

NOT RECOMMENDED FOR NEW DESIGNS POSSIBLE SUBSTITUTE PRODUCT ISL90461, ISL90462, ISL23511

DATASHEET

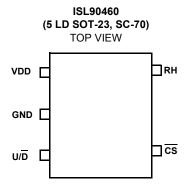
ISL90460

Single Volatile 32-Tap XDCP™ Digitally Controlled Potentiometer (XDCP)

FN8225 Rev 4.00 October 22, 2015

The Intersil ISL90460 is a digitally controlled potentiometer (XDCP). Configured as a variable resistor, the device consists of a resistor array, wiper switches, a control section, and volatile memory. The wiper position is controlled by a 2-pin Up/Down interface.

The potentiometer is implemented by a resistor array composed of 31 resistive elements and a wiper switching network. Between each element and at either end are tap points accessible to the wiper terminal. The position of the wiper element is controlled by the $\overline{\text{CS}}$ and $\text{U/}\overline{\text{D}}$ inputs.

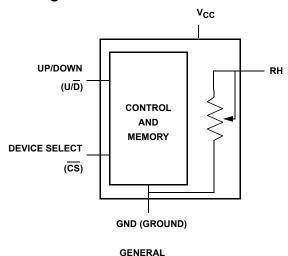

The device can be used in a wide variety of applications including:

- · LCD contrast control
- · Parameter and bias adjustments
- · Industrial and automotive control
- Transducer adjustment of pressure, temperature, position, chemical, and optical sensors
- · Laser Diode driver biasing
- · Gain control and offset adjustment

Features

- · Volatile Solid-State Potentiometer
- · 2-pin UP/DN Interface
- · DCP Terminal Voltage, 2.7V to 5.5V
- Tempco 35ppm/°C Typical
- · 32 Wiper Tap Points
- Low Power CMOS
 - Active current 25µA max.
 - Supply current 0.3µA
- Available R_{TOTAL} Values = $10k\Omega$, $50k\Omega$, $100k\Omega$
- Temp Range -40°C to +85°C
- · Packages
 - 5 Ld SC-70, SOT-23
- Pb-Free Plus Anneal Available (RoHS Compliant)

Pinout



Ordering Information

PART NUMBER	PART MARKING	R _{TOTAL} (K)	TEMP RANGE (°C)	PACKAGE (Tape and Reel)	PKG. DWG. #
ISL90460WIE527Z-TK (See Note) No longer available or supported, recommended replacement: ISL90460TIH527Z-TK	DDY	10	-40 to +85	5 Ld SC-70 (Pb-free)	P5.049
ISL90460WIH527Z -TK (See Note)	DDZ		-40 to +85	5 Ld SOT-23 (Pb-free)	P5.064
ISL90460UIE527Z-TK (See Note) No longer available or supported, recommended replacement: ISL90460TIH527Z-TK	DDW	50	-40 to +85	5 Ld SC-70 (Pb-free)	P5.049
ISL90460UIH527Z -TK (See Note) No longer available or supported, recommended replacement: ISL90460TIH527Z-TK	DDX		-40 to +85	5 Ld SOT-23 (Pb-free)	P5.064
ISL90460TIE527Z-TK (See Note) No longer available or supported, recommended replacement: ISL90460TIH527Z-TK	DDU	100	-40 to +85	5 Ld SC-70 (Pb-free)	P5.049
ISL90460TIH527Z-TK (See Note)	DDV		-40 to +85	5 Ld SOT-23 (Pb-free)	P5.064

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Block Diagram

Pin Descriptions

SOT-23/SC-70 5-PIN	SYMBOL	DESCRIPTION
1	VDD	Supply voltage
2	GND	Ground
3	U/D	Up - Down
4	CS	Chip select
5	RH	High terminal/Wiper terminal

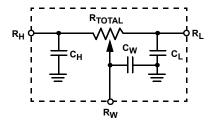
Absolute Maximum Ratings

Recommended Operating Conditions

Storage Temperature	
Voltage on \overline{CS} , U/ \overline{D} and V _{CC} with Respect to GND1V to +7V	
Lead Temperature (Soldering 10s)	
I _W (10s)	
Power Rating	

