INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

HEF4585B

MSI

4-bit magnitude comparator

DESCRIPTION

The HEF4585B is a 4-bit magnitude comparator which compares two 4-bit words (A and B), whether they are 'less than', 'equal to', or 'greater than'. Each word has four parallel inputs (A₀ to A₃ and B₀ to B₃); A₃ and B₃ being the most significant inputs. Three outputs are provided; A greater than B (O_{A > B}), A less than B (O_{A < B}) and A equal to B (O_{A = B}). Three expander inputs (I_{A > B}, I_{A < B} and I_{A = B}) allow cascading of the devices without external gates.

For proper compare operation the expander inputs to the least significant position must be connected as follows: $I_{A = B} = I_{A > B} = HIGH$, $I_{A < B} = LOW$. For words greater than 4-bits, units can be cascaded by connecting outputs $O_{A < B}$ and $O_{A = B}$ to the corresponding inputs of the next significant comparator (input $I_{A > B}$ is connected to a HIGH).

Operation is not restricted to binary codes, the devices will work with any monotonic code. The function table describes the operation of the device under all possible logic conditions.

HEF4585BP(N):	16-lead DIL; plastic (SOT38-1)				
HEF4585BD(F):	16-lead DIL; ceramic (cerdip) (SOT74)				
HEF4585BT(D):	16-lead SO; plastic (SOT109-1)				
(): Package Designator North America					

PINNING

A ₀ to A ₃	word A parallel inputs
B ₀ to B ₃	word B parallel inputs
$I_{A > B}, I_{A < B}, I_{A = B}$	expander inputs
O _{A > B}	A greater than B output
O _{A < B}	A less than B output
O _{A = B}	A equal to B output

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

HEF4585B MSI

4-bit magnitude comparator

4-bit magnitude comparator

HEF4585B MSI

FUNCTION TABLE

COMPARING INPUTS			CAS	CADING IN	PUTS	OUTPUTS			
A ₃ , B ₃	A ₂ , B ₂	A ₁ , B ₁	A ₀ , B ₀	I _{A > B}	I _{A < B}	I _{A = B}	0 _{A > B}	0 _{A < B}	O _{A = B}
A ₃ > B ₃	Х	Х	Х	Н	Х	Х	Н	L	L
A ₃ < B ₃	Х	Х	Х	Х	Х	Х	L	н	L
$A_3 = B_3$	$A_2 > B_2$	Х	Х	Н	Х	Х	Н	L	L
$A_3 = B_3$	$A_2 < B_2$	Х	Х	Х	Х	Х	L	н	L
$A_3 = B_3$	$A_2 = B_2$	A ₁ > B ₁	Х	Н	Х	Х	Н	L	L
$A_3 = B_3$	$A_2 = B_2$	A ₁ < B ₁	Х	Х	Х	Х	L	н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 > B_0$	Н	Х	Х	Н	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 < B_0$	Х	Х	Х	L	н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	Х	L	Н	L	L	Н
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	Н	L	L	Н	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	Х	н	L	L	н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	Х	Н	Н	L	Н	Н
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	L	L	L	L	L	L

Notes

- 1. H = HIGH state (the more positive voltage)
 - L = LOW state (the less positive voltage)
 - X = state is immaterial

The upper 11 lines describe the normal operation under all conditions that will occur in a single device or in a serial expansion scheme.

The lower 2 lines describe the operation under abnormal conditions on the cascading inputs. These conditions occur when the parallel expansion technique is used.

4-bit magnitude comparator

HEF4585B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$A_n, B_n \rightarrow O_n$	5		160	320	ns	133 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	65	130	ns	54 ns + (0,23 ns/pF) C _L
	15		45	90	ns	37 ns + (0,16 ns/pF) C _L
	5		150	300	ns	123 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	60	120	ns	49 ns + (0,23 ns/pF) C _L
	15		45	90	ns	37 ns + (0,16 ns/pF) C _L
$I_n \to O_n$	5		110	220	ns	83 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	45	90	ns	34 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
	5		120	240	ns	93 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	50	100	ns	39 ns + (0,23 ns/pF) C _L
	15		35	70	ns	27 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	1250 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	5500 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	15 000 f _i + Σ (f _o C _L) \times V _{DD} ²	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			Σ (f _o C _L) = sum of outputs
			V _{DD} = supply voltage (V)

APPLICATION INFORMATION

Some examples of applications for the HEF4585B are:

- Process controllers.
- Servo-motor control.

4-bit magnitude comparator

HEF4585B MSI

HEF4585B н 'A > в н-IA = B L -→ IA < B A0-→ A0 $B_0 \rightarrow B_0$ → A1 A1 --- $B_1 \longrightarrow B_1$ Н HEF4585B $A_2 \longrightarrow A_2$ $B_2 \longrightarrow B_2$ 0А>В |A > B0_A = B A = B B₃ → B₃ 0_A < b |A < B|A4-A₀ B4-BO A₅-----A₁ Β1 B₅-Н HEF4585B A2 A₆----B₆- $B_2 O_A > B$ I A > B $O_A = B$ A7 ----A₃ $I_A = B$ B7 — Вз 0_A < b |A < B|A₀ A8---B₀ B₈— A₁ Ag ---B₁ Bg --A10-Α2 $B_2 \quad O_A > B \longrightarrow A > B$ B₁₀-A11-A3 0_A = B → A = B B₁₁-----Вз ► A < B</p> $O_A < B$ - word B : B₁₁, B₁₀ B₀ 7Z79996.1 - word $A : A_{11}, A_{10} \dots A_0$ Fig.4 Example of cascading comparators.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Comparators category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

 742450X
 74FCT521ATQG
 LMC7221BIM5X/NOPB
 SC2903NG
 M38510/10301BHA
 74HC85D.652
 74HCT4046AD.112
 HEF4046BT.652

 HEF4541BT.512
 SN74ALS520NSR
 SN74LS682NSR
 ADCMP393ARUZ-RL7
 74HC280D.652
 74HC85DB.118
 74HCT9046AD.112

 74HC688DB.118
 74HCT85D.652
 74HC4046AD.652
 74HC4046ADB.112
 74HC688PW.112
 74HC785DB.112
 AS339GTR-E1
 MC33298

 74FCT521ATSOG
 74FCT521ATSOG8
 74FCT521CTQG
 74FCT521CTSOG8
 74HC7688N
 004592X
 74HC785D
 74HC688D,652

 74HC688DB,118
 74HC688PW,112
 74HC688PW,118
 74HC85D,652
 74HC785D,652
 74HC688D,652

 74HC785D,652
 74HC785D,653
 MC14585BDG
 MC14585BDR2G
 MC14585BD
 LM2903VNG
 HA17903APS-E
 MC3363DW
 LM239DG4

 CD74HC7688MG4
 SN74HC688DWRG4
 SN74HC688DWRG4
 SN74HC688DWRG4
 MC14585BDR26
 MC14585BDR
 MC14585BDR
 MC14585BDR
 MC3363DW
 LM239DG4