DISPLAY Elektronik GmbH

DATA SHEET

LCD MODULE

DEM 128064C ADX-PW-N

Product Specification

Version: 2

GENERAL SPECIFICATION

MODULE NO.:

DEM 128064C ADX-PW-N

CUSTOMER P/N:

Version No.	Change Description	Date
0	Original version	15.06.2017
	Change the LCD to Transmissive	
1	negative and change the OP./ST.	17.06.2017
	Temperature	
2	Change Vlcd	17.09.2017
i		

PREPARED BY: GJJ DATE: 17.09.2017

APPROVED BY: MH DATE: 17.09.2017

CONTENTS

1. FUNCTIONS & FEATURES	2
2. MECHANICAL SPECIFICATIONS	
3. EXTERNAL DIMENSIONS	
4. BLOCK DIAGRAM	
5. PIN DESCRIPTION	
6. BACKLIGHT ELECTRICAL/OPTICAL SPECIFICATIONS	
7. ABSOLUTE MAXIMUM RATINGS	7
8. ELECTRICAL CHARACTERISTICS	7
9. COMMAND TABLE	10
10. MODULE ACCEPT QUALITY LEVEL (AQL)	11
11. RELIABILITY TEST	11
12. QUALITY DESCRIPTION	12
13. LCD MODULES HANDLING PRECAUTIONS	13
14 OTHEDS	13

