

SPECIFICATION

Page 1, Total 29 Pages

OLED SPECIFICATION

Model No:

REC001202ABPP5N00000

CUSTOMER:

APPROVED BY

PCB VERSION

DATE

FOR CUSTOMER USE ONLY

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY	
Release DATE:				

1. Revision History

VERSION	DATE	REVISED PAGE NO.	Note
0	2011/04/08		First release
A	2011/07/02		Change version
В	2014/04/28		Update Rev.
С	2014/06/16		Add Low Temperature storage.
D	2015/04/08		Modify Block Diagram.
E	2016/06/01		Modify Static electricity test

Contents

- 1.General Specification
- 2.Module Classification Information
- 3.Interface Pin Function
- 4.Contour Drawing & Block Diagram
- 5. Absolute Maximum Ratings
- 6.Electrical Characteristics
- 7.Optical Characteristics
- 8.OLED Lifetime
- 9.Reliability
- 10.Inspection specification
- 11.Precautions in use of OLED Modules

1.General Specification

The Features is described as follow:

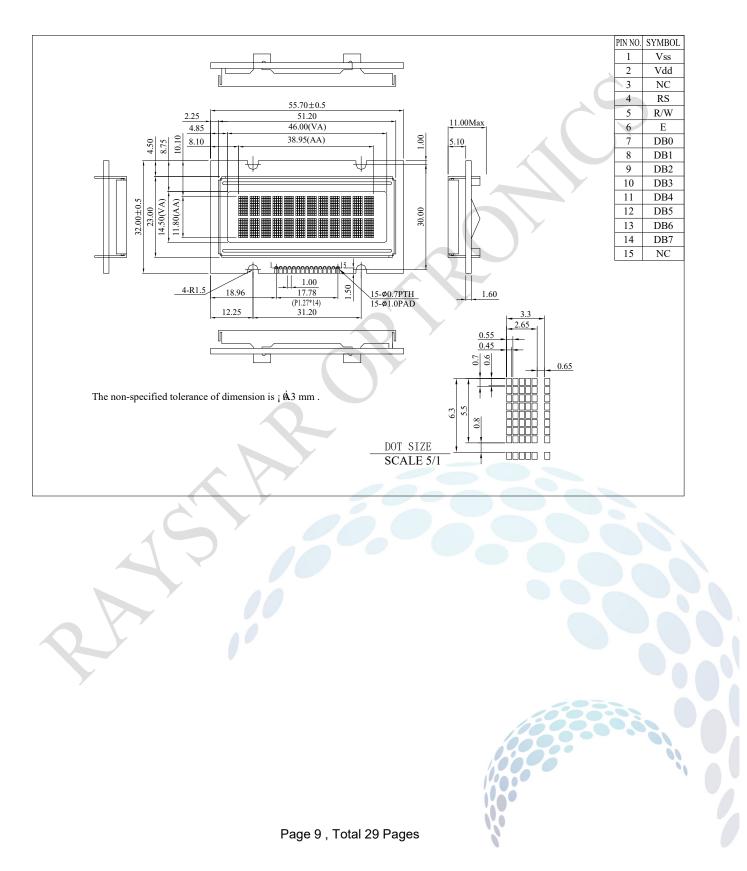
- Module dimension: 55.7 x 32.0 x 11.0 (max.) mm
- View area: 46.0 x 14.5 mm
- Active area: 38.95 x 11.80 mm
- Number of Characters :12 Characters x 2 Line
- Dot size: 0.45 x 0.60 mm
- Dot pitch: 0.55x 0.70 mm
- Character size: 2.65 x 5.5 mm
- Character pitch: 3.6 x 6.3 mm
- Duty: 1/16
- Emitting Color: OLED ,Blue

2.Module Coding System

1	2	3	4	5	6	7	8	9	10	11	12	13	14
R	E	С	001202	А	В	Р	Р	5	Ν	0	0	0	00

1	Brand : Raystar Opt	ronics Inc.		$\left(\right)$				
2	E : OLED							
3 4 5	Display Type : C→C Number of Characte Series		nic , T→TAB ,X→COG . 2Lines.	$H \rightarrow COG $ (with Frame)				
5								
		A : Amber	R : Red	C : Full Color				
6	Emitting Color	B : Blue	W : White					
-		G : Green	Y : Yellow					
		S : Sky Blue	X : Dual Color					
7	Delerizer	P: With Polarizer;	N: Without Polarizer					
7	Polarizer	A : Anti-glare Pola	A:Anti-glare Polarizer					
8	Display Mode	P : Passive Matrix	P : Passive Matrix ; N : Active Matrix					
9	Driver Voltage	3:3.0~3.3V;	3:3.0~3.3V; 5:5.0V					
10	Touch Panel	N : Without touch	N : Without touch panel; T: With touch panel					
		0 : Standard	1000					
		1 : Sunlight Readable						
11	Product type	2 : Transparent OLED (TOLED)						
		3 : Flexible OLED	(FOLED)					
		4 : OLED Lighting						
		0 : Standard						
12	Increation Crade	2 : B grade						
12	Inspection Grade	C : Automotive gra	ade					
		Y : Consumer gra	de	100000				
13	Interface	0:Default;F:FF	PC ; H:Hot bar ; D:De	emo Kit				
14	Serial No.	Serial number(00~	-ZZ)					

