pin at OV, the boost switching regulator draws less than $10 \mu \mathrm{~A}$.
Ferrite core inductors should be used to obtain the best efficiency, as core losses at 1.2 MHz are much lower for ferrite cores than for cheaper powdered-iron types. Choose an inductor that can handle at least 1A without saturating, and ensure that the inductor has a low DCR (copper wire resistance) to minimize $I^{2} R$ power losses.
Use low ESR capacitors for the output to minimize output ripple voltage. Multilayer ceramic capacitors are an excellent choice, as they have extremely low ESR and are available in very small packages. Ceramic capacitors also make a good choice for the input decoupling capacitor, and should be placed as close as possible to the switching regulator. Solid tantalum or OS-CON capacitors can be used but they will occupy more board area than a ceramic and will have a higher ESR.

A Schottky diode is recommended for use with the switching regulator. The ON Semiconductor MBR0520 is a very good choice.
To set the output voltage, select the values of R1 and R2 according to the following equation.
R1 = R2[(5V/1.255V) - 1]

A good value for R 2 is 4.3 k which sets the current in the resistor divider chain to $1.255 \mathrm{~V} / 4.3 \mathrm{k}=292 \mu \mathrm{~A}$.

Figure 29. Boost Switching Regulator

The switching regulator has a switch current limit of 1 A . This current limit protects the switch as well as the external components connected to the switching regulator.
The high speed operation of the boost switching regulator demands careful attention to board layout. Figure 30 shows the recommended component placement.

Receiver Fail-Safe

All LTC2846/LTC2844 receivers feature fail-safe operation in all modes. If the receiver inputs are left floating or are shorted together by a termination resistor, the receiver output will always be forced to a logic high.

DTE vs DCE Operation

The DCE/DTE pin acts as an enable for Driver 3/Receiver 1 in the LTC2846, and Driver 3/Receiver 1 and Receiver 4/ Driver 4 in the LTC2844.

The LTC2846/LTC2844 can be configured for either DTE or DCE operation in one of two ways: a dedicated DTE or DCE port with a connector of appropriate gender or a port with one connector that can be configured for DTE or DCE operation by rerouting the signals to the LTC2846/LTC2844 using a dedicated DTE cable or dedicated DCE cable.
A dedicated DTE port using a DB-25 male connector is shown in Figure 31. The interface mode is selected by logic outputs from the controller or from jumpers to either $V_{\text {IN }}$ or GND on the mode select pins. A dedicated DCE port using a DB-25 female connector is shown in Figure 32.

Figure 30. Suggested Layout

TYPICAL APPLICATIONS

A port with one DB-25 connector, that can be configured for either DTE or DCE operation is shown in Figure 33. The configuration requires separate cables for proper signal routing in DTE or DCE operation. For example, in DTE mode, the TXD signal is routed to Pins 2 and 14 via the LTC2846's Driver 1. In DCE mode, Driver 1 now routes the RXD signal to Pins 2 and 14.

Multiprotocol Interface with RL, LL, TM and a DB-25 Connector

If the RL, LL and TM signals are implemented, there are not enough drivers and receivers available in the LTC2846/ LTC2844. In Figure 34, the required control signals are handled by the LTC2845. The LTC2845 has an additional single-ended driver/receiver pair that can handle two more optional control signals such as TM and RL.

Cable-Selectable Multiprotocol Interface

A cable-selectable multiprotocol DTE/DCE interface is shown in Figure 35. The select lines M0, M1 and DCE/DTE are brought out to the connector. The mode is selected by the cable by wiring M0 (connector Pin 18) and M1 (connector Pin 21) and DCE/DTE (connector Pin 25) to ground (connector Pin 7) or letting them float. If M0, M1 or DCE/DTE is floating, internal pull-up current sources will pull the signals to $\mathrm{V}_{\mathbf{I N}}$. The select bit M 2 is floating, and therefore, internally pulled high. When the cable is pulled out, the interface will go into the no-cable mode.