Temperature Range (Industrial)	40°C to 85°C
Supply Voltage (V _{CC})	2.7V to 5.5V

CAUTION: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device (at these or any other conditions above those listed in the operational sections of this specification) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Potentiometer Specifications Over recommended operating conditions unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP (Note 4)	MAX	UNIT
R _{TOT}	End to end resistance	W version	8	10	12	kΩ
		U version	40	50	60	kΩ
		T version	80	100	120	kΩ
V _R	R _H , R _L terminal voltages		0		V _{CC}	V
	Noise	Ref: 1kHz		-120		dBV
R _W	Wiper Resistance			600		Ω
I _W	Wiper Current				0.6	mA
	Resolution		1		32	Taps
	Absolute linearity (Note 1)	R _{H(n)(actual)} - R _{H(n)(expected)}			±1	MI (Note 3)
	Relative linearity (Note 2)	R _{H(n+1)} - [R _{H(n)+MI}]			±0.5	MI (Note 3)
	R _{TOTAL} temperature coefficient			±35		ppm/°C
C _H /C _L /C _W	Potentiometer capacitances	See equivalent circuit		10/10/25		pF

NOTES:

- 1. Absolute linearity is utilized to determine actual wiper voltage versus expected voltage = (R_{H(n)}(actual) R_{H(n)}(expected)) = ±1 MI Maximum. n = 1 .. 29 only.
- 2. Relative linearity is a measure of the error in step size between taps = $R_{H(n+1)}$ $[R_{H(n)} + MI]$ = ±0.5 MI, n = 1 .. 29 only.
- 3. 1 MI = Minimum Increment = $R_{TOT}/31$.
- 4. Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

Equivalent Circuit

DC Electrical Specifications

Over recommended operating conditions unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP (Note 4)	MAX	UNIT
Icc	V _{CC} active current (Increment)	$\overline{\text{CS}}$ = 0V, U/ $\overline{\text{D}}$ = f _{clock} = 1MHz and V _{CC} = 3V			25	μА
I _{SB}	Standby supply current	$\overline{\text{CS}} = V_{\text{CC}}, \text{ U/}\overline{\text{D}} = V_{\text{SS}} \text{ or } V_{\text{CC}} = 3V$		0.3	1	μA
I _{LI}	CS input leakage current	$V_{IN} = V_{SS}$ to V_{CC}			±1	μA
ILI	U/D input leakage current	$V_{IN} = V_{SS}$ to V_{CC}			±1	μA
V _{IH}	CS, U/D input HIGH voltage		V _{CC} x 0.7			V
V _{IL}	CS, U/D input LOW voltage				V _{CC} x 0.3	V
C _{IN}	CS, U/D input capacitance	V _{CC} = 3V, V _{IN} = V _{SS} , T _A = 25°C, f = 1MHz		10		pF

Timing Specifications Over recommended operating conditions unless otherwise specified) (Figures 1 and 2)

SYMBOL	PARAMETER	MIN	TYP (Note 4)	MAX	UNIT
t _{CU}	U/D to CS setup	25			ns
t _{CI}	CS to U/D setup	50			ns
t _{IC}	CS to U/D hold	25			ns
t _{IL}	U/D LOW period	300			ns
t _{IH}	U/D HIGH period	300			ns
fTOGGLE	Up/Down toggle rate		1		MHz
tSETTLE	Output settling time		1		μs