Page 7, Total 29 Pages


3.Interface Pin Function

Pin No.	Symbol	Level	Description
1	VSS	0V	Ground
2	VDD	5.0V	Supply Voltage for logic
3	NC	-	No Connection
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(Module→MPU) L: Write(MPU→Module)
6	E	H,H→L	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	NC	-	No Connection

Page 8, Total 29 Pages

4.Counter Drawing & Block Diagram

	RS		M1~16
MPU	R/W	RS0010	
68 Series	DB0-DB7	Controller IC SE	G176 12X2 OLED

	Address	Format		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
(CA (Charac	ter Addre	ss)	1	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
			1								

1	2	3	4			9	10	11	12
CA=1000000b	CA=1000001b	CA=10000010b	CA=10000011b			CA=10001000b	CA=10001001b	CA=10001010b	CA=10001011b
CA=11000000b	CA=11000001b	CA=11000010b	CA=11000011b	3	<u> </u>	CA=11001000b	CA=11001001b	CA=11001010b	CA=11001011b

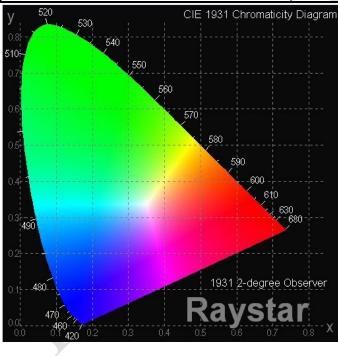
5.Absolute Maximum Ratings

Item	Symbol	Min	Мах	Unit	Notes
Operating Temperature	T _{OP}	-40	+80	°C	
Storage Temperature	T _{ST}	-40	+80	°C	2
Supply Voltage For Logic	VDD-V _{SS}	-0.3	5.3	V	

Page 11, Total 29 Pages

6.Electrical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	VDD-VSS	-	4.8	5.0	5.3	V
Input High Volt.	VIH	-	0.8 VDD	-	VDD	V
Input Low Volt.	VIL	-	GND	-	0.2 VDD	V
Output High Volt.	VOH	IOH=-0.5mA	0.8 VDD		VDD	V
Output Low Volt.	VOL	IOL=0.5mA	GND	-)	0.2 VDD	V
50% Check Board Operating Current	IDD	VDD=5V	28	30	38	mA


Note: In order to avoid any possible damages, 3V or 3.3V logic I/O for VDD 5V OLED module is not recommended.

Page 12, Total 29 Pages

7.Optical Characteristics

Item	Symbol	Condition	Min	Тур	Мах	Unit
View Angle	(V)θ		160			deg
	(Н)ф		160			deg
Contrast Ratio	CR	Dark	2000:1		-	-
Response Time	T rise	-		10		μs
	T fall	-		10		μs
Display with 50% check E	60	70		cd/m2		
CIEx(Blue)	(CIE1931)	0.12	0.16	0.20		
CIEy(Blue)		(CIE1931)	0.19	0.23	0.27	

Page 13, Total 29 Pages

8.OLED Lifetime

ITEM	Conditions	Min	Тур	Remark
Operating Life Time	Ta=25℃ / Initial 50% check Board Typical Brightness Value	40,000 Hrs	50,000 Hrs	Note

Note:

- 1. Life time is defined the amount of time when the luminance has decayed to <50% of the initial value.
- 2. This analysis method uses life data obtained under accelerated conditions to extrapolate an estimated probability density function (*pdf*) for the product under normal use conditions.
- 3. Screen saving mode will extend OLED lifetime.

9.Reliability

Content of Reliability Test

Environmenta	l Test		
Test Item	Content of Test	Test Condition	Applicable Standard
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80	- (
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-40 □ 240hrs	
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	80□ 240hrs	
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-40 □ 240hrs	
High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	60□,90%RH 240hrs	
Temperature Cycle	Endurance test applying the low and high temperature cycle. -40 25 80 30min 5min 30min 1 cycle	-40□/80□ 100 cycles	
Mechanical Tes	st		
Vibration test	Endurance test applying the vibration during transportation and using.	10~22Hz→1.5mmp-p 22~500Hz→1.5G Total 0.5hr	-
Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G Half sin wave 11 ms 3 times of each direction	
Atmospheric pressure test	Endurance test applying the atmospheric pressure during transportation by air.	115mbar 40hrs	
Others			
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=±600V(contact), ±800v(air), RS=330Ω CS=150pF 10 times	

*** Supply voltage for OLED system =Operating voltage at 25°C

Test and measurement conditions

- 1. All measurements shall not be started until the specimens attain to temperature stability. After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 23±5°C; 55±15% RH.
- 2. All-pixels-on is used as operation test pattern.
- 3. The degradation of Polarizer are ignored for High Temperature storage, High Temperature/ Humidity Storage, Temperature Cycle

Evaluation criteria

- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: > 50% of initial value.
- 4. Current consumption: within ± 50% of initial value.

