LTC 1044A
12 V CMOS Voltage Converter

feATURES

- 1.5 V to 12 V Operating Supply Voltage Range
- 13V Absolute Maximum Rating
- 200uA Maximum No Load Supply Current at 5 V
- Boost Pin (Pin 1) for Higher Switching Frequency
- 97\% Minimum Open Circuit Voltage Conversion Efficiency
- 95\% Minimum Power Conversion Efficiency
- $\mathrm{I}_{\mathrm{S}}=1.5 \mu \mathrm{~A}$ with 5 V Supply When OSC Pin $=0 \mathrm{~V}$ or V^{+}
- High Voltage Upgrade to ICL7660/LTC1044

APPLICATIONS

- Conversion of 10 V to $\pm 10 \mathrm{~V}$ Supplies
- Conversion of 5 V to $\pm 5 \mathrm{~V}$ Supplies
- Precise Voltage Division: $\mathrm{V}_{\text {Out }}=\mathrm{V}_{\mathrm{IN}} / 2 \pm 20 \mathrm{ppm}$
- Voltage Multiplication: $\mathrm{V}_{\text {OUt }}= \pm \mathrm{n} \mathrm{V}_{\text {IN }}$
- Supply Splitter: $V_{\text {OUT }}= \pm V_{S} / 2$
- Automotive Applications
- Battery Systems with 9V Wall Adapters/Chargers

DESCRIPTIOn

The LTC ${ }^{-}$1044A is a monolithic CMOS switched-capacitor voltage converter. It plugs in for ICL7660/LTC1044 in applications where higher input voltage (up to 12V) is needed. The LTC1044A provides several conversion functions without using inductors. The input voltage can be inverted ($\mathrm{V}_{\text {OUT }}=-\mathrm{V}_{\text {IN }}$), doubled ($\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {IN }}$), divided ($\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }} / 2$) or multiplied $\left(\mathrm{V}_{\text {OUT }}= \pm n \mathrm{~V}_{\text {IN }}\right)$.
To optimize performance in specific applications, a boost function is available to raise the internal oscillator frequency by a factor of seven. Smaller external capacitors can be used in higher frequency operation to save board space. The internal oscillator can also be disabled to save power. The supply current drops to $1.5 \mu \mathrm{~A}$ at 5 V input when the OSC pin is tied to GND or V^{+}.
$\boldsymbol{\mathcal { O }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

Generating -10V from 10V

Output Voltage vs Load Current, $\mathbf{V}^{+}=\mathbf{1 0 V}$

ABSOLUTG MAXIMUM RATINGS

(Note 1)
Supply Voltage.. 13 V
Input Voltage on Pins 1, 6 and 7
(Note 2)
................................ $-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{+}+0.3 \mathrm{~V}$
Operating Temperature Range LTC1044AC
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1044AI $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Current into Pin 6...20رA
Output Short-Circuit Duration
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$\mathrm{V}^{+} \leq 6.5 \mathrm{~V}$ \qquad Continuous

