

NTE1918 3 Terminal Positive Voltage Regulator 15V, 3A

Description:

The NTE1918 is a positive 3-terminal voltage regulator in a TO3 type package capable of driving loads in excess of 3A. This device employs internal current limiting, thermal shutdown, and safe-area compensation.

Although designed primarily as a fixed voltage regulator, the NTE1918 can be used with external components to obtain adjustable voltages and currents.

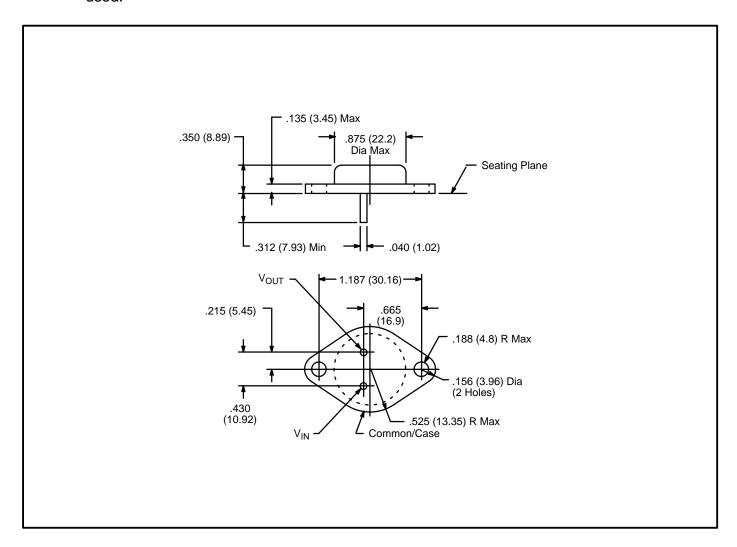
Features:

- Output Current in Excess of 3A
- Power Dissipation: 30W
- Internal Thermal Overload Protection
- Output Transistor Safe Area Protection
- Internal Short Circuit Current Limit
- No External Components Required

Absolute Maximum Ratings:

Input Voltage , V _{IN}	40V
Power Dissipation (T _A = +25°C, Note 1), P _D	
Power Dissipation ($T_C = +25^{\circ}C$, Note 1), P_D	Internally Limited
Operating Junction Temperature Range, T _J	0° to +150°C
Storage Temperature Range, T _{stq}	–65° to +150°C
Thermal Resistance, Junction–to–Case, R _{thJC}	2.5°C/W
Thermal Resistance, Junction–to–Ambient, R _{thJA}	35°C/W

Note 1. Although power dissipation is internally limited, specifications apply only for $P_O \le 30W$.


<u>Electrical Characteristics:</u> $(0^{\circ} \le T_{J} \le +125^{\circ}C, V_{IN} = 20V, I_{O} = 3Aunless otherwise specified)$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Voltage	Vo	$T_J = +25$ °C, 5mA $\leq I_O \leq 3$ A	14.4	15.0	15.6	V
		$5mA \le I_O \le 2A, 17.5V \le V_{IN} \le 30V$	14.25	15.00	15.75	V
Line Regulation	Reg _{line}	$T_J = +25^{\circ}C$, $20V \le V_{IN} \le 26V$, Note 2	_	7.5	55	mV
		$18V \le V_{IN} \le 30V$, $I_O = 1A$, Note 2	_	7.5	55	mV
Load Regulation	Reg _{load}	$T_J = +25$ °C, 5mA $\leq I_O \leq$ 3A, Note 2	_	10	30	mV
		$5mA \le I_O \le 3A$, Note 2	_	15	80	mV

Note 2. Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent Current	ΙQ	$T_J = +25$ °C, 5mA $\leq I_O \leq 3$ A	_	3.5	5.0	mA
		$5mA \le I_O \le 3A$	_	4.0	6.0	mA
Quiescent Current Change	ΙQ	$T_J = +25^{\circ}C$, $17.6V \le V_{IN} \le 40V$, $I_O = 5mA$	_	0.3	1.0	mA
		$18V \le V_{IN} \le 30V$, $I_O = 1A$	_	0.3	1.0	mA
Output Noise Voltage	V _n	$T_J = +25^{\circ}\text{C}$, f = 10Hz to 100kHz	_	10	_	μV
Output Resistance	r _O	f = 1kHz	_	2	_	mΩ
Short Circuit Current Limit	I _{sc}	$T_A = +25^{\circ}C, V_{IN} = 40V$	_	0.2	1.2	Α
Ripple Rejection Ratio	RR	$T_J = +25^{\circ}\text{C}$, $18.5\text{V} \le \text{V}_{\text{IN}} \le 28.5\text{V}$, $f = 120\text{Hz}$, $I_O = 2\text{A}$	55	65	Ι	dB
Dropout Voltage		$T_{J} = +25^{\circ}C, I_{O} = 3A$	_	2.2	2.5	V
Peak Output Current	I _O max	$T_J = +25$ °C	_	5	_	Α
Average Temperature Coefficient of Output Voltage		$I_{O} = 5mA$	_	0.6	1	mV/°C

Note 2. Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

LV56831P-E LV5684PVD-XH MAX202ECWE-LF MCDTSA6-2R L4953G L7815ACV-DG PQ3DZ53U LV56801P-E

TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E L78MR05-E 033150D 033151B 090756R

636416C NCV78M15BDTG 702482B 714954EB TLE42794GM TLE42994GM ZMR500QFTA BA033LBSG2-TR

NCV78M05ABDTRKG NCV78M08BDTRKG NCP7808TG NCV571SN12T1G LV5680P-E CAJ24C256YI-GT3 L78M15CV-DG L9474N

TLS202B1MBV33HTSA1 L79M05T-E NCP571SN09T1G MAX15006AASA/V+ MIC5283-5.0YML-T5 L4969URTR-E L78LR05D-MA-E

NCV7808BDTRKG L9466N NCP7805ETG SC7812CTG NCV7809BTG NCV571SN09T1G NCV317MBTG MC78M15CDTT5G

MC78M12CDTT5G L9468N