APPENDIX:

RESIDUE IMAGE

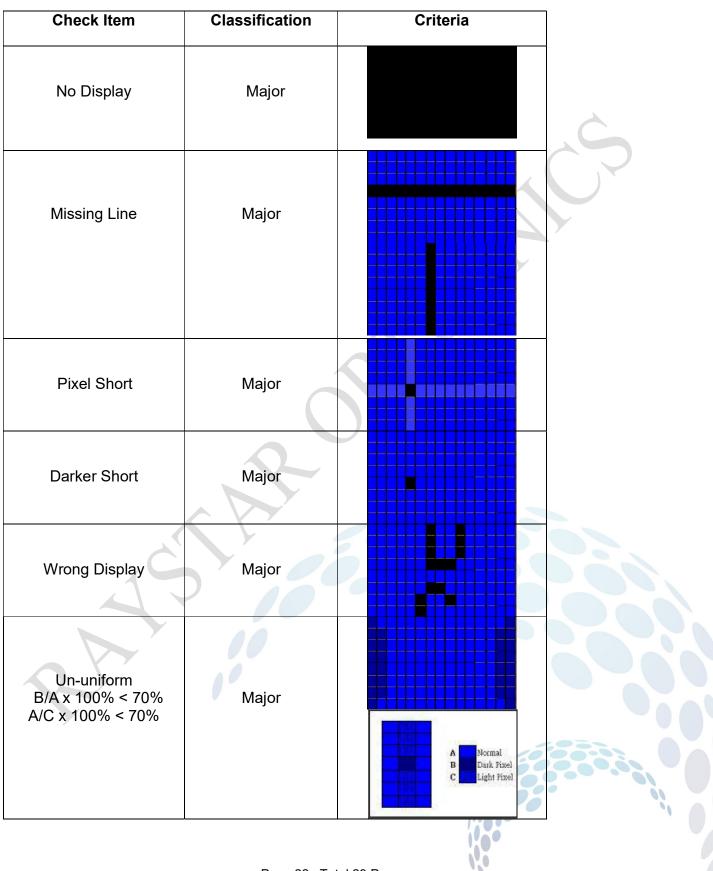
Because the pixels are lighted in different time, the luminance of active pixels may reduce or differ from inactive pixels. Therefore, the residue image will occur. To avoid the residue image, every pixel needs to be lighted up uniformly.