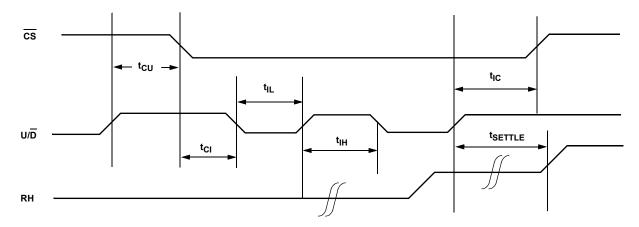


FIGURE 1. SERIAL INTERFACE TIMING DIAGRAM, INCREMENT

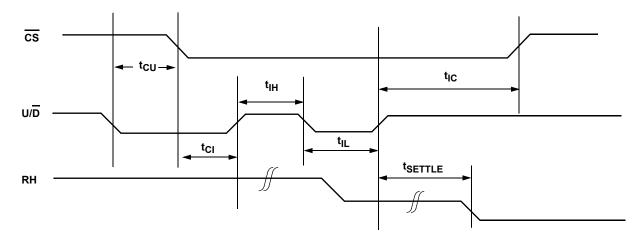


FIGURE 2. SERIAL INTERFACE TIMING DIAGRAM, DECREMENT

Pin Descriptions

RH

The ISL90460 contains a digital potentiometer connected as a rheostat or variable resistor. The wiper and one terminal of the digital potentiometer is tied to the RH pin, and the other terminal of the potentiometer is tied to the ground pin (GND). The resistance from the RH pin to ground will vary with the potentiometer setting; at the highest setting, the resistance will be the maximum (Rtot), at the lowest setting it will be a minimum.

$Up/Down (U/\overline{D})$

The U/\overline{D} input controls the direction of the wiper movement and whether the counter is incremented or decremented.

Chip Select (CS)

The device is selected when the \overline{CS} input is LOW. The current counter value is stored in volatile memory when \overline{CS} is returned HIGH. When \overline{CS} is high, the device is placed in low power standby mode.

Principles of Operation

There are two sections of the ISL90460: the input control, counter and decode section; and the resistor array. The input control section operates just like an up/down counter. The output of this counter is decoded to turn on a single electronic switch connecting a point on the resistor array to the wiper output. The resistor array is comprised of 31 individual resistors connected in series. At either end of the array and between each resistor is an electronic switch that transfers the connection at that point to the wiper. The wiper is connected to the RH terminal, forming a variable resistor from RH to GND.

The direction of the wiper movement is defined when the device is selected. If during \overline{CS} transition from High to Low the U/ \overline{D} input is LOW, the wiper will move down on each rising edge of U/ \overline{D} toggling. Similarly, the wiper will move up on each rising edge of U/ \overline{D} toggling if, during \overline{CS} transition from High to Low, the U/ \overline{D} input is High.

The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. That is, the counter does not wrap around when clocked to either extreme.

If the wiper is moved several positions, multiple taps are connected to the wiper for t_{SETTLE} (U/ \overline{D} to RH change). The 2-terminal resistance value for the device can temporarily change by a significant amount if the wiper is moved several positions.

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE
October 22, 2015	FN8225.4	Added Rev History and About Intersil Verbiage. Updated Ordering Information on page 2 Updated PODs to most recent revisions. Made correction to Pkg Dwg # in Ordering Information table "P5.046" to P5.064"

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.

For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com.

You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.

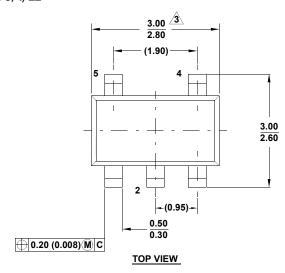
Reliability reports are also available from our website at www.intersil.com/support

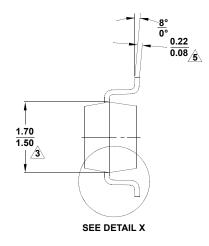
© Copyright Intersil Americas LLC 2005-2015. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

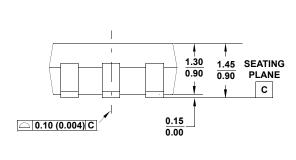
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

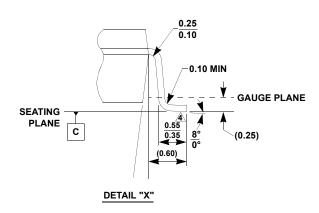

For information regarding Intersil Corporation and its products, see www.intersil.com

