MIC4576

General Description

The MIC4576 is a series of easy to use fixed and adjustable BiCMOS step-down (buck) switch-mode voltage regulators. The 200 kHz MIC4576 duplicates the pinout and function of the 52 kHz LM 2576 . The higher switching frequency may allow up to a $2: 1$ reduction in output filter inductor size.
The MIC4576 is available in 3.3 V , and 5 V fixed output versions or a 1.23 V to 33 V adjustable output version. Both versions are capable of driving a 3A load with excellent line and load regulation.
The feedback voltage is guaranteed to $\pm 2 \%$ tolerance for adjustable versions, and the output voltage is guaranteed to $\pm 3 \%$ for fixed versions, within specified voltages and load conditions. The oscillator frequency is guaranteed to $\pm 10 \%$.
In shutdown mode, the regulator draws less than $200 \mu \mathrm{~A}$ standby current. The regulator performs cycle-by-cycle current limiting and thermal shutdown for protection under fault conditions.
This series of simple switch-mode regulators requires a minimum number of external components and can operate using a standard series of inductors. Frequency compensation is provided internally.
The MIC4576 is available in TO-220 (T) and TO-263 (U) packages for the industrial temperature range.

Features

- Fixed 200 kHz operation
- $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and adjustable output versions
- Voltage over specified line and load conditions:

Fixed version: $\pm 3 \%$ max. output voltage
Adjustable version: $\pm 2 \%$ max. feedback voltage

- Guaranteed 3A switch current
- Wide 4 V to 36 V input voltage range
- Wide 1.23 V to 33 V output voltage range
- Requires minimum external components
- <200нA typical shutdown mode
- 75% efficiency (adjustable version > 75\% typical)
- Standard inductors are 25% of typical LM2576 values
- Thermal shutdown
- Overcurrent protection
- 100% electrical thermal limit burn-in

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient preregulator for linear regulators
- On-card switching regulators
- Positive-to-negative converter (inverting buck-boost)
- Battery Charger
- Negative boost converter
- Step-down to 3.3 V for Intel Pentium ${ }^{\text {TM }}$ and similar microprocessors

Typical Applications

Fixed Regulator

Adjustable Regulator
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131•USA• tel + 1 (408) 944-0800•fax + 1 (408) 474-1000•http://www.micrel.com

Ordering Information

Standard Part Number	RoHS Compliant Part Number*	VoItage	Temperature Range	Package
MIC4576-3.3BT	MIC4576-3.3WT	3.3 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-220-5
MIC4576-5.0BT	MIC4576-5.0WT	5.0 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-220-5
MIC4576BT	MIC4576WT	ADJ.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-220-5
MIC4576-3.3BU	MIC4576-3.3WU	3.3 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-263-5
MIC4576-5.0BU	MIC4576-5.0WU	5.0 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-263-5
MIC4576BU	MIC4576WU	ADJ.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-263-5

* RoHS compliant with "high-melting solder" exemption.

Pin Configuration

5-Pin TO-220 (T)

5-Pin TO-263 (U)

Pin Description

Pin Number	Pin Name	Pin Function
1	$\mathrm{~V}_{\mathrm{IN}}$	Supply Voltage (Input): Unregulated +4V to +36V supply voltage.
2	SW	Switch (Output): Emitter of NPN output switch. Connect to external storage inductor and Shottky diode.
3, TAB	GND	Ground
4	FB	Feedback (Input): Output voltage feedback to regulator. Connect to output of supply for fixed versions. Connect to 1.23 V tap of resistive divider for adjustable versions.
5	SHDN	Shutdown (Input): Logic low enables regulator. Logic high (> 2.4V) shuts down regulator.

Absolute Maximum Ratings

Supply Voltage $\left(\mathrm{V}_{\text {IN }}\right)$.. +40 V
Shutdown Voltage ($\mathrm{V}_{\text {SHDN }}$)........................... -0.3 V to +36 V
Output Switch (V_{SW}), Steady State-1V
Feedback Voltage (V_{FB}) [Adjustable] 3.8 V
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings

Supply Voltage (V_{IN}).. 36 V
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Package Thermal Resistance
TO-220, TO-263 (θ_{JA}) .. $65^{\circ} \mathrm{C} / \mathrm{W}$
TO-220, TO-263 (θ_{JC}).. $2^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$; $\mathrm{I}_{\mathrm{LOAD}}=500 \mathrm{~mA} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$; unless noted.

