SFH 4356

Features:

- Wavelength 850nm
- Short switching times
- Good spectral match to silicon photodetectors
- package similar to SFH 309

Applications

- IR remote control
- Sensor technology
- Discrete optocouplers
- Discrete interrupters

Notes

Depending on the mode of operation, these devices emit highly concentrated non visible infrared light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1 and IEC 62471.

Ordering Information

Type:	Radiant Intensity $I_{e}[\mathrm{~mW} / \mathrm{sr}]$ $I_{F}=100 \mathbf{~ m A}, \mathrm{t}_{\mathrm{p}}=\mathbf{2 0} \mathbf{~ m s}$	Ordering Code
SFH 4356	$90(\geq 40)$	Q65111A6136
SFH 4356-UV	$40 \ldots 125$	Q65111A8863

Note: \quad measured at a solid angle of $\Omega=0.01 \mathrm{sr}$

Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Values	Unit
Operation and storage temperature range	$\mathrm{T}_{\text {op }} ; \mathrm{T}_{\text {stg }}$	$-40 \ldots 100$	${ }^{\circ} \mathrm{C}$
Reverse voltage	V_{R}	5	V
Forward current	I_{F}	100	mA
Surge current $\left(\mathrm{t}_{\mathrm{p}} \leq 200 \mu \mathrm{~s}, \mathrm{D}=0\right)$	$\mathrm{I}_{\text {FSM }}$	1	A
Power consumption	$\mathrm{P}_{\text {tot }}$	200	mW
ESD withstand voltage (acc. to ANSI/ ESDA/ JEDEC JS-001 -HBM$)$	$\mathrm{V}_{\text {ESD }}$	2	kV
Thermal resistance junction - ambient ${ }^{1) \text { page } 9}$	$\mathrm{R}_{\text {thJA }}$	350	$\mathrm{~K} / \mathrm{W}$
Thermal resistance junction - soldering point	$\mathrm{R}_{\text {thJs }}$	150	$\mathrm{~K} / \mathrm{W}$

Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter		Symbol	Values	Unit
Peak wavelength $\left(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}\right)$	(typ)	$\lambda_{\text {peak }}$	860	nm
Centroid wavelength $\left(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}\right)$	(typ)	$\lambda_{\text {centroid }}$	850	nm
Spectral bandwidth at 50% of $I_{\text {max }}$ ($\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}$)	(typ)	$\Delta \lambda$	30	nm
Half angle	(typ)	φ	± 20	-
Dimensions of active chip area	(typ)	LxW	0.3×0.3	$\mathrm{mm}_{\mathrm{mm}}$
Rise and fall time of $\mathrm{I}_{\mathrm{e}}\left(10 \%\right.$ and 90% of $\mathrm{I}_{\mathrm{e} \text { max }}$) ($\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega$)	(typ)	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	12	ns
Forward voltage $\left(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}\right)$	(typ (max))	V_{F}	1.7 (≤ 2)	V
Forward voltage $\left(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}\right)$	(typ (max))	V_{F}	3.6 (≤ 4.6)	V
Reverse current ($\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$)		$I_{\text {R }}$	not designed for reverse operation	$\mu \mathrm{A}$
Total radiant flux ($\mathrm{l}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}$)	(typ)	$\Phi_{\text {e }}$	80	mW

Parameter		Symbol	Values	Unit
Temperature coefficient of I_{e} or Φ_{e} $\left(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}\right)$	(typ)	TC_{l}	-0.3	$\% / \mathrm{K}$
Temperature coefficient of V_{F} $\left(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}\right)$	(typ)	TC_{V}	-0.6	mV / K
Temperature coefficient of wavelength $\left(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}\right)$	(typ)	TC_{λ}	0.3	$\mathrm{~nm} / \mathrm{K}$

Grouping ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Group	Min Radiant Intensity $I_{F}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=\mathbf{2 0} \mathbf{~ m s}$ $\mathrm{l}_{\mathrm{e}, \min }[\mathrm{mW} / \mathrm{sr}]$	Max Radiant Intensity $\mathrm{I}_{\mathrm{F}}=\mathbf{1 0 0 \mathrm { mA } , \mathrm { t } _ { \mathrm { p } } = \mathbf { 2 0 } \mathrm { ms }}$ $\mathrm{I}_{\mathrm{e}, \max }[\mathrm{mW} / \mathrm{sr}]$	Typ Radiant Intensity $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=100 \boldsymbol{\mu s} \\ & \mathrm{I}_{\mathrm{e}, \text { typ }}[\mathrm{mW} / \mathrm{sr}] \end{aligned}$
SFH 4356-U	40	80	255
SFH 4356-V	63	125	395
SFH 4356-AW	100	200	630
SFH 4356-BW	160	320	1000

Note: \quad Measured at a solid angle of $\Omega=0.01 \mathrm{sr}$
Only one group in one packing unit (variation lower 2:1).

