HEF4517B

Dual 64-bit static shift register
Rev. 7 - 11 November 2011
Product data sheet

1. General description

The HEF4517B consists of two identical, independent 64-bit static shift registers. Each register has separate clock (nCP), data input (nD), parallel input-enable/output-enable (nPE/ $\overline{\mathrm{OE}}$) and four 3-state outputs of the 16th, 32nd, 48th, and 64th bit positions (nQ16 to nQ64). Data at the nD input is entered into the first bit on the LOW-to-HIGH transition of the clock, regardless of the state of nPE/OE.

When $\mathrm{nPE} / \overline{\mathrm{OE}}$ is LOW, the outputs are enabled and it is in the 64 -bit serial mode.
When nPE/ $\overline{\mathrm{OE}}$ is HIGH , the outputs are disabled (high-impedance OFF-state), the 64-bit shift register is divided into four 16-bit shift registers with nD, nQ16, nQ32 and nQ48 as data inputs of the 1st, 17th, 33rd, and 49th bit respectively. Schmitt-trigger action in the clock input makes the circuit highly tolerant of slower clock rise and fall times.

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, or another input.

2. Features and benefits

■ Tolerant of slow clock rise and fall times

- Fully static operation
- 5 V , 10 V , and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Complies with JEDEC standard JESD 13-B

3. Ordering information

Table 1. Ordering information
All types operate from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Type number | Package | | |
| :--- | :--- | :--- | :--- | :--- |
| | Name | Description | Version |
| HEF4517BP | DIP16 | plastic dual in-line package; 16 leads (300 mil) | SOT38-4 |
| HEF4517BT | SO16 | plastic small outline package; 16 leads; body width 7.5 mm | SOT162-1 |

4. Functional diagram

Fig 1. Functional diagram

Fig 2. Logic diagram

5. Pinning information

5.1 Pinning

Fig 3. Pin configuration

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1Q16, 2Q16	1,15	3-state input/output
1Q48, 2Q48	2,14	3-state input/output
1PE/OE, 2PE/OE	3,13	parallel input-enable/output-enable input
$1 C P, 2 C P$	4,12	clock input
$1 Q 64,2 Q 64$	5,11	3-state input/output
$1 Q 32,2$ Q32	6,10	3-state input/output
$1 D, 2 D$	7,9	data input
$V_{\text {SS }}$	8	ground supply voltage
$V_{D D}$	16	supply voltage

6. Functional description

Table 3. Function table[1]

Inputs			Inputs/outputs				Mode
nCP	nD	nPE/OE	nQ16	nQ32	nQ48	nQ64	
\uparrow	data entered into 1st bit	L	content of 16th bit displayed	content of 32nd bit displayed	content of 48th bit displayed	content of 64th bit displayed	One 64-bit shift register. The content of the shift register is shifted over one stage
\uparrow	data entered into 1st bit	H	data at nQ16 entered into 17th bit	data at nQ32 entered into 33rd bit	data at nQ 48 entered into 49th bit	remains in ' Z ' state	Four 16 -bit shift register. The content of the shift registers is shifted over one stage
\downarrow	x	L	no change				
\downarrow	X	H	Z	Z	Z	Z	no change

[1] $H=$ HIGH voltage level; $L=$ LOW voltage level; $X=$ don't care; $Z=$ high-impedance state;
$\uparrow=$ positive-going transition; $\downarrow=$ negative-going transition.

7. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{\text {DD }}$	supply voltage		-0.5	+18	V
I_{K}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	-	± 10	mA
V_{1}	input voltage		-0.5	$V_{D D}+0.5$	V
lok	output clamping current	$\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	-	± 10	mA
$\mathrm{I}_{1 / \mathrm{O}}$	input/output current		-	± 10	mA
I_{DD}	supply current		-	50	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
Tamb	ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	DIP16 package	[1] -	750	mW
		SO16 package	[2] -	500	mW
P	power dissipation	per output	-	100	mW