10.Inspection specification

01 Electrical Testing 1.1 Missing vertical, horizontal segment, segment contrast defect. 1.2 Missing character, dot or icon. 1.3 Display malfunction. 1.4 No function or no display. 0.65 1.5 Current consumption exceeds product specifications. 1.6 OLED viewing angle defect. 0.7 Mixed product types. 0.65 02 Black or white spots on OLED 2.1 White and black spots on display ⊥0.25mm, no more than three white or black spots present. 2.5 03 OLED 3.1 Round type : As following drawing white spots, contamina tion (non-displ ay) SIZE Acceptable Q TY 2.5 3.2 Line type : (As following drawing) Image: Constraint of the spots on the spots on the spots on the spots on the spots on contamina tion 3.2 Line type : (As following drawing) 2.5 0.4 Polarizer bubbles If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction. Size Φ Accept no dense 0.00 < W≦0.03 2 0.4 Polarizer bubbles If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction. Size Φ Accept no dense 0.20 < Φ≦0.50 2.5 0.5 Q Accept no dense 0.20 < Φ≦0.50 3 2.5	NO	Item	Criterion						AQL
1.3 Display malfunction. 1.4 No function or no display. 1.5 Current consumption exceeds product specifications. 1.6 OLED viewing angle defect. 1.7 Mixed product types. 1.8 Contrast defect.0.6502Black or white spots on OLED (display only)2.1 White and black spots on display $\Box 0.25$ mm, no more than three white or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3mm.2.503OLED black spots, contamina tion (non-displ ay)3.1 Round type : As following drawing $\Phi=(x + y)/2$ SIZE TY $\Phi \le 0.10$ $Accept nodense2.50.10 < \Phi \le 0.2020.10 < \Phi \le 0.2020.10 < \Phi \le 0.2010.10 < \Phi \le 0.2020.10 < \Phi \le 0.2020.20 < \Phi \le 0.2510.25 < \Phi0210.4PolarizerbubblesIf bubbles are visible,judge using black spotspecifications, not easyto find, must check inspecify direction.Size \PhiAccept no dense0.20 < Accept no dense2.504PolarizerbubblesIf bubbles are visible,judge using black spot0.50 < \Phi \le 1.000.50 < \Phi \le 1.001.00 < \Phi2.504PolarizerbubblesIf bubbles are visible,judge using black spot0.20 < A \le 0.500.50 < \Phi \le 1.000.50 < \Phi \le 1.001.00 < \Phi2.5$	01		defect.	defect.					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1.3 Display malfunction.						
$\begin{array}{ c c c c c } 1.6 \ \text{OLED} \ \text{viewing angle defect.} \\ 1.7 \ \text{Mixed product types.} \\ 1.8 \ \text{Contrast defect.} \\ 1.8 \ \text{Contrast defect.} \\ \hline 2.1 \ \text{White and black spots on display \Box 0.25 \ \text{mm, no more than three white or black spots present.} \\ \hline 2.2 \ \text{Densely spaced: No more than two spots or lines within 3 \ \text{mm.}} \\ \hline 0.1 \ \text{Contrast defect.} \\ \hline 0.1 \ \text{Contrast defect.} \\ \hline 0.10 \ \text{Acceptable Q} \\ \hline 1.0 \ \text{Accept no dense} \\ \hline 0.10 \ \text{Accept no dense} \\ \hline 0.25 \ \text{Contramina tion} \\ \hline (non-display) \\ \hline 0.25 \ \text{Contramina tion} \\ \hline (non-display) \\ \hline 0.25 \ \text{Contramina tion} \\ \hline 0.25 \ Contramina tio$									0.65
1.8 Contrast defect.02Black or white spots on OLED (display only)2.1 White and black spots on display \Box 0.25mm, no more than three white or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3mm.2.503OLED black spots, contamina tion (non-displ ay)3.1 Round type : As following drawing $\Phi=(x + y)/2$ SIZE $\Phi \le 0.10$ $\Delta cceptable QTY\Phi \le 0.10\Delta ccept nodense2.503OLEDblackspots,contamination(non-display)3.1 Round type : Asfollowing drawing\Phi=(x + y)/2SIZE\Delta cceptable QTY\Phi \le 0.10\Delta ccept nodense2.504PolarizerbubblesIf bubbles are visible,judge using black spotspecifications, not easyto find, must check inspecify direction.Size \Phi\Delta cceptable Q TY\Phi \le 0.20\Delta ccept no dense\Delta cceptable Q TY\Phi \le 0.20\Delta cceptable Q TY<$			1.6 OLED viewir	1.6 OLED viewing angle defect.1.7 Mixed product types.					
