Description

The ISL80030xDEM01Z and ISL80031xDEMO1Z boards are intended for use by individuals with requirements for point-of-load applications sourcing from 2.7 V to 5.5 V . The ISL8003xDEMO1Z boards are used to demonstrate the performance of the ISL80030, ISL80031, ISL80030A, and ISL80031A low quiescent current mode converters.

These devices are offered in an 8 Ld $2 m m x 2 m m$ DFN package with 1 mm maximum height. The complete converter occupies less than $64 \mathrm{~mm}^{2}$ area.

Specifications

These boards have been configured and optimized for the following operating conditions:

- $\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 5.5 V
- $\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$
- IOUT $=3 \mathrm{~A}$ (maximum)
- Up to 95% peak efficiency

Key Features

- Small, compact design
- $\mathrm{V}_{\text {IN }}$ range of 2.7 V to 5.5 V
- I Iout maximum is 3A
- Negative current protection
- Internal soft-start and soft-stop
- Overcurrent and short-circuit protection
- Over-temperature/thermal protection

References

ISL80030, ISL80030A, ISL80031, ISL80031A Datasheet

Ordering Information

PART NUMBER	DESCRIPTION
ISL80030DEM01Z	3A, PWM, 1MHz demonstration board
ISL80031DEM01Z	3A, PFM, 1MHz demonstration board
ISL80030ADEM01Z	3A, PWM, 2MHz demonstration board
ISL80031ADEM01Z	3A, PFM, 2MHz demonstration board

FIGURE 1. BLOCK DIAGRAM

Test Steps

1. Ensure that the circuit is correctly connected to the supply and loads prior to applying any power.
2. Connect the bias supply to VIN, the plus terminal to VIN (TP1) and negative return to PGND (TP2).
3. Connect the output load to VO (TP3) and the negative return to PGND (TP4).
4. Turn on the power supply.
5. Verify the output voltage is 1.8 V for $\mathrm{V}_{\text {OUT }}$.

Functional Description

The ISL8003xDEMO1Z boards provide a simple platform to evaluate performance of the ISL80030, ISL80031, ISL80030A and ISL80031A.

These devices are highly efficient, monolithic, synchronous step-down DC/DC converters that can deliver up to 3A of continuous output current from a 2.7 V to 5.5 V input supply. They use peak current mode control architecture to allow very low duty cycle operation. The devices operate at 1 MHz (ISL80030, ISL80031) and 2MHz (ISL80030A and ISL80031A) switching
frequency, thereby providing superior transient response and allowing for the use of a small inductor.

PCB Layout Guidelines

The PCB layout is a very important converter design step to make sure the designed converter works well. The power loop is composed of the output inductor L's, the output capacitor $\mathrm{C}_{\text {OUT }}$, the PHASE pins and the PGND pin. It is necessary to make the power loop as small as possible and the connecting traces among them should be direct, short and wide. The switching node of the converter, the PHASE pins and the traces connected to the node are very noisy, so keep the voltage feedback trace away from these noisy traces. The input capacitor should be placed as close as possible to the VIN pin and the ground of the input and output capacitors should be connected as close as possible. The heat of the IC is mainly dissipated through the thermal pad. Maximizing the copper area connected to the thermal pad is preferable. In addition, a solid ground plane is helpful for better EMI performance. It is recommended to add at least 4 vias ground connection within the pad for the best thermal relief.