Relative Spectral Emission
 2) page 9

$I_{\text {rel }}=f(\lambda), T_{A}=25^{\circ} \mathrm{C}$

Max. Permissible Forward Current

$I_{F, \max }=f\left(T_{A}\right), R_{t h J A}=350 \mathrm{~K} / \mathrm{W}$

Radiant Intensity ${ }^{2)}$ page 9

$\mathrm{I}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}}(100 \mathrm{~mA})=\mathrm{f}\left(\mathrm{I}_{\mathrm{F}}\right)$, single pulse, $\mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Forward Current ${ }^{2 \text {) page } 9}$
$\mathrm{I}_{\mathrm{F}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{F}}\right)$, single pulse, $\mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Permissible Pulse Handling Capability

$I_{F}=f\left(t_{p}\right), T_{A}=25^{\circ} \mathrm{C}$, duty cycle $D=$ parameter

Permissible Pulse Handling Capability

$I_{F}=f\left(t_{p}\right), T_{A}=85^{\circ} \mathrm{C}$, duty cycle $D=$ parameter

Radiation Characteristics ${ }^{2)}$ page 9
$I_{\text {rel }}=f(\phi), T_{A}=25^{\circ} \mathrm{C}$

Package Outline

general tolerance ± 0.1
lead finish Sn
Dimensions in mm.

Package

3mm Radial (T 1), Epoxy, black

Approximate Weight:

0.2 g

Note

Packing information is available on the internet (online product catalog).

Opto Semiconductors

Recommended Solder Pad

E062.3010.188-01

Dimensions in mm.

Note:

pad 1: cathode

TTW Soldering

IEC-61760-1 TTW

Disclaimer

Language english will prevail in case of any discrepancies or deviations between the two language wordings.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact our Sales Organization.
If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.
Components used in life-support devices or systems must be expressly authorized for such purpose!
Critical components* may only be used in life-support devices** or systems with the express written approval of OSRAM OS.
*) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
${ }^{* *}$) Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Glossary

${ }^{1)}$ Thermal resistance: junction -ambient, mounted on PC-board (FR4), padsize $16 \mathrm{~mm}^{2}$ each
${ }^{2)}$ Typical Values: Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.

Opto Semiconductors

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Infrared Emitters - High Power category:
Click to view products by Osram manufacturer:

Other Similar products are found below :
IR19-315C/TR8 SFH 4030 SFH 4060 HSM8-V380 HSM9-V380 SFH 5750 PK2S-2KJE-A PK2S-2LJE-A PK2S-3KJE-A PK2S-3KKE-A PK2S-3LJE-A PK2S-4KJE-A AREQ-90C0-00000 AREQ-80C0-00000 SFH 4775S A01 SST-10-IRD-B90H-S810 SFH 4727A SFH 4726AS SFH 4717AS AREQ-8020-00000 HR5P-N3FB-00000 HR5P-N2FB-00000 HR5P-N3CB-00000 HR5P-N2CB-00000 HR5P-N3CA-00000 HR5P-N2CA-00000 HR5P-N2FA-00000 HR5P-N3FA-00000 VSMY2853SLX01 VSMY2853RGX01 VSMY2853GX01 IN-P281ASGHIR IN-P281ASGIR QEE123 HSDL-4400\#011 C3535SIR2C-2B KM-4457F3C L-53F3BT VTE1291W-2H LL-304IRC4B-2AD LL-503HIRT2E-1CC LL-503IRC2E-2AC LL-503IRC2V-2AD LL-503IRT2E-2AC LL-503IRT2E-2AE LL-503SIRC2E-1BD LL-503SIRC2H1BE LL-S170IRC-2A SFH 4259 SFH 4542-Z