02Black or white spots on OLED (display only)2.1 White and black spots on display □0.25mm, no more than three white or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3mm.2.503OLED (display only)3.1 Round type : As following drawing $\Phi=(x + y) / 2$ SIZE $\Phi \le 0.10$ Acceptable Q TY $\Phi \le 0.10$ 2.503OLED black spots, contamina tion (non-displ ay)3.1 Round type : As following drawing $\Phi=(x + y) / 2$ SIZE $\Phi \le 0.10$ Acceptable Q TY $\Phi \le 0.10$ 20.10 < $\Phi \le 0.20$ 20.10 < $\Delta ccept no$ dense2.50.10 < $\Delta e \le 0.25$ 10.25 < Φ 01LengthWidth $\Delta cceptable Q$ TY $\Box = W \le 0.02$ Accept no dense L ≤ 3.0 2.50.4Polarizer bubblesIf bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.Size Φ $\Delta cceptable Q$ TY $\Phi \le 0.20$ 20.4Polarizer bubblesIf bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.Size Φ $\Delta cceptable Q$ TY $\Phi \le 0.20$ $\Delta ccept no dense0.20 < \Phi \le 0.5020.4PolarizerbubblesIf bubbles are visible,judge using black spotspecifications, not easyto find, must check inspecify direction.Size \Phi\Delta cceptable Q TY\Phi \le 0.2020.4PolarizerbubblesIf bubbles are visible,judge using black spotspecifications, not easyto find, must check inspecify directi$			-						
white spots on OLED (display only)three white or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3mm.2.503OLED black spots, contamina tion (non-displ ay)3.1 Round type : As following drawing $\Phi=(x + y)/2$ SIZE TY $\Phi \le 0.10$ Acceptable Q TY $\Phi \le 0.10$ 2.503OLED black spots, contamina tion (non-displ ay)3.1 Round type : As following drawing $\Phi=(x + y)/2$ SIZE TY $\Phi \le 0.10$ Acceptable Q TY $\Phi \le 0.20$ 20.10 < $\Phi \le 0.20$ 20.00 $0.25 < \Phi$ 00.25 < Φ 000010 < $\Phi \ge 0.20$ Accept no dense $0.10 < \Phi \le 0.20$ 220.20 < $\Phi \le 0.25$ 10.25 < Φ 00.25 < Φ 00220.20 $0.25 < \Phi$ 2.50.4Polarizer bubblesIf bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.Size Φ $Acceptable Q TY\Phi \le 0.2022.50.20 < \Phi \le 0.5030.50 < \Phi \le 1.0022.51.00 < \Phi01.00 < \Phi02.5$								Y	
spots on OLED (display only)2.2 Densely spaced: No more than two spots or lines within 3mm.2.503OLED black spots, white spots, contamina tion (non-displ ay)3.1 Round type : As following drawing $\Phi=(x + y)/2$ SIZE Acceptable Q TY $\Phi \le 0.10$ Accept no dense 0.10 < $\Delta \le 0.20$ 2030.10 < $\Phi \le 0.20$ 20.20 < $\Phi \le 0.25$ 104Polarizer bubblesIf bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.Size Φ Accept no dense 2204Polarizer bubblesIf bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.Size Φ Accept no dense 222.50.20 < $\Phi \le 0.50$ 3 0.50 < $\Phi \le 1.00$ 22.51.00 < Φ 021.00 < Φ 02	02			•			mm	n, no more than	
OLED (display only)3mm.03OLED black spots, contamina tion (non-displ ay)3.1 Round type : As following drawing $\Phi=(x + y)/2$ SIZE TY $\Phi \le 0.10$ Acceptable Q TY $\Phi \le 0.10$ 7 Accept no dense0.10 < $\Phi \le 0.20$ 2 0.10 < $\Phi \le 0.25$ 1 0.25 < Φ 03.2 Line type : (As following drawing)Length $Vidth$ Naccept no dense dense2.50.20 < $\Phi \le 0.25$ 1 0.25 < Φ 03.2 Line type : (As following drawing)Length $Vidth$ Acceptable Q TY Accept no dense L ≤ 3.0 20.4Polarizer bubblesIf bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.Size Φ Acceptable Q TY $\Phi \le 0.33$ $0.20 < \Phi \le 0.50$ 3 $0.20 < \Phi \le 0.50$ 2.50.4Polarizer bubblesIf bubbles are visible, judge using black spot specify direction.Size Φ Acceptable Q TY $\Phi \le 0.20$ Accept no dense $0.20 < \Phi \le 0.50$ 2.50.50 < $\Phi \le 1.00$ 2 $1.00 < \Phi$ 2.5		spots on		•	•		ts o	r lines within	25
only)03OLED black spots, contamina tion (non-displ ay)3.1 Round type : As following drawing $\Phi=(x + y)/2$ SIZE TY $\Phi \le 0.10$ Acceptable Q TY $\Phi \le 0.10$ TY $\Phi \le 0.10$ 0.10 < $\Phi \ge 0.20$ 2 0.20 < $\Phi \ge 0.25$ 1 0.25 < Φ 03.2 Line type : (As following drawing) LengthLength Width Width Acceptable Q TY Accept no dense20.20 < $\Phi \ge 0.25$ 1 0.25 < Φ 03.2 Line type : (As following drawing)Length Width $$ Weith Acceptable Q TY Polarizer 0.05 < W		-	3mm.						2.5