[1] For DIP16 package: $P_{\text {tot }}$ derates linearly with $12 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.
[2] For SO16 package: $\mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$V_{D D}$	supply voltage		3	-	15	V
$\mathrm{~V}_{1}$	input voltage		0	-	V_{DD}	V
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature	in free air	-40	-	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	-	3.75	$\mu \mathrm{~s} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	-	-	0.5	$\mu \mathrm{~s} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$	-	-	0.08	$\mu \mathrm{~s} / \mathrm{V}$

9. Static characteristics

Table 6. Static characteristics
$V_{S S}=0 V ; V_{I}=V_{S S}$ or $V_{D D}$ unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	$\mathrm{Tamb}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\left\|\mathrm{l}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	5 V	3.5	-	3.5	-	3.5	-	V
			10 V	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mid \mathrm{I}_{\mathrm{O}} \mathrm{l}$ < $1 \mu \mathrm{~A}$	5 V	-	1.5	-	1.5	-	1.5	V
			10 V	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	V
V_{OH}	HIGH-level output voltage	$\left\|\mathrm{O}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	5 V	4.95	-	4.95	-	4.95	-	V
			10 V	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mid \mathrm{lo} \mathrm{l}<1 \mu \mathrm{~A}$	5 V	-	0.05	-	0.05	-	0.05	V
			10 V	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	V
IOH	HIGH-level output current	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	5 V	-	-1.7	-	-1.4	-	-1.1	mA
		$\mathrm{V}_{\mathrm{O}}=4.6 \mathrm{~V}$	5 V	-	-0.52	-	-0.44	-	-0.36	mA
		$\mathrm{V}_{\mathrm{O}}=9.5 \mathrm{~V}$	10 V	-	-1.3	-	-1.1	-	-0.9	mA
		$\mathrm{V}_{\mathrm{O}}=13.5 \mathrm{~V}$	15 V	-	-3.6	-	-3.0	-	-2.4	mA
l_{OL}	LOW-level output current	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	5 V	0.52	-	0.44	-	0.36	-	mA
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	10 V	1.3	-	1.1	-	0.9	-	mA
		$\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	15 V	3.6	-	3.0	-	2.4	-	mA
1	input leakage current		15 V	-	± 0.3	-	± 0.3	-	± 1.0	$\mu \mathrm{A}$
$I_{\text {D }}$	supply current	$\mathrm{I}_{0}=0 \mathrm{~A}$	5 V	-	50	-	50	-	375	$\mu \mathrm{A}$
			10 V	-	100	-	100	-	750	$\mu \mathrm{A}$
			15 V	-	200	-	200	-	1500	$\mu \mathrm{A}$
C_{1}	input capacitance		-	-	-	-	7.5	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics
$V_{S S}=0 V$; $T_{a m b}=25^{\circ} \mathrm{C}$; for test circuit see Figure 8; unless otherwise specified.