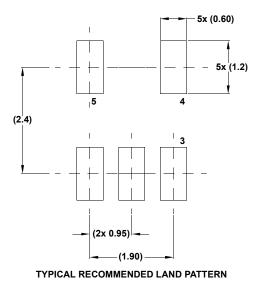


Package Outline Drawing


P5.064

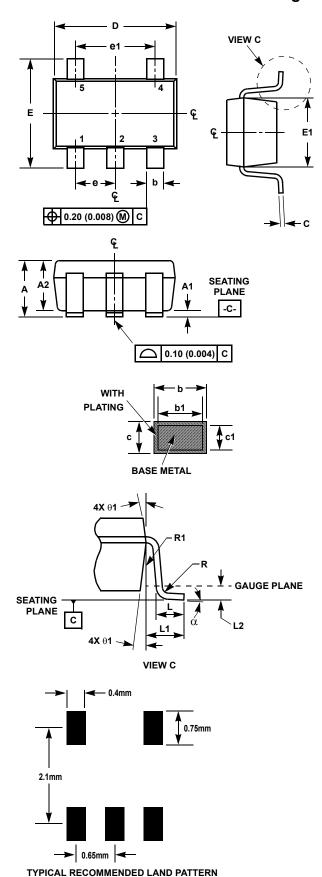
5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE Rev 3, 4/11





END VIEW

SIDE VIEW



NOTES:

- 1. Dimensioning and tolerance per ASME Y14.5M-1994.
- 2. Package conforms to EIAJ SC-74 and JEDEC MO178AA.
- A Package length and width are exclusive of mold flash, protrusions, or gate burrs.
- 4 Footlength measured at reference to gauge plane.
- <u>5</u>\ Lead thickness applies to the flat section of the lead between 0.08mm and 0.15mm from the lead tip.
- 6. Controlling dimension: MILLIMETER. Dimensions in () for reference only.

Small Outline Transistor Plastic Packages (SC70-5)

P5.049
5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE

	INC	HES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.031	0.043	0.80	1.10	-
A1	0.000	0.004	0.00	0.10	-
A2	0.031	0.039	0.80	1.00	-
b	0.006	0.012	0.15	0.30	-
b1	0.006	0.010	0.15	0.25	
С	0.003	0.009	0.08	0.22	6
c1	0.003	0.009	0.08	0.20	6
D	0.073	0.085	1.85	2.15	3
Е	0.071	0.094	1.80	2.40	-
E1	0.045	0.053	1.15	1.35	3
е	0.025	6 Ref	0.65 Ref		-
e1	0.051	2 Ref	1.30	Ref	-
L	0.010	0.018	0.26	0.46	4
L1	0.017	' Ref.	0.420	Ref.	-
L2	0.006	BSC	0.15 BSC		
α	0°	8 ^o	0°	8 ^o	-
N	5		ţ	5	5
R	0.004	-	0.10	-	
R1	0.004	0.010	0.15	0.25	

Rev. 3 7/07

NOTES:

- 1. Dimensioning and tolerances per ASME Y14.5M-1994.
- 2. Package conforms to EIAJ SC70 and JEDEC MO-203AA.
- 3. Dimensions D and E1 are exclusive of mold flash, protrusions, or gate burrs.
- 4. Footlength L measured at reference to gauge plane.
- 5. "N" is the number of terminal positions.
- 6. These Dimensions apply to the flat section of the lead between 0.08mm and 0.15mm from the lead tip.
- 7. Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Potentiometer ICs category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

604-00010 CAT5111VI-00-GT3 CAT5111VI-10-GT3 CAT5110TBI-10GT3 CAT5111LI-10-G CAT5112VI-00-GT3 CAT5112VI-50-GT3

CAT5112ZI-10-GT3 X9C103S MAX5438EUB+T MAX5430BEKA+T MAX5430AEKA+T DS1267BS-050+T/R DS3930E+T&R

MAX5395NATA+T DS3501U+T&R MAX5394MATA+T MAX5386NATE+T CAT5110TBI-50GT3 CAT5113ZI50 DS1801S+T&R

MAX5387NAUD+T CAT5112ZI-50-GT3 MAX5483EUD+T DS3501U+H MAX5437EUD+T CAT5137SDI-10GT3 CAT5111YI-10-GT3

MAX5434NEZT+T DS1809Z-010+C AD5144TRUZ10-EP MCP4251-503EML MCP4252-103EMF MCP4332-502E/ST MCP4352-104EST

MCP4452-103EST MCP4541T-104E/MS MCP4551T-103E/MS MCP4562T-103EMF MCP4562T-103EMS MCP4631-502E/ST

MCP4631T-103EST MCP4641-502E/ST MCP4651T-103E/ML MCP4651T-503E/ML MCP4652T-103EMF MCP4661T-503EML

MCP4662T-103E/MF MCP4012T-202ECH MCP4023T-503ECH