Power Dissipation Calculations

The LTC2846 takes in a 3.3V supply and produces a 5 V VCC with an internal switcher at approximately 80% efficiency. $V_{D D}$ and $V_{E E}$ are in turn produced from V_{CC} with an internal charge pump at approximately 80% and 70% efficiency respectively. Current drawn internally from $V_{D D}$ or $V_{E E}$ translates directly into a higher ICC. The LTC2846 dissipates power according to the equation:

$$
\begin{align*}
P_{\text {DISS(2846) }} & =125 \% \bullet\left(V_{C C} \bullet I_{C C}\right) \\
& -N_{D} \bullet P_{R T}+N_{R} \bullet P_{R T} \tag{1}
\end{align*}
$$

$P_{\text {RT }}$ refers to the power dissipated by each driver in a receiver termination on the far end of the cable while N_{D} is the number of drivers. Conversely, current from the far end drivers dissipate power $N_{R} \cdot P_{R T}$ in the internal receiver termination where N_{R} is the number of receivers.

LTC2846 Power Dissipation

Consider an LTC2846 in X.21, DCE mode (three V. 11 drivers and two V. 11 receivers). From the Electrical Characteristics Table, $I_{\text {CC }}$ at no load $=14 \mathrm{~mA}, I_{\text {cc }}$ at full load $=$ 100 mA . Each receiver termination is $100 \Omega\left(\mathrm{R}_{\mathrm{RT}}\right)$ and current going into each receiver termination $=(100 \mathrm{~mA}-$ $14 \mathrm{~mA}) / 3=28.7 \mathrm{~mA}\left(\mathrm{l}_{\mathrm{RT}}\right)$.

$$
\begin{equation*}
P_{R T}=\left(I_{R T}\right)^{2} \cdot R_{R T} \tag{2}
\end{equation*}
$$

From Equation (2), $\mathrm{P}_{\mathrm{RT}}=82.4 \mathrm{~mW}$ and from Equation (1), DC power dissipation $\mathrm{P}_{\text {DISS }(2846)}=125 \% \cdot(5 \mathrm{~V} \cdot 100 \mathrm{~mA})$ $-3 \cdot 82.4 \mathrm{~mW}+2 \cdot 82.4 \mathrm{~mW}=543 \mathrm{~mW}$.

Consider the above example running at a baud rate of 10MBd. From the Typical Characteristic for "V. 11 Mode $I_{C C}$ vs Data Rate," the $I_{C C}$ at 10 MBd is 160 mA . $I_{C C}$ increases with baud rate due to driver transient dissipation. From Equation (1), AC power dissipation PDISS(2846) $=125 \% \cdot(5 \mathrm{~V} \cdot 160 \mathrm{~mA})-3 \cdot 82.4 \mathrm{~mW}+2 \cdot 82.4 \mathrm{~mW}=$ 918mW.

LTC2845 Power Dissipation

If a LTC2845 is used to form a complete DCE port with the LTC2846, it will be running in the X. 21 mode (three V. 11 drivers and two V. 10 drivers, two V. 11 receivers and two V. 10 receivers, all with internal 30 k termination). In addition to $V_{C C}$, it uses the $V_{D D}$ and $V_{E E}$ outputs from the LTC2846. Negligible power is dissipated in the large internal receiver termination of the LTC2845 so the $N_{R} \bullet$ $P_{R T}$ term of Equation (1) can be omitted. Thus Equation (1) is modified as follows:

$$
P_{D I S S}(2845)=\left(V_{C C} \bullet I_{C C}\right)+\left(V_{D D} \bullet I_{D D}\right)
$$

TYPICAL APPLICATIONS

$$
\begin{equation*}
+\left(V_{E E} \cdot I_{E E}\right)-N_{D} \cdot P_{R T} \tag{3}
\end{equation*}
$$