Symbol	Parameter	Conditions	$V_{\text {DD }}$		Extrapolation formula	Min	Typ	Max	Unit
$t_{\text {PHL }}$	HIGH to LOW propagation delay	nCP to nQn; see Figure 4	5 V	[1]	$193 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	220	440	ns
			10 V		$74 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	85	170	ns
			15 V		$52 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	60	120	ns
$t_{\text {PLH }}$	LOW to HIGH propagation delay	nCP to nQn; see Figure 4	5 V	[1]	$163 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	190	380	ns
			10 V		$64 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	75	150	ns
			15 V		$42 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	50	100	ns
$\mathrm{t}_{\text {PHZ }}$	HIGH to OFF-state propagation delay	nPE/ $\overline{O E}$ to $n Q n$; see Figure 5	5 V			-	40	80	ns
			10 V			-	30	60	ns
			15 V			-	25	50	ns
$t_{\text {Pz }}$	OFF-state to HIGH propagation delay	nPE/OE to nQn ; see Figure 5	5 V			-	45	90	ns
			10 V			-	25	50	ns
			15 V			-	20	40	ns
$t_{\text {PLZ }}$	LOW to OFF-state propagation delay	nPE/OE to nQn; see Figure 5	5 V			-	50	100	ns
			10 V			-	30	60	ns
			15 V			-	25	50	ns
$t_{\text {PZL }}$	OFF-state to LOW propagation delay	$\mathrm{nPE} / \overline{\mathrm{OE}}$ to nQn ; see Figure 5	5 V			-	60	120	ns
			10 V			-	30	60	ns
			15 V			-	25	50	ns
t_{t}	transition time	nQn; see Figure 6	5 V	[1]	$10 \mathrm{~ns}+(1.00 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	60	120	ns
			10 V		$9 \mathrm{~ns}+(0.42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	30	60	ns
			15 V		$6 \mathrm{~ns}+(0.28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	20	40	ns
$\mathrm{t}_{\text {su }}$	set-up time	nQn, nD to nCP; see Figure 7	5 V			30	10	-	ns
			10 V			25	5	-	ns
			15 V			20	5	-	ns
$t_{\text {h }}$	hold time	nQn, nD to nCP; see Figure 7	5 V			45	15	-	ns
			10 V			30	10	-	ns
			15 V			25	10	-	ns
tw	pulse width	nQn, nD to nCP; see Figure 7	5 V			-	95	190	ns
			10 V			-	40	80	ns
			15 V			-	30	60	ns
$\mathrm{f}_{\text {max }}$	maximum frequency	see Figure 7	5 V			2	5	-	MHz
			10 V			6	12	-	MHz
			15 V			8	16	-	MHz

[1] The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (C_{L} in pF).

Table 8. Dynamic power dissipation P_{D}
P_{D} can be calculated from the formulas shown. $V_{S S}=0 V ; t_{r}=t_{f} \leq 20 \mathrm{~ns} ; T_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$.

Symbol	Parameter	V_{DD}	Typical formula for $\mathrm{P}_{\mathrm{D}}(\mu \mathrm{W})$	where:
P_{D}	dynamic power dissipation	5 V	$\mathrm{P}_{\mathrm{D}}=7000 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{\mathrm{o}} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\text {DD }}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ,
		10 V	$\mathrm{P}_{\mathrm{D}}=28000 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{0} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\text {DD }}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ,
		15 V	$\mathrm{P}_{\mathrm{D}}=70000 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{0} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\text {DD }}{ }^{2}$	$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF , $\mathrm{V}_{\mathrm{DD}}=$ supply voltage in V , $\Sigma\left(\mathrm{f}_{\mathrm{o}} \times \mathrm{C}_{\mathrm{L}}\right)=$ sum of the outputs.

11. Waveforms

Measurement points are given in Table 9
The logic levels V_{OH} and V_{OL} are typical voltage output levels that occur with the output load.
Fig 4. Propagation delays for nCP to nQn

Table 9. Measurement points

Input	Output		
$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
$0.5 \mathrm{~V}_{\mathrm{I}}$	$0.5 \mathrm{~V}_{\mathrm{DD}}$	$0.1 \mathrm{~V}_{\mathrm{DD}}$	$0.9 \mathrm{~V}_{\mathrm{DD}}$

Measurement points are given in Table 9
The logic levels V_{OH} and V_{OL} are typical voltage output levels that occur with the output load.
Fig 5. Enable and disable times and 3-state propagation delays

The logic levels V_{OH} and V_{OL} are typical voltage output levels that occur with the output load.
Fig 6. Transition times for nQn

The shading indicates where the data (nQn and nD) is permitted to change for predictable output changes.
Measurement points are given in Table 9
The logic levels V_{OH} and V_{OL} are typical voltage output levels that occur with the output load.
Fig 7. Waveforms showing minimum clock pulse width and maximum frequency and set-up and hold times for nQn (as data input) or nD to nCP

a. Input waveforms

b. Test circuit

Test data is given in Table 10.
Definitions for test circuit:
DUT = Device Under Test;
$\mathrm{R}_{\mathrm{L}}=$ Load resistance;
$C_{L}=$ Load capacitance including jig and probe capacitance;
$R_{T}=$ Termination resistance should be equal to output impedance Z_{0} of the pulse generator.
Fig 8. Test circuit for switching times