PIn CONFIGURATIOn

Consult factory for military grade parts

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC1044ACN8\#PBF	LTC1044ACN8\#TRPBF	LTC1044 ACN8	8 -Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1044AIN8\#PBF	LTC1044AIN8\#TRPBF	LTC1044 AIN8	8 -Lead Plastic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1044ACS8\#PBF	LTC1044ACS8\#TRPBF	$1044 A$	8 -Lead Plastic SO	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1044AIS8\#PBF	LTC1044AIS8\#TRPBF	1044 AI	8 -Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on nonstandard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The o denotes the speciifications which apply vere the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{C}_{0 S \mathrm{C}}=0 \mathrm{pF}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LTC1044AC			LTC1044AI			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
I_{S}	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$, Pins 1 and 7, No Connection $R_{L}=\infty$, Pins 1 and 7, No Connection, $\mathrm{V}^{+}=3 \mathrm{~V}$			$\begin{aligned} & 60 \\ & 15 \end{aligned}$	200		$\begin{aligned} & 60 \\ & 15 \end{aligned}$	200	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Minimum Supply Voltage	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	\bullet	1.5			1.5			V
	Maximum Supply Voltage	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	\bullet			12			12	V
ROUT	Output Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{f}_{\mathrm{OSC}}=5 \mathrm{kHz} \\ & \mathrm{~V}^{+}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=3 \mathrm{~mA}, \mathrm{f}_{\mathrm{OSC}}=1 \mathrm{kHz} \end{aligned}$	\bullet			$\begin{aligned} & 100 \\ & 120 \\ & 310 \end{aligned}$			$\begin{aligned} & 100 \\ & 130 \\ & 325 \end{aligned}$	Ω Ω Ω
$\mathrm{f}_{\text {OSC }}$	Oscillator Frequency	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V},(\text { Note } 3) \\ & \mathrm{V}^{+}=2 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 5 \\ & 1 \end{aligned}$			$\begin{aligned} & 5 \\ & 1 \end{aligned}$			$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
PEFF	Power Efficiency	$\mathrm{RL}=5 \mathrm{k}, \mathrm{f}_{\mathrm{OSC}}=5 \mathrm{kHz}$		95	98		95	98		\%
	Voltage Conversion Efficiency	$\mathrm{RL}=\infty$		97	99.9		97	99.9		\%
	Oscillator Sink or Source Current	$\begin{aligned} & V_{\text {OSC }}=0 \mathrm{~V} \text { or } \mathrm{V}^{+} \\ & \text {Pin } 1(\text { BOOST })=0 \mathrm{~V} \\ & \text { Pin } 1 \text { (BOOST) }=\mathrm{V}^{+} \end{aligned}$	\bullet			$\begin{gathered} 3 \\ 20 \end{gathered}$			$\begin{gathered} 3 \\ 20 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Connecting any input terminal to voltages greater than V^{+}or less than ground may cause destructive latchup. It is recommended that no
inputs from sources operating from external supplies be applied prior to power-up of the LTC1044A.
Note 3: $\mathrm{f}_{\mathrm{OSC}}$ is tested with $\mathrm{C}_{O S C}=100 \mathrm{pF}$ to minimize the effects of test fixture capacitance loading. The OpF frequency is correlated to this 100 pF test point, and is intended to simulate the capacitance at pin 7 when the device is plugged into a test socket and no external capacitor is used.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

104

Output Resistance vs Temperature

Oscillator Frequency vs Supply Voltage

$\circ{ }^{\circ} \mathrm{C}$

Output Voltage vs Load Current, $\mathrm{V}^{+}=5 \mathrm{~V}$

Oscillator Frequency as a
Function of $\mathrm{Cosc}, \mathrm{V}^{+}=5 \mathrm{~V}$

1044a G14
Oscillator Frequency vs Temperature

TEST CIRCUIT

APPLICATIONS INFORMATION

Theory of Operation

To understand the theory of operation of the LTC1044A, a review of a basic switched-capacitor building block is helpful.
In Figure 1, when the switch is in the left position, capacitor C 1 will charge to voltage V1. The total charge on C 1 will be $q 1=$ C1V1. The switch then moves to the right, discharging C 1 to voltage V 2 . After this discharge time, the charge on C 1 is $\mathrm{q} 2=\mathrm{C1V} 2$. Note that charge has been transferred from the source, V1, to the output, V2. The amount of charge transferred is:

$$
\Delta q=q 1-q 2=C 1(V 1-V 2)
$$

If the switch is cycled f times per second, the charge transfer per unit time (i.e., current) is:

$$
\mathrm{I}=\mathrm{f} \cdot \Delta \mathrm{q}=\mathrm{f} \cdot \mathrm{C} 1(\mathrm{~V} 1-\mathrm{V} 2)
$$

Figure 1. Switched-Capacitor Building Block
Rewriting in terms of voltage and impedance equivalence,

$$
I=\frac{V 1-V 2}{\frac{1}{(f \bullet C 1)}}=\frac{V 1-V 2}{R_{\text {EQUIV }}}
$$

A new variable, $\mathrm{R}_{\text {EQUIV }}$, has been defined such that $\mathrm{R}_{\text {EQUIV }}$ $=1 /(f \bullet C 1)$. Thus, the equivalent circuit for the switchedcapacitor network is as shown in Figure 2.

Figure 2. Switched-Capacitor Equivalent Circuit
Examination of Figure 3 shows that the LTC1044A has the same switching action as the basic switched-capacitor building block. With the addition of finite switch-on resistance and output voltage ripple, the simple theory although not exact, provides an intuitive feel for how the device works.

For example, if you examine power conversion efficiency as a function of frequency (see typical curve), this simple theory will explain how the LTC1044A behaves. The loss, and hence the efficiency, is set by the output impedance. As frequency is decreased, the output impedance will eventually be dominated by the $1 /(\mathrm{f} \bullet \mathrm{C} 1)$ term, and power efficiency will drop. The typical curves for Power Efficiency vs Frequency show this effect for various capacitor values.

Note also that power efficiency decreases as frequency goes up. This is caused by internal switching losses which occurdue to somefinite charge being lost on each switching cycle. This charge loss per unit cycle, when multiplied by the switching frequency, becomes a current loss. At high frequency this loss becomes significant and the power efficiency starts to decrease.