Parameter	Condition	Min	Typ	Max	Units
MIC4576 [Adjustable]					
Feedback Voltage		1.217	1.230	1.243	V
Feedback Voltage	$8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 36 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$	$\begin{aligned} & \hline 1.193 \\ & 1.180 \end{aligned}$	1.230	$\begin{aligned} & 1.267 \\ & 1.280 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Efficiency	$\mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$, , ote 1		77		\%
Maximum Duty Cycle (On)	$\mathrm{V}_{\mathrm{FB}}=1.0 \mathrm{~V}$	90	95		\%
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=36 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.5 \mathrm{~V} \\ & \text { output }=0 \mathrm{~V} \\ & \text { output }=-1 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0 \\ 7.5 \end{gathered}$	$\begin{gathered} 2 \\ 35 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Quiescent Current	$\mathrm{V}_{\mathrm{FB}}=1.5 \mathrm{~V}$		5	10	mA
Feedback Bias Current			50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$

MIC4576-3.3

Output Voltage		3.234	3.3	3.366	V
Output Voltage	$6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 36 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$	$\begin{aligned} & \hline 3.168 \\ & 3.135 \end{aligned}$	3.3	$\begin{aligned} & \hline 3.432 \\ & 3.465 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Efficiency	$\mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		72		\%
Maximum Duty Cycle (On)	$\mathrm{V}_{\mathrm{FB}}=2.5 \mathrm{~V}$	90	95		\%
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=36 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=4.0 \mathrm{~V} \\ & \text { output }=0 \mathrm{~V} \\ & \text { output }=-1 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0 \\ 7.5 \end{gathered}$	$\begin{gathered} 2 \\ 35 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Quiescent Current	$\mathrm{V}_{\mathrm{FB}}=4.0 \mathrm{~V}$		5	10	mA

MIC4576-5.0

Output Voltage		4.900	5.0	5.100	V
Output Voltage	$8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 36 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$	$\begin{aligned} & \hline 4.800 \\ & 4.750 \end{aligned}$	5.0	$\begin{aligned} & 5.200 \\ & 5.250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Efficiency	$\mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		77		\%
Maximum Duty Cycle (On)	$\mathrm{V}_{\mathrm{FB}}=4.0 \mathrm{~V}$	90	95		\%
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=36 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=6.0 \mathrm{~V} \\ & \text { output }=0 \mathrm{~V} \\ & \text { output }=-1 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0 \\ 7.5 \end{gathered}$	$\begin{gathered} 2 \\ 35 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Quiescent Current	$\mathrm{V}_{\mathrm{FB}}=6.0 \mathrm{~V}$		5	10	mA

Parameter	Condition	Min	Typ	Max	Units
MIC4576 / -3.3 /-5.0					
Oscillator Frequency		180	200	220	kHz
Saturation Voltage	$\mathrm{I}_{\text {OUT }}=3 \mathrm{~A}$		1.7	$\begin{aligned} & \hline 2.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Current Limit	peak current, $\mathrm{t}_{\mathrm{ON}} \leq 3 \mu \mathrm{~s} ; \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	$\begin{aligned} & \hline 4.2 \\ & 3.5 \end{aligned}$	5.2	$\begin{aligned} & 7.9 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
Standby Quiescent Current	$\mathrm{V}_{\text {SHDN }}=5 \mathrm{~V}$ (regulator off), $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$		50	200	$\mu \mathrm{A}$
SHDN Input Logic Level	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (regulator off)	$\begin{aligned} & \hline 2.2 \\ & 2.4 \end{aligned}$	1.4		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
	$\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$ or 5 V (regulator on)		1.2	$\begin{aligned} & 1.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \bar{V} \\ & \mathrm{~V} \end{aligned}$
SHDN Input Current	$\begin{aligned} & \left.\mathrm{V}_{\text {SHDN }}=5 \mathrm{~V} \text { (regulator off }\right) \\ & \mathrm{V}_{\text {SHDN }}=0 \mathrm{~V} \text { (regulator on) } \end{aligned}$	-10	$\begin{gathered} \hline 4 \\ 0.01 \end{gathered}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

General Note: Devices are ESD protected, however, handling precautions are recommended.
Note 1: $V_{\text {OUT }}=5 \mathrm{~V}$

Block Diagram with External Components
Fixed Step-Down Regulator

Block Diagram with External Components
 Adjustable Step-Down Regulator

Functional Description

The MIC4576 is a variable duty cycle switch-mode regulator with an internal power switch. Refer to the block diagrams.