1. FUNCTIONS & FEATURES

MODULE NAME	LCD TYPE	Remark
DEM 128064C ADX-PW-N	ASTN Transmissive Negative Mode	

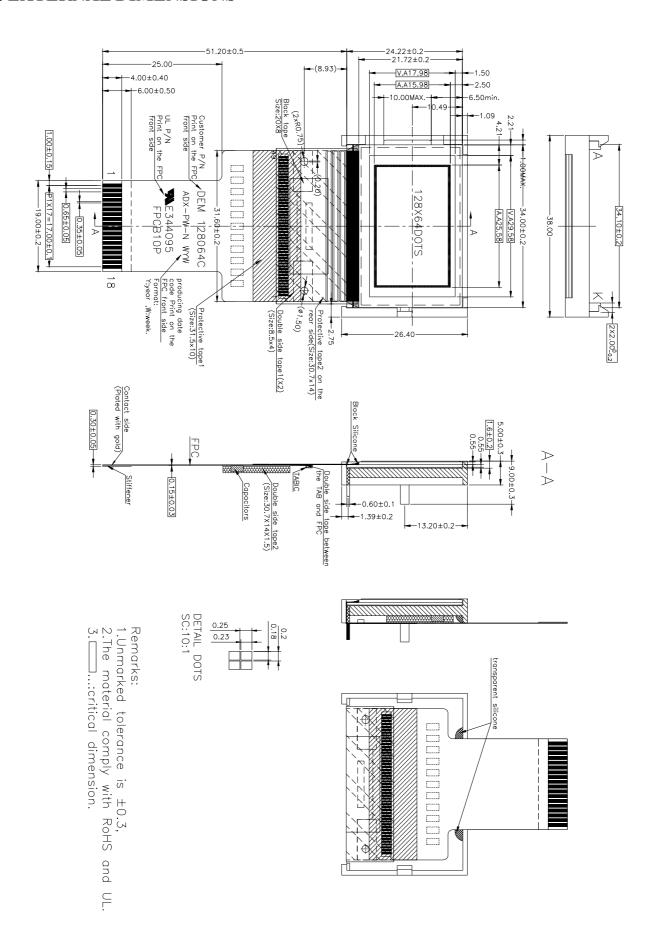
• Viewing Direction : 6 O'clock

• Driving Scheme : 1/64 Duty Cycle, 1/9 Bias

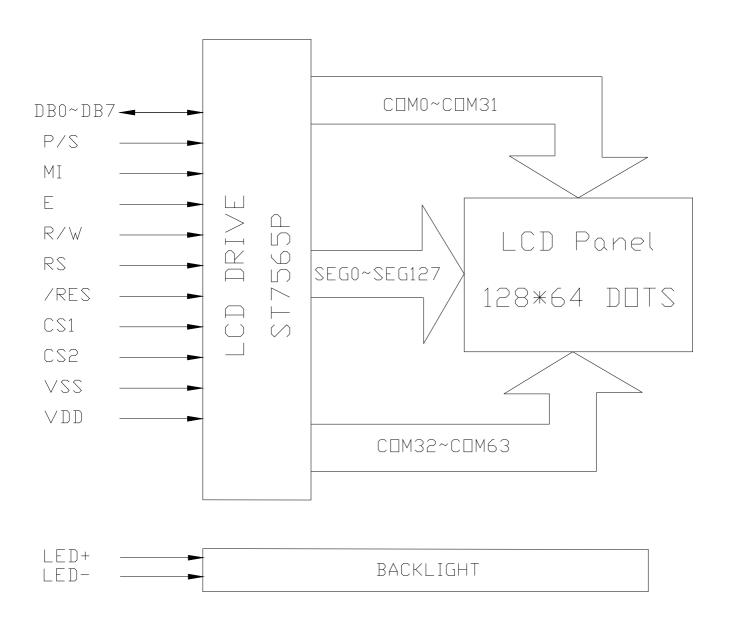
Power Supply Voltage : 3.3 Volt (typ.)
 LCD Operation Voltage (V0-Vss) : 11.0 Volt (typ.)
 Display Format : 128 x 64 Dots
 Driver IC : ST7565P (Sitronix)

• Interface : 6800 Series or 8080 Series

• RoHS Compliant


2. MECHANICAL SPECIFICATIONS

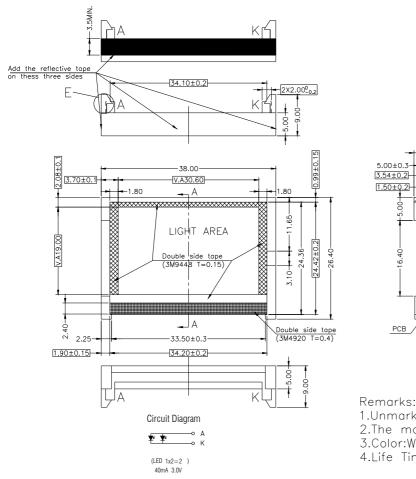
• Module Size : 38.00 x 26.40 x 9.00 mm (without FPC)

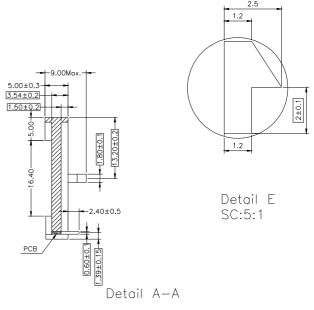

Viewing Area
 Active Area
 Dot Size
 Dot Pitch
 29.58 x 17.98 mm
 25.58 x 15.98 mm
 0.18 x 0.23 mm
 0.20 x 0.25 mm

• Dot Gap : 0.02 mm

3. EXTERNAL DIMENSIONS

4. BLOCK DIAGRAM


5. PIN DESCRIPTION


Pin No.	Name	Description									
1	VDD	Power supply(+3.3V)								
2	VSS	Ground									
3	CS1	This is the chip	This is the chip select signal. When /CS1="L" and CS2="H", then the chip select								
4	CS2	_	e, and data/comman			•					
5	/RES		set to "L", the regist ation is performed b			ed).					
6	RS	determines wh RS="H": Indic	This is connecting to the least significant bit of the normal MPU address bus, and it determines whether the data bits are data or command. RS="H": Indicates that DB0 to DB7 are display data. RS="L": Indicates that DB0 to DB7 are control data.								
7	R/W	When connected to 8080 series MPU, this pin is treated as the "/WR" signal of the 8080 MPU and is LOW-active. The signal on the data bus are latched at the rising edge of the /WR signal. When connected to 6800 series MPU, this pin is treated as the "R/W" signal of the 6800 MPU and decides the access type: When R/W = "H": Read. When R/W = "I": write.									
8	E	When connected to 8080 series MPU, this pin is treated as the "/RD" signal of the 8080 MPU and is LOW-active. The data bus is in an output status when this signal is "L". When connected to 6800 series MPU, this pin is treated as the "E" signal of the 6800 MPU and is HIGH-active.									
9~16	DB0~DB7	This is the enable clock input terminal of the 6800 series MPU. This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface (SPI-4) is selected (P/S="L") DB7: serial data input (SI); DB6: the serial clock input (SCL). DB0 to DB7 should be connected to VDD or floating. When the chip select is not active, DB0 to DB7 are set to high impedance.									
17	MI	MI="H":6800	U interface selection series MPU interfac series MPU interfac	e.							
18	P/S	MI="L":8080 series MPU interface. This pin configures the interface to be parallel mode or serial mode. P/S="H": Parallel data input/output. P/S="L": Serial data input. The following applies depending on the P/S status: P/S Data/Command Data Read/Write Serial Clock "H" A0 DB0 to DB7 /RD,/WR × "L" A0 SI (DB7) Write only SCL (DB6) When P/S="L",DB0 to DB5 must be fixed to"H" E and R/W are fixed to either "H" to "L".									