black spots, white spots, contamina tion (non-displ ay) $3.2 \text{ Line type : (As following drawing)} \underbrace{SIZE}_{TY} \\ Accept no dense 0.10 < \Phi \le 0.20 2 0.10 < \Phi \le 0.20 2 0.20 < \Phi \le 0.25 1 0.25 < \Phi 0 $ $3.2 \text{ Line type : (As following drawing)} \\ \hline Length & Width & Acceptable Q TY \\ \hline & W \le 0.02 & Accept no dense L \le 3.0 & 0.02 < W \le 0.03 L \le 2.5 & 0.03 < W \le 0.05 & 0.05 < W & As round type 04 Polarizer bubbles If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction. 5ize \Phi & Acceptable Q TY \\ \hline & 0.05 < W & As round type 0.20 < \Phi \le 0.50 3 \\ \hline 0.50 < \Phi \le 1.00 2 \\ \hline 1.00 < \Phi & 0 \\ \hline 1.00 < \Phi & 0 \end{array}$		· · ·							
spots, white spots, contamina tion (non-displ ay) $ \begin{array}{c} \Phi = (x + y) / 2 & TY \\ \hline \Phi \le 0.10 & Accept no \\ dense \\ 0.10 < \Phi \le 0.20 & 2 \\ \hline 0.20 < \Phi \le 0.25 & 1 \\ \hline 0.25 < \Phi & 0 \\ \hline 0.20 < Accept no dense \\ \hline 1.25 & 0.03 < W \le 0.05 \\ \hline 0.50 < \Psi \le 0.20 & Accept no dense \\ \hline 0.20 < \Phi \le 0.50 & 3 \\ \hline 0.50 < \Phi \le 1.00 & 2 \\ \hline 1.00 < \Phi & 0 \\ \hline 0.50 < \Phi \le 1.00 & 2 \\ \hline 1.00 < \Phi & 0 \\ \hline 0 & 0 \\ $	03	-				SIZE			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				y		SIZL		-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Ф≦0.10			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		contamina tion							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						0 20 < Φ≤0 25 ¹		1	
$\begin{array}{ c c c c c c c } \hline & 3.2 \text{ Line type : (As following drawing)} & & & & & & & & & & & & & & & & & & &$		· ·					_0	0	
$\begin{array}{ c c c c c c } & Length & Width & Acceptable Q TY \\ \hline \hline & W \leq 0.02 & Accept no dense \\ \hline L \leq 3.0 & 0.02 < W \leq 0.03 \\ \hline L \leq 2.5 & 0.03 < W \leq 0.05 \\ \hline & & 0.05 < W & As round type \\ \hline & 0.05 < W & As round type \\ \hline & 0.05 < W & Acceptable Q TY \\ \hline & \phi \leq 0.20 & Accept no dense \\ \hline & 0.20 < \phi \leq 0.50 & 3 \\ \hline & 0.50 < \phi \leq 1.00 & 2 \\ \hline & 1.00 < \phi & 0 \\ \hline & Total Q TY & 3 \\ \hline & & & & \\ \hline \end{array}$			3.2 Line type : (A	As followin	g dr				
$\begin{array}{ c c c c c c c c } \hline L \leq 3.0 & 0.02 < W \leq 0.03 \\ \hline L \leq 2.5 & 0.03 < W \leq 0.05 \\ \hline & 0.05 < W \\ \hline 0.05 < W \\ \hline As round type \\ \hline 0.20 < \Phi \leq 0.50 \\ \hline 0.20 < \Phi \leq 0.50 \\ \hline 0.50 < \Phi \leq 1.00 \\ \hline 1.00 < \Phi \\ \hline 0.20 \\ \hline 0.$							A	cceptable Q TY	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					W	≦0.02	A	ccept no dense	
04Polarizer bubblesIf bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.Size Φ Accept able Q TY $\Phi \le 0.20$ Accept able Q TY $\Phi \le 0.20$ 2.50.00 < $\Phi \le 0.50$ 3 0.20 < $\Phi \le 0.50$ 2 1.00 < Φ 2.5				L≦3.0	0.0	0.03 < W≦0.05 2		2.5	
04Polarizer bubblesIf bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.Size Φ Accept no dense $0.20 < \Phi \le 0.50$ 3 $0.20 < \Phi \le 0.50$ 2.50.50 < $\Phi \le 1.00$ 2 $1.00 < \Phi$ 1.00 < Φ 0 Total Q TY2 $1.00 < \Phi$ 2 $1.00 < \Phi$ 1.00 < Φ 0 $Total Q TY$ 2.5				L≦2.5	0.0				
bubblesIf bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.Size Φ Acceptable Q TY $\Phi \le 0.20$ 2.5 $0.20 < \Phi \le 0.50$ 3 $0.20 < \Phi \le 0.50$ 3 $0.50 < \Phi \le 1.00$ 2 $1.00 < \Phi$ 0 $1.00 < \Phi$ 0 $1.00 < \Phi$ 0					0.0			s round type	
judge using black spot specifications, not easy to find, must check in specify direction. $\Phi \le 0.20$ Accept no dense $0.20 < \Phi \le 0.50$ 3 $0.20 < \Phi \le 0.50$ 3 $0.50 < \Phi \le 1.00$ 2 $1.00 < \Phi$ 0 $1.00 < \Phi$ 0 $1.00 < \Phi$ 0Total Q TY3 3 3	04		If hubbles are vie	sible		^		Accentable O TV	
specifications, not easy to find, must check in specify direction. $\begin{array}{c c} \varphi \equiv 0.20 & 0 \\ \hline 0.20 < \Phi \leqq 0.50 & 3 \\ \hline 0.50 < \Phi \leqq 1.00 & 2 \\ \hline 1.00 < \Phi & 0 \\ \hline Total Q TY & 3 \end{array}$ 2.5		bubbles	judge using black spot specifications, not easy to find, must check in						
specify direction. $\begin{array}{c c} 0.20 < $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								10000	2.5
Total Q TY 3				0					
Page 17 Total 20 Pages					10				
				Page 17,	Total	29 Pages		~	