Table 10. Test data

Supply voltage	Input		Load		$\mathrm{V}_{\text {EXT }}$		
	V_{1}	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	C_{L}	R_{L}	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}$
5 V to 15 V	$V_{\text {DD }}$	$\leq 20 \mathrm{~ns}$	50 pF	$1 \mathrm{k} \Omega$	open	$2 V_{\text {DD }}$	GND

12. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1} min.	A_{2} max.	b	b_{1}	b_{2}	C	$D^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	$\mathbf{M}_{\mathbf{H}}$	w	$Z^{(1)}$ max.
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	0.76
inches	0.17	0.02	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.1	0.3	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.03

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT38-4				\square ¢	$\begin{aligned} & -95-01-14 \\ & 03-02-13 \end{aligned}$

Fig 9. Package outline SOT38-4 (DIP16)

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.1 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & \hline 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	8°
inches	0.1	$\begin{array}{\|l} 0.012 \\ 0.004 \end{array}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.41 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.05	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT162-1	075E03	MS-013		\bigcirc	$\begin{aligned} & \hline-99-12-27 \\ & 03-02-19 \end{aligned}$

Fig 10. Package outline SOT162-1 (SO16)

13. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
HEF4517B v. 7	20111111	Product data sheet	-	HEF4517B v. 6
Modifications:	- Section Applications removed - Table 6: I_{OH} minimum values changed to maximum - Figure 8: added "DUT = Device Under Test"			
HEF4517B v. 6	20091210	Product data sheet	-	HEF4517B v. 5
HEF4517B v. 5	20090728	Product data sheet	-	HEF4517B v. 4
HEF4517B v. 4	20090406	Product data sheet	-	HEF4517B_CNV v. 3
HEF4517B_CNV v. 3	19950101	Product specification	-	HEF4517B_CNV v. 2
HEF4517B_CNV v. 2	19950101	Product specification	-	-

14. Legal information

14.1 Data sheet status

Document status $\underline{[1][2]}$	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions"
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com

14.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.
In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products - Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

16. Contents

1 General description 1
2 Features and benefits 1
3 Ordering information 1
4 Functional diagram 2
5 Pinning information 4
5.1 Pinning 4
5.2 Pin description 4
6 Functional description 5
7 Limiting values 5
8 Recommended operating conditions. 6
9 Static characteristics. 6
10 Dynamic characteristics 7
11 Waveforms 8
12 Package outline 11
13 Revision history. 13
14 Legal information. 14
14.1 Data sheet status 14
14.2 Definitions 14
14.3 Disclaimers 14
14.4 Trademarks 15
15 Contact information 15
16 Contents 16

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Arithmetic Logic Unit - ALU category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
5962-9172201MEA C200H-DAC01 C200HW-COM02-V1 C200H-CN220-EU C200HG-CPU63-E C200H-OD211 C200HE-CPU32-E C200HW-SLK23 74VHC393FT(BJ) 74VHC161FT(BJ) TC74HC595AP(F) C200H-ID111 C200H-OD501 C200H-TC102 C200H-ID501 C292NSE7KLA LC823425-13W1-LR-E STA2058 MCIMX27MOP4A MCIMX515DVK8C MCIMX6S8DVM10AB MCIMX6L3EVN10AA MCIMX6L2EVN10AA MCIMX31LDVMN5DR2 MC9328MXSCVP10 MCIMX6DP4AVT8AA MC14490DWR2G MC74HC165AFELG MC74AC4040NG MC74ACT163NG TC4017BP(N,F) 74HC181N CD74HC165MTE4 CD74HC4060M96G4 SN74AHC594DRG4 CD74HC164MG4 TC74HC283AF(F) TC74HC4020AF(F) TC74HC4060AF(F) TC74HC4040AF(F) TC74HC165AF(F) SN74LV166ANSR CD74HC4060PWRG4 M74HC4060TTR TC74VHC165FT(EL,K) 74VHC9164FT(BJ) 74VHC9595FT(BJ) TC74VHC393F(EL,K,F