Since power is drawn from the supplies of the LTC2846 $\left(V_{C C}, V_{D D}\right.$ and $\left.V_{E E}\right)$ at less than 100% efficiency, the LTC2846 dissipates extra power to source $\mathrm{P}_{\text {DISS(2845) }}$ and $P_{\text {RT }}$:

$$
\begin{align*}
\mathrm{P}_{\mathrm{DISS} 1(2846)} & =125 \% \cdot\left(\mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{I}_{\mathrm{CC}}\right)+125 \% \cdot 125 \% \\
& \bullet\left(\mathrm{~V}_{\mathrm{DD}} \cdot \mathrm{I}_{\mathrm{DD}}\right)+125 \% \cdot 143 \% \cdot\left(\mathrm{~V}_{\mathrm{EE}} \cdot \mathrm{I}_{\mathrm{EE}}\right) \\
& -\mathrm{P}_{\mathrm{DISS}}(2845)-\mathrm{N}_{\mathrm{D}} \cdot \mathrm{P}_{\mathrm{RT}} \\
& =25 \% \cdot\left(\mathrm{~V}_{\mathrm{CC}} \cdot \mathrm{I}_{\mathrm{CC}}\right)+56 \% \bullet\left(\mathrm{~V}_{\mathrm{DD}} \cdot \mathrm{I}_{\mathrm{DD}}\right) \\
& +79 \% \cdot\left(\mathrm{~V}_{\mathrm{EE}} \cdot \mathrm{I}_{\mathrm{EE}}\right) \tag{4}
\end{align*}
$$

From the LTC2845 Electrical Characteristics Table, for $V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5.5 \mathrm{~V}$:

$I_{C C}$ at no load	2.7 mA
$I_{C C}$ at full load with all drivers high	110 mA
$I_{\text {EE }}$ at no load	2 mA
$I_{E E}$ at full load with both V.10 drivers low	23 mA
$I_{D D}$ at no load	0.3 mA
$I_{D D}$ at full load	0.3 mA

The $V .11$ drivers are driven between $V_{C C}$ and GND while the V .10 drivers are driven between V_{CC} and V_{EE}. Assume that the V. 11 driver outputs are high and V. 10 driver outputs low. Current going into each 100Ω V. 11 receiver termination $=(110 \mathrm{~mA}-2.7 \mathrm{~mA})-23 \mathrm{~mA} / 3=28.1 \mathrm{~mA}$. Current going into each $450 \Omega \mathrm{~V} .10$ receiver termination $=$ $23 \mathrm{~mA}-2 \mathrm{~mA} / 2=10.5 \mathrm{~mA}$. From Equation (2), V. $11 \mathrm{P}_{\mathrm{RT}}=$

79 mW and $\mathrm{V} .10 \mathrm{P}_{\mathrm{RT}}=49.6 \mathrm{~mW}$.
From Equation (3), $\mathrm{P}_{\mathrm{DISS}(2845)}=5 \mathrm{~V} \bullet(110 \mathrm{~mA}-23 \mathrm{~mA})+$ $(8 \mathrm{~V} \cdot 0.3 \mathrm{~mA})+5.5 \mathrm{~V} \cdot 23 \mathrm{~mA}-3 \cdot 79 \mathrm{~mW}-2 \cdot 49.6 \mathrm{~mW}=$ 228 mW . Since the LTC2845 runs slow control signals, the AC power dissipation can be assumed to be equal to the DC power dissipation.
The extra power dissipated in the LTC2846 due to LTC2845 is given by Equation(4), $\mathrm{P}_{\mathrm{DISS1}}(2846)=25 \% \bullet(5 \mathrm{~V} \bullet 87 \mathrm{~mA})$ $+56 \% \cdot(8 \mathrm{~V} \cdot 0.3 \mathrm{~mA})+79 \% \cdot(5.5 \mathrm{~V} \cdot 23 \mathrm{~mA})=210 \mathrm{~mW}$. So for an X. 21 DCE port running at 10MBd, the LTC2846 dissipates approximately $918 \mathrm{~mW}+210 \mathrm{~mW}=1128 \mathrm{~mW}$ while the LTC2845 dissipates 228 mW .

Compliance Testing

The LTC2846/LTC2844 and LTC2846/LTC2845 chipsets have been tested by TUV Rheinland of North America Inc. and passed the NET1, NET2 and TBR2 requirements. Copies of the test reports are available from LTC or TUV Rheinland of North America Inc.