APPLICATIONS INFORMATION

Figure 3. LTC1044A Switched-Capacitor Voltage Converter Block Diagram

LV (Pin 6)

The internal logic of the LTC1044A runs between V^{+}and LV (pin 6). For V^{+}greater than or equal to 3 V , an internal switch shorts LV to GND (pin 3). For V^{+}less than 3 V , the LV pin should be tied to GND. For V^{+}greater than or equal to $3 V$, the LV pin can be tied to GND or left floating.

OSC (Pin 7) and Boost (Pin 1)

The switching frequency can be raised, lowered, or driven from an external source. Figure 4 shows a functional diagram of the oscillator circuit.

Figure 4. Oscillator
By connecting the boost pin (pin 1) to V^{+}, the charge and discharge current is increased and hence, the frequency is increased by approximately seven times. Increasing the frequency will decrease output impedance and ripple for higher load currents.

Loading pin 7 with more capacitance will lower the frequency. Using the boost (pin 1) in conjunction with external capacitance on pin 7 allows user selection of the frequency over a wide range.
Driving the LTC1044A from an external frequency source can be easily achieved by driving pin 7 and leaving the boost pin open as shown in Figure 5. The output current from pin 7 is small (typically $0.5 \mu \mathrm{~A}$) so a logic gate is capable of driving this current. The choice of using a CMOS logic gate is best because it can operate over a wide supply voltage range (3 V to 15 V) and has enough voltage swing to drive the internal Schmitt trigger shown in Figure 4. For 5 V applications, a TL logic gate can be used by simply adding an external pull-up resistor (see Figure 5).

Figure 5. External Clocking

APPLICATIONS INFORMATION

Capacitor Selection

External capacitors C 1 and C 2 are not critical. Matching is not required, nor do they have to be high quality or tight tolerance. Aluminum or tantalum electrolytics are excellent choices with cost and size being the only consideration.

Negative Voltage Converter

Figure 6 shows a typical connection which will provide a negative supply from an available positive supply. This circuit operates over full temperature and power supply ranges without the need of any external diodes. The LV pin (pin 6) is shown grounded, but for $\mathrm{V}^{+} \geq 3 \mathrm{~V}$ it may be floated, since LV is internally switched to ground (pin 3) for $\mathrm{V}^{+} \geq 3 \mathrm{~V}$.

The output voltage (pin 5) characteristics of the circuit are those of a nearly ideal voltage source in series with an 80Ω resistor. The 80Ω output impedance is composed of two terms:

1. The equivalent switched-capacitor resistance (see Theory of Operation).
2. A term related to the on-resistance of the MOS switches.

At an oscillator frequency of 10 kHz and $\mathrm{C1}=10 \mu \mathrm{~F}$, the first term is:

$$
\begin{aligned}
& R_{\text {EQUIV }}=\frac{1}{\left(\mathrm{f}_{\text {OSC }} / 2\right) \cdot C 1} \\
& =\frac{1}{5 \cdot 10^{3} \cdot 10 \cdot 10^{-6}}=20 \Omega
\end{aligned}
$$

Notice that the above equation for $\mathrm{R}_{\text {EQUIV }}$ is not a capacitive reactance equation $\left(X_{C}=1 / \omega C\right)$ and does not contain a 2π term.

The exact expression for output resistance is extremely complex, but the dominant effect of the capacitor is clearly shown on the typical curves of Output Resistance and Power Efficiency vs Frequency. For $\mathrm{C} 1=\mathrm{C} 2=10 \mu \mathrm{~F}$, the output impedance goes from 60Ω at $f_{0 S C}=10 \mathrm{kHz}$ to 200Ω at $\mathrm{f}_{\mathrm{OSC}}=1 \mathrm{kHz}$. As the $1 /(\mathrm{f} \bullet \mathrm{C})$ term becomes large compared to the switch-on resistance term, the output resistance is determined by $1 /(\mathrm{f} \bullet \mathrm{C})$ only.

Voltage Doubling

Figure 7 shows a two-diode capacitive voltage doubler. With a 5 V input, the output is 9.93 V with no load and 9.13 V with a 10 mA load. With a 10 V input, the output is 19.93 V with no load and 19.28 V with a 10 mA load.

Figure 7. Voltage Doubler

Ultra-Precision Voltage Divider

An ultra-precision voltage divider is shown in Figure 8. To achieve the 0.002% accuracy indicated, the load current should be kept below 100nA. However, with a slight loss in accuracy the load current can be increased.