NO	Item	Criterion			AQL
)5	Scratches		lack spots, white spo	ots, contamination	
		k: Seal width L: Electrode pad leng 6.1 General glass ch	t: Glass thickness a gth:		5
		z: Chip thickness	y: Chip width	x: Chip length	
	Chipped	Z≦1/2t	Not over viewing area	x≦1/8a	
)6	glass	1/2t < z≦2t	Not exceed 1/3k	x≦1/8a	2.5
		⊙If there are 2 or mo 6.1.2 Corner crack:	ore chips, x is total ler	ngth of each chip.	
		T. Chin thiskness	y: Chip width	w Chin longth	
		z: Chip thickness Z≦1/2t	y: Chip width Not over viewing area	x: Chip length x≦1/8a	
	h ('	1/2t < z≦2t	Not exceed 1/3k	x≦1/8a	
		⊙If there are 2 or mo	ore chips, x is the tota	l length of each chip.	

NO	Item	Criterion			AQL
		Symbols : x: Chip length	/: Chip width	z: Chip thickness	
	k: Seal width t: Glass thickness a: OLED side length L: Electrode pad length 6.2 Protrusion over terminal :				
		6.2.1 Chip on electrode pad :			
				(
		y: Chip width	x: Chip length	z: Chip thickness	
		y≦0.5mm	x≦1/8a	0 < z≦t	
		6.2.2 Non-conductive	portion:		
06	Glass			Y	2.5
	crack				
		/			
		y: Chip width	x: Chip leng		
				thickness	_
		y≦ L	x≦1/8a	0 < z≦t	
				erminal, over 2/3 of the ITO	
		specifications.	e inspected accor	ding to electrode terminal	
			e heat sealed by t	he customer, the alignment	
	7	mark not be damag			
		6.2.3 Substrate protu			
			y: width	x: length	
			y≦1/3L	x≦a	
				100	100
				1000	20.0%
				10000	



NO	Item	Criterion	AQL
07	Cracked glass	The OLED with extensive crack is not acceptable.	2.5
08	Backlight elements	 8.1 Illumination source flickers when lit. 8.2 Spots or scratched that appear when lit must be judged. Using OLED spot, lines and contamination standards. 8.3 Backlight doesn't light or color wrong. 	0.65 2.5 0.65
09	Bezel	9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination.9.2 Bezel must comply with job specifications.	2.5 0.65
10	PCB、COB	 10.1 COB seal may not have pinholes larger than 0.2mm or contamination. 10.2 COB seal surface may not have pinholes through to the IC. 10.3 The height of the COB should not exceed the height indicated in the assembly diagram. 10.4 There may not be more than 2mm of sealant outside the seal area on the PCB. And there should be no more than three places. 10.5 No oxidation or contamination PCB terminals. 10.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts, missing parts or excess parts. 10.7 The jumper on the PCB should conform to the product characteristic chart. 10.8 If solder gets on bezel tab pads, OLED pad, zebra pad or screw hold pad, make sure it is smoothed down. 	 2.5 2.5 2.5 2.5 0.65 0.65 2.5
11	Soldering	 11.1 No un-melted solder paste may be present on the PCB. 11.2 No cold solder joints, missing solder connections, oxidation or icicle. 11.3 No residue or solder balls on PCB. 11.4 No short circuits in components on PCB. 	2.5 2.5 2.5 0.65

NO	Item	Criterion	AQL
NO 12	General	 Criterion 12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP. 12.2 No cracks on interface pin (OLB) of TCP. 12.3 No contamination, solder residue or solder balls on product. 12.4 The IC on the TCP may not be damaged, circuits. 12.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it cause the interface pin to sever. 12.6 The residual rosin or tin oil of soldering (component or 	AQL 2.5 0.65 2.5 2.5 2.5 2.5 2.5 2.5
appearance	appearance	chip component) is not burned into brown or black color. 12.7 Sealant on top of the ITO circuit has not hardened.	2.5 0.65 0.65
		12.8 Pin type must match type in specification sheet. 12.9 OLED pin loose or missing pins.	0.65
		 12.10 Product packaging must the same as specified on packaging specification sheet. 12.11 Product dimension and structure must conform to product specification sheet. 	0.65

Page 22, Total 29 Pages

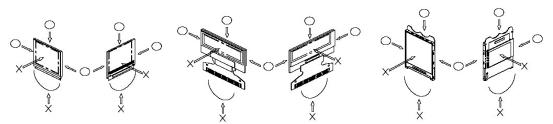
11.Precautions in use of OLED Modules

- (1) Avoid applying excessive shocks to module or making any alterations or modifications to it.
- (2) Don't make extra holes on the printed circuit board, modify its shape or change the components of OLED display module.
- (3) Don't disassemble the OLED display module.
- (4) Don't operate it above the absolute maximum rating.
- (5) Don't drop, bend or twist OLED display module.
- (6) Soldering: only to the I/O terminals.
- (7) Storage: please storage in anti-static electricity container and clean environment.
- (8) It's pretty common to use "Screen Saver" to extend the lifetime and Don't use fix information for long time in real application.
- (9) Don't use fixed information in OLED panel for long time, that will extend "screen burn" effect time..
- (10) Raystar has the right to change the passive components, including R2and R3 adjust resistors. (Resistors, capacitors and other passive components will have different appearance and color caused by the different supplier.)

(11) Raystar have the right to change the PCB Rev. (In order to satisfy the supplying stability, management optimization and the best product performance...etc, under the premise of not affecting the electrical characteristics and external dimensions, Raystar have the right to modify the version.)