FIGURE 3. ISL80030DEMO1Z BOTTOM SIDE

FIGURE 5. ISL80031DEMO1Z BOTTOM SIDE

FIGURE 6. ISL80030ADEMO1Z TOP SIDE

FIGURE 8. ISL80031ADEMO1Z TOP SIDE

FIGURE 7. ISL80030ADEMO1Z BOTTOM SIDE

FIGURE 9. ISL80031ADEM01Z BOTTOM SIDE

ISL8003xDEMO1Z Schematic

FIGURE 10. ISL8003xDEMO1Z SCHEMATIC

Bill of Materials

QTY	UNITS	REFERENCE DESIGNATOR	DESCRIPTION	MANUFACTURER	MANUFACTURER PART
4	ea.	C1-C4	CAP, SMD, 0805, 22 F , $6.3 \mathrm{~V}, 20 \%$, X5R, ROHS	TDK	C2012X5ROJ226M
1	ea.	C5	CAP, SMD, 0402, 22pF, 50V, 5\%, NPO, ROHS	MURATA	GRM36COG220J050AQ
1	ea.	L1	COIL-PWR INDUCTOR, SMD, $4.1 \mathrm{~mm}^{2}, 1.0 \mu \mathrm{H}, 20 \%, 7.2 \mathrm{~A}, \mathrm{ROHS}$	WE (Note 1)	744-383560 10
				TDK (Note 1)	SPM4020T-1R0M-LR
2	ea.	TP1, TP3	CONN-MINI TEST PT, VERTICAL, RED, ROHS	KEYSTONE	5000
2	ea.	TP2, TP4	CONN-MINI TEST PT, VERTICAL, BLK, ROHS	KEYSTONE	5001
1	ea.	U1	IC-3A, PWM, 1MHz BUCK REGULATOR, 8P, DFN, 2x2, ROHS	INTERSIL	ISL80030FRZ (ISL80030DEM01Z)
			IC-3A, PFM, 1MHz BUCK REGULATOR, 8P, DFN, 2x2, ROHS	INTERSIL	ISL80031FRZ (ISL80031DEM01Z)
			IC-3A, PWM, 2MHz BUCK REGULATOR, 8P, DFN, 2x2, ROHS	INTERSIL	ISL80030AFRZ (ISL80030ADEM01Z)
			IC-3A, PFM, 2MHz BUCK REGULATOR, 8P, DFN, 2×2, ROHS	INTERSIL	ISL80031AFRZ (ISL80031ADEM01Z)
2	ea.	R2, R7	RES, SMD, 0402, 100k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ2RKF1003
1	ea.	R1	RES, SMD, 0402, 200k, 1/16W, 1\%, TF, ROHS	ROHM	MCR01MZPF2003
0	ea.	R8	RES, SMD, 0402, DNP, TF, ROHS		

NOTE:

1. Two manufacturers are provided as options for the inductor.

Board Layout

FIGURE 11. SILKSCREEN TOP

FIGURE 13. LAYER 2

FIGURE 15. LAYER 4

FIGURE 12. LAYER 1

FIGURE 14. LAYER 3

FIGURE 16. SILKSCREEN BOTTOM

Typical Performance Curves

FIGURE 17. EFFICIENCY vs LOAD
$\mathrm{f}_{\mathrm{SW}}=\mathbf{1 M H z}, \mathrm{V}_{\text {IN }}=\mathbf{5 V}, \mathrm{PFM}, \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$

FIGURE 19. SHUTDOWN AT 3A LOAD
$\mathrm{V}_{\mathrm{IN}}=\mathbf{5 V}, \mathrm{PWM}, \mathrm{T}_{\mathrm{A}}=+\mathbf{+ 2}{ }^{\circ} \mathrm{C}$

FIGURE 18. START-UP AT 3A LOAD
$\mathrm{V}_{\mathrm{IN}}=\mathbf{5 V}, \mathrm{PWM}, \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$

© Copyright Intersil Americas LLC 2015-2016. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
EVAL6482H-DISC EVAL-AD5522EBUZ EVAL-ADM1060EBZ EVAL-ADM1073MEBZ EVAL-ADM1166TQEBZ EVALADM1168LQEBZ EVAL-ADM1171EBZ EVAL-ADM1276EBZ EVB-EN5319QI EVB-EN5365QI EVB-EN6347QI EVB-EP5348UI MIC23158YML EV MIC23451-AAAYFL EV MIC5281YMME EV 124352-HMC860LP3E ADM00513 ADM8611-EVALZ ADM8612EVALZ ADM8613-EVALZ ADP1046ADC1-EVALZ ADP1055-EVALZ ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP160UJZ-REDYKIT ADP166UJ-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1754-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1876-EVALZ ADP1879-1.0-EVALZ ADP1882-1.0-EVALZ ADP1883-0.6-EVALZ ADP197CB-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.2-EVALZ ADP2102-1.875EVALZ

[^0]: Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the document is current before proceeding.