The title of the reports are Test Report No.: TBR2/051501/02 and TBR2/050101/02

The address of TUV Rheinland of North America Inc. is:
TUV Rheinland of North America Inc. 1775, Old Highway 8 NW, Suite 107
St. Paul, MN 55112
Tel. (651) 639-0775
Fax (651) 639-0873

TYPICAL APPLICATIONS

Figure 31. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector

TYPICAL APPLICATIONS

Figure 32. Controller-Selectable DCE Port with DB-25 Connector

TYPICAL APPLICATIONS

Figure 33. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector

TYPICAL APPLICATIONS

Figure 34. Controller-Selectable Multiprotocol DTE/DCE Port with RL, LL, TM and DB-25 Connector

TYPICAL APPLICATIONS

Figure 35. Cable-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector

reLated parts

PART NUMBER	DESCRIPTION	COMMENTS
LTC1321	Dual RS232/RS485 Transceiver	Two RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs
LTC1334	Single 5V RS232/RS485 Multiprotocol Transceiver	Two RS232 Driver/Receiver or Four RS232 Driver/Receiver Pairs
LTC1343	Software-Selectable Multiprotocol Transceiver	4-Driver/4-Receiver for Data and Clock Signals
LTC1344A	Software-Selectable Cable Terminator	Perfect for Terminating the LTC1543 (Not Needed with LTC1546)
LTC1345	Single Supply V.35 Transceiver	3-Driver/3-Receiver for Data and Clock Signals
LTC1346A	Dual Supply V.35 Transceiver	3-Driver/3-Receiver for Data and Clock Signals
LTC1543	Software-Selectable Multiprotocol Transceiver	Terminated with LTC1344A for Data and Clock Signals, Companion to LTC1544 or LTC1545 for Control Signals
LTC1544	Software-Selectable Multiprotocol Transceiver	Companion to LTC1546 or LTC1543 for Control Signals Including LL
LTC1545	Software-Selectable Multiprotocol Transceiver	5-Driver/5-Receiver Companion to LTC1546 or LTC1543 for Control Signals Including LL, TM and RL
LTC1546	Software-Selectable Multiprotocol Transceiver	3-Driver/3-Receiver with Termination for Data and Clock Signals
LTC2844	3.3V Software-Selectable Multiprotocol Transceiver	Companion to LTC2846 for Control Signals Including LL
LTC2845	3.3V Software-Selectable Multiprotocol Transceiver	5-Driver/5-Receiver Companion to LTC2846 for Control Signals Including LL, TM and RL

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-232 Interface IC category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
062191EB 713266CB MAX3250EAIT MAX13223EEUP+T SP508EEF-L MAX3218EAP+T MAX561CAI+T MAX3218CAP+T MAX218EAP+T MAX3232ECUP+G071 MAX3228AEEWV+T LT1180AISW\#TRPBF MAX3386ECPWR TRSF3223ECPWR ADM202EARWZ-REEL ICL3232IVZ-T7A ICL3232IBZ-T ICL3222EIBZ-T 5962-7802004MEA 5962-89877012C AZ75232GTR-G1 AZ75232GSTR-G1 TRS222IDWR TRS3223ECDWR MAX563CPN+ MAX491EESD+ MAX489ESD+ MAX489CPD+ MAX491ECSD+ MAX487EESA+ MAX3389ECUG MAX3318EEAP MAX3244EEUI+ MAX3232ECUE+ MAX3225EETP+ MAX3223EAPT MAX3222ECUP+T MAX3221EUE+T MAX3221EUE+ MAX3190EEUTT MAX251CSD+T MAX248CQH+D MAX3245CWI+ MAX3241CUI+T MAX221EEUE+ MAX3232EEWET MAX3232EEUET MAX3232ECPE+ MAX3232CPW MAX3225EAAP+

[^0]: ${ }^{1}$ Actually, there is no switch S1 in receivers R2 and R3. However, for simplicity, all termination networks on the LTC2846 can be treated identically if it is assumed that an S1 switch exists and is always closed on the R2 and R3 receivers.

