

NTE99 Silicon NPN Transistor Darlington W/Base-Emitter Speed-up Diode TO-3 Type Package

Description:

The NTE99 is a silicon NPN Darlington transistor in a TO3 type package designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. This device is particularly suited for line-operated switchmode applications.

Applications:

- Switching Regulators
- Motor Controls
- Inverters
- Solenoid and Relay Drivers

Features:

Fast Turn-Off Times:

1.0μs (max) Inductive Crossover Time – 20 Amps 2.5μs (max) Inductive Storage Time – 20 Amps

Operating Temperature Range: -65° to +200°C

Absolute Maximum Ratings:

Absolute Maximum Ratings:
Collector–Emitter Voltage, V _{CEO}
Collector–Emitter Voltage, V _{CEV}
Emitter-Base Voltage, V _{EB}
Collector Current, I _C
Continuous
Peak (Note 1)
Base Current, I _B
Continuous 10A
Peak (Note 1)
Total Power Dissipation, P _D
$T_{C} = +25^{\circ}C \dots 250W$
Derate Above 25°C
$T_C = +100^{\circ}C$
Operating Junction Temperature Range, T _J –65° to +200°C
Storage Temperature Range, T _{stg} –65° to +200°C
Thermal Resistance, Junction-to-Case, R _{th,IC}
Maximum Lead Temperature (During Soldering, 1/8" from case for 5sec), T _L +275°C
Note 1. Pulse Test: Pulse Width = 5ms, Duty Cycle ≤ 10%.

Electrical Characteristics: $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF Characteristics (Note 2)						
Collector-Emitter Sustaining Voltage	V _{CEO(sus)}	$I_C = 100 \text{mA}, I_B = 0, V_{clamp} = 400 \text{V}$	400	_	_	V
Collector Cutoff Current	I _{CEV}	V _{CEV} = 600V, V _{BE(off)} = 1.5V	-	-	0.25	mA
Emitter Cutoff Current	I _{EBO}	V _{BE} = 2V, I _C = 0	-	-	350	mA
ON Characteristics (Note 2)	-					
DC Current Gain	h _{FE}	I _C = 20A, V _{CE} = 5V	25	-	-	
		I _C = 40A, V _{CE} = 5V	10	-	-	
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 20A, I _B = 1A	-	-	2.2	V
		I _C = 50A, I _B = 10A	-	-	5.0	V
Base-Emitter Saturation Voltage	V _{BE(sat)}	I _C = 20A, I _B = 1A	-	-	2.75	V
Diode Forward Voltage	V _f	I _F = 20A, Note 3	-	2.5	5.0	V
Dynamic Characteristic	•					
Output Capacitance	C _{ob}	$V_{CB} = 10V$, $I_{E} = 0$, $f_{test} = 100$ kHz	_	_	750	pF
Switching Characteristics	•					
Resistive Load						
Delay Time	t _d	$V_{CC} = 250V, I_C = 20A, I_{B1} = 1A, V_{BE(off)} = 5V, t_p = 25\mu s, Duty Cycle \le 2%$	_	0.14	0.3	μS
Rise Time	t _r		_	0.3	1.0	μS
Storage Time	t _s		-	0.8	2.5	μS
Fall Time	t _f		-	0.3	1.0	μS
Inductive Load, Clamped	•	•				
Storage Time	t _{sv}	I _C = 20A(pk), V _{clamp} = 250V, I _{B1} = 1A, V _{BE(off)} = 5V	_	1.0	2.5	μS
Crossover Time	t _c		_	0.36	1.0	μS

- Note 2. Pulse Test: Pulse Widtg = 300μs, Duty Cycle ≤ 2%.
- Note 3. The internal Collector–to–Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (V_f) of this diode is comparable to that of typical fast recovery rectifiers.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Darlington Transistors category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

281287X SMMBT6427LT1G 2N7371 BDV64B JANTXV2N6287 028710A SMMBTA64LT1G 2N6350 2SB1214-TL-E

SMMBTA14LT1G SBSP52T1G NJVMJD117T4G Jantx2N6058 2N6353 LB1205-L-E 500-00005 2N6053 NJVMJD112G Jan2N6350

Jantx2N6352 Jantx2N6350 BULN2803LVS ULN2001N 2SB1383 2SB1560 2SB852KT146B TIP112TU TIP122TU BCV27 MMBTA13
TP MMBTA14-TP MMSTA28T146 BSP50H6327XTSA1 KSH122TF NTE2557 NJVNJD35N04T4G TIP115 MPSA29-D26Z MJD127T4

FJB102TM BCV26E6327HTSA1 BCV46E6327HTSA1 BCV47E6327HTSA1 BSP61H6327XTSA1 BU941ZPFI 2SB1316TL 2SD1980TL

NTE2350 NTE245 NTE246