

NTE1927 Integrated Circuit 4–Terminal Negative Adjustable Voltage Regulator

Description:

The NTE1927 is a 4-terminal negative adjustable voltage regulator in a TO3 type package designed to deliver continuous load currents of up to 1A with a maximum input voltage of -40V.

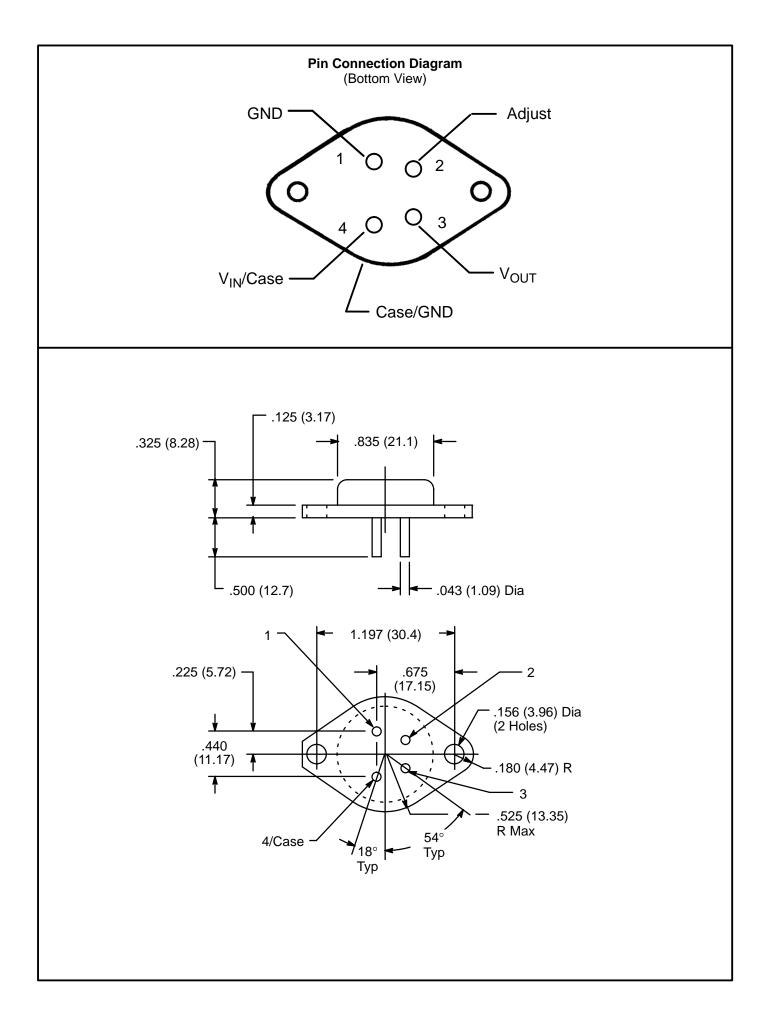
Features:

- Output Current in Excess of 1A
- Negative Output –30V to –2.2V
- Internal Thermal Overload Protection
- Internal Short Circuit Protection
- Output Transistor Safe–Area Protection

Absolute Maximum Ratings:

Input Voltage, V _{IN}	40V
Control Pin Voltage	$\dots - V_{OUT} \le - V \le 0$
Power Dissipation, P _D	. Internally Limited
Operating Junction Temperature Range, Topr	0° to 150°C
Storage Temperature Range, T _{stg}	–65° to +150°C
Lead Temperature (During Soldering, 60sec), T _L	+300°C

Parameter	Test Conditions		Min	Тур	Мах	Unit
Input Voltage Range	$T_J = +25^{\circ}C$		-40	-	-7.0	V
Nominal Output Voltage Range	$V_{IN} = V_{OUT} - 5V$		-30	_	-2.23	V
Output Voltage Tolerance	$V_{OUT} - 15V \le V_{IN} \le V_{OUT} - 3V$, 5mA $\le I_{OUT} \le 1A$, $P_D \le 15W$,	T _J = +25°C	-	_	4.0	% (V _{OUT})
	$I_{\text{IN}(\text{max})} = -38V$		-	_	5.0	% (V _{OUT})


Note 1. V_{OUT} is defined as: $V_{OUT} = \frac{R1 + R2}{R2}$ (-2.23)

Note 2. The convention for negative regulators in the algabraic value, thus -15V is less than -10V.