Supply Voltage

The MIC4576 operates from a +4 V to +36 V unregulated input. Highest efficiency operation is from a supply voltage around +15 V .

Enable/Shutdown

The shutdown (SHDN) input is TTL compatible. Ground the input if unused. A logic-low enables the regulator. A logichigh shuts down the internal regulator which reduces the current to typically $50 \mu \mathrm{~A}$.

Feedback

Fixed versions of the regulator have an internal resistive divider from the feedback (FB) pin. Connect FB directly to the output line.
Adjustable versions require an external resistive voltage divider from the output voltage to ground, connected from the 1.23 V tap to FB .

Duty Cycle Control

A fixed-gain error amplifier compares the feedback signal with a 1.23 V bandgap voltage reference. The resulting error amplifier output voltage is compared to a 200 kHz sawtooth waveform to produce a voltage controlled variable duty cycle output.

Ahigher feedback voltage increases the error amplifier output voltage. Ahigher error amplifier voltage (comparator inverting input) causes the comparator to detect only the peaks of the sawtooth, reducing the duty cycle of the comparator output. A lower feedback voltage increases the duty cycle.

Output Switching

When the internal switch is on, an increasing current flows from the supply V_{IN}, through external storage inductor L 1 , to output capacitor $\mathrm{C}_{\text {OUT }}$ and the load. Energy is stored in the inductor as the current increases with time.
When the internal switch is turned off, the collapse of the magnetic field in L1 forces current to flow through fast recovery diode D1, charging $\mathrm{C}_{\mathrm{OUT}}$.

Output Capacitor

External output capacitor $\mathrm{C}_{\text {OUT }}$ provides stabilization and reduces ripple.

Return Paths

During the on portion of the cycle, the output capacitor and load currents return to the supply ground. During the off portion of the cycle, current is being supplied to the output capacitor and load by storage inductor L1, which means that D1 is part of the high-current return path.

Applications Information

The applications circuits that follow have been constructed and tested. Refer to Application Note 15 for additional information, including efficiency graphs and manufacturer's addresses and telephone numbers for most circuits.

Figure 1. 6V-24V to $3.3 \mathrm{~V} / 3 \mathrm{~A}$ Buck Converter Through Hole

For a mathematical approach to component selection and circuit design, refer to Application Note 14.

Figure 2. 6V-36V to $3.3 \mathrm{~V} / 3 \mathrm{~A}$ Buck Converter Through Hole

Note 2: Surface-mount component.

Figure 3. $\mathbf{8 V}-\mathbf{2 4 V}$ to $5 \mathrm{~V} / 3 \mathrm{~A}$ Buck Converter Through Hole

Figure 4. 8V-36V to 5V/3A Buck Converter Through Hole

Figure 5. 16V-36V to 12V/3A Buck Converter Through Hole

Figure 6. Parallel Switching Regulators

Note 2: Surface-mount component.

Package Information

5-Pin TO-220 (T)

5-Pin TO-263 (U)

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Pr \square

Micrel for any damages resulting from such use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
TLF30682QVS01XUMA1 TPSM84209RKHR FAN53526UC106X FAN53526UC128X MP1587EN-LF FAN48610BUC33X FAN48617UC50X FAN53526UC89X MIC45116-1YMP-T1 NCV891234MW50R2G EN2342QI AST1S31PUR 16017 A6986FTR NCP81103MNTXG NCP81203PMNTXG MAX17242ETPA+ MAX16935RATEB/V+ MP2313GJ-Z NCP81208MNTXG MP8759GD-Z FAN53526UC100X FAN53526UC84X PCA9412AUKZ MP2314SGJ-Z AS1340A-BTDM-10 MP3421GG-P NCP81109GMNTXG MP6003DN-LF-Z MAX16935BAUES/V+ LT8315IFE\#PBF SCY1751FCCT1G NCP81109JMNTXG MAX16956AUBA/V+ AP3409ADNTR-G1 FAN48623UC36FX MPQ2454GH MPQ2454GH-AEC1 MP21148GQD-P AS3701B-BWLM-68 MPQ2143DJ-P MP9942AGJ-P MP8759GD-P MP5610GQG-P MP28200GG-P MP2451DJ-LF-Z MP2326GD-P MP2314SGJ-P MP2158AGQH-P MP2148GQD-18-P