11.1 Handling Precautions

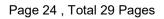
- (1) Since the display panel is being made of glass, do not apply mechanical impacts such us dropping from a high position.
- (2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance.
- (3) If pressure is applied to the display surface or its neighborhood of the OLED display module, the cell structure may be damaged and be careful not to apply pressure to these sections.
- (4) The polarizer covering the surface of the OLED display module is soft and easily scratched. Please be careful when handling the OLED display module.
- (5) When the surface of the polarizer of the OLED display module has soil, clean the surface. It takes advantage of by using following adhesion tape.
- * Scotch Mending Tape No. 810 or an equivalent


Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent Also, pay attention that the following liquid and solvent may spoil the polarizer:

* Water

* Ketone

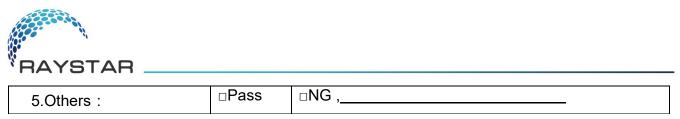
- * Aromatic Solvents
- (6) Hold OLED display module very carefully when placing OLED display module into the System housing. Do not apply excessive stress or pressure to OLED display module. And, do not over bend the film with electrode pattern layouts. These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases.



- (7) Do not apply stress to the LSI chips and the surrounding molded sections.
- (8) Do not disassemble nor modify the OLED display module.
- (9) Do not apply input signals while the logic power is off.
- (10) Pay sufficient attention to the working environments when handing OLED display modules to prevent occurrence of element breakage accidents by static electricity.
- * Be sure to make human body grounding when handling OLED display modules.
- * Be sure to ground tools to use or assembly such as soldering irons.
- * To suppress generation of static electricity, avoid carrying out assembly work under dry environments.
- * Protective film is being applied to the surface of the display panel of the OLED display module. Be careful since static electricity may be generated when exfoliating the protective film.
- (11) Protection film is being applied to the surface of the display panel and removes the protection film before assembling it. At this time, if the OLED display module has been stored surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5.
- (12) If electric current is applied when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above.

11.2 Storage Precautions

- (1) When storing OLED display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps. And, also, avoiding high temperature and high humidity environment or low temperature (less than 0°C) environments.(We recommend you to store these modules in the packaged state when they were shipped from Raystar Optronics Inc. At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them.
- (2) If electric current is applied when water drops are adhering to the surface of the OLED display module, when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above.



11.3 Designing Precautions

- (1) The absolute maximum ratings are the ratings which cannot be exceeded for OLED display module, and if these values are exceeded, panel damage may be happen.
- (2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible.
- (3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A)
- (4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices.
- (5) As for EMI, take necessary measures on the equipment side basically.
- (6) When fastening the OLED display module, fasten the external plastic housing section.
- (7) If power supply to the OLED display module is forcibly shut down by such errors as taking out the main battery while the OLED display panel is in operation, we cannot guarantee the quality of this OLED display module. Connection (contact) to any other potential than the above may lead to rupture of the IC.

		Page: 1
Modu	le Sample	e Estimate Feedback Sheet
Module Number :		
1 Danal One officiation		
1、Panel Specification :	- Deee	
1. Panel Type:	□ Pass	□NG ,
2. Numbers of Pixel :	Pass	□NG ,
3. View Area :	Pass	□NG ,
4. Active Area :	Pass	□NG ,
5.Emitting Color :	Pass	□NG ,
6.Uniformity :	□Pass	□NG ,
7.Operating	Pass	□NG ,
Temperature :		
8.Storage Temperature :	Pass	□NG ,
9.Others :	1	
2. Mechanical Specificati	on :	
1. PCB Size :	□Pass	□NG ,
2.Frame Size :	□Pass	□NG ,
3.Materal of Frame :	□Pass	□NG ,
4.Connector Position :	□Pass	□NG ,
5.Fix Hole Position :	□Pass	□NG ,
6. Thickness of PCB :	□Pass	□NG ,
7. Height of Frame to	□Pass	□NG ,
PCB :		
8.Height of Module :	□Pass	□NG ,
9.Others :	□Pass	□NG ,
3、Relative Hole Size :		
1.Pitch of Connector :	□Pass	□NG ,
2.Hole size of	□Pass	□NG ,
Connector :		1200000
3.Mounting Hole size :	□Pass	□NG ,
4.Mounting Hole Type :	□Pass	□NG ,
	I	

> > Go to page 2 < <

Page 27, Total 29 Pages

Module Number : ____

Pa	g	e	:	2

4、Electronic Characteristics of Module :

1.Input Voltage :	□Pass	□NG ,
2.Supply Current :	□Pass	□NG ,
3. Driving Voltage for	□Pass	□NG ,
OLED :		
4.Contrast for OLED :	□Pass	□NG ,
5.Negative Voltage	□Pass	□NG ,
Output :		
6.Interface Function :	□Pass	□NG ,
7.ESD test :	□Pass	□NG ,
8.Others :	□Pass	□NG ,

5、<u>Summary</u>:

Sales signature : _____ Customer Signature : _____

Page 29, Total 29 Pages