Figure 8. Ultra-Precision Voltage Divider

Figure 6. Negative Voltage Converter

APPLICATIONS INFORMATION

Battery Splitter

A common need in many systems is to obtain (+) and $(-)$ supplies from a single battery or single power supply system. Where current requirements are small, the circuit shown in Figure 9 is a simple solution. It provides symmetrical \pm output voltages, both equal to one half input voltage. The output voltages are both referenced to pin 3 (output common). If the input voltage between pin 8 and pin 5 is less than 6 V , pin 6 should also be connected to pin 3 as shown by the dashed line.

Paralleling for Lower Output Resistance

Additional flexibility of the LTC1044A is shown in Figures 10 and 11.

Figure 10 shows two LTC1044As connected in parallel to provide a lower effective output resistance. If, however, the output resistance is dominated by $1 /(\mathrm{f} \bullet \mathrm{C} 1)$, increasing the capacitor size (C1) or increasing the frequency will be of more benefit than the paralleling circuit shown.

Figure 11 makes use of stacking two LTC1044As to provide even higher voltages. A negative voltage doubler or tripler can be achieved, depending upon how pin 8 of the second LTC1044A is connected, as shown schematically by the switch. The available output current will be dictated/ decreased by the product of the individual power conversion efficiencies and the voltage step-up ratio.

Figure 9. Battery Splitter

*THE EXCLUSIVE NOR GATE SYNCHRONIZES BOTH LTC1044As TO MINIMIZE RIPPLE
Figure 10. Paralleling for Lower Output Resistance

Figure 11. Stacking for Higher Voltage

LTC1044A

TYPICAL APPLICATIONS

Low Output Impedance Voltage Converter

Single 5V Strain Gauge Bridge Signal Conditioner

TYPICAL APPLICATIONS

Regulated Output 3V to 5V Converter

Low Dropout 5V Regulator

LTC 1044A

PACKAGE DESCRIPTION
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
N Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG \# 05-08-1510 Rev I)

NOTE:

1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILLIMETERS }}$
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED . 010 INCH (0.254 mm)

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610 Rev G)

NOTE:

1. DIMENSIONS IN $\frac{\text { INCHES }}{\text { (MILLIMETERS) }}$
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15 mm)
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE

revision history

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$4 / 14$	Changed 0.0002% to 0.002% in the Ultra-Precision Voltage Divider section	8

Two-Diode Capacitive Voltage Doubler

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
$\begin{aligned} & \hline \text { LTC3240-3.3/ } \\ & \text { LTC3240-2.5 } \end{aligned}$	3.3V/2.5V Step-Up/Step-Down Charge Pump DC/DC Converter	$\mathrm{V}_{\text {IN }}: 1.8 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=3.3 \mathrm{~V} / 2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=65 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$) DFN Package
LTC3245	Wide $\mathrm{V}_{\text {IN }}$ Range Low Noise 250mA Buck-Boost Charge Pump	$\mathrm{V}_{\text {IN: }}: 2.7 \mathrm{~V}$ to $38 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}=4 \mu \mathrm{~A}, 12$-Lead MS and ($3 \mathrm{~mm} \times 4 \mathrm{~mm}$) DFN Packages
LTC3255	Wide $\mathrm{V}_{\text {IN }}$ Range 50 mA Buck (Step-Down) Charge Pump	$\mathrm{V}_{\text {IN: }}: 4 \mathrm{~V}$ to $48 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=12.5 \mathrm{~V}, \mathrm{I}_{Q}=16 \mu \mathrm{~A}, 10$-Lead MSOP and $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ DFN Packages

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
TLF30682QVS01XUMA1 TPSM84209RKHR FAN53526UC106X FAN53526UC128X MP1587EN-LF FAN48610BUC33X FAN48617UC50X FAN53526UC89X MIC45116-1YMP-T1 NCV891234MW50R2G EN2342QI AST1S31PUR 16017 A6986FTR NCP81103MNTXG NCP81203PMNTXG MAX17242ETPA+ MAX16935RATEB/V+ MP2313GJ-Z NCP81208MNTXG MP8759GD-Z FAN53526UC100X FAN53526UC84X PCA9412AUKZ MP2314SGJ-Z AS1340A-BTDM-10 MP3421GG-P NCP81109GMNTXG MP6003DN-LF-Z MAX16935BAUES/V+ LT8315IFE\#PBF SCY1751FCCT1G NCP81109JMNTXG MAX16956AUBA/V+ AP3409ADNTR-G1 FAN48623UC36FX MPQ2454GH MPQ2454GH-AEC1 MP21148GQD-P AS3701B-BWLM-68 MPQ2143DJ-P MP9942AGJ-P MP8759GD-P MP5610GQG-P MP28200GG-P MP2451DJ-LF-Z MP2326GD-P MP2314SGJ-P MP2158AGQH-P MP2148GQD-18-P

