

NTE97 Silicon NPN Transistor HV Darlington Power Amp, Switch

Description:

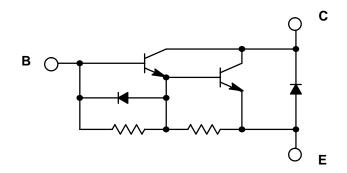
The NTE97 is a silicon NPN Darlington transistor in a TO3 type package designed for high voltage, high-speed, power switching in inductive circuits where fall-time is critical. They are particularly suited for line operated switch-mode applications.

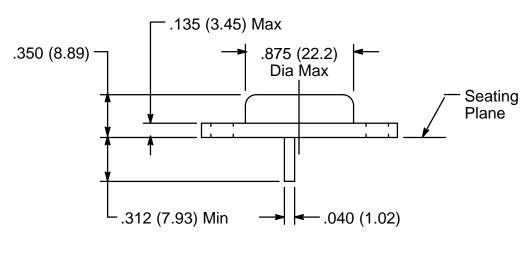
Applications:

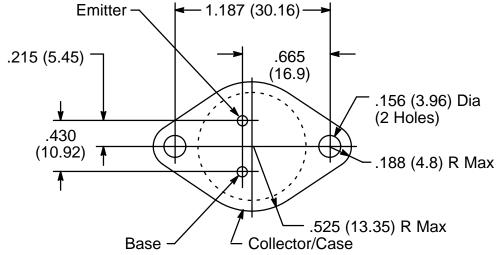
- Switching Regulators
- Inverters
- Solenoid and Relay Drivers

Absolute Maximum Ratings:

Absolute maximum Natings.
Collector–Emitter Voltage, V _{CEO(sus)}
Collector–Emitter Voltage, V _{CEX(sus)}
Collector–Emitter Voltage, V _{CEV}
Emitter–Base Voltage, V _{EB} 8V
Collector Current, I _C
Continuous 10A Peak (Note 1) 20A
Base Current, I _B
Continuous
Peak (Note 1)
Total Power Dissipation ($T_C = +25^{\circ}C$), P_D
Derate Above +25°C 0.86W/°C
Total Power Dissipation ($T_C = +100^{\circ}C$), P_D
Operating Junction Temperature Range, T _J
Storage Temperature Range, T _{stq} –65° to +200°C
Thermal Resistance, Junction–to–Case, R _{thJC}
Lead Temperature (During Soldering, 1/8" from case, 5sec), T _L +275°C
Note 1 Pulse test: Pulse Width - 5ms Duty Cycle < 10%


Note 1. Pulse test: Pulse Width = 5ms, Duty Cycle \leq 10%.


Electrical Characteristics: $(T_C = +25^{\circ}C \text{ unless otherwise specified})$


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
OFF Characteristics (Note 2)							
Collector–Emitter Sustaining Voltage	V _{CEO(sus)}	$I_C = 250 \text{mA}, I_B = 0, V_{clamp} = 400 \text{V}$	400	_	_	V	
	V _{CEX(sus)}	I _C = 1A, V _{clamp} = 450V, T _C = +100°C	450	_	_	V	
		I _C = 5A, V _{clamp} = 450V, T _C = +100°C	325	_	_	V	
Collector Cutoff Current	I _{CEV}	V _{CEV} = 500V, V _{BE(off)} = 1.5V	_	_	0.25	mA	
		$V_{CEV} = 500V, V_{BE(off)} = 1.5V, T_{C} = +100^{\circ}C$	-	_	5.0	mA	
	I _{CER}	V_{CEV} = 500V, R_{BE} = 50 Ω , T_{C} = +100°C	_	_	5.0	mΑ	
Emitter Cutoff Current	I _{EBO}	$V_{EB} = 8V, I_{C} = 0$	_	_	175	mA	
ON Characteristics (Note 3)	•					•	
DC Current Gain	h _{FE}	$V_{CE} = 5V, I_{C} = 2.5A$	40	_	500		
		$V_{CE} = 5V$, $I_C = 5A$	30	_	300		
Collector–Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 5A, I_B = 250mA$	_	_	1.9	V	
		I _C = 5A, I _B = 250mA, T _C = +100°C	_	_	2.0	V	
		I _C = 10A, I _B = 1A	_	_	2.9	V	
Base–Emitter Saturation Voltage	V _{BE(sat)}	I _C = 5.2A, I _B = 250mA	_	_	2.5	V	
		I _C = 5A, I _B = 250mA, T _C = +100°C	_	_	2.5	V	
Diode Forward Voltage	V _F	I _F = 5A, Note 3	_	3	5	V	
Dynamic Characteristics							
Small-Signal Current Gain	h _{fe}	$V_{CE} = 10V$, $I_{C} = 1A$, $f_{test} = 1MHz$	10	_	_		
Output Capacitance	C _{ob}	$V_{CB} = 50V$, $I_{E} = 0$, $f_{test} = 100kHz$	60	_	275	pF	
Switching Characteristics (Resist	ive Load)						
Delay Time	t _d	V_{CC} = 250V, I_{C} = 5A, I_{B1} = 250mA, $V_{BE(off)}$ = 5V, t_{p} = 50 μ s, Duty Cycle \leq 2%	_	0.05	0.2	μs	
Rise Time	t _r		_	0.25	0.6	μs	
Storage Time	t _s		_	1.2	3.0	μs	
Fall Time	t _f		_	0.6	1.5	μs	
Switching Characteristics (Induct	ive Load, C	lamped)	-	-	-		
Storage Time	t _{sv}	$I_{C} = 5A \text{ Peak}, V_{clamp} = 450V, I_{B1} = 250\text{mA}, V_{BE(off)} = 5V, T_{C} = +100^{\circ}\text{C}$	_	2.1	5.0	μs	
Crossover Time	t _c		_	1.3	3.3	μs	
Storage Time	t _{sv}	I_C = 5A Peak, V_{clamp} = 450V, I_{B1} = 250mA, $V_{BE(off)}$ = 5V, T_C = +25°C	-	0.92	_	μs	
Crossover Time	t _c		_	0.5	_	μs	

Note 2. Pulse test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2\%$.

Note 3. The internal Collector–Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (V_F) of this diode is comparable to that of typical fast recovery rectifiers.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Darlington Transistors category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

281287X SMMBT6427LT1G 2N7371 BDV64B JANTXV2N6287 028710A SMMBTA64LT1G 2N6350 2SB1214-TL-E

SMMBTA14LT1G SBSP52T1G NJVMJD117T4G Jantx2N6058 2N6353 LB1205-L-E 500-00005 2N6053 NJVMJD112G Jan2N6350

Jantx2N6352 Jantx2N6350 BULN2803LVS ULN2001N 2SB1383 2SB1560 2SB852KT146B TIP112TU TIP122TU BCV27 MMBTA13
TP MMBTA14-TP MMSTA28T146 BSP50H6327XTSA1 KSH122TF NTE2557 NJVNJD35N04T4G TIP115 MPSA29-D26Z MJD127T4

FJB102TM BCV26E6327HTSA1 BCV46E6327HTSA1 BCV47E6327HTSA1 BSP61H6327XTSA1 BU941ZPFI 2SB1316TL 2SD1980TL

NTE2350 NTE245 NTE246