6. BACKLIGHT ELECTRICAL/OPTICAL SPECIFICATIONS

ELECTRICAL / OPTICAL SPECIFICATIONS

PARAMETER		STMBO)L	Min.	Тур.	Max	Unit	Test condition
AVERAGE LUMINOUS INTENSITY		lv		170	300		cd/m^2	Ta=25°C
LUMINOUS TOLERANCE / PCS				70			%	10=25 C
FORWARD CURRENT		If			40	50	mA	7.01
PEAK EMISSION WAVELENGTH		NΡ					nm	Vf= 3.0V
CHROMATICITY COORDINATES		Χ		0.22	0.24	0.30		
		Υ		0.24	0.30	0.32		
ITEM	STMB	TMBOL		BS. M	aximun	RATIN	G	TEST CONDITION
FORWARD CURRENT	lf		40mA					Ta=25°C
REVERSE VOLTAGE	REVERSE VOLTAGE Vr		5 V					
POWER DISSIPATION Pd			132mW					
OPERATING TEMPERATURE Topr		pr		−30 ~ +80 °C				
STORAGE TEMPERATURE	Tsto)		−40 ~ +90		0 °C		

- 1.Unmarked tolerance is ± 0.2 ,
- 2. The material comply with RoHS and UL,
- 3.Color:White,
- 4.Life Time:>=50000Hours.

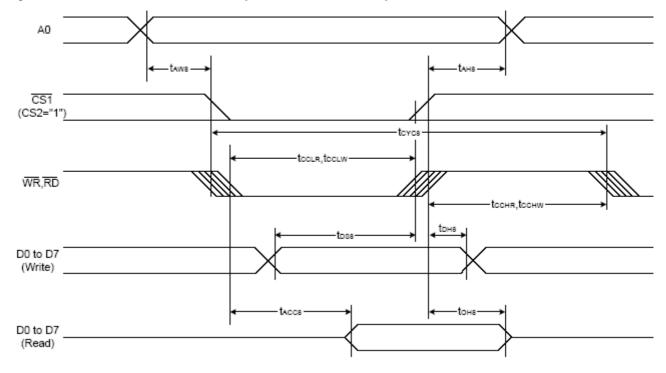
PAGE: 6 Version: 2

7. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Unit
Power Supply Voltage(1)	$V_{ m DD}$	+2.4 ~ +3.6	V
Power supply voltage (2)	V_{LCD}	+4.0 ~ +15.0	V
Input voltage	$V_{ m IN}$	-0.3 to VDD + 0.3 V	V
Output voltage	$V_{\rm O}$	-0.3 to VDD + 0.3	V
Operating temperature	T_{OPR}	- 30 ∼ +80	°C
Storage temperature	T_{STR}	-40~ +90	°C

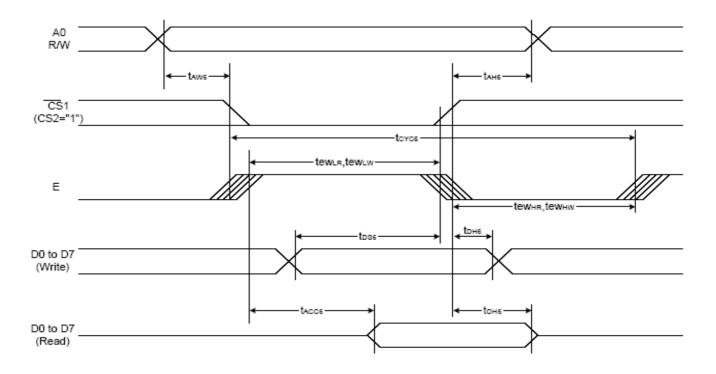
8. ELECTRICAL CHARACTERISTICS

8.1 DC CHARACTERISTICS


(VSS=0V, Ta= 25°C)

PARAMETER	SYMBOL	STA	NDARD V	ALUE	TEST CONDITION	UNIT
FARAVIE I ER	SIMBUL	MIN	TYP	MAX	Condition	UNII
Operation Voltage	$V_{ m DD}$	3.0	3.3	3.6	1	V
LCD Operation Voltage	V_{LCD}	10.7	11.0	11.3	1	V
		1	272	408	Display pattern: snow	
Current Consumption	I_{DD}		160	240	All ON/All OFF/Display	uA
			100	240	Character	

8.2 AC ELECTRICAL CHARACTERISTICS.


(VSS=0V, Ta=25°C)

System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)

Item	Signal	Symbol	Condition	Rati	ing	Units
item	Signai	Symbol	Condition	Min.	Max.	Ullits
Address hold time		tan8		0	_	
Address setup time	A0	tAW8		0	_	
System cycle time		tcycs		240	_]
Enable L pulse width (WRITE)	WR	tccLw		80	_]
Enable H pulse width (WRITE)	7 ***	tcchw		80	_]
Enable L pulse width (READ)	RD	tcclr		140	_	Ns
Enable H pulse width (READ)		tcchr		80]
WRITE Data setup time		tosa		40	_]
WRITE Address hold time	D0 to D7	tDH8		0	_]
READ access time	7 50 10 57	taccs	CL = 100 pF	_	70]
READ Output disable time	7	tон8	CL = 100 pF	5	50	1
		-			-	-

System Bus Read/Write Characteristics 2 (For the 6800 Series MPU)

Item	Signal Symbol		Condition	Rati	Units	
item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tan6		0	_	
Address setup time	A0	taw6		0	_	
System cycle time		tcyc6		240	_	
Enable L pulse width (WRITE)	WR	tewlw		80	_	
Enable H pulse width (WRITE)	VVIX	tewnw		80	_	
Enable L pulse width (READ)	RD	tewlr		80	_	ns
Enable H pulse width (READ)	, KD	tewnr.		140		
WRITE Data setup time		tos6		40	_	
WRITE Address hold time	D0 to D7	ф в на		0	_	
READ access time	50 10 57	tacc6	CL = 100 pF	_	70	
READ Output disable time		tон6	CL = 100 pF	5	50	

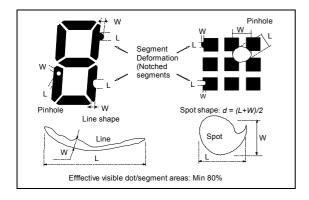
9. COMMAND TABLE

C				Con	nma	nd (Code	e					
Command	A 0	/RD	/WR	D7	D6	D5	D4	D	3 D)2	D1	D0	Function
(1) Display ON/OFF	0	1	0	1	0	1	0	1	I	1	1	0 1	LCD display ON/OFF 0: OFF, 1: ON
(2) Display start line set	0	1	0	0	1	Di	ispla	ay s	start	t a	ddre	88	Sets the display RAM display start line address
(3) Page address set	0	1	0	1	0	1	1	P	age	e a	ddre	ess	Sets the display RAM page address
(4) Column address set upper bit	0	1	0	0	0	0	1					cant ress	Sets the most significant 4 bits of the display RAM column address.
Column address set lower bit	0	1	0	0	0	0	0					cant ress	Sets the least significant 4 bits of the display RAM column address.
(5) Status read	0	0	1		St	atus	,	(D	0	0	0	Reads the status data
(6) Display data write	1	1	0			١	Writ	e d	lata				Writes to the display RAM
(7) Display data read	1	0	1				Rea	d d	lata				Reads from the display RAM
(8) ADC select	0	1	0	1	0	1	0	()	0	0	0 1	Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
(9) Display normal/ reverse	0	1	0	1	0	1	0	()	1	1	0 1	Sets the LCD display normal/ reverse 0: normal, 1: reverse
(10) Display all points ON/OFF	0	1	0	1	0	1	0	()	1	0	0 1	Display all points 0: normal display 1: all points ON
(11) LCD bias set	0	1	0	1	0	1	0	()	0	1	0 1	Sets the LCD drive voltage bias ratio 0: 1/9 bias, 1: 1/7 bias (ST7565P)
(12) Read/modify/write	0	1	0	1	1	1	0	(0	0	0	0	Column address increment At write: +1 At read: 0
(13) End	0	1	0	1	1	1	0	,	1	1	1	0	Clear read/modify/write
(14) Reset	0	1	0	1	1	1	0	(0	0	1	0	Internal reset
(15) Common output mode select	0	1	0	1	1	0	0		1	×	*	*	Select COM output scan direction 0: normal direction 1: reverse direction
(16) Power control set	0	1	0	0	0	1	0	1			erat ode	ing	Select internal power supply operating mode
(17) Vo voltage regulator internal resistor ratio set	0	1	0	0	0	1	0	() i		sisto tio	or	Select internal resistor ratio(Rb/Ra) mode
(18) Electronic volume mode set Electronic volume register set	0	1	0	1	0	0 Ele	0 ctro				_	1 alue	Set the Vo output voltage electronic volume register
(19) Static indicator ON/OFF Static indicator	0	1	0	1	0	1	0	1	1	1	0	0	0: OFF, 1: ON
register set				0	0	0	0	(0	0	0 1	Mode	Set the flashing mode
(20) Booster ratio set	0	1	0	1 0	0	0	1	(-	0	step	0 o-up lue	select booster ratio 00: 2x,3x,4x 01: 5x 11: 6x
(21) Power saver													Display OFF and display all points ON compound command
(22) NOP	0	1	0	1	1	1	0	(0	0	1	1	Command for non-operation
(23) Test	0	1	0	1	1	1	1		*	*	*	*	Command for IC test. Do not use this command