Parameter	Test Conditions			Тур	Max	Unit
		-	Min	.76		
Line Regulation	$V_{OUT} \ge -10V$, (V_{OUT} -15V) $\le V_{IN} \le (V_{OUT}$ -2.5V)	T _J = +25°C	_	_	1.0	% (V _{OUT})
	$V_{OUT} \le -10V$, (V_{OUT} -15V) $\le V_{IN} \le (V_{OUT}$ -3V)		-	-	0.75	% (V _{OUT})
	$V_{OUT} \le -10V,$ $(V_{OUT} - 7V) \le V_{IN} \le (V_{OUT} - 3V)$		_	-	0.67	% (V _{OUT})
Load Regulation	$250\text{mA} \le I_{OUT} \le 750\text{mA}$	$T_{J} = +25^{\circ}C,$ $V_{IN} = V_{OUT} - 5V$	_	-	1.0	% (V _{OUT})
	$5\text{mA} \le I_{OUT} \le 1.5\text{A}$		_	-	2.0	% (V _{OUT})
Control Pin Current	$T_J = +25^{\circ}C$	$T_J = +25^{\circ}C$		0.4	2.0	μΑ
				-	3.0	μΑ
Quiescent Current	$T_J = +25^{\circ}C$		-	0.5	1.5	μA
			-	-	2.0	μA
Ripple Rejection	$-18V \le V_{IN} \le -8V$, $V_{OUT} = -5V$, f = 120Hz		50	60	-	dB
Output Noise Voltage	T_{J} = +25°C, 10Hz \leq f \leq 100kHz, V_{OUT} = –5V, I_{OUT} = 5mA		_	25	80	μV/V _{OUT}
Dropout Voltage	Note 3		-	-	2.3	V
Short Circuit Current	$T_{J} = +25^{\circ}C, V_{IN} = -30V$	$T_{J} = +25^{\circ}C, V_{IN} = -30V$		0.25	1.2	А
Peak Output Current	$T_J = +25^{\circ}C$		1.3	2.1	3.3	А
Average Temperature Coefficient of Output Voltage	$T_J = -55^\circ$ to $+25^\circ$ C	V _{OUT} = -5V, I _{OUT} = 5mA	-	-	0.3	mV/°C/V _{OUT}
	$T_{\rm J}$ = +25° to +150°C		_	-	0.3	mV/°C/V _{OUT}
Control Pin Voltage (Reference)	T _J = +25°C	•	-2.32	-2.23	-2.14	V
			-2.35	-	-2.11	V

Note 1. V_{OUT} is defined as: $V_{OUT} = \frac{R1 + R2}{R2}$ (-2.23)

- Note 2. The convention for negative regulators in the algabraic value, thus -15V is less than -10V.
- Note 3. Dropout Voltage is defined as that input–output voltage differential which causes the output voltage to decrease by 5% of its initial value.
- Note 4. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_W \le 10$ ms, duty cycle $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by NTE manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MAX202ECWE-LF MCDTSA6-2R L4953G L7815ACV-DG PQ3DZ53U LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E L78MR05-E 033150D 033151B 090756R 636416C NCV78M15BDTG 702482B 714954EB TLE42794GM TLE42994GM ZMR500QFTA BA033LBSG2-TR NCV78M05ABDTRKG NCV78M08BDTRKG NCP7808TG NCV571SN12T1G LV5680P-E CAJ24C256YI-GT3 L78M15CV-DG L9474N TLS202B1MBV33HTSA1 L79M05T-E NCP571SN09T1G MAX15006AASA/V+ MIC5283-5.0YML-T5 L4969URTR-E L78LR05D-MA-E NCV7808BDTRKG L9466N NCP7805ETG SC7812CTG NCV7809BTG NCV571SN09T1G NCV317MBTG MC78M15CDTT5G MC78M12CDTT5G L9468N