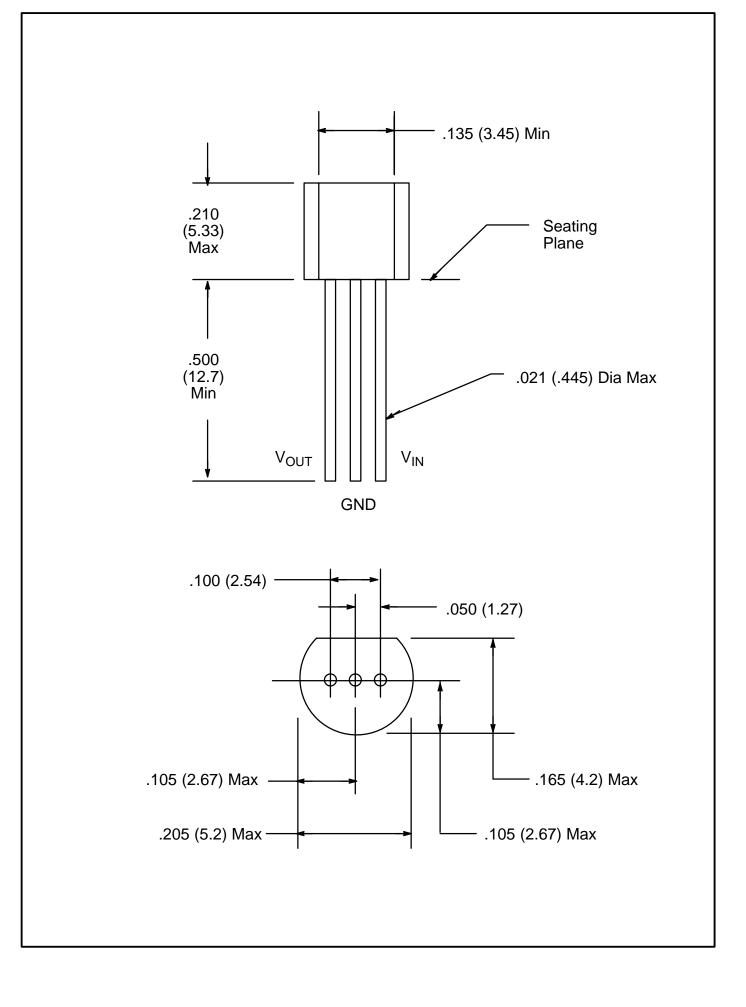


NTE1902 Integrated Circuit 3 Terminal Positive Voltage Regulator 9V, 100mA

Features:

- Output Current up to 100mA
- No External Components
- Internal Thermal Overload Protection
- Internal Short–Circuit Current Limiting
- Output Voltage Tolerances of ±5% over the Temperature Range


Absolute Maximum Ratings:

Input Voltage, V _{IN}	
Internal Power Dissipation, P _D	. Internally Limited
Operating Junction Temperature Range, T _J	0° to +125°C
Storage Temperature Range, T _{stg}	–55° to +150°C
Lead Temperature (During Soldering, 10sec), T _L	+260°C

Parameter	Symbol	Test Conditions			Тур	Max	Unit
Output Voltage	V _O	$T_J = +25^{\circ}C$		8.64	9.00	9.36	V
		$1mA \leq I_O \leq 70mA, \ 11.5V \leq V_{IN} \leq 24V$		8.55	9.00	9.45	V
Line Regulation	Reg _{Line}	$T_J = +25^{\circ}C$	$11.5V \le V_{IN} \le 24V$	-	90	200	mV
			$13V \le V_{IN} \le 24V$	-	100	150	mV
Load Regulation	Reg _{Load}	$T_J = +25^{\circ}C$	$1mA \le I_O \le 100mA$	-	20	90	mV
			$1mA \le I_O \le 40mA$	-	10	45	mV
Quiescent Current	I _B			-	2.1	5.5	mA
Quiescent Current Change	I _B	With line, $11.5V \le V_{IN} \le 24V$ With load, $1mA \le I_O \le 40mA$		-	-	1.5	mA
				-	-	0.1	mA
Output Noise Voltage	V _N	$T_A = +25^{\circ}C$, f = 10Hz to 10kHz		-	70	-	μV
Temperature Coefficient of V_{OUT}		I _{OUT} = 5mA		-	-0.9	-	mV/°C
Ripple Rejection	RR	T_J = +25°C, 15V ≤ V _{IN} ≤ 25V, f = 120Hz		38	44	-	dB
Dropout Voltage	V _{DO}	$T_J = +25^{\circ}C$		-	1.4	I	V
Peak Output/Short Circuit Current	I _{pk} /I _{OS}	$T_J = +25^{\circ}C$			140	I	mA

Note 1. The maximum steady state usable output current and input voltage ar very dependent on the heat sink and/or lead length of the package. The data above represents pulse test conditions with junction temperatures as indicated at the initiation of the test.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by NTE manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MAX202ECWE-LF MCDTSA6-2R L4953G L7815ACV-DG PQ3DZ53U LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E L78MR05-E 033150D 033151B 090756R 636416C NCV78M15BDTG 702482B 714954EB TLE42794GM TLE42994GM ZMR500QFTA BA033LBSG2-TR NCV78M05ABDTRKG NCV78M08BDTRKG NCP7808TG NCV571SN12T1G LV5680P-E CAJ24C256YI-GT3 L78M15CV-DG L9474N TLS202B1MBV33HTSA1 L79M05T-E NCP571SN09T1G MAX15006AASA/V+ MIC5283-5.0YML-T5 L4969URTR-E L78LR05D-MA-E NCV7808BDTRKG L9466N NCP7805ETG SC7812CTG NCV7809BTG NCV571SN09T1G NCV317MBTG MC78M15CDTT5G MC78M12CDTT5G L9468N