10. MODULE ACCEPT QUALITY LEVEL (AQL)

- 10.1 AQL Standard Value: Critical Defect =0.1, Major Defect=0.65; Minor Defect =2.5.
- 10.2 Inspection Standard: MIL-STD-105E Table Normal Inspection Single Sampling Level II.

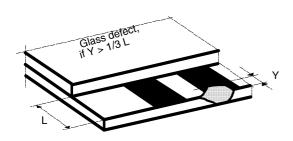
11. RELIABILITY TEST


Operating life time: 50000 hours (at room temperature without direct irradiation of sunlight) Reliability characteristics shall meet following requirements.

TEMPERATURE TESTS	NORMAL GRADE			
High temperature storage	+90 □ x 96hrs			
Low temperature storage	-40 □ x 96hrs			
High temperature operation	+80 □ x 96hrs			
Low temperature operation	-30 □ x 96hrs			
High temperature, High humidity	+60 □ x 90%RH x 96hrs			
Thermal shock	$0 \square \times 30 \text{min} \rightarrow 25 \square \times 30 \text{min} \rightarrow +60 \square \times 30 \text{min}$ 5 Cycles			
Vibration test	Frequency x Swing x Time 40Hz x 4mm x 4hrs			
Drop test	Height x no. of drop 1.0m x 6 drops			

12. QUALITY DESCRIPTION

DEFECT SPECIFICATION:


a: Table for Cosmetic defects
(Note: nc = not counted).
Sizes and number of defects
(Max. Qty)

Examples/ Shapes

b: Glass defects

b1:Glass defects at contact ledge

b2:Glass chipping in other areas shall not be in conflict with the product's function.

Г	T	
Defect Type	Max. defect size	Max.
	[µm]dorL W	Quantity.
Black or White Spots	d ≤ 150	Nc
	$150 < d \le 300$	3
Black or White Lines	W ≤ 10	Nc
	L ≤ 3000	2
	W ≤ 30	
	L ≤ 2000	2
	W ≤ 50	
Pinhole	d ≤ 150	nc
	$150 < d \le 300$	1/segment
(Total o	defects)	(5)
Segment Deformation	W ≤ 100	Nc
Bubble (e.g. under pola)	d ≤ 150	Nc
	$200 < d \le 400$	2

13. LCD MODULES HANDLING PRECAUTIONS

- The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- If the display panel is damaged and the liquid crystal substance inside it leaks out, do not get any in your mouth. If the substance come into contact with your skin or clothes promptly wash it off using soap and water.
- Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarize carefully.
- To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - -Be sure to ground the body when handling the LCD module.
 - -Tools required for assembly, such as soldering irons, must be properly grounded.
 - -To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - -The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

Storage precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags designed to prevent static electricity charging under low temperature / normal humidity conditions (avoid high temperature / high humidity and low temperatures below $0\Box$). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

14. OTHERS

- Liquid crystals solidify at low temperature (below the storage temperature range) leading to defective orientation of liquid crystal or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subjected to a strong shock at a low temperature.
- If the LCD modules have been operating for a long time showing the same display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. Abnormal operating status can be resumed to be normal condition by suspending use for some time. It should be noted that this phenomena does not adversely affect performance reliability.
- To minimize the performance degradation of the LCD modules resulting from caused by static electricity, etc. exercise care to avoid holding the following sections when handling the modules :
 - Exposed area of the printed circuit board
 - Terminal